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1. The Schrödinger equation

In mathematical physics, the Schrödinger equation (and the closely related Heisen-
berg equation) are the most fundamental equations in non-relativistic quantum
mechanics, playing the same role as Hamilton’s laws of motion (and the closely
related Poisson equation) in non-relativistic classical mechanics. (In relativistic
quantum mechanics, it is the equations of quantum field theory which replace the
role of Heisenberg’s equation, while Schrödinger’s equation does not directly have a
natural analogue.) In pure mathematics, the Schrödinger equation and its variants
is one of the basic equations studied in the field of partial differential equations, and
has applications to geometry, to spectral and scattering theory, and to integrable
systems. There are actually two (closely related) variants of Schrödinger’s equation,
the time dependent Schrödinger equation and the time independent Schrödinger
equation; we will begin with the discussion of the time-dependent equation.

Let us begin with the physical motivation, reviewing both the classical and quantum
mechanics of a simple physical system. While the Schrödinger equation can be used
to describe the quantum dynamics of many-particle systems under the influence of
a variety of forces, let us for simplicity just consider a single particle with some mass
m > 0 in n-dimensional space Rn moving subject to the influence of a potential,
which for us will be a function V : Rn → R. To avoid technicalities we shall
assume implicitly that all functions in this discussion are smooth (i.e. infinitely
differentiable).

In classical mechanics, this particle would have a specific position q(t) ∈ Rn and
a specific momentum1 p(t) ∈ Rn for each time t. (Eventually we shall observe the
familiar law p(t) = mv(t), where v(t) := q′(t) is the velocity of the particle.) Thus
the state of this system at any given time t is described by the element (q(t), p(t))
of phase space Rn ×Rn. The energy of this state is described by the Hamiltonian
function H : Rn ×Rn → R on phase space, defined in this case by

H(q, p) :=
|p|2

2m
+ V (q).

1To be more precise, the momentum p(t) should live in the cotangent space T ∗
q(t)

Rn of Rn at

q(t), but we shall ignore this subtlety for sake of simplicity in this discussion.
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(Physically, the quantity |p|2
2m = 1

2m|v|
2 represents kinetic energy, while V (q) repre-

sents potential energy.) The system then evolves by Hamilton’s equations of motion

q′(t) :=
∂H

∂p
; p′(t) := −∂H

∂q
,

where we keep in mind that p and q are vectors and so these derivatives are thus
gradients. Hamilton’s equations of motion are valid for any classical system, but in
our specific case of a particle in a potential well, they become

q′(t) :=
1
m
p(t); p′(t) = −∇V (q).

The first equation is asserting that p = mv; the second equation is basically New-
ton’s second law (the left-hand side is equal to ma(t) = mq′′(t), and the right-hand
side has the physical interpretation of the force exerted by the potential). One con-
sequence of Hamilton’s equations of motion is that one has conservation of energy

d

dt
H(q(t), p(t)) = 0;

more generally, given any classical observable A : Rn×Rn → R, we have Poisson’s
equation of motion

d

dt
A(q(t), p(t)) = {H,A}(q(t), p(t))

where {H,A} : Rn ×Rn → R is the Poisson bracket of H and A, defined as

{H,A} :=
∂H

∂p
· ∂A
∂q

− ∂A

∂p
· ∂H
∂q

.

One can easily show that Hamilton and Poisson’s equations of motion are in fact
equivalent to each other. From conservation of energy, we see that there is a
quantity E (independent of time) such that

H(q(t), p(t)) = E

for all t ∈ R; we will refer to this as the time-independent Hamilton equation, for
reasons which will be clearer later.

Now we analyze the quantum mechanical analogue of the above classical system.
We need a small parameter ~ > 0, known as Planck’s constant. The state of the
particle at a time t is no longer described by a single point (q(t), p(t)) in phase
space, but is instead described by a wave function, which in this case is a complex-
valued function ψ(t) : Rn → C obeying the normalization 〈ψ(t), ψ(t)〉 = 1, where
〈, 〉 denotes the inner product

〈φ, ψ〉 :=
∫
Rn

φ(q)ψ(q) dq.

Unlike classical mechanics, a wave function ψ(t) does not necessarily have a specific
position q(t), however it does have an average position 〈q(t)〉, defined as

〈q(t)〉 := 〈Qψ(t), ψ(t)〉 =
∫
Rn

q|ψ(t, q)|2 dq,

where the position operatorQ is the operation of multiplication by q, thusQψ(t, q) :=
qψ(t, q). Similarly, while ψ does not have a specific momentum p(t), it does have
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an average momentum 〈p(t)〉, defined as

〈p(t)〉 := 〈Pψ(t), ψ(t)〉 =
~
i

∫
Rn

(∇qψ(t, q))ψ(t, q) dq,

where the momentum operator P is defined by Planck’s law

Pψ(t, q) :=
~
i
∇qψ(t, q).

Note that while at first glance 〈p(t)〉 appears to be a complex-valued vector, it is
in fact a real-valued vector because all the components of P are self-adjoint. More
generally, given any quantum observable - by which we mean a self-adjoint operator
A acting on the space L2(Rn) of complex-valued square integrable functions - we
can define the average value 〈A(t)〉 of A at time t by the formula

〈A(t)〉 := 〈Aψ(t), ψ(t)〉.
The analogue of Hamilton’s equations of motion is now the time-dependent Schrödinger
equation

i~
∂ψ

∂t
= Hψ

whereH is now a quantum observable rather than a classical one, and more precisely

H =
|P |2

2m
+ V (Q).

In other words, we have

i~
∂ψ

∂t
(t, q) = Hψ(t, q) = − ~2

2m
∆qψ(t, q) + V (q)ψ(t, q)

where ∆qψ =
∑n
j=1

∂2ψ
∂q2j

ψ is the Laplacian of ψ. In pure mathematics it is not un-
common to normalize ~ = m = 1 and write x instead of q, thus writing Schrödinger’s
equation in the form

i
∂ψ

∂t
(t, x) = −∆xψ(t, x) + V (x)ψ(t, x).

The analogue of Poisson’s equation of motion is the Heisenberg equation
d

dt
〈A(t)〉 = 〈 i

~
[H(t), A(t)]〉

for any observable A, where [A,B] = AB−BA is the commutator or Lie bracket of
A and B. (The quantity i

~ [A,B] is occasionally referred to as the quantum Poisson
bracket of A and B.) Thus for instance we have the conservation of energy law

d

dt
〈H(t)〉 = 0.

In classical mechanics, this would imply that there exists a real number E such that
the Hamiltonian H always takes the value of E. This is sometimes, but not always,
the case in quantum mechanics. It is possible that the quantum state ψ oscillates
in time according to the formula ψ(t, q) = e

E
i~ tψ(0, q) for some real number E in

which case it is true that

Hψ(t) = Eψ(t) for all times t.

The equation Hψ = Eψ is then known as the time-independent Schrödinger equa-
tion, and E is referred to as the energy level or eigenvalue of the state ψ. However,
in general ψ does not have such a simple oscillation behavior in time, but is instead
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a superposition or linear combination of such oscillating states, for instance one
possibility is that ψ has a representation of the form

ψ(t, q) =
K∑
k=1

e
Ek
i~ tψk(q)

for a finite number of energy levels E1, . . . , EK , and a finite number of functions
ψ1, . . . , ψK each obeying the time-independent Schrödinger equation Hψk = Ekψk
at energy level Ek. In fact a general solution ψ to the time-dependent Schrödinger
equation always has a representation of the above form, except that the finite
summation may have to be replaced by an infinite summation or a continuous
integral (or a combination of both). Thus knowing all the solutions to the time-
independent Schrödinger equation gives (at least in principle) all the solutions to
the time-dependent Schrödinger equation. (One can also view the two equations
as Fourier transforms of each other; the quantity E

~ is essentially the frequency
variable dual to the time variable t.)

At first glance it is not immediately apparent that Schrödinger’s equations and
Hamilton’s equations are at all related, although there is certainly some similar-
ity between Heisenberg’s equation and Poisson’s equation. Nevertheless, strong
analogies exist between the two equations. For instance, one can deduce from the
Heisenberg equation that

d

dt
〈q(t)〉 =

1
m
〈p(t)〉; d

dt
〈p(t)〉 = −〈∇qV (q)(t)〉,

which is certainly very similar to Hamilton’s equations of motion. Also, given
any classical solution t 7→ (q(t), p(t)) to Hamilton’s equation of motion, one can
construct a corresponding family of approximate solutions ψ(t) to Schrödinger’s
equation, for instance by the formula2

ψ(t, q) := e
i
~L(t)e

i
~p(t)·(q−q(t))ϕ(q − q(t))

where L(t) :=
∫ t
0
p(s)2

2m −V (q(s)) ds is the classical action and ϕ is any slowly varying
function (thus the derivatives of ϕ are small) which is normalized in the sense that∫
Rn |ϕ(q)|2 dq = 1. Indeed, one can verify that ψ(t, q) solves the approximate

Schrödinger’s equation

i~
∂ψ

∂q
(t, q) = Hψ(t, q) +

~2

2m
e

i
~L(t)e

i
~p(t)·(q−q(t))∆ϕ(q − q(t)).

The error term on the right-hand side will be small if ~2∆ϕ is small. In physics,
this fact is an example of the correspondence principle, which asserts that classical
mechanics can be used to approximate quantum mechanics accurately if Planck’s
constant is small and one is working at macroscopic scales (which is what allows
us to use slowly varying functions ϕ). In mathematics (and more precisely in the
fields of microlocal analysis and semi-classical analysis), there are a number of

2Intuitively, this function ψ(t, q) is localized in position near q(t) and localized in momentum

near p(t), and is thus localized near (q(t), p(t)) in phase space. Such a localized function, exhibiting
such “particle-like” behavior as having a reasonably well defined position and velocity is sometimes

known as a “wave packet”. In general, most solutions of the Schrödinger equation do not behave

like wave packets, but can be decomposed as a superposition or linear combination of wave packets;
such decompositions are a useful tool in analyzing general solutions of such equations.
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formalizations of this principle that allow us to use knowledge about the behavior
of Hamilton’s equations of motion in order to analyze the Schrödinger equation.
For example if the classical equations of motion have periodic solutions, then often
the Schrödinger equation also has nearly-periodic solutions, whereas if the classical
equations have very chaotic solutions, then the Schrödinger equation typically does
also (this phenomenon is known as quantum chaos or quantum ergodicity).

The time-independent Schrödinger equation Hψ = Eψ is of course an eigenvalue
equation for the operator H. If H was a self-adjoint transformation on a finite-
dimensional space then as is well known, there would only be a finite number of
eigenvalues E for which the equation Hψ = Eψ had a non-trivial solution; however
since H acts on an infinite-dimensional space, the situation can be more compli-
cated. Indeed, H can have eigenfunctions ψ which lie in the domain L2(Rn) of H
(consisting of square-integrable complex-valued functions), but it is also possible to
have solutions Hψ = Eψ which do not decay at infinity, but instead are bounded
or grow at infinity; in fact, the behavior at infinity depends crucially on the value
of E, and in particular whether it lies in one or more components of the spectrum
of H, defined as the set of energies E for which the operator H − E fails to be
invertible with a bounded inverse. This leads to the spectral theory of Schrödinger
operators and their variants, which is a vast and active area of current research.

Closely related to spectral theory is scattering theory, which is of importance in both
physics and mathematics. If the potential function V decays sufficiently quickly at
infinity, and k ∈ Rn is a non-zero frequency vector, then setting the energy level as
E := ~2|k|2

2m , the time-dependent Schrödinger equation Hψ = Eψ admits solutions
ψ(q) which behave asymptotically as |q| → ∞ as

ψ(q) ≈ eik·q + f(
q

|q|
, k)

ei|k||q|

r(n−1)/2

for some canonical function f : Sn−1×Rn → C, known as the scattering amplitude
function. This scattering amplitude depends (in a non-linear fashion) on the po-
tential V , and the map from V to f is known as the scattering transform, and can
be viewed as a non-linear variant of the Fourier transform. A major area of study
in scattering theory is understanding the relationship between properties of the po-
tential V and properties of the scattering amplitude f , and in particular whether
one can reconstruct the potential V from the scattering amplitudes. This theory
is important not just for the study of the Schrödinger equation, but is (rather sur-
prisingly) also useful for studying a number of integrable systems, for instance one
can explicitly write the solution to the Korteweg-de Vries equation

∂V

∂t
+
∂3V

∂t3
= 6V

∂V

∂x

by means of the one-dimensional scattering and inverse scattering transforms.

There are many generalizations and variants of the Schrödinger equation; one can
generalize to many-particle systems, or add other forces such as magnetic fields or
even non-linear terms. One can also couple this equation to other physical equations
such as Maxwell’s equations of electromagnetism, or replace the domain Rn by
another space such as a torus, a discrete lattice, a manifold, or alternatively one
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could place some impenetrable obstacles in the domain (thus effectively removing
those regions of space from the domain). The study of all of these variants is a vast
and diverse field in both pure mathematics and in mathematical physics.
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