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1. Phase space

In physics, phase space is a concept which unifies classical (Hamiltonian) mechanics
and quantum mechanics; in mathematics, phase space is a concept which unifies
symplectic geometry with harmonic analysis and PDE.

In classical mechanics, the phase space is the space of all possible states of a physical
system; by “state” we do not simply mean the positions q of all the objects in the
system (which would occupy physical space or configuration space), but also their
velocities or momenta p (which would occupy momentum space). One needs both
the position and momentum of system in order to determine the future behavior
of that system. Mathematically, the configuration space might be defined by a
manifold M (either finite1 or infinite dimensional), and for each position q ∈ M
in that space, the momentum p of the system would take values in the cotangent2

space T ∗
qM of that space. Thus phase space is naturally represented here by the

cotangent bundle T ∗M := {(q, p) : q ∈M,p ∈ T ∗
qM}, which comes with a canonical

symplectic form ω := dp ∧ dq.

Hamilton’s equation of motion describe the motion t 7→ (q(t), p(t)) of a system
in phase space as a function of time in terms of a Hamiltonian H : M → R, by
Hamilton’s equations of motion

d

dt
q(t) =

∂H

∂p
(q(t), p(t));

d

dt
p(t) = −∂H

∂q
(q(t), p(t)),

or equivalently in terms of the symplectic form ω as

ẋ(t) = ∇ωH(x(t)),

where x(t) := (q(t), p(t)) is the trajectory of the system in phase space, and ∇ω

is the symplectic gradient, thus ω(·,∇ωH) = dH. Thus Hamilton’s equation of
motion are the analogue of gradient flow for H on the manifold T ∗M , but with
respect to a symplectic form ω rather than a Riemannian metric.

1To simplify the discussion we shall completely ignore any issues such as differentiability,
smoothness, etc. and work instead on a purely formal level.

2This may seem surprising; since velocity q̇ naturally lives in the tangent space TqM , one

would expect momentum to also. However, from Lagrangian mechanics, in which the system
evolves by finding formal critical points of a Lagrangian

R
L(q(t), q̇(t)) dt, the momentum is

defined as p := ∂L
∂q̇

, which lives most naturally in the cotangent space. Dually, the Hamiltonian

links momentum to velocity by Hamilton’s equation q̇ = ∂H
∂p

.
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An alternative description of Hamiltonian’s equations is in terms of observables,
which in classical mechanics is simply a function A : T ∗M → R in phase space
(thus the Hamiltonian is itself an observable, known as the energy). Hamilton’s
equation of motion then become

d

dt
A(x(t)) = {A,H}(x(t))

where {A,H} := ω(∇ωA,∇ωH) is the Poisson bracket of A and H.

Now we turn to quantum mechanics. As is well known, a quantum mechanical state
does not necessarily have a well-defined position or a well-defined momentum (and
certainly cannot have both). Nevertheless, the notion of phase space T ∗M , and of
a Hamiltonian H : T ∗M → R survives, and indeed can be viewed as a crucial link
between what otherwise looks like two very different theories. A state is now not
a point in phase space, but is instead a wave function, which is a complex-valued
function ψ : M → C (usually normalized to have total probability one). The
classical Hamiltonian H : T ∗M → R is then quantized to a self-adjoint operator
Op(H) : M → M . The precise prescription of this quantization is technical (and
not even unique), but can be described informally as follows. Certain classes of
wave function are strongly localized in both position and momentum; for instance
a function which is a “wave packet”, which roughly speaking is a function which
looks (in local co-ordinates) like

ψ(q) ≈ e
i
~ (q−q0)·p0ϕ(q − q0), (1)

where ϕ(q − q0) is a bump function localized to near q0, and ~ > 0 is a small
parameter (Planck’s constant), can be viewed as having position roughly q0 and
frequency roughly p0

~ , and hence momentum roughly p0 (by Planck’s law p = ~ξ).
The operator Op(H) should behave like the classical Hamiltonian in the sense that

Op(H)ψ ≈ H(q0, p0)ψ

whenever ψ is localized to have position near q0 and momentum near p0. Hamilton’s
equations of motion can then be replaced by Schrödinger’s equation of motion

dψ

dt
= − i

~
Op(H)ψ.

This equation may not initially resemble Hamilton’s equation, but they become
much more similar when tested against observables. Indeed, for any observable
A : T ∗M → R, with its corresponding quantization Op(A), we have (formally, at
least) the Heisenberg equation

d

dt
〈Op(A)ψ(t), ψ(t)〉 = 〈 i

~
[Op(H),Op(A)]ψ(t), ψ(t)〉

where [Op(H),Op(A)] = Op(H)Op(A)−Op(A)Op(H) is the Lie bracket or com-
mutator of Op(H) and Op(A).

The analogy between quantum mechanics and classical mechanics provides a fertile
heuristic platform for analyzing functions ψ : M → C in general (not necessarily
wave functions associated to a quantum system) by viewing them as distributions
in phase space, though the famous Heisenberg uncertainty principle prevents this
analogy from being formalized perfectly (unless one introduces correction terms
which are lower order in ~). From such tools as localized Fourier transforms one
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can write an arbitrary function ψ as a linear combination of wave packets such
as (1), and the coefficients of such combination thus should describe how ψ is
distributed in phase space, just as how the decomposition of a musical sound wave
into individual notes descibes how a musical piece is distributed in both time and
frequency. The precise way to describe this distribution is not unique (and perhaps
surprisingly, the exact choice of distribution is not always particularly important!);
one choice is to introduce the Wigner distributionWψ(q, p), defined in the Euclidean
setting M = Rn by the formula

Wψ(q, p) :=
∫
Rn

e−2πiv·pψ(q + v/2)ψ(q − v/2) dv.

We caution that while this distribution is a quantum analogue of the probability
distribution in phase space in classical statistical mechanics, it is not non-negative
everywhere (although it is positive in various averaged senses).

The phase space distribution (also known as the phase space portrait, or the score
of a function, in analogy to the musical example mentioned earlier) is a useful guide
for understanding the singularities of a function, and how that function will behave
with respect to various operators (such as the observables Op(H) mentioned above)
and under evolution by various PDE; the rigorous formalization of these heuristics
is known as microlocal analysis, time-frequency analysis, or semi-classical analysis.
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