
Does P = NP ?

A real-life mathematical problem

1

• This will be a talk about the mathematics of algo-

rithms. An algorithm is a set of rules and instruc-

tions used to solve a real-life problem. Often this

algorithm will then be run on a computer.

• One of the most important problems here is “does

P = NP?” Mathematicians and computer scientists

have been working on this problem for 25 years, but

have not yet solved it.

2

Example

• As a hypothetical example, suppose that you want

to build a reverse phone directory of Sydney. (A

reverse phone directory has the phone numbers in

order, and gives the name for each number).

• Your only tools are (a) a Pentium III computer; and

(b) a CD-ROM version of the Telstra White Pages.

These Pages contain the names and numbers of N =

3, 000, 000, in alphabetical order of the names.

• You’d like to be done with this by dinner-time.

3

First try: Insertion sort

• The most obvious thing to try is to start with an

empty list and insert the numbers and names in one

by one in order. This is known as insertion sort.

• For instance, suppose we have already sorted the first

5 names in the white pages:

1. 82490931 Abandowitz, E.

2. 91435124 Abadeen, W.

3. 93210946 Abe, L.

4. 94029382 Abacan, M.

5. 98371342 Aarden, J.

• The next entry in the White Pages is ”Abraham,

S. - 93948234”. We would search our list for where

93948234 lies, i.e. between position 3 and 4. Then

we would insert this entry in, and bump all the later

names up by one:

4

1. 82490931 Abandowitz, E.

2. 91435124 Abadeen, W.

3. 93210946 Abe, L.

4. 93948234 Abraham, S.

5. 94029382 Abacan, M.

6. 98371342 Aarden, J.

• We then repeat this 2,999,994 more times.

5

How long will insertion sort take?

• Insertion sort is slow. Suppose that we’ve already

inserted 1,000,000 numbers and names, and are just

about to insert the 1, 000, 0001th.

• To perform the insertion, we have to (a) find the place

to insert the name, then (b) bump all the names

after this up by one. On the average, it will take

about 500,000 searches to find the place to insert,

and another 500,000 commands to bump the names.

So we’re looking at about 1,000,000 commands just

to insert the 1, 000, 001th number.

• This means that the total number of steps needed is

about

0+1+2+3+ . . .+2, 999, 999 ≈ 4, 500, 000, 000, 000.

• On a Pentium III, this will take about 50 hours.

• One could use some fancy programming tricks to

speed this up a bit, but only by a factor of 10 or

so.

6

A better algorithm: Merge sort

• You could try to speed up insertion sort by program-

ming more efficiently, or buying a faster computer.

But a much cheaper thing to do is to come up with

a better algorithm. One such algorithm is “Merge

sort”.

• Merge sort is a “divide and conquer” strategy, and

works like this. Take the white pages and divide it

into two equal halves (“A-M” and “N-Z”). Sort the

two halves separately. Then merge the two sorted

lists together.

• Of course, this begs the question of how to sort the

two halves. The answer is to use Merge sort again,

i.e. divide each half into equal quarters, sort each

quarter separately, and then merge them together.

To sort the quarters, you divide up into eighths, and

so forth, until you are down to just sorting one or

two names, which is very easy.

7

• Merging two lists of size N takes about 2N steps

(Why?). Thus, for instance, the merging the two

halves of the White Pages together would take 3, 000, 000

steps.

• Since 3, 000, 000 ∼ 221, one would need to do about

21 levels of Merge sort:

Sorted list of 750,000 names

Sorted list of 3,000,000 names

Sorted list of 1,500,000 names Sorted list of 1,500,000 names

Merge (3,000,000 steps)

Merge (1,500,000 steps) Merge (1,500,000 steps)21 levels

(750,000 steps) (750,000 steps) (750,000 steps) (750,000 steps)

Sorted list of 750,000 names Sorted list of 750,000 names Sorted list of 750,000 names

• The total number of steps needed is therefore about

≈ 3, 000, 000 ∗ 21 = 63, 000, 000.

• A Pentium III could do this in about 1 second (give

or take a factor of 10).

• The task of sorting N objects is a “polynomial time”

algorithm, because the number of steps needed is

8

at most a polynomial in N (N2 for insertion sort,

N log2 N for Merge sort). The set of all polynomial

time tasks is called P.

9

Example: Booking examination rooms

• Suppose you are an administrator for UNSW. Your

job is to assign examination times for N = 100

courses. The exams must be in exam week, Monday

to Friday, and either in the morning or afternoon, so

there are 10 time slots available.

• This seems easy: just put 10 courses in each time

slot. There is, however, a catch. There are 1000

students, taking three courses each. A student can’t

take two different exams at the same time, so you

have to avoid clashes. In other words, if student X

is taking courses A, B, C, then you have to assign

different time slots to A, B, C.

• It may be that there are so many clashes that a time-

table is impossible. However, we would like an algo-

rithm which will provide a workable time-table when-

ever one exists.

10

First attempt: brute force search

• One thing you can do is try all the possible exam

assignments one by one. After all, once you have

chosen the exam times, it’s an easy matter for the

computer to check each student one by one and make

sure there is no clash. (This takes about 1, 000 steps).

• Unfortunately, there are a large number of possible

assignments. Each course has 10 choices of time slot,

and there are 100 courses, so there are 10100 possi-

bilities. So the total number of computations needed

could be as bad as

10100 × 1000 = 10103.

• On a Pentium III, this would take about 1082 millen-

nia.

11

• This is so slow that no amount of technological im-

provement can help:

• 1000x improvement in speed of computer: 1079 mil-

lennia

• Clever programming reducing number of steps by

1000: 1076 millennia

• Using 100 million computers linked up via the inter-

net: 1068 millennia

• Eliminating 90% of the students: 1067 millennia

12

Is there a better algorithm?

• Clearly, brute force is not the right answer to this

problem. Is there a better one?

• There are partial algorithms for this problem which

work 90% of the time, or only avoid clashes for 95%

of the students, etc., but this is not completely sat-

isfactory.

• The time-tabling problem is an example of a polynomially-

verifiable problem: once you actually have a time-

table, it is very quick (polynomial time) to check

whether the time-table works or not, but it’s very

difficult to find the time-table in the first place. The

class of all such problems is called NP.

• The P = NP problem asks: are all polynomially

verifiable problems solvable in polynomial time? If

this is true, then many problems of the above type

(e.g. airplane scheduling, or any other matching of

resources to needs) would be solvable very quickly,

and this would have tremendous economic conse-

quences.

• On the other hand, most encryption and security pro-

cedures (e.g. the encryption of credit card transac-

tions on the internet) rely on the assumption that

13

P 6= NP (because the problem of cracking an en-

cryption code is usually NP).

• Despite 25 years on work on this problem, we are

nowhere near a solution. To give some idea of its im-

portance, the Clay Mathematical Institute in Boston

has offered US $1 million for a proof of either P =

NP or P 6= NP!

• The time-tabling problem is an example of a NP-

complete problem. What this means is that if you

can figure out how to solve the time-tabling problem

in polynomial time, then you can solve all other NP

problems in polynomial time (thus showing that P =

NP). There are many other known examples of NP-

complete problems.

14

Further reading

• The Clay Institute page for the P = NP problem is

at http://www.claymath.org/prize problems/p vs np.htm

• The book “Computers and Intractibility, a guide to

the theory of NP-completeness”, by M. Garey and

D. Johnson (W.H. Freeman and Co., San Francisco,

1979) is a thorough introduction to the subject, and

contains a list of over 300 NP-complete problems.

15

