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Abstract. A rather technical description of some of the active areas of re-
search in modern real-variable harmonic analysis, and some of the techniques
being developed. Note: references are completely missing; I may update this
later.

1. General overview

Very broadly speaking, harmonic analysis is centered around the analysis (in par-
ticular, quantitative estimates) of functions (and transforms of those functions)

on such domains as Euclidean spaces R
d, integer lattices Z

d, periodic tori T
d =

R
d/Zd, or other groups G (which could be anything from Lie groups, to finite

groups, to infinite dimensional groups), or manifolds M , or subdomains Ω of these
spaces, or perhaps more exotic sets such as fractals. These functions typically take
values in the real numbers R or complex numbers C, or in other finite-dimensional
spaces (e.g. one may consider k-forms on a manifold M , although strictly speaking
these are sections of a bundle rather than functions); they may even take values in
infinite-dimensional Hilbert or Banach spaces. The range space is usually a Banach
space1; this allows one to take finite or infinite linear combinations of these func-
tions, and be able to take limits of sequences of functions. Rather than focusing
on very special examples of functions (e.g. explicit algebraic functions), harmonic
analysis is often more concerned with generic functions in a certain regularity class
(e.g. in Ck(M), the space of k times continuously differentiable functions on a
manifold M) or a certain integrability class (e.g. Lp(M), the class of pth-power
integrable functions on M). As such, it provides a useful set of tools when dealing
with functions appearing in some mathematical context in which some regularity
or integrability is known on the function, but the function cannot be solved explic-
itly. As generic functions usually do not satisfy any interesting identities, harmonic
analysis is often more concerned instead with obtaining estimates on these functions
and on various transformations of these functions, for instance obtaining quanti-
tative inequalities connecting various norms of such functions. (More qualitative
properties such as continuity, differentiability, convergence, etc. are also of interest,
but often these are proven by first establishing some relevant quantitative estimates
and then applying some sort of limiting argument; the proof of the estimates often

1Functions which take values in other sets, such as manifolds embedded in a Euclidean space,
are also of interest, although the analysis here has been more difficult, especially if one demands
that the analysis remain completely intrinsic (independent of the choice of embedding).
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absorbs most of the effort, with the limiting argument at the end usually being
quite routine once the estimates are obtained.)

Harmonic analysis overlaps and interacts (quite fruitfully) with many other fields
of mathematics, to the extent that it is sometimes difficult to draw a sharp divid-
ing line between harmonic analysis and neighboring fields. For instance, the study
of decomposing a function on a highly symmetric space (e.g. a Lie group) into
components or “harmonics” overlaps with the representation theory of groups and
algebras such as Lie groups and Lie algebras; the analysis of boundary behavior of
a holomorphic function on a disk, half-plane, or other domain overlaps with com-
plex variables and partial differential equations (PDE); estimates on exponential
sums overlaps with analytic number theory; analyzing the structure of a collection
of geometric objects (balls, disks, tubes, etc.) overlaps with geometric measure
theory, combinatorial incidence geometry, and additive combinatorics; analysis of
linear operators such as the shift map can lead to spectral and scattering theory on
one hand, and ergodic theory on the other; and the study of very rough sets and
functions on abstract measure spaces can lead one into real analysis, measure the-
ory, and probability; conversely, probabilistic methods are a powerful tool that can
be applied to certain problems in harmonic analysis. If one focuses instead on the
function spaces corresponding to various regularities, as well as the spaces of linear
transformations between them, harmonic analysis begins to blend with functional
analysis, operator algebras, and interpolation theory. Finally, linear, multilinear
and even non-linear estimates of various differential or integral operators (possibly
with oscillation and singularities) are intimately tied up with the analysis of lin-
ear and non-linear partial differential equations. Via its ubiquituous appearance
in PDE, harmonic analysis is then indirectly linked to even more fields, notably
differential geometry and mathematical physics.

In addition to these theoretical connections, harmonic analysis also has many appli-
cations to applied and numerical mathematics. For instance, given the usefulness
of the Fourier transform (on various groups) in many applications such as electri-
cal engineering, physics, and information science, it is of interest to use harmonic
analysis to discover algorithms which compute the Fourier transform (and associ-
ated operators such as Fourier multipliers) efficiently and robustly. More recently,
other transforms, notably the class of wavelet transforms and their variants, have
been developed for a number of applications, from signal processing to simulation
of PDE, and also play an important role in approximation theory, giving rise to a
very active applied branch of harmonic analysis.

Given the general scope of the field, and its many interconnections to other fields,
it is not surprising that there are many complementary viewpoints to take in this
field. For instance, one could approach harmonic analysis algebraically, viewing
the Fourier transform, its symmetries, and the action of this transform and related
operators on special functions such as harmonics or plane waves; this approach fits
well with the representation theory aspect of harmonic analysis, though of course
one still has to do a fair bit of analysis to justify convergence on these groups,
especially if they are infinite, or perhaps even infinite-dimensional. This part of the
field is sometimes referred to as abstract harmonic analysis, or Fourier analysis on
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groups, but also connects with other fields such as functional analysis and represen-
tation theory. Related to this, one could proceed via the spectral resolution of the
Laplacian (which is closely related to the Fourier transform), leading to a spectral
theory approach to the subject. Or one could rephrase harmonic analysis questions
in a complex analysis setting (replacing Fourier series by Taylor or Laurent series,
etc.); historically this was the primary way to approach this subject, and is still
active today, although much of the theory here has been vastly generalized (e.g.
replacing the Cauchy-Riemann equations by more general elliptic PDE in higher
dimensions, or working with several complex variables instead of just one). Then
there is the real-variable approach, which grew out of the complex variable approach
but has a much greater emphasis on tools such as smooth cutoff functions (in both
space and frequency) to localize the functions of interest into more manageable
components, even at the expense of properties such as complex analyticity. This
approach was developed by many people including Calderón, Zygmund, and Stein,
and is perhaps one of the more prominent perspectives in the field today. Related
to the real-variable approach are more geometric approaches, such as variational
methods, heat kernel methods, or the viewpoint of microlocal analysis. Here the
emphasis is on studying the distribution of functions either in physical space, or in
frequency space (via the Fourier transform), or even simultaneously in a product
space known as phase space. Here one runs into the well known obstruction given
by the uncertainty principle, in that there is a limit as to how much one can lo-
calize in both physical and frequency space simultaneously, nevertheless in many
applications it is possible to accept this limitation and still perform a viable anal-
ysis on phase space. This phase space also has a natural symplectic structure, and
there are many connections between the analysis of functions in phase space and
of the underlying symplectic geometry, which is closely related to the connections
between quantum mechanics and classical (Hamiltonian) mechanics in physics (via
geometric quantization). This viewpoint seems especially useful for solving PDE,
especially time-dependent PDE. Once one transforms the problem to a phase space
setting, one is sometimes left with the geometric combinatorics task of controlling
the overlap of various objects such as balls, rectangles, tubes, light rays, or disks
in physical space, frequency space, or phase space; while such tasks are perhaps
strictly speaking not inside the realm of harmonic analysis, they do seem to be
increasingly essential to it.

As mentioned earlier, harmonic analysis has been a very fruitful tool in the analysis
of PDE (most obviously in the study of harmonic functions, which are solutions
to the PDE ∆u = 0, but in fact a very wide class of PDE is amenable to study
by harmonic analysis tools), and has also found application in analytic number
theory, as many functions in analytic number theory (e.g. the Möbius function
µ(n)) have such a “random” behavior that they can to some extent be treated as a
generic function). In practice, though, when applying harmonic analysis methods
to other fields, a purely harmonic analysis approach is not always the optimal
one, as the functions that arise in other fields often have additional structure (e.g.
they solve a PDE, or obey some geometric constraints, or satisfy some arithmetic
relations, or have some positivity or symmetry properties, etc.) which must be
exploited in conjunction with the harmonic analysis techniques to obtain sharp
results. Thus harmonic analysis can often be viewed not a self-contained theory,
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but rather as a collection of useful tools and principles for estimating functions and
various transforms of those functions, which can then be incorporated (together
with arguments from other fields of mathematics) to control various mathematical
objects arising in applications.

One characteristic of harmonic analysis is that it tends to be local - studying char-
acteristics of functions which depend mostly on nearby values of the function and
not so much on distant values. Because of this, the results in harmonic analysis
are often rather insensitive to global features such as the topology of the underly-
ing manifold or the degree of the map being studied, although there are a handful
of methods (notably heat kernel methods) which are striking counterexamples to
this general trait, and there are some recent results which begin to combine these
global considerations with the more local ones of traditional harmonic analysis.
This emphasis on localization also shows up in the application of harmonic analysis
to PDE; typically harmonic analysis is only used to control the PDE locally, and
other methods (e.g. using conserved integrals of motion) are then used to extend
this control globally. Related to this emphasis on local phenomena is the wide-
spread use in harmonic analysis of cutoff functions - smooth, compactly supported
functions which one uses to localize the functions being studied to specific regions
of space (or frequency). Thus the techniques and strategies in this field tend to
have a “reductionistic” philosophy; for instance, if one wishes to control an integral
operator Tf(x) :=

∫
K(x, y)f(y) dy which exhibits both singularity and oscillation

in its kernel K(x, y), then one might approach this problem by dividing the kernel
K into two (or more pieces), one of which is singular but not particularly oscilla-
tory, while the other is oscillatory but not particularly singular, and estimate the
two components separately. Another common method in a similar spirit is that of
“dyadic decomposition” - splitting an expression (usually some sort of integral) into
a countable number of pieces, depending on which “dyadic shell” a certain param-
eter (e.g. the frequency magnitude |ξ|, or the radial variable |x|, or the magnitude
of a function |f(x)|) falls into, estimating each piece separately, and then somehow
recombining the dyadic components efficiently to estimate the whole. While this
type of “divide and conquer” strategy can lead to somewhat lengthy, inelegant and
computationally intensive arguments, it does seem to be rather effective and can
give reasonably good bounds, as long as one is prepared to concede a loss of a
constant (or perhaps a logarithmic factor) in the final estimate.

It would be impossible to give the entire field justice in a survey as brief as this,
and we shall therefore have to make a number of sacrifices. First of all we shall
restrict our attention primarily to the harmonic analysis of a fixed Euclidean space
R

d. In doing so we forego any number of important directions of research in
the field - for instance, harmonic analysis on discrete, compact, finite, or non-
abelian groups, or on manifolds, or in very general measure spaces (e.g. spaces
of homogeneous type), or in one or more complex variables, or on very large or
infinite-dimensional spaces; however the Euclidean spaces often serve as a simple
model or starting point for these more general situations, and so they seem to be the
best context to discuss. For a related reason, we shall emphasize the real-variable
approach to harmonic analysis, since it is well adapted to dealing with the Euclidean
space setting, but as discussed above it is clearly not the only way to approach
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the subject. Thirdly, we shall deal mainly with scalar (real-valued or complex-
valued) functions, and the various interesting transforms that take one or more
such functions to others (typically in a linear or multilinear fashion); again, this
excludes several important directions of study, notably vector-valued or manifold-
valued functions, as well as the study of geometric objects such as fractals (which,
like functions, have quantitative notions of regularity, etc. attached to them).
Again, we choose this because the scalar functions serve as a starting point for
these other, more complicated situations. Finally, we shall be concerned primarily
with the task of obtaining estimates on these transforms; there are a number of
other important questions one can ask concerning these transforms (invertibility,
convergence, asymptotic behavior, etc.) but many of these questions require that
one first establish estimates, and so we shall focus on these. As we shall see, even
with such limitations in scope, this is still a very large subject to cover.

2. Operators

There are several main actors in a harmonic analysis problem, including the un-
derlying domain (which may be a measure space, a metric space, a manifold, etc.),
some spaces (often Banach spaces) of functions on that domain, and some opera-
tors (typically linear, sub-linear, or multi-linear) on those spaces. In this section
we focus on the latter type of object, and briefly discuss some typical examples
of operators which arise in harmonic analysis problems of interest. It is of course
impossible to survey all of the operators that have been considered in the literature,
and so we shall only restrict our attention to a few of the most intensively studied
ones. For simplicity we shall only work in the model setting of a fixed Euclidean
space R

d (and avoid discussing the interesting issue on the uniformity of estimates
in the high-dimensional limit d → ∞), endowed with the usual metric |x − y| and
measure dx, although many of the operators we discuss here have analogues on
many other types of domains, or with less standard metrics or measures. It is im-
possible to list all the possible generalizations here, though one should remark that
the study of Fourier series on the circle T = R/Z is also an important component
of the field, especially from a historical perspective and with regard to the connec-
tions with complex analysis and with number theory (e.g. via the Hardy-Littlewood
circle method). However in many circumstances there are transference principles

available which allow one to convert a question about Fourier series on R/Z to one
about Fourier integrals on R, or vice versa. We should also mention that there are
very conceptually useful dyadic models of Euclidean space, for instance replacing
the Fourier transform by the Fourier-Walsh transform, and replacing continuous
wavelets by Haar-type wavelets, which while not as directly related to as many
applications as the Euclidean problems, serve as much cleaner models in which to
test and develop techniques and tools which one can later adapt (or in some cases
directly transfer) to the Euclidean setting.

While the qualitative properties of these transforms (convergence, invertibility, reg-
ularity, etc.) are of interest, it is the quantitative properties (in particular, estimates
for the transformed function in terms of the original function, or occasionally vice
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versa) which are often the primary focus of investigation, with the qualitative prop-
erties then being obtained as a by-product of the quantitative estimates (“hard anal-
ysis”) via some general limiting arguments or functional analysis (“soft analysis”).
For instance, if one is interested in the convergence of some operation applied to
rather rough functions (e.g. square-integrable functions), one might proceed by first
proving an a priori estimate applied to test functions - smooth functions which are
compactly supported, or Schwartz functions - smooth functions whose derivatives
are all rapidly decreasing2, and then applying some sort of limiting procedure to
obtain the desired convergence for rough functions (the a priori estimate being used
to make the passage to the limit rigorous). Note that while the a priori estimate
is only proven for smooth functions, it is often important that the actual estimate
itself relies only on rougher norms of these functions such as Lp norms, in order
to justify the passage to the limit. In the rest of this section, therefore, we shall
not concern ourselves with questions of convergence, integrability, etc. of various
integrals and transforms, assuming instead that there is always enough smoothness
and decay to justify the existence of all expressions described below.

Many questions in harmonic analysis involve first a decomposition of functions into
some standard basis, often orthonormal or approximately orthonormal. There are
of course many interesting decompositions to study, but we shall focus just on two
closely related decompositions, which are arguably the most fundamental to the
theory, and the model for countless generalizations: the Fourier decomposition,
associated to the translation structure of R

d and the spectral resolution of the

Laplacian, associated to the operator ∆ :=
∑n

j=1
∂2

∂x2
j

. The former is of course

given by the Fourier transform, defined by

f̂(ξ) :=

∫

R
d
f(x)e−2πix·ξ dx,

which can be inverted by the inverse Fourier transform

g∨(x) :=

∫

R
d
g(ξ)e2πix·ξ dξ.

Using the Fourier transform, we can define Fourier multiplier operators Tm for any
function m(ξ) (with some minimal measurability and growth assumptions on m)
by the formula

T̂mf(ξ) = m(ξ)f̂ (ξ)

or equivalently

Tmf(x) :=

∫

R
d
f̂(ξ)m(ξ)e2πix·ξ dξ

Examples of Fourier multipliers include differential operators. For instance, if
m(ξ) = ξj (where ξ = (ξ1, . . . , ξn)), then Tm is just the differentiation operator
1

2πi
∂

∂xj
. More generally, if m(ξ) is a polynomial, m(ξ) = P (ξ1, . . . , ξn), then Tm is

2This emphasis on a priori estimates makes harmonic analysis a subtly different discipline from
its close cousin, real analysis, which often prefers to deal with rough or otherwise pathological
functions directly, occasionally to such an extent that tools from logic and model theory are
required to resolve the truth, falsity, or undecidability of some of its assertions.
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the corresponding polynomial of the commuting operators 1
2πi

∂
∂xj

, thus

Tm = P (
1

2πi

∂

∂x1
, . . . ,

1

2πi

∂

∂xn
);

in particular, the Laplacian ∆ mentioned earlier is a Fourier multiplier with sym-
bol m(ξ) := −4π|ξ|2. Thus Fourier multipliers are a generalization of constant
coefficient differential operators. Another example of a Fourier multiplier are the
spectral multipliers F (∆) of the Laplacian for any function defined on (−∞, 0], de-
fine as the Fourier multipliers corresponding to the symbol m(ξ) = F (−4π|ξ|2);
examples of these are the fractional differentiation operators (−∆)s/2 for s ∈ R,
the heat operators et∆ for t > 0, the Schrödinger evolution operators eit∆ for t ∈ R,

the wave evolution operators cos(t
√
−∆) and sin(t

√
−∆)√

−∆
for t ∈ R, the resolvent

operators (−∆ − z)−1 for z ∈ C\[0,∞), and the closely related Helmholtz opera-

tors p.v.(−∆ − λ2)−1 for λ > 0. One should also mention the spectral projections

1[λ,λ+a](
√
−∆) for λ, a > 0 in particular the disk multiplier 1[0,R](

√
−∆), or more

generally the Bochner-Riesz means (1 + ∆/R2)δ
+, for R > 0 and δ ≥ 0. Since

many important PDE involve the Laplacian, the above operators (and countless
variations on these themes) tend to arise quite frequently in PDE. Clearly there
are also many inter-relationships between these multipliers, and sometimes one can
use properties of one such multiplier to help control another, by means of basic
identities such as Tm1m2

= Tm1
Tm2

. For instance, the finite speed of propaga-
tion property for the wave equation leads to compact support properties of the
wave operators, which can then be used to localize several of the other operators
discussed above; similarly, the smoothing properties of the heat equation lead to
corresponding smoothing properties of the heat operators, which can be used to
understand the regularity properties of the other operators. These methods often
also extend to more general contexts, for instance when the Euclidean Laplacian is
replaced by some other differential operator; developing this theory more fully is
still an ongoing and active project. For instance, some of the most basic mapping
properties of square roots of non-self-adjoint perturbations of the Laplacian (the
Kato square root problem) were only answered very recently.

Besides the spectral multipliers of the Laplacian, a number of other Fourier mul-
tipliers are also of interest. For instance, the Riesz transform R := d(−∆)−1/2

arise in a number of contexts, notably in the Hodge splitting 1 = −RR∗ − R∗R
of a vector field into divergence-free and curl-free components, or in the theory
of elliptic regularity (using control on an elliptic operator such as the Laplacian
to deduce control on all other differential operators of the same order). In one
dimension, the Riesz transform becomes the Hilbert transform H = d

dx(−∆)−1/2,
which is a Fourier multiplier with symbol m(ξ) := isgn(ξ), or in physical space

Hf(x) = p.v.
∫

R
f(y)
x−y dy. This transform plays a basic role in the theory of complex

functions on the half-plane (for instance, if f(x) extends analytically to the upper
half-plane and has suitable decay at infinity, then the imaginary part of f must be
the Hilbert transform of the real part), and serves as a model or building block for
other complex analysis operators associated to domains, for instance the Cauchy

transform

Cf(z) := p.v.
1

2πi

∫

γ

f(ζ)

z − ζ
dζ
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associated to a curve (or other one-dimensional set) γ. Harmonic analysis tech-
niques (and in particular an advanced form of the Calderón-Zygmund theory men-
tioned below) have been used successfully to understand the mapping properties of
this operator, and hence to shed light on analytic capacity, harmonic measure and
other fundamental notions in complex anlaysis.

Fourier multipliers Tm can also be naturally identified with convolution operators
by the identity

Tmf(x) :=

∫

R
d
K(x− y)f(y) dy,

where the (possibly distributional) kernel K is simply the inverse Fourier transform
K = m∨ of m. These operators can also be thought of as the class of translation-
invariant linear operators, acting on (say) test functions in R

n. Such convolution
operators fall into many classes, depending on the singular behavior of the kernel
K, or equivalently on the asymptotic regularity and decay of the symbol m. For
instance, suppose m is a homogeneous symbol of order k for some k > −d, in the
sense that it obeys the homogeneous symbol estimates

|∇α
ξm(ξ)| ≤ Cα|ξ|k−|α| for all ξ ∈ R

d\{0}

for all multi-indices α = (α1, . . . , αn), where ∇α
ξ :=

∏d
j=1

∂αj

∂x
αj
j

, Cα > 0 is a con-

stant depending on α, and |α| := α1 + . . .+ αn; roughly speaking, these estimates
ensure that m(ξ) “behaves like” |ξ|k with respect to differentiation. Then the cor-
responding kernel K is a symbol of order −d − k away from the origin (with the
behavior near the origin needing to be interpreted in the sense of distributions when
k ≥ 0). For instance, the fractional integration operators (−∆)−s/2 fall into this
category, with k = −s. The case k = 0 is particularly special, because the kernel
K then decays like |x|−d, which just barely fails to be integrable both near x = 0
and near x = ∞. As such, the associated convolution operators Tm are referred
to as singular integral operators or Calderón-Zygmund operators, which must then
be interpreted in some suitable principal value sense. The Hilbert and Riesz trans-
forms are prime examples of such integrals; the identity operator (with m ≡ 1)
is another. An important and significant part of real-variable harmonic analysis is
Calderón-Zygmund theory, which analyzes more general classes of singular integrals
and quantifies the extent to which they behave like the identity operator; this is
one of the most well-developed areas of the subject, and serves as a model for other
extensions of the theory. As an example of the maturity of the theory, let us briefly
mention the T (1) theorem (and its generalization, the T (b) theorem), which gives
necessary and sufficient conditions for a singular integral operator to be bounded
on any Lp, 1 < p <∞; such theorems have proven particularly useful in the study
of analytic capacity of sets in the complex plane (since the Cauchy integral can be
viewed as a singular integral operator).

The Fourier multipliers of symbol type discussed above were translation invariant;
however they are part of a larger class of operators, known as pseudo-differential op-

erators, which simultaneously generalize both Fourier multipliers as well as variable
coefficient differential operators

∑
|α|≤k aα(x)∇α

x , and as such play an indispensable

role in the modern theory of PDE. They can be defined in a number of ways; one
such (the Kohn-Nirenberg functional calculus) is as follows. The Fourier multipliers
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defined above can be also written as

Tmf(x) =

∫

R
d
e2πix·ξm(ξ)f̂(ξ) dξ,

whereas from the Fourier inversion formula we see that spatial multipliers f(x) 7→
a(x)f(x) can be written as

a(x)f(x) =

∫

R
d
e2πix·ξa(x)f̂ (ξ) dξ.

We can then generalize these two classes of operators by defining, for each symbol

a(x, ξ) on the cotangent bundle T ∗
R

d := {(x, ξ) : x, ξ ∈ R
d}, the quantization

Op(a) of that symbol, defined by

Op(a)f(x) :=

∫

R
n
e2πix·ξa(x, ξ)f̂ (ξ) dξ;

thus if a is purely a function of ξ then this is a Fourier multiplier, while if a is
purely a function of space then this is a spatial multiplier. In order to perform any
meaningful analysis on these operators, some smoothness and decay assumptions
must be made on the symbol a(x, ξ). There are many such classes of assumptions,
and in practice one may need to tailor the assumptions to the application; but one
of the more ubiquituous such assumptions in the literature is to require a to be a
standard symbol of order k, which means that a obeys estimates of the form

|∇α
ξ ∇β

xa(x, ξ)| ≤ Cα,β(1 + |ξ|)k−|α|;

thus for instance a differential operator of order k with uniformly smooth coefficients
would also be the quantization of a standard symbol of order k, otherwise known
as a pseudodifferential operator of order k. When k = 0, the operators Op(a) then
turn out to be singular integrals of a type which is perfectly suited for the Calderón-
Zygmund theory; for instance, this theory can show that such operators preserve
the Lebesgue spaces Lp(Rn) (this is a generalization of the famous Hörmander-

Mikhlin multiplier theorem), the Sobolev spaces W s,p(Rn), and a number of other
useful spaces, for all 1 < p <∞ (there are results of a more technical nature at the
endpoints p = 1 and p = ∞). As the term quantization suggests, the study of such
operators is motivated in part by quantum mechanics; the operators Op(a) can
be viewed as an attempt to make rigorous the concept of an observable a(X,D)
of both the position operator X : f(x) 7→ xf(x) and the momentum operator
D : f(x) 7→ 1

2πi∇f(x) simultaneously, and in particular to find a map a 7→ Op(a)
from symbols to operators which maps x to X , ξ to D, and is as close to being
a homomorphism as possible. Of course, the well known failure of X and D to
commute means that this scheme can run into difficulty, especially if one tries to
localize both the spatial variable x and the frequency variable ξ to a region of space
where δx·δξ ≪ 1 (violating the famous Heisenberg uncertainty principle). However,
the purpose of the symbol estimates is to ensure that the uncertainty principle is
always respected, and in that case one has a good theory (in which the failure of the
map a 7→ Op(a) to be a homomorphism only shows up in “lower order terms” that
can be computed quite explicitly, and in fact quite geometrically, being intimately
related to the symplectic geometry of classical physics). This leads to the study of
microlocal analysis, which is an important and fascinating topic in its own right,
but perhaps a little outside of the scope of this survey. We do remark however that
the intuition of the uncertainty principle, and treating physical space and frequency
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space as part of the unified phase space, is certainly a very helpful viewpoint when
approaching harmonic analysis problems.

Singular integral operators T such as the pseudo-differential operators mentioned
above have the characteristic of being pseudolocal - their kernels are smooth except
near the diagonal, which (heuristically, at least) implies that the singularities of Tf
will only be located in the same regions of physical space as the original function
f . (In fact one can phrase a more precise statement concerning the singularity
set in phase space, otherwise known as the wave front set, but we will not do so
here). As such they are intimately tied to the theory of those PDE which also
have such pseudolocal characteristics, the primary example of such being elliptic
PDE. However, there are other, more non-local, linear operators which are also of
interest to harmonic analysis, some in part because of their links to other types
of PDE, or to geometry or number theory, and some because they arise from the
study of such fundamental questions in harmonic analysis as the convergence of
Fourier series or Fourier integrals. One example of such a class of operators are the
oscillatory integral operators, where in contrast to the singular integral operators,
the interesting (and stll not fully understood) behaviour arises from phase oscilla-
tions in the kernel rather than singularities. (One can of course combine the two
to form singular oscillatory integral operators, though in practice one often treats
such operators by carefully decomposing them into a primarily singular part, and a
primarily oscillatory part). Perhaps the most fundamental such oscillatory integral
is the Fourier transform itself:

Ff(y) :=

∫

R
d
e−2πix·yf(y) dy,

but one can consider more general oscillatory integrals, for instance the localized
oscillatory integrals

Tλf(y) :=

∫

R
d
e2πiλφ(x,y)a(x, y)f(y) dy

from R
d to R

d′

, where a : Rd×R
d′ → C is a suitable cutoff function, φ : R

d×R
d′ →

R is a smooth phase function, and λ is a large real parameter. Such oscillatory
integrals, up to scaling and partitions of unity, can arise in a number of contexts, for
instance in studying the Schrödinger evolution operators eit∆ (in which φ(x, y) =
|x−y|2) or in studying the Fourier restriction problem - to which sets can the Fourier
transform of an Lp function be meaningfully restricted (in such a case φ(x, y) =
x · Φ(y) for some graphing function y). These sorts of integral operators arise
frequently in dispersive PDE - evolution equations which move different frequencies
in different directions, of which the Schrödinger equation iut + ∆u = 0 is a prime
example - and in a variety of questions related to the finer structure of the Fourier
transform. They generalize the more classical subject concerning the principle of

stationary phase, which seeks to control oscillatory integral expressions of the form∫
R

d e2πiλφ(x)a(x) dx, where a is some explicit cutoff function and φ is a phase. In

L2, such operators can be studied by orthogonality methods (and perhaps a little
bit of algebraic geometry to disentangle any degeneracies in the phase function
φ); the Lp theory is considerably more difficult, and so far the most progress has
arisen from decomposing the functions and operators involved into “wave packets”,
which carry both an oscillation and some spatial localization, and using oscillatory
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methods to handle the oscillation, and more geometric methods to control effect
of the the spatially localization. Discrete analogues of these expressions, in which
integrals are replaced by sums, are also of interest in number theory, although
progress here appears to be substantially more difficult.

Another type of operator which arises in practice is a non-local singular integral
operator, where the kernel is singular rather than oscillatory, but manages to prop-
agate singularities by a non-zero distance. A typical such operator is a convolution
with a measure Tf := f ∗ dσ, where dσ is some measure on some surface in R

d

(e.g. the unit sphere; this operator also arises in the study of the wave equa-
tion); another example would be the Hilbert transform along a parabola in R

2,
Tf(x1, x2) := p.v.

∫ ∞
−∞ f(x1 − t, x2 − t2)dt

t . The analysis of such operators tends to

rely either on the geometry of the singular set (e.g. if the measure dσ is supported
on a sphere, the question of how this sphere can intersect various translates of itself
becomes relevant), or on the Fourier properties of these operators (e.g. the decay of
the Fourier transform of dσ may play a key role). Sometimes one applies various lo-
calization operators (both in physical and Fourier space) to ameliorate the singular
nature of these expressions, or to replace these operators by tamer analogues.

Another class of interesting operators in a similar spirit to the above are the Radon-

like transforms. One basic example of such are the k-plane transforms Xk in R
d for

1 ≤ k ≤ d, which map from (test) functions on a Euclidean space R
d to functions

on the affine Grassmannian Gr(d, k) of k-dimensional affine subspaces in R
d (not

necessarily passing through the origin), defined by

Xkf(π) :=

∫

π

f for all π ∈ Gr(d, k),

where
∫

π
is integration on the k-dimensional space π with respect to induced

Lebesgue measure. The case k = d−1 corresponds to the classical Radon transform,
and the case k = 1 is the x-ray transform. These operators arises quite naturally3

in scattering theory and in the asymptotic behavior of the wave equation, and
the question of quantifying its invertibility (which can be resolved in part by har-
monic analysis methods) is of importance in applications (e.g. magnetic resonance
imaging). More generally, one can consider operators of the form

Tf(x) =

∫

Rm

f(φ(x, z))K(x, z) dz

from functions on an n-dimensional manifold Md to functions on an d′-dimensional
manifold Md′

, where φ : Md′ × R
m → Md is some co-ordinate chart of some m-

dimensional surface in Md, with the family of such surfaces parameterized by Md′

,
and K is some localization function, possibly containing further singularities or os-
cillations. The treatment of such objects is still fairly difficult, even in model cases;
as one might expect, the geometry of the surfaces in question (and in particular
the various types of non-degeneracy and curvature conditions they enjoy) plays a
major role, but one also needs to understand issues of oscillation (which can arise
e.g. by expanding the surface measure on the m-dimensional surfaces via Fourier

3An interesting variant of the x-ray transform arises in analytic number theory, in which the
role of lines is replaced by that of arithmetic progressions; this leads to discrepancy theory and to
sieve theory, both of which are basic tools in analytic number theory.
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expansion), for instance by working within the framework of the Fourier integral
operators discussed below.

A more general class of operators which encompass Fourier multipliers, pseudo-
differential operators, oscillatory integrals, and the non-local singular integral and
Radon-like transforms operators discussed above are the Fourier integral opera-

tors (or FIOs for short), which roughly speaking are the quantum-mechanical ana-
logue of the canonical transformations in classical mechanics (just as the pseudo-
differential operators correspond to classical observables). There are many equiva-
lent definitions; one such “local” definition is as follows. An operator T is a FIO of
order k if it has the representation

Tf(x) :=

∫

R
n
e2πiΦ(x,ξ)a(x, ξ)f̂ (ξ) dξ

where a is a standard symbol of order k as before (which we localze to be compactly
supported in x), and Φ is a real-valued phase function which is homogeneous of
degree 1 in ξ, is smooth on the support of a (except possibly at ξ = 0), and is non-

degenerate in the sense that the mixed Hessian ∇ξ∇xΦ has non-zero determinant
on the support of a. These operators (which include, for instance, the Schrödinger

evolution operators eit∆ and the wave evolution operators cos(t
√
−∆), sin(t

√
−∆)√

−∆
as

model examples) are fundamental in the theory of variable coefficient linear PDE,
as one can rather easily construct FIOs which are parametrices (i.e. approximate
solutions, modulo lower order or “smooth” errors) for such a PDE by requiring that
the phase Φ and the amplitude a solve certain very natural ODE in phase space
(the eikonal and Hamilton-Jacobi equations respectively) and obey certain initial
conditions related to the appropriate boundary conditions for the linear problem.
One can also generalize these FIOs to map between Euclidean spaces of different
dimension, or even between two manifolds of different dimension; indeed, the class
of FIOs is highly robust and can easily cope with such actions as diffeomorphic
change of variables (in contrast, for instance, to Fourier multipliers, which must
maintain translation invariance throughout). At this level of generality it seems
unreasonable at present to hope for a systematic and complete Lp theory, on par
with the highly successful Calderón-Zygmund theory, in part because such a theory
must necessarily include a number of open conjectures (e.g. the restriction, local
smoothing, and Bochner-Riesz conjectures, as well as the more geometric Kakeya
conjecture) that remain quite far from resolution. Remarkably, however, there is a
fairly satisfactory L2 theory for large classes of the operators discussed above (for
instance, a basic result due independently to Hörmander and Eskin asserts that
FIOs of order 0 are bounded on L2), and in a number cases (especially ones in
which there is not much oscillation present) there is a reasonable Lp theory also.

In many applications (notably in questions relating to the limiting behaviour of
sequences of operators) it is not enough to study a single operator T , but instead
to study a sequence (Tn)n∈Z of such operators (or possibly a continuous family

(Tt)t>0. In such cases it is often necessary to understand the associated maximal

function

T∗f(x) := sup
n∈Z

|Tnf(x)|, or T∗f(x) := sup
t>0

|Ttf(x)|,
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or the closely related square function

Sf(x) := (
∑

n∈Z

|Tn+1f(x) − Tnf(x)|2)1/2 or Sf(x) :=

∫ ∞

0

|t d
dt
Ttf(x)|2 dt

t
;

the latter square function can be seen to be comparable in strength to the former
by making the change of variables t = 2n and approximating the resulting integral
and derivative by a sum and difference respectively. Note that these operators tend
to be sub-linear rather than linear (or alternatively, they can be viewed as linear
operators taking values in a Banach space such as l∞ or l2), but fortunately many
of the techniques which are useful in the linear theory (e.g. the real interpola-
tion method) continue to work in the sublinear setting. The relevance of maximal
functions in convergence questions arises from the simple fact that in order for a
sequence to converge, it must be bounded; and furthermore the uniform limit of
convergent sequences remains convergent. Both of these situations require that one
control expressions such as T∗f . The square function arises in a slightly different
context, when the operator Tn is transitioning through different scales as n varies;
one then expects the operators Tn+1 − Tn to be somewhat “orthogonal” to each
other as n varies, and in such circumstances one expects the summands in such
telescoping sums as limn→+∞ Tnf = T0f+

∑∞
n=0 Tn+1f−Tnf to behave “indepen-

dently” of each other, in the sense that the magnitude of the sum should be, “on
average”, comparable to the standard deviation (

∑∞
n=0 |Tn+1f − Tnf |2)1/2. This

heuristic, arising from fundamental facts of probability theory such as the Khint-
chine inequality, can be borne out in a number of important cases, notably that of
the Littlewood-Paley square function which we discuss below.

Perhaps the most fundamental example of a maximal function is the Hardy-Littlewood

maximal function

Mf(x) := sup
r>0

1

|B(x, r)|

∫

B(x,r)

|f(y)| dy

where B(x, r) is the ball of radius r centred at x, and |B(x, r)| denotes the volume
of B(x, r). This maximal function is clearly related to the question of how a family
of balls of varying radii and centres can overlap each other, and the basic result in
that subject, the Vitali covering lemma, leads directly to the basic estimate for this
maximal function, namely the Hardy-Littlewood maximal inequality, which asserts
among other things that this operator M is bounded on Lp for all 1 < p ≤ ∞. This
maximal function in turn plays a central role in Canderón-Zygmund theory, as it
is well suited for controlling singular integrals; the point is that while a singular
integral of the form

Tf(x) = p.v.

∫

R
n
K(x, y)f(y) dy,

where K(x, y) obeys singular integral estimates such as |K(x, y)| ≤ C/|x − y|d,
cannot quite be estimated by the maximal function, each dyadic shell

Tnf(x) =

∫

2n≤|x|≤2n+1

K(x, y)f(y) dy

of this function can indeed be pointwise dominated by some constant multiple of
this maximal function, simply by placing absolute values everywhere and applying
the above estimate for K. Thus the only issue arises when summing up the various
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scales n. If one is in possession of even a slight amount of cancellation which allows
one to improve upon the above crude estimate, then one can hope to control T by
M in the sense that one can assert that T is small (at least in some average sense)
whenever M is small. This basic idea lies at the heart of Calderón-Zygmund theory
and its generalizations.

In many applications, in which the relevant operators are not likely to be localized
to small balls, the Hardy-Littlewood maximal operator must be replaced with other
maximal operators, for instance ones in which the class of balls is replaced with a
class of rectangles, lines, spheres, tubes, or other geometric object. We mention
just one such example, the Kakeya-Nikodym maximal function

f∗∗
δ (x) := sup

T∋x

1

|T |

∫

T

|f(y)| dy,

where 0 < δ < 1 is a fixed parameter, and T ranges over all 1 × δ tubes in R
n

which contain x. While apparently quite similar to the Hardy-Littlewood maximal
operator, this operator (which is needed to control for instance the operators aris-
ing from multi-dimensional Fourier summation) is far less well understood, and is
related to a number of questions in geometric measure theory and combinatorics as
well as to harmonic analysis.

One can also work with oscillatory versions of maximal functions, though as one
might expect this makes such operators much more difficult to handle. A classic
example is the Carleson maximal function

Cf(x) := sup
N∈R

|
∫ N

−∞
e2πixξf̂(ξ) dξ|

in one dimension; this operator is known to be bounded in Lp for all 1 < p < ∞,
which in particular implies (and is almost equivalent to) the celebrated Carleson-
Hunt theorem that the one-dimensional Fourier integrals of Lp functions converge
pointwise almost everywhere. We remark that the corresponding question for higher
dimensions, namely the L2 boundedness of the maximal disk multiplier

S0
∗f(x) := sup

R>0

∫

|ξ|≤R

e2πix·ξf̂(ξ) dξ

is still open (and considered extremely difficult), even in two dimensions d = 2; it
would imply the almost everywhere convergence of Fourier integrals of L2 functions
in higher dimensions. (To give some idea of the complexity of the problem, the
corresponding convergence question for Lp functions, p 6= 2, was answered in the
negative in two and higher dimensions in a famous result of Fefferman, essentially
using some known bad behavior of the Kakeya-Nikodym maximal function f∗∗

δ

mentioned earlier.)

Closely related to the Hardy-Littlewood maximal function is the Littlewood-Paley

square function. There is some flexibility as to how to define this function; one
standard way is as follows. Let φ : R → R

+ be a smooth non-negative bump func-
tion which equals 1 on the interval [−1, 1] and vanishes outside of [−2, 2], and then
for each integer n, let Pn denote the spectral multiplier Pn := φ(

√
−∆/2n+1) −

φ(
√
−∆/2n), which localizes the frequency variable smootly to the annulus 2n ≤
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2π|ξ| ≤ 2n+2. Formally, we have the telescoping series f =
∑

n Pnf ; since each com-
ponent Pnf oscillates at a different frequency (comparable to 2n), we thus expect
by the randomness heuristic alluded to earlier that we expect f to be comparable
in magnitude to that of the Littlewood-Paley square function Sf , defined as

Sf(x) := (
∑

n

|Pnf(x)|2)1/2.

Indeed, the Littlewood-Paley inequality asserts that f and Sf have comparable Lp

norms for all 1 < p < ∞; this basic estimate can in fact be obtained as a routine
consequence of the more general machinery of Calderón-Zygmund theory (thinking
of S as a vector-valued singular integral). The usefulness of the Littlewood-Paley
inequality lies in the fact that while the different Littlewood-Paley components
in the original function f =

∑
n Pnf can oscillate, and interfere with each other

constructively or destructively, in the square function Sf there is no possibility of
cancellation between different frequency components, and thus the square function
is often easier to estimate accurately. The Littlewood-Paley decomposition f =∑

n Pnf is also closely related to the heat kernel representation

f(x) = −
∫ ∞

0

d

dt
et∆f(x) dt

of a function, as well as to similar decompositions such as the wavelet decomposition
f =

∑
j,k∈Z〈f, ψj,k〉ψj,k for various choices of wavelet ψj,k, which can be viewed as

a discrete analogue of the above heat kernel representation. The Littlewood-Paley
decomposition is particularly useful for analyzing function spaces, especially if those
spaces involve “derivatives” or otherwise measure “regularity” (e.g. Sobolev spaces,
Besov spaces, Triebel-Lizorkin spaces); roughly speaking, the reason is that the op-
erators Pn “diagonalize” differentiation operators such as ∇ in the sense that ∇Pn

is roughly “of the same strength” as 2nPn (since differentiation corresponds to mul-
tiplication by |ξ| in frequency space, and Pn localizes |ξ| to be comparable to 2n).
They also approximately diagonalize pseudo-differential operators T (in the sense
that PnTPm becomes quite small when n and m are far apart). These basic facts
about the Littlewood-Paley decomposition also carry over to the wavelet decompo-
sition, which can be thought of as a variant of the Littlewood-Paley decomposition,
followed up by a further decomposition in physical space; thus wavelets are a good
tool for studying these classes of function spaces and operators. (For more general
FIOs, the wavelet basis turns out to be insufficient; other representations such as
wave packet bases or the FBI transform become more useful).

Most of the operators discussed above have been linear, or at least sub-linear. More
recently, however, bilinear, multilinear, and even fully non-linear operators have also
been studied, motivated by a number of nonlinear problems (typically from PDE)
in which the dependence on some given data can be expanded as a multilinear
expansion; conversely, problems which seemed inherently linear in nature have been
successfully attacked by converting them into a more flexible bilinear or multilinear
formulation. One obvious example of a multilinear operator is the pointwise product
operator

T (f1, . . . , fn)(x) = f1(x) . . . fn(x)
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for which the fundamental estimate is of course Hölder’s inequality

‖T (f1, . . . , fn)‖
Lp(R

d
)
≤ ‖f1‖Lp1(R

d
)
. . . ‖fn‖Lpn(R

d
)

whenever 1/p = 1/p1+. . .+1/pn.

Things become more subtle however, if one wishes to understand the behaviour of
this operator on other spaces, such as Sobolev spaces W s,p(Rd); this is of impor-
tance for instance in nonlinear PDE. When the number of derivatives s is a positive
integer (e.g. s = 1), one can proceed by means of the Leibnitz rule

∇(fg) = (∇f)g + f(∇g)
which allows one to distribute derivatives, and then deduce Sobolev multiplication
inequalities from their Lebesgue counterparts (and Sobolev embedding). One would
also like to obtain similar rules for fractional derivatives, e.g.

(
√
−∆)s/2(fg) ≈ ((

√
−∆)s/2f)g + f(

√
−∆)s/2g

but it is not immediately clear how to make such statements rigourous. One useful
way of doing so is by introducing multilinear Fourier multipliers, which generalize
the linear Fourier multipliers discussed earlier. The starting point for such mul-
tipliers is the Fourier inversion formula, which allows one to write the pointwise
product operator as a multilinear Fourier integral:

f1(x) . . . fn(x) =

∫

R
d
. . .

∫

R
d
e2πix(ξ1+...+ξn)f̂1(ξ1) . . . f̂n(ξn) dξn.

We generalize this by introducing a multilinear symbol m(ξ1, . . . , ξn), with the
corresponding multilinear Fourier multiplier Tm defined by

Tm(f1, . . . fn) =

∫

R
d
. . .

∫

R
d
e2πix(ξ1+...+ξn)m(ξ1, . . . , ξn)f̂1(ξ1) . . . f̂n(ξn) dξn;

note that the n = 1 case recovers the previous definition of a Fourier multiplier.
For instance, the pointwise product operator corresponds to the case m ≡ 1, while
the bilinear operator

T (f, g) := (
√
−∆)s/2(fg) − ((

√
−∆)s/2f)g − f(

√
−∆)s/2g

corresponds to the symbol

m(ξ1, ξ2) := (2π|ξ1 + ξ2|)s/2 − (2π|ξ1|)s/2 − (2π|ξ2|)s/2.

One can then try to justify the above “fractional Leibnitz rule” by observing some
cancellation in this symbol; for instance when |ξ1| is substantially larger than |ξ2|,
then the two largest terms in this symbol nearly cancel each other out. (Thus the
fractional Leibnitz rule is particularly accurate when one of the functions has a far
higher frequency than the other). To carry out this program rigourously, one needs
estimates that convert bounds on the symbol m to bounds on the operator Tm.
One such estimate is the Coifman-Meyer multiplier theorem, which asserts that if
m obeys symbol-type estimates such as

|∇α1

ξ1
. . .∇αn

ξn
m(ξ1, . . . , ξn)| ≤ Cα1,... ,αn

(|ξ1| + . . .+ |ξn|)−|α1|−...−|αn|

for all multi-indices α1, . . . , αn, then Tm obeys the same estimates as the pointwise
product, or more precisely

‖T (f1, . . . , fn)‖
Lp(R

d
)
≤ ‖f1‖Lp1(R

d
)
. . . ‖fn‖Lpn(R

d
)

whenever 1/p = 1/p1+. . .+1/pn, 1 < p1, . . . , pn <∞.
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We note that the Littlewood-Paley inequality mentioned earlier plays a pivotal role
in proving this estimate, which has applications to controlling the non-linear terms
of a PDE in various Lp and Sobolev spaces.

Another important class of examples of multipliers covered by the Coifman-Meyer
theory include the paraproducts, which roughly speaking are bilinear operators
which contain only one frequency interaction component of the product operator
(f, g) 7→ fg; for instance, one might consider a “high-low” paraproduct which only
interacts the high frequencies of f with the low frequencies of g. Such an object can
be defined more precisely by specifying a symbol m(ξ1, ξ2) which is only non-zero
in the region where |ξ1| ≫ |ξ2|. These types of paraproducts have a number of
uses, not only for multilinear analysis, but also in analyzing nonlinear operators
such as u 7→ |u|p−1u for some fixed p > 1, by means of the paradifferential calculus

(and in particular Bony’s linearization formula, which can be viewed as a variant
of the chain rule which allows one to approximate frequency components of F (u)
by paraproducts of u and F ′(u)). In many applications, however, one needs to go
beyond the Coifman-Meyer estimate, and deal with multipliers whose symbols obey
more exotic estimates. For instance, in the context of nonlinear wave equations,
one may wish to study bilinear expressions Q(φ, ψ) where φ(t, x) and ψ(t, x) are
approximate solutions to the wave equation (∂2

t − ∆x)φ = (∂2
t − ∆x)2ψ = 0; tak-

ing the spacetime Fourier transform φ̃(τ, ξ) :=
∫
R

∫
R

d e−2πi(tτ+x·ξ)φ(t, x) dxdt of

φ, we would then expect φ̃ (and similarly ψ̃) to be supported near the light cone
|τ |2 − |ξ|2 = 0, which is the characteristic surface for the wave equation. This
suggests the use of multilinear estimates whose symbol contains weights such as
(1 + ||τ |2 − |ξ|2|)θ for some θ ∈ R. Such estimates were pioneered by Klainerman
and Machedon (for nonlinear wave equations) and by Bourgain, Kenig, Ponce and
Vega (for nonlinear dispersive equations) and now play a major role in the theory,
especially for low regularity solutions.

A somewhat different type of bilinear operator is given by the bilinear Hilbert trans-

form

H(f1, f2) := p.v.

∫

R

f1(x+ t)f2(x− t)
dt

t
,

which is a bilinear multiplier with symbol m(ξ1, ξ2) = πisgn(ξ2−ξ1). This operator
first appeared in the study of the Cauchy integral operator (it arises naturally
if one Taylor expands that integral in terms of γ), and since has turned out to
be related to a number of other objects, such as the Carleson maximal function
and the nonlinear Fourier transform (also known as the scattering transform). It
also has some intriguing similarities with the recurrence expressions which arise
in ergodic theory and in the study of arithmetic progressions. The study of this
operator, like that of the Carleson maximal operator, is rather difficult because
the singularities of the operator are spread uniformly throughout frequency space,
which makes standard techniques such as Calderón-Zygmund and Littlewood-Paley
theory ineffective. However, it turns out that a phase-modulated version of these
theories, combined with some geometrical combinatorics in phase space, can handle
these operators; this was done for the Carleson operator by Carleson and Fefferman,
and for the bilinear Hilbert transform by Lacey and Thiele. Some further progress
has since been made in understanding these multilinear singular operators, but there
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is still much work to be done; for instance there are still no known Lp estimates for
the trilinear Hilbert transform

H(f1, f2, f3) :=

∫

R

f1(x+ α1t)f2(x+ α2t)f3(x+ α3t)
dt

t
,

where α1, α2, α3 are distinct non-zero real numbers. Somewhat surprisingly, there
are hints that this question may hinge on arithmetic and number-theoretic proper-
ties of these parameters, and in particular whether the αj are rationally commen-
surate. This phenomenon of the arithmetic, combinatorial, and number-theoretic
structure of the real numbers playing a decisive role in the deeper questions of this
field has also emerged in a number of other contexts, notably in dealing with the
Kakeya-Nikodym operator mentioned earlier; again, this phenomenon is very far
from being fully understood.

Finally, let us briefly mention that there has been some work in understanding
more nonlinear operators. A simple example of a non-linear operator (but one of
importance to semilinear PDE) are power maps such as u 7→ |u|p−1u, where p > 1
is some fixed exponent (not necessarily integer). These nonlinear maps have been
understood to some extent by the paradifferential calculus, which seeks to approx-
imate nonlinear expressions by paraproduct expressions; a typical formula in this
regard is Bony’s linearization formula F (u) ≈ Tm(u, F ′(u)), where F is a fairly
smooth function of one variable (such as F (x) = |x|p−1x) and Tm is a paraproduct
which interacts the high frequencies of u against the low frequencies of F ′(u); this
formula can be viewed as a sophisticated form of the chain rule. There are however
even more nonlinear maps which are of interest but only partially understood at
present, such as the map from the boundary of a domain to some quantity related
to a PDE on that domain (e.g. harmonic measure, fundamental solutions, Cauchy
integral, analytic capacity), or similarly the map from a potential V to another
quantity related to a PDE with that potential V (notably the scattering transform

or nonlinear Fourier transform, which maps V to the scattering data of an opera-
tor such as −∆+ V ). Other sources of nonlinear behavior can arise when studying
not scalar functions, but functions taking values in non-commutative groups (e.g.
matrix-valued functions), or sections of non-trivial bundles, or various tensor fields;
another important source comes from studying various inverse problems (e.g. re-
lating a matrix to its resolvents, or recovering a potential from its scattering data).
In many cases these non-linear operations have been studied by approximating
them by better understood linear or multilinear expressions, such as via the parad-
ifferential calculus; it may well be however that in the future we may see more
fully nonlinear techniques in harmonic analysis emerging to handle these types of
operators.

3. Techniques

Having briefly surveyed some of the operators of interest in harmonic analysis, we
now discuss in general terms the types of questions we ask of these operators, and
then describe some of the techniques one uses to answer these questions, although
we emphasize that our discussion here is only a brief tour of the theory, and does
not claim to be complete or exhaustive in any sense. In some circumstances there
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are some general theorems (e.g. the Hörmander-Mikhlin multiplier theorem, the
Coifman-Meyer multiplier theorem, the T (1) and T (b) theorems, the Cotlar-Knapp-
Stein lemma, the Riesz-Thorin-Stein and Marcinkeiwicz interpolation theorems,
Schur’s test, the Christ-Kiselev lemma) which are applicable, and there are a num-
ber of basic inequalities and estimates (e.g. the Hölder, Young, Chebyshev, and
Cauchy-Schwarz inequalities, Plancherel’s identity, the John-Nirenberg, Sobolev,
Hardy-Littlewood and Littlewood-Paley inequalities, the Carleson embedding the-
orem, even the humble triangle inequality and Fubini’s theorem) that are ubiquitous
throughout the theory. However, it is fair to say that the larger portion of har-
monic analysis technique does not fit neatly into formal theorems and universal
inequalities; instead, they are organized around a number of simple but powerful
heuristics and principles, backed up by some well-understood model examples of
these principles in action. In practice one usually must modify the application of
these principles in a number of technical ways from the model examples in order
to adapt it to the problem at hand; this seems a feature of the field (or of the
wider discipline of analysis in general), that there are countless permutations and
variations on the objects under consideration and so there is often no hope of (or
desire for) a definitive theorem that encompasses all of them (although it does seem
possible to discover robust principles which have very wide applicability). Even the
general theorems mentioned above sometimes have to be tinkered with in a specific
application in which one of the required hypotheses doesn’t quite apply, or the con-
clusion is not quite the desired one. Also, as in many fields in mathematics, it is not
always so obvious a priori which questions will have interesting (or satisfying) an-
swers. For instance, the question of completely classifying all the Fourier multipliers
bounded on a fixed Lp space seems hopeless by current technology (even in one di-
mension), although if one restricts these multipliers to a special class (particularly
one motivated by some external application) then interesting and deep progress
can be made. Indeed, it seems that the most effective way to make progress in
this field is to focus on specific model problems first, and to slowly extend back to
increasingly general scenarios once enough insight has been gained on the model
problems, rather than try to handle a very general class of problems directly; one
reason for this is that any conjecture which was too sweeping has typically proven
to have some interesting pathological counterexample, which then illustrates the
need for additional structural assumptions on the problem which were not pre-
viously apparent. Indeed, it might be argued that such ambituous conjectures,
and the counterexamples which dashed them, have been at least as important to
the advancement of harmonic analysis as the more well-known positive results, for
instance by eliminating unfruitful avenues of research and thus concentrating re-
sources on the more promising ones. Nevertheless we will continue to focus on the
techniques used to solve problems affirmatively, given that it is much more difficult
to describe in general terms one would seek to formulate conjectures, or discover
counterexamples to conjectures.

A basic question concerning a linear or sublinear operator T is whether it is bounded
from some Banach space X to another Y , or more precisely whether there exists a
constant C > 0 such that

‖Tf‖Y ≤ C‖f‖X
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for all f ∈ X ; once one has such an estimate in hand, other properties of T (or
in some cases, of X and Y ) can often be deduced relatively easily. Actually, in
practice it suffices to prove this for a dense subset of X (typically one can use
test functions or Schwartz functions for this role), since one can then often extend
the estimate to all of X by some limiting argument (or in some cases simply by
fiat, extending T from the densely defined set to the whole space in the unique
continuous manner). The most common examples of Banach spaces used here are
the Lp spaces (particularly for p = 1, 2,∞), but there are a large variety of other
spaces used in practice. In PDE applications the Sobolev spaces W s,p (particularly
the energy space W 1,2) are used frequently; other spaces include Besov spaces Bs,p

q

(or the slight variant Λs,p
q ), Triebel-Lizorkin spaces F s,p

q , Morrey spacesMp
q , Lorentz

spaces Lp,q (particularly L1,∞), Hardy spaces Hp (especially H1), Orlicz spaces
Φ(L) (especially L logL), Hölder spaces Ck,α, and the space BMO of bounded
mean oscillation; in many applications one also needs to consider weighted versions
of these spaces, either with a simple power weight such as (1 + |x|)s or with more
general weights (notably the Muckenhaupt classes Ap of weights). Many other
refinements and variations on these spaces are also considered in the literature;
as an example, one can relax the requirement that one work with Banach spaces,
instead working for instance with quasi-normed spaces such as Lp for 0 < p < 1.
The reason for such a diversity of spaces is that each space quantifies the various
features of a function (regularity, decay, boundedness, oscillation, distribution) to
a different extent; the addition of the weights also gives more precise control on
the localization of the operator T , quantifying the extent to which the size of Tf
locally is influenced by f . In some cases the more precise estimates available in
a more sophisticated space are needed in order to conclude the desired estimate
in a simpler space. Fortunately, this zoo of function spaces can be organized and
treated in a reasonably unified manner, thanks to a number of basic tools from
Calderón-Zygmund theory, notably the Littlewood-Paley inequality; many of these
spaces can also be characterized rather efficiently by wavelet bases. Also, one can
often deduce estimates for one set of spaces directly from one or more corresponding
estimates for another set of spaces; sometimes this occurs because one of the norms
is simply dominated by another, but more commonly one has to interpolate between
two estimates to produce a third. A very typical example of such an interpolation
technique is given by the Riesz-Thorin interpolation theorem, which asserts that if
a linear operator T maps Lp0 to Lq0 and Lp1 to Lq1 for some 1 ≤ p0, p1, q0, q1 ≤ ∞,
then it will also map Lpθ to Lqθ for all 0 ≤ θ ≤ 1, where 1/pθ = (1 − θ)/p0 + θ/p1

and 1/qθ = (1 − θ)/q0 + θ/q1. An important and powerful generalization of this
theorem is the Stein interpolation theorem, which allows T to depend analytically
on a complex interpolation parameter. This can allow one to deduce estimates
for an operator T in some intractable-looking spaces X,Y from estimates from
modifications of that operator in more friendly spaces, with considerable flexibility
in choosing how to modify the operator and which spaces to work in. There is
a much more general theory of interpolation available (as well as similar function
space techniques such as factorization, which take advantage of various symmetries
of T ,X , and Y ) which we do not have the space to describe more fully here. Another
simple but important trick is that of duality; in order to show that T maps X to Y ,
it usually suffices to show that the adjoint T ∗ maps Y ∗ to X∗, or that the bilinear
form 〈Tf, g〉 is bounded on X ⊗Y ∗. (There can be some minor technicalities when
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T or T ∗ is only densely defined, or if the spaces are not reflexive, but these can
usually be overcome, for instance by first working with truncated versions of T , X ,
and Y and then taking limits at the end).

Note that we do not, in general, specify exactly what the constant C is; merely
knowing that such a constant exists is usually enough for many applications, al-
though there are some notable exceptions (for instance, if one wants to invert 1−T
by Neumann series, one may need the operator norm of T from X to X to be
strictly less than 1). However if T (or X or Y ) depends on some parameters, then
the growth rate of C with respect to these parameters is sometimes important.
Indeed, one common trick in this area is to apply enough truncations and smooth-
ing operators that it becomes obvious that T is bounded with some finite constant
C which a priori could depend on the truncation and smoothing parameters; one
then manipulates this constant with the aim of showing that it ultimately does not
depend on these parameters, at which point one can usually take limits to recover
bounds for the original operator. Because we do not eventually specify the con-
stant C, it is often quite acceptable to use arguments which lose factors of O(1)
or so in the estimates. For instance, one might split T (or f , or Tf jointly) into
a finite number of components, estimate each component separately (often using
a completely different argument for each component), and then use a crude esti-
mate such as the triangle inequality to piece these multiple terms together; the
loss from the triangle inequality is typically only at most O(1) so this type of de-
composition can usually be done “for free” (unless there is some extremely strong
cancellation between the components that one needs to exploit). In practice, this
often means that if the operator has a number of independent features (e.g. if its
local and global behaviour are quite distinct, or it treats low-frequency functions
differently from high-frequency functions) then one can often localize attention to a
single such feature by means of a suitable decomposition (e.g. into local and global
pieces, or into low and high frequency pieces). Even if this multiplies the number
of expressions one needs to consider, this is often a simplification of the problem.
One can view this decomposition strategy as a more general and flexible version of
the real interpolation method, which is an example of an interpolation technique as
discussed above.

More advanced decompositions are of course available. One common decomposi-
tion is the Littlewood-Paley decomposition f =

∑
n Pnf mentioned earlier, which

localizes the function f to components of a single dyadic frequency range; one can
similarly decompose the operator T as T =

∑
n,m PmTPn. Such decompositions

are especially useful for expressions involving differential or pseudo-differential op-
erators, which of course arise quite commonly in PDE applications. The Fourier
inversion formula can also be viewed as a decomposition, as can decompositions into
other bases such as local Fourier bases, wavelets, and wave packet bases, or use of
continuous decompositions such as heat kernel representations or the FBI trans-
form; these bases become especially useful if they give an efficient representation
of the operator T (e.g. as a diagonal matrix, a nearly-diagonal matrix, or oth-
erwise sparse or factorizable matrix). For instance, Calderón-Zygmund operators
are nearly diagonalized by wavelet bases, and Fourier multipliers are exactly diag-
onalized by the Fourier basis. In Calderón-Zygmund theory there are two primary
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decompositions. The first is the Calderón-Zygmund decomposition, which basically
decomposes an Lp function f into a “good” part g which remains bounded, and a
“bad” part

∑
I bI which can be large but is localized to a controlled number of balls

or cubes I, and which can also be assumed to be “high frequency” in the sense that
it obeys certain moment conditions. Related to this is the atomic decomposition,
notably of Hardy spaces such as H1, which decompose a function as a linear combi-
nation of simpler objects, called atoms, with controlled support, size, and moment
conditions; they can be viewed as somewhat rougher versions of wavelets. These
very useful decompositions have the feature of being adaptive, and hence nonlinear;
they typically proceed by executing some sort of stopping time algorithm or greedy
algorithm on the function in question. One feature of this theory is that one then
needs to understand the geometric combinatorics of the balls or cubes I which one
has selected by these algorithms (which is where the Hardy-Littlewood maximal
function plays a fundamental role). More recently, analogues of these decomposi-
tions have begun emerging in phase space rather than physical space, in particular
the technique of tree decomposition in phase space has been a crucial factor in ob-
taining results for such difficult operators as the Carleson maximal function and the
bilinear Hilbert transform; in this case, the geometric combinatorics one needs to
control is that of tiles in phase space - rectangles in both space and frequency which
respect the Heisenberg uncertainty principle δx · δξ & 1. In the study of oscillatory
integrals in higher dimensions, the use of wave packet decompositions - decomposing
both f and Tf into wave packets, i.e. bump functions with a certain explicit oscil-
lation localized to a simple region of physical space such as a rectangle or tube - has
played a decisive role, and in these cases the underlying geometry of physical space
becomes that of the overlap of these rectangles and tubes (at which point maximal
functions such as the Kakeya-Nikodym maximal function play a major role). Part
of the “art” in harmonic analysis is recognizing which decompositions are suited
for a problem, and applying them appropriately; an inappropriate decomposition
may end up giving far worse estimates than if one had not decomposed at all.
Fortunately, a number of general heuristics (in particular the uncertainty principle,
which roughly speaking asserts that it is safe to partition phase space as long as the
Heisenberg relation δx · δξ & 1 is respected) and examples can often be relied upon
to suggest what decompositions are suitable for the problem at hand. Often after
applying the right decomposition, the task becomes much momre geometric and
combinatorial in nature, the focus now being on controlling the overlap or interac-
tion between the various geometric objects (balls, tubes, tiles, rectangles, curves,
etc.) associated with the decompositions used; often geometric concepts such as
curvature and transversality then play a key role in achieving this control. One
feature of these sorts of geometric combinatorics is that they tend to be “fuzzy” in
nature; since we ultimately do not usually care about the final constant C in our
estimates, we are willing to replace these geometric objects with other objects of
comparable size, thus for instance one often does not care to distinguish between
balls and cubes (although a very eccentric ellipsoid or tube would still be considered
different from a ball or cube if the eccentricity could be unbounded). Because of
this fuzziness, sometimes the geometric objects can be modeled by a more discrete
set of objects (e.g. dyadic cubes), at which point the problem becomes almost
completely combinatorial in nature.
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Another useful type of decomposition are averaging type representations, in which
one considers the original expression Tf as an average of simpler operators depen-
dent on one or more parameters, as those parameters vary over some fixed set. One
early example of this idea is the method of rotations, in which a multidimensional
singular integral was expressed as an average of rotations of one-dimensional opera-
tors. Another useful class of decompositions in this spirit is to express a continuous
operator as an average of translated or dilated dyadic model operators. This can be
viewed as placing a randomly chosen dyadic grid on the ambient Euclidean space
R

d and the decomposing expressions such as Tf relative to that grid. The use
of randomly chosen grids or similar objects to aid decomposition has a long his-
tory in combinatorics, and has also found some important applications to harmonic
analysis; for instance, these random grid methods can allow one to perform cer-
tain aspects of Calderón-Zygmund theory even when the underlying measure is so
irregular as not to obey any sort of doubling condition.

Some decompositions are more in the nature of approximations; for instance, one
takes an expression such as Tf , and estimates it by some main term M , plus some
error Tf −M which is presumably “lower order” and thus controllable by more
crude estimates. For instance, if f is oscillating on some ball or cube I, one might
approximate f on this ball by its average 1

|I|
∫

I f , which does not oscillate, plus

an error which has average zero (and is thus likely to enjoy cancellation, espe-
cially when an operator T with some regularity in its kernel is applied); this simple
trick underpins a large portion of Calderón-Zygmund theory, for instance. Other
instances of approximation techniques are based around some sort of expansion
(Taylor expansion, Fourier expansion, Neumann series, stationary phase expan-
sions, etc.), designating the dominant terms in this expansion as the “main terms”
and estimating all the remaining terms as errors; in some cases one can estimate
these errors by a small multiple of the final constant C in the desired estimate,
leading to a bound such as C ≤ O(1) + 1

2C which (as long as C is a priori known
to be finite) gives the boundedness of C. This type of bootstrap technique - starting
with some very weak a priori control on a constant C and “bootstrapping” it to a
much better bound - is particularly useful in nonlinear or perturbative problems.
Another example of such an approximation arises in manipulating operators which
obey some sort of approximate functional calculus; for instance one might approxi-
mate the composition ST of two operators by the reverse composition TS, plus the
commutator [S, T ] which is often lower order and thus easier to estimate. As with
the other types of decompositions, knowing which approximations are accurate and
which ones are unreliable for a given situation is part of the art of the field, and
is often justified by rather fuzzy (but remarkably useful!) heuristics, such as the
fractional Leibnitz rule mentioned earlier.

An alternate form of approximation is to dominate the norm of Tf by (some con-
stant multiple of) the norm of some simpler expression. For instance, when esti-
mating a sum such as

∑
n fn, where the fn are all oscillating functions, one may

hope to exploit some “randomness” or “independence” in the oscillation to domi-
nate this expression, at least in norm, by the standard deviation or square function

(
∑

n |fn|2)1/2; this heuristic can be made rigourous for instance in the context of
Littlewood-Paley theory. More generally, one often seeks to control an oscillating
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function by some non-oscillatory (or at least less oscillatory) proxy for that function,
such as a maximal function or square function. Another useful tool in the context of
dominating one expression by another is the Christ-Kiselev lemma, which roughly
speaking asserts that if one operator T1 is formed from another T2 by restricting the
support of the kernel, then in certain circumstances one can dominate the operator
norm of T1 by that of T2.

When one or more of the spaces involved is a Hilbert space such as L2, then or-

thogonality or almost orthogonality techniques can be used. A very useful example
of such a technique is the TT ∗ method: if T : H → X is an operator from a Hilbert
space H to a Banach space X , with an adjoint T ∗ : X∗ → H , then the composition
TT ∗ : X∗ → X has (formally, at least) operator norm equal to the square of that
of T or T ∗, and thus to bound T it suffices to bound TT ∗; a similar statement also
applies for T ∗T . The point is that TT ∗ can be much better behaved than T or T ∗

individually, especially if there is some orthogonality in the kernel of T (since the
kernel of TT ∗ is essentially formed by taking inner products of rows of the kernel of
T ). For instance, if T is the Fourier transform or Hilbert transform (which contain
oscillation or singularities respectively in their kernel), then TT ∗ is the identity
operator (which has no oscillation and an extremely simple singularity). The same
method also allows one to control sums such as ‖∑

n cnφn‖H in a Hilbert space,
where the cn are constants lying in some sequence space (e.g. l2) and φn are “al-
most orthogonal”, in the sense that the matrix of inner products 〈φn, φm〉 is very
close to being diagonal; for instance, if we have the bound

sup
n

∑

m

|〈φn, φm〉| ≤ A

then one can easily show the approximate Bessel inequality

‖
∑

n

cnφn‖H ≤ A1/2(
∑

n

|cn|2)1/2.

Remarkably, a similar orthogonality principle holds when the vectors φn are re-
placed by operators; more precisely, the Cotlar-Knapp-Stein lemma asserts that if
Tn : H → H are a (finite) sequence of (bounded) operators obeying the operator
norm bounds

sup
n

∑

m

‖T ∗
nTm‖1/2

H→H ≤ A; sup
n

∑

m

‖TnT
∗
m‖1/2

H→H ≤ A

then

‖
∑

n

Tn‖H→H ≤ A.

These types of orthogonality methods can be heuristically summed up as follows:
if an expression such as T or Tf can be split into “almost orthogonal” components
whose interaction is fairly weak, then the task of estimating the whole expression
can often be reduced to estimating individual components, with relatively little loss
of efficiency in the constants (in contrast to if one used cruder tools such as the
triangle inequality, which typically cause a loss proportional to the number of terms
in the decomposition).

Orthogonality principles can be very powerful, but unfortunately they are largely
restricted to Hilbert spaces such as L2, and largely explains why the understanding
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of oscillatory expressions in such spaces is significantly more advanced than that in
other spaces4 such as Lp, although multilinear analogues of orthogonality techniques
can be pursued in L4, L6, . . . . For instance, one can convert a linear problem, e.g.
that of estimating the Lp norm of Tf , into a bilinear problem, such as estimating
the Lp/2 norm of TfTf . This trick may seem trivial, but in many cases the bilinear
problem is more tractable than the linear one, either because the new space Lp/2

is easier to work with than the old one Lp (this is especially true when p = 4),
or because there is more freedom available in the bilinear setting, for instance
the two copies of f and the two copies of T can be decomposed separately; this
has turned out to be particularly fruitful in oscillatory integral problems such as
the Bochner-Riesz summation problem or the Fourier restriction problem. This
is an example of a lifting method - passing from a lower-dimensional problem to
a higher-dimensional one which is more “free” or “decoupled”, performing some
manipulations which are only possible in this higher dimensional setting, and then
eventually descending back to the original problem. While somewhat unintuitive,
these techniques can be surprisingly powerful, for instance they play a major role
in the analysis of singular Radon-like operators propagated along vector fields. The
lifting of a problem in physical space to one in phase space can also be viewed as
a form of lifting technique (although here the lifting is usually in a heuristic sense
only, rather than a rigorous one).

Last, but not least, we should mention a very different type of argument which
has been developed for proving these types of estimates, going by such names as
induction on scales or the Bellman function method. Roughly speaking, the idea
is to truncate the problem so that there are only a finite number of scales present,
and then induct on the number of such scales, keeping care to hold the constants
C under control and ultimately be bounded independently of how many scales are
“in play”. Now the estimate ‖Tf‖Y ≤ C‖f‖X is being used as both the conclusion
and hypothesis of the induction argument, and a potentially unbounded number of
iterations of this inductive argument are needed to reach the an arbitrary number
of scales. Hence one must often take far more care with the growth constants C
than in other types of arguments (although error terms of lower order can often
still be handled quite crudely). Indeed, in order to close the induction, it is often
necessary to modify the induction hypothesis somewhat, for instance by proving a
modified estimate such as ‖Tf‖Y ≤ B(α1, . . . , αk) where the αj are a finite number
of parameters depending on f (for instance, one of the αj might be theX norm of f ,
while another might be some sort of average value of f), and B(α1, . . . , αk) is some
explicit function (the Bellman function) of these parameters which is comparable
to (but not exactly equal to) the X norm of f ; sometimes one also needs to modify
the left-hand side ‖Tf‖Y in a similar manner). Because we only modify the right-
hand side or left-hand side up to a constant, proving this estimate is equivalent to
proving the original estimate; however the advantage of performing a modification
like this is that one may be able to enforce some sort of “convexity” on the Bellman
function B which makes it possible to close the induction with no loss of constants

4To give some indication of the difficulty, we present one simple but still open problem in the

field. From Bessel’s inequality it is easy to see that
P

n cne2πin2x
∈ L2(R/Z) whenever cn is

square summable. It is conjectured but known that these functions are not only in L2, but are in
fact in Lp for all p < 4, but no result for any p > 2 is known.
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whatsoever; this convexity might not be present in the original formulation of the
problem. In principle, the problem can now be reduced to the elementary calculus
task of constructing an explicit Bellman function of a finite number of variables
which obeys certain convexity inequalities; however, the actual discovery of such
a function can still be a non-trivial task, even if the verification of the desired
properties once the function is found is usually straightforward. There are cruder
versions of this strategy available in which one is prepared to lose a small factor
as the number of scales increase, in which case one does not have to be nearly as
careful with selecting a Bellman function B. Somewhat in a similar spirit to these
approaches are the variational methods, in which one tries to optimize ‖Tf‖Y while
holding ‖f‖X fixed, or vice versa; ideally this type of approach not only gives the
bound, but also the sharpest possible value of the constant C and also knowledge
of what functions f extremize (or approximately extremize) this inequality. These
methods have proven successful with operators that are highly geometric (e.g. in
finding the best constants for the Sobolev inequalities, which are related to the
isoperimetric inequality) but have not as yet been developed into a tool suitable for
handling general classes of operators such as most of the classes discussed above.
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