
LECTURE NOTES 8 FOR 247B

TERENCE TAO

1. Oscillatory integrals

A basic problem which comes up whenever performing a computation in harmonic
analysis is how to quickly and efficiently compute (or more precisely, to estimate)
an explicit integral. Of course, in some cases undergraduate calculus allows one to
compute such integrals exactly, after some effort (e.g. looking up tables of special
functions), but since in many applications we only need the order of magnitude
of such integrals, there are often faster, more conceptual, more robust, and less
computationally intensive ways to estimate these integrals.

In the case where the integral to evaluate is non-negative, e.g.

∫

Rd

〈x− y〉−α〈x− z〉−β dx

then the method of decomposition, particularly dyadic decomposition, works quite
well: split the domain of integration into natural regions, such as dyadic annuli
on which a key term in the integrand is essentially constant, estimate each sub-
integral (which generally reduces to the geometric problem of measuring the vol-
ume of some standard geometric set, such as the intersection of two balls), and
then sum (generally one ends up with summing a standard series such a geometric
series or harmonic series). For non-negative integrands, this approach tends to give
answers which only differ above and below from the truth by a constant (possibly
depending on things such as the dimension d). Slightly more generally, this type of
estimation works well in providing upper bounds for integrals which do not oscillate
very much. With some more effort, one can often extract asymptotics rather than
mere upper bounds, by performing some sort of expansion (e.g. Taylor expansion)
of the integrand into a main term (which can be integrated exactly, e.g. by methods
from undergraduate calculus), plus an error term which can be upper bounded by
an expression smaller than the final value of the main term.

However, there are many cases in which one has to deal with integration of highly
oscillatory integrands, in which the naive approach of taking absolute values (thus
destroying most of the oscillation and cancellation) will give very poor bounds. A
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typical such oscillatory integral1 takes the form
∫

Rd

a(x)eiλφ(x) dx, (1)

where a is a bump function adapted to some reasonable set B (such as a ball), φ
is a real -valued phase function (usually obeying some smoothness conditions), and
λ ∈ R is a parameter to measure the extent of oscillation. One could consider
more general integrals2 in which the amplitude function a is replaced by something
a bit more singular, e.g. a power singularity |x|−α, but the aforementioned dyadic
decomposition trick can usually decompose such a “singular oscillatory integral”
into a dyadic sum of oscillatory integrals of the above type. Also, one can use
linear changes of variables to rescale B to be a normalised set, such as the unit ball
or unit cube. In one dimension, the definite integral

∫

J

eiλφ(x) dx (2)

is also of interest, where J is now an interval. While one can dyadically decom-
pose around the endpoints of these intervals to reduce this integral to the previous
smoother integral (1), in one dimension one can often compute the integrals (2)
more directly.

There are two modern tools to estimate (either as upper bounds or as asymptotics)
such integrals. One is the principle of nonstationary phase, which roughly speaking
asserts that (1) is rapidly decreasing in λ whenever φ is smooth and non-stationary
(thus ∇φ does not vanish). This allows one to localise such integrals to the vicinity
of the stationary points {x : ∇φ(x) = 0}. If these stationary points are not isolated,
then matters can become extremely complicated; however, in many important cases
the stationary points are isolated, and then one can apply the principle of stationary
phase, which roughly speaking asserts that the contribution of each stationary point
x0 to an integral (1) is essentially equal to the amplitude a(x0) at that point,
times the phase eiλφ(x0) at that point, times the magnitude |{x ≈ x0 : φ(x) =
φ(x0) +O(1/λ)}| of the region where the phase is close to stationary.

A more classical method is the method of steepest descent. This works for certain
one-dimensional integrals, using the complex analysis method of contour shifting to
shift the integral into a region where the phase acquires a large negative real part,
and the integral can then be computed by taking absolute values and using cruder
tools such as dyadic decomposition. For instance, one can use this method to show
that

p.v.

∫

R

P (x)eiλx
2

dx = eiπ/4
∫

R

P (eiπ/4x)e−λx2

dx (3)

1This is sometimes also known as an oscillatory integral of the first kind, to distinguish it
from oscillatory integral operators or oscillatory integrals of the second kind, which are integral
operators whose kernel has significant oscillation.

2Another important class of integrals are improper integrals such as
∫
R

eiλx
2

dx, which are
not convergent in an absolute sense but still converge in some weaker sense, e.g. conditional
convergence. These can also be largely handled by dyadic decomposition into integrals of the
form (1).
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for all polynomials P and λ > 0, where the principal value on the left denotes the

limit of the integral
∫ R

−R P (x)e
ix2

dx as x → ∞. This shows in particular that
we expect this integral to be small when λ is large and P vanishes near the origin.
However, the method of steepest descent requires analytic extension of all the phases
involved (and in particular is incompatible with the use of bump functions), and
is difficult to generalise to higher dimensions, and so this method has been largely
abandoned as obsolete (though it still is applied for “non-commutative integrals”,
which are of relevance, among other things, to scattering and inverse scattering
problems, and thus to integrable systems. This is unfortunately well beyond the
scope of this course).

In the second half of these notes we shall give an application of stationary phase
to spherical averages, which in turn will allow us to revisit the Hardy-Littlewood
maximal operator in very high dimensions.

2. One dimensional theory

Let us begin with the theory of the one-dimensional definite integrals

I(λ) = IJ,φ(λ) :=

∫

J

eiλφ(x) dx

where J is an interval, λ ∈ R, and φ : J → R is a function (which we shall assume
to be smooth, in order to avoid technicalities). We observe some simple invariances:

• I(−λ) = I(λ), thus negative λ and positive λ behave similarly;
• Subtracting a constant from φ does not affect the magnitude of I(λ);
• If L : R → R is any invertible affine-linear transformation, then IL(J),φ◦L−1(λ) =
| det(L)|IJ,φ(λ).

• We have IJ,φ(λ) = IJ,λφ(1).

From the triangle inequality we have the trivial bound

|I(λ)| ≤ |J |.

This bound is of course sharp if φ is constant. But if φ is non-constant, we expect
I(λ) to decay as λ→ ±∞. For instance, we have

Proposition 2.1 (Esseén concentration inequality). For any ε > 0 and φ0 ∈ R,
we have

|{x ∈ J : |φ(x) − φ0| ≤ ε}| . ε

∫ 1/ε

0

|I(λ)| dλ.

Proof Using the various invariances we can normalise φ0 = 0 and ε = 1, and
reduce to showing that

|{x ∈ J : |φ(x)| ≤ 1}| .
∫ 1

−1

|I(λ)| dλ.
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Now let ψ be a bump function adapted to [−1, 1]. Observe from Fubini’s theorem
that ∫ 1

−1

ψ(λ)I(λ) dλ =

∫

J

ψ̌(φ(x)/2π) dx.

One can easily choose ψ so that ψ̌ is non-negative, and bounded from below by an
absolute constant on [−2π, 2π] (e.g. some variant of the Fejér kernel will work).
The claim then easily follows.

This simple proposition shows that the average decay of I(λ) is linked to the non-
constancy of φ, though it only gives a lower bound on this decay rather than an
upper bound.

Now we give some pointwise decay bounds on I(λ). As suggested by the above
inequality, we will need some non-constancy condition on φ. One natural condition
might be to impose some lower bound |φ′(x)| ≥ c on the derivative of φ. Unfortu-
nately, this by itself is not enough, if φ has some significant oscillation at wavelength
1/λ:

Example 2.2. Consider a phase function φ of the form

φ(x) := 2πx+
1

λ
f(λx)

where f : R/Z → R is a smooth 1-periodic function with Lipschitz constant at most
1/2. Then 1/2 ≤ φ′(x) ≤ 3/2. Now observe that eiλφ(x) is periodic with period 1/λ.
Thus if |J | is a multiple of 1/λ, one quickly computes that

I(λ) = |J |
∫ 1

0

e2πixeif(x) dx.

It is an easy matter to select f so that the integral on the right-hand side is non-zero.
Thus this shows that I(λ) can be comparable to |J | even when φ is non-constant in
the sense that φ′ ∼ |J |.

However, one can get around this example in a number of ways. The first is by
assuming control on the second derivative of φ:

Lemma 2.3 (Principle of non-stationary phase, toy version). Let φ : R → R be
a smooth phase such that |φ′(x)| ≥ c and |φ′′(x)| ≤ C for some C, c > 0 and all
x ∈ J . Then for all λ > 0 we have

|I(λ)| . 1

λ
(
1

c
+
C

c2
|J |).

Proof We write ∫

J

eiλφ(x) dx =

∫

J

1

iλφ′(x)

d

dx
eiλφ(x) dx

and integrate by parts to obtain

I(λ) =
1

iλφ′(x)
eiλφ(x)|∂J −

∫

J

(
d

dx

1

iλφ′(x)
)eiλφ(x) dx. (4)

Taking absolute values, we obtain the claim.
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We remark that one could certainly integrate by parts more times if desired, but
one can not improve the decay of 1

λ , as can easily be seen by considering the model
case φ(x) := x, although by doing so one does get better asymptotics. However,
we shall see that the situation improves markedly if we use a smooth amplitude
function.

Another option is to not require control on the second derivative, but merely that
the first derivative is monotone:

Lemma 2.4 (Van der Corput lemma, first derivative version). Let φ : R → R be
a smooth phase such that |φ′(x)| ≥ c for all x ∈ J and φ′ is monotone. Then for
all λ > 0 we have

|I(λ)| . 1

cλ
.

Proof Again, we start with (4). The first term is O(1/cλ) already. As for the
second term, we take absolute values to estimate it by

1

λ

∫

J

| d
dx

1

φ′(x)
| dx.

But since φ′ is monotone, so is 1
φ′
, and so d

dx
1
φ′

has a consistent sign. This allows

us to reverse the triangle inequality and move the absolute values back outside, at
which point we can use the fundamental theorem of calculus to conclude.

Again, the example φ(x) = x shows that this lemma is sharp up to constants. One
particularly useful feature of this lemma is that it does not depend on the lenght
of the interval J . The lemma iterates quite nicely:

Lemma 2.5 (Van der Corput lemma, higher derivative version). Let φ : R → R

be a smooth phase such that |φ(k)(x)| ≥ c for some k ≥ 2 and all x ∈ J . Then for
all λ > 0 we have

|I(λ)| .k
1

(cλ)1/k
.

Proof We induct on k. Pick a threshold α > 0 to be chosen later. Observe
that if |φ(k)(x)| ≥ c, then |φ(k−1)(x)| ≥ α will be true outside of an interval of
length at most O(α/c). Also, on the remaining portion of the interval φ(k−1) will
be monotone. Applying the inductive hypothesis (or the previous lemma, when
k = 2) we conclude that

|I(λ)| .k
1

(αλ)1/(k−1)
+ α/c.

Optimising this in α, we obtain the claim.

One can check that the right hand side 1
(cλ)1/k

is consistent with all the symmetries

of I mentioned earlier, in particular the dilation symmetry.

Now we consider the smoother integral

Ia,φ(λ) :=

∫

R

a(x)eiλφ(x) dx
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in one dimension. The connection of this smoother integral to the previous integrals
can be seen by the identity

Ia,φ(λ) = −
∫ x1

x0

a′(x)I[x0,x],φ(λ) dx (5)

if a is supported on [x0, x1], as can easily be seen either by integration by parts or
by Fubini’s theorem. Thus one can use bounds on the definite integral to obtain
bounds on the smoothed out integral. For instance, we now conclude that

Ia,φ(λ) = Oa,k(λ
−1/k) (6)

if k ≥ 2 and φ(k) is non-zero on the support of a.

The iterated integration by parts trick works much better in the smooth context
(no boundary terms!). Indeed, integration by parts yields the identity

Ia,φ(λ) =
−1

iλ
I d

dx
a
φ′

,φ(λ). (7)

Iterating this we conclude

Lemma 2.6 (Principle of non-stationary phase, one dimension). Let a ∈ C∞
0 (R),

and let φ : R → R be smooth such that φ′ is non-zero on the support of a. Then
Ia,φ(λ) = ON,a,φ(λ

−N ) for all N ≥ 0.

Note that this generalises the fact that the Fourier transform of a bump function
is rapidly decreasing (this is essentially the special case φ(x) := x). On the other
hand, it is very “expensive” in terms of the amount of regularity on a and φ needed
(one basically requires control on N derivatives of a and N + 1 derivatives on φ).

Now we consider the question of asymptotics. Our starting point is the basic
formula ∫

R

e−αx2

dx =

√
π

α

whenever α is a complex number with positive real part, using the standard branch
of the square root in this area. In particular we have see that

lim
ε→0

∫

R

e−εx2

eλix
2

dx = eπi/4
√
π

λ
. (8)

for all λ > 0. (The integral on the left is essentially a Fresnel integral.) On the
other hand, from Lemma 2.6 we have

∫

R

a(x)eλix
2

dx = ON,a(λ
−N )

for any bump function a which vanishes near the origin and all N ≥ 1, and thus by
scaling ∫

R

a(x/R)eλix
2

dx = ON,a(λ
−NR−N )

for any R ≥ 1. By a dyadic decomposition and (8) we conclude that
∫

R

a(x)eλix
2

dx = eπi/4
√
π

λ
+ON,a(λ

−N )
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whenever a is a bump function which equals 1 near the origin. More generally we
have

Lemma 2.7 (Asymptotic expansion for the Fresnel phase). Let a be a bump func-
tion, and let φ(x) := x2. If we let c0, c1, . . . be the constants

cn := eπi/4
√
π
ina(2n)(0)

n!

then we have the asymptotic expansion

Ia,φ(λ) ∼
∞∑

n=0

cnλ
−n− 1

2

in the sense that

Ia,φ(λ) =

N∑

n=0

cnλ
−n− 1

2 +ON,a(λ
−N− 3

2 ) (9)

for all N ≥ 0.

In view of (3), we expect an analogy between the theory of the Fresnel phase eλix
2

and the theory of the Gaussian weight e−λx2

. It is instructive to obtain analogues

of the above lemma for the non-oscillatory integral
∫
R
a(x)e−λx2

dx.

Proof If a is odd, then the claim is true by symmetry, so we may assume a is
even. We have just shown that the lemma is true when a equals 1 near the origin.
If instead a equals x2n near the origin, the claim follows by an induction on n using
(7). By linearity, the claim then follows if a is a polynomial in x near the origin.
Using Taylor expansion, it then suffices, for each fixed N , to prove the claim (9)
when a vanishes near the origin to high order, say N + 10. But this follows by a
repeated application of (7) (followed at last by a trivial estimation of I(λ) using
absolute values).

Once one handles the phase x2, one can use change of variables to deal with other
stationary phases, as long as the phase is quadratic at the stationary point:

Lemma 2.8 (Asymptotic expansion for non-degenerate phases). Let a be a bump
function, and let φ : R → R be smooth and have a stationary point at x0 with
φ′′(x0) 6= 0. If φ has no other stationary points on the support of a, then there
exist constants c0, c1, . . . , with each cn depending (in some explicit fashion) only on
finitely many derivatives of a, φ at x0, such that we have the asymptotic formula

Ia,φ(λ) =

N∑

n=0

cnλ
−n− 1

2 eiλφ(x0) +ON,a,φ(λ
−N− 3

2 ) (10)

for all N ≥ 0. Furthermore,

c0 = eπisgn(φ
′′(x0))/4

√
2π

|φ′′(x0)|
a(x0).
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Proof We may translate x0 = 0, and then conjugate and normalise so that φ(0) = 0
and φ′′(0) = 2, thus φ(x) = x2 + O(x3). If a vanishes near x0, the claim follows
from the principle of non-stationary phase, so we may assume that a is supported
on a very small neighbourhood of 0, so that φ(x) is comparable to x2 (and φ′ is
comparable to 2x). In such a case one can perform a smooth change of variables
to deform φ to be exactly x2, which changes a in the usual manner; the claim will
now follow from the preceding lemma.

The coefficients cn are in principle computable explicitly for any given n, but in
practice only the explicit form of c0 is needed for most applications. The above
lemma can also be viewed as a more precise version of the (k = 2 case of) (6). The

quantity
√

2π
|φ′′(x0)|

present in c0 measures the size of the interval in which φ stays

close to φ(x0).

There is a similar claim for higher order stationary points:

Lemma 2.9 (Asymptotic expansion for finite order non-degenerate phases). Let a
be a bump function, and let φ : R → R be smooth and have a stationary point at
x0 with φ′(x0) = . . . = φ(k−1)(x0) = 0 and φ(k)(x0) 6= 0 for some k ≥ 2. If φ has
no other stationary points on the support of a, then there exist constants c0, c1, . . . ,
with each cn depending (in some explicit fashion) only on finitely many derivatives
of a, φ at x0, such that we have the asymptotic formula

Ia,φ(λ) =

N∑

n=0

cnλ
−n/keiλφ(x0) +ON,a,φ,k(λ

−(N+1)/k)

for all N ≥ 0. The quantity c0 obeys the size estimate

|c0| ∼k |φ(k)(x0)|−1/k|a(x0)|.

The claim is proven similarly to the previous claim (reducing to the model phase
xk, and using Taylor expansion to strip out the leading coefficients of a), and is left
as an exercise. Again, this can be viewed as a more precise version of (6).

If φ has multiple stationary points on the support of a, then one can simply decom-
pose a and obtain a sum over stationary points. Note that as long as all stationary
points are of finite order, they cannot accumulate and so one has only finitely many
stationary points on the support of a. (The situation unfortunately gets much more
complex than this in higher dimensions.) When there is a stationary point of in-
finite order, Esseén’s concentration lemma (adapted to smooth cutoffs) indicates
that we do not expect any significant decay in I(λ) at all, though as long as the
set where φ is stationary has zero measure3, one can show (using the principle of
non-stationary phase) that I(λ) → 0 as λ→ ∞.

3This can for instance happen if φ is constant. Note that Sard’s theorem does show that the
image of the stationary points under φ has measure zero, but this is not directly useful for us.
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It is worth noting that the asymptotic formulae such as (9) are differentiable in λ
once one strips out the phase eiλφ(x0), or more specifically that

dk

dλk
[e−iλφ(x0)Ia,φ(λ)] =

dk

dλk
[

N∑

n=0

cnλ
−n− 1

2 ] +ON,a,k(λ
−N− 3

2
−k).

This can be explained as follows. First we may normalise φ(x0) = 0. Then by
differentiating under the integral sign we see that

dk

dλk
Ia,φ(λ) = I(iφ)ka,φ(λ).

Thus we see that

dk

dλk
Ia,φ(λ) =

N+k∑

n=0

dnλ
−n− 1

2 +ON,a,k(λ
−N− 3

2
−k)

for some quantities dn independent of λ. Integrating this k times, we see that this

is only compatible with (9) if the series
∑N+k

n=0 dnλ
−n− 1

2 is the kth derivative of∑N
n=0 cnλ

−n− 1

2 , and the claim follows. From this we see in particular that

Ia,φ(λ) = b(λ)eiλφ(x0)

where b is an (inhomogeneous) symbol of order −1/2, with implied constants de-
pending of course on a and φ.

3. Higher dimensional theory

The higher dimensional theory is less precise than the one-dimensional theory,
mainly because the structure of stationary points can be significantly more com-
plicated. Nevertheless, we can still say quite a bit about the higher dimensional
oscillatory integrals

Ia,φ(λ) :=

∫

Rd

a(x)eiλφ(x) dx

in many cases. The van der Corput lemma becomes significantly weaker, and will
not be discussed here; however, we still have the principle of non-stationary phase.

Lemma 3.1 (Principle of non-stationary phase). Let a ∈ C∞
0 (Rd), and let φ :

Rd → R be smooth such that ∇φ is non-zero on the support of a. Then Ia,φ(λ) =
ON,a,φ,d(λ

−N ) for all N ≥ 0.

Proof Let x0 lie in the support of a, then by rotation if necessary we may assume
that ∂x1

φ(x0) 6= 0. By smoothness the same is true for a small neighbourhood of
x0. If a is supported on this small neighbourhood then the claim then follows by
applying the one-dimensional principle of non-stationary phase in the e1 direction,
followed by Fubini’s theorem (here we have to use the fact that the bounds in
the above principle depend on only finite many derivatives of a, φ, so that one has
uniformity in the e2, . . . , ed directions). The general case then follows by a standard
partition of unity argument exploiting the compactness of the support of a.
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Now we look at quadratic phases. We again begin with a model case, in which the
Fresnel phase x2 is now replaced by a more general non-degenerate quadratic form.

Lemma 3.2 (Asymptotic expansion for quadratic phases). Let a be a bump func-
tion, and let φ : Rd → R be a non-degenerate quadratic form. Then there exists
constants c0, c1, . . . , with each ck depending on φ and on finitely many derivatives
of a at zero. Then

Ia,φ(λ) ∼
∞∑

n=0

cnλ
−n− d

2

in the sense that

Ia,φ(λ) =
N∑

n=0

cnλ
−n− d

2 +ON,a,d(λ
−N− d

2
−1) (11)

for all N ≥ 0. Furthermore,

c0 = eπisgn(Q)/4

√
2π

| det(Q)|a(0)

where sgn(Q) is the signature of Q (the number of positive eigenvalues minus the
number of negative eigenvalues).

Proof We can diagonalise Q after an affine change of variables into a normal form

Q(x) = x21 + . . .+ x2k − x2k+1 − . . .− x2d

for some 0 ≤ k ≤ d; one can check that the coefficient c0 transforms correctly by
this procedure.

Suppose first that a(x) factors as a tensor product:

a(x) = a1(x1) . . . ad(xd).

Then the integral Ia,φ(λ) factorises into d one-dimensional integrals, and the claim
follows from Lemma 2.8. We then obtain the same claim when a is a tensor product
times a polynomial,

a(x) = a1(x1) . . . ad(xd)P (x),

since one can split the polynomial into monomials. By Taylor expansion, to prove
(11) for a fixed N it thus suffices to verify the case when a vanishes to order
2(N + d+ 1) (say), so that we may factorise a(x) = |x|2(N+d+1)b for some smooth
b. But if we write |x|2eiQ(x) = 1

2i 〈x,∇eiQx〉Q and integrate by parts, and repeat

this process N + d times, we will obtain a bound of O(λ−N− d
2
−1) as desired.

Now we can handle all non-degenerate isolated stationary points.

Lemma 3.3 (Asymptotic expansion for non-degenerate phases). Let a be a bump
function, and let φ : Rd → R be smooth and have a stationary point at x0 with
det∇2φ(x0) 6= 0. If φ has no other stationary points on the support of a, then there



LECTURE NOTES 8 11

exist constants c0, c1, . . . , with each cn depending (in some explicit fashion) only on
finitely many derivatives of a, φ at x0, such that we have the asymptotic formula

Ia,φ(λ) =

N∑

n=0

cnλ
−n− d

2 eiλφ(x0) +ON,a,d,φ(λ
−N− d

2
−1) (12)

for all N ≥ 0. Furthermore,

c0 = eπisgn(∇
2φ(x0))/4

√
2π

| det∇2φ(x0)|
a(x0).

Proof We can translate x0 = 0 and φ(0) = 0, so that φ(x) = Q(x)+R(x) for some
non-degenerate quadratic form Q(x) and some R(x) = O(|x|3). We then Taylor
expand4

eiλφ(x) = eiλQ(x)[

2(N+d+1)−1∑

j=0

ij

j!
λjR(x)j+λ2(N+d+1)R(x)2(N+d+1)

∫ 1

0

(1− t)2(N+d+1)−1

(2(N + d+ 1)− 1)!
eitλR(x) dt].

The contribution of the finite sum is acceptable as we simply incorporate the R(x)j

factor into the amplitude function a; the loss of λj is more than compensated by the
order 3j decay in R(x)j , as can be seen by integration by parts (and symmetrising to

get rid of the odd order terms). The final term can also seen to be ON,a,φ(λ
−N− d

2
−1)

by repeated integration by parts.

The situation gets significantly more complicated when the det∇2φ vanishes; for
instance, factors of logλ begin to appear in the asymptotic expansion. When the
stationary set no longer consists of isolated points, but contains higher dimensional
sets, the asymptotic expansions are not fully understood in general (at a bare
minimum, resolution of singularities would be involved).

We make some auxiliary remarks about the above estimates. As stated, the implied
constants in the error terms depend in an unspecified manner on the amplitude a
and the phase φ. However, an inspection of the arguments show in fact that the
implied constants depend only on the dimension d, the diameter of the support
of a, the L∞ norm of finitely many derivatives of a and φ, the non-degeneracy
| det∇2φ(x0)| of φ at the stationary point, and a lower bound on |∇φ| outside
of a suitable small ball centred at x0 (the radius of this ball will depend on the
previous quantities). In particular, if one has a family of functions a, φ in which
these quantities are all controlled uniformly, then one has uniform control on the
error term. A somewhat related observation is that one also has derivative control
on the error term in λ, similar to those mentioned in the one-dimensional case; for
instance, with the hypotheses of Lemma 3.3 we have

dk

dλk
[e−iλφ(x0)Ia,φ(λ)] =

dk

dλk

N∑

n=0

cnλ
−n− d

2 +ON,a,φ,d,k(λ
−N− d

2
−k−1);

4Another approach is to use Morse theory and apply a diffeomorphism to change φ to Q, as
in the one-dimensional case.
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the proof is as before. Similarly, if a and φ depend smoothly on some additional
parameter, one can differentiate in that parameter and obtain similar asymptotic
expansions; we omit the details.

4. Spherical measure

Let us now apply the above machinery to compute a very specific oscillatory inte-
gral, namely the Fourier transform of surface measure µ on the sphere Sd−1 ⊂ Rd.
We normalise this measure to have total mass one: µ(Sd−1) = 1. The Fourier
transform µ̂ of this measure is then defined as

µ̂(ξ) :=

∫

Sd−1

e−2πix·ξ dµ(x).

We are interested in the decay and asymptotics of this measure. One can compute
this explicitly in terms of Bessel functions (and in the case when d is odd, the
formula can even be given exactly in terms of trigonometric functions) but we will
present the stationary phase approach as it is more robust (it does not require
the measure to have any algebraic structure), and also has a clearer geometric
interpretation than a purely algebraic approach. In particular we shall avoid tools
such as cylindrical coordinates which are somewhat specific to the sphere.

We have the trivial bound

µ̂(ξ) ≤
∫

Sd−1

dµ = 1

coming from the triangle inequality, which is attained at (and only at) ξ = 0. But
we expect some decay as |ξ| → ∞. Writing ξ in polar coordinates, ξ = rω, we have

µ̂(ξ) =

∫

Sd−1

e−2πir(x·ω) dµ(x);

the parameter r thus plays the role of the asymptotic parameter λ in the preceding
discussion. There is of course the issue that Sd−1 is not a Euclidean space, but
this can be rectified by an appropriate use of charts and smooth partitions of unity.
Suppose for instance that ω = ed (we can reduce to this case anyway using the
rotational symmetry of µ). We used a smooth partition of unity to split Sd−1 up
into coordinate patches, one near ed, one near −ed, and a finite number away from
both. Consider first the contribution of a patch away from ed and −ed. After
applying a change of variables, this contribution takes the form

∫

Rd−1

a(x)e−2πir(φ(x)·ed) dx

where a is a bump function and φ smoothly maps the support of a to the above-
mentioned patch. This phase is stationary in x when ∇φ(x) · ed = 0; but since we
are away from the two points ±ed where the sphere is normal to ed, this cannot
happen. Thus the contribution of any such patch is ON,d(r

−N ) for any N .

Now consider the contribution of the patch centred at +ed. Using the standard
chart x 7→ (x,

√
1− |x|2) in a neighbourhood of 0 in Rd, whose Jacobian can be
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computed as 1√
1−|x|2

, the contribution of this patch takes the form

∫

Rd−1

a(x)e−2πir
√

1−|x|2 1√
1− |x|2

dx

where a is a bump function which equals 1 near 0 and is supported on a small
neighbourhood of the origin; in particular it stays well away from the singulari-
ties of

√
1− |x|2. The phase φ(x) :=

√
1− |x|2 has a non-degenerate stationary

point at zero, with ∇2φ = −Id−1; the contribution of this patch thus has an as-
ymptotic expansion

∑∞
k=0 ckr

−(d−1)/2−keir, where the ck are explicitly computable

(for instance, c0 = e−πi(d−1)/4
√
2π). Similarly with the patch near −ed (but with

ir replaced by −ir, and the coefficients ck replaced by their complex conjugates.
Putting all this together, we obtain an asymptotic expansion

d̂µ(ξ) ∼
∞∑

k=0

ck|ξ|−(d−1)/2ei|ξ| +
∞∑

k=0

ck|ξ|−(d−1)/2e−i|ξ|.

Similar estimates hold for derivatives. Indeed it is not hard to use this method to
obtain the identity

d̂µ(ξ) = a(ξ)ei|ξ| + a(ξ)e−i|ξ|

for |ξ| ≥ 1 and some symbol a(ξ) of order −(d−1)/2. (Informally, we have d̂µ(ξ) ∼
e±i|ξ|/|ξ|(d−1)/2 for |ξ| ≥ 1. For |ξ| . 1, of course, d̂µ(ξ) is a smooth function.) In
particular we have the useful decay estimate

d̂µ(ξ) = Od(〈ξ〉−(d−1)/2).

5. Spherical maximal function

Decay estimates for the Fourier transforms of measures have a variety of uses, rang-
ing from restriction theory to dispersive estimates for PDE to geometric measure
theory. Here we focus on one particular application, that of spherical averages.
We begin with the easy observation that for any continuous function f : Rd → C,
we have the pointwise limit limr→0 Srf(x) = f(x), where Srf(x) is the spherical
average

Srf(x) :=

∫

Sd−1

f(x+ rω) dµ(ω).

Thus for instance S1f = f ∗ µ, and Sr is a rescaling of S1. A natural question is
whether this type of limiting behaviour also holds for, say, Lp functions. As usual,
this question will hinge on the behaviour of a maximal operator, in this case the
spherical maximal operator

MSf(x) := sup
r>0

Sr|f |(x).

We pause to make a technical remark. If f is merely locally integrable rather than
continuous, then Fubini’s theorem only guarantees that Sr|f | is defined almost
everywhere rather than everywhere. Since there are uncountably many values of r,
this may lead to the fact thatMSf(x) is in fact not defined anywhere in the locally
integrable case. This turns out to be a problem that can be dealt with later, but
for now we avoid the issue by making the a priori assumption that f is Schwartz
(actually continuous with compact support will suffice).
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Note also that the Hardy-Littlewood maximal operator does not immediately ap-
pear to control any of the averages Srf , mainly because Sr is an average over sets
of measure zero. However, we will be able to improve this with Littlewood-Paley
decomposition arguments.

Let f be Schwartz, so Srf can easily seen to be Schwartz also. From Minkowski’s
inequality we see that Sr is a contraction on every Lp, 1 ≤ p ≤ ∞:

‖Srf‖Lp(Rd) ≤ ‖f‖Lp(Rd).

Now let’s see if we can improve this. At first glance we cannot hope to improve the
constant, since Sr1 = 1. (And indeed, by truncating 1 at infinity to make it lie in
Lp, we see that the Lp operator norm of Sr is indeed 1.) But 1 is a low frequency
function - we can do better for high frequencies. Observe that

Ŝrf(ξ) = d̂σ(rξ)f̂ (ξ) (13)

and hence by the decay bounds

|Ŝrf(ξ)| .d 〈r|ξ|〉−(d−1)/2|f̂(ξ)|.
If we then apply a Littlewood-Paley projection ψj(D), and use Plancherel, we
obtain

‖ψj(D)Srf‖L2(Rd) .d 〈2jr〉−(d−1)/2‖f‖L2(Rd). (14)

This is non-trivial for the high frequency case 2j ≫ 1/r. In order to take suprema
in r, we also need to understand some regularity in r. Observe from (13) that

∂rŜrf(ξ) = ξ · (∇d̂σ)(rξ)f̂ (ξ)

and hence (using the more refined asymptotics available on d̂σ)

|∂rŜrf(ξ)| .d |ξ|〈r|ξ|〉−(d−1)/2|f̂(ξ)|
and thus

‖∂rψj(D)Srf‖L2(Rd) .d 2j〈2jr〉−(d−1)/2‖f‖L2(Rd). (15)

Now we extend the L2 estimates to Lp estimates.

Lemma 5.1. Let 1 ≤ p ≤ 2, r > 0, and 2j & 1/r. Then for Schwartz f we have

‖ψj(D)Srf‖Lp(Rd) .p,d (2jr)−(d−1)/p′‖f‖Lp(Rd)

and

‖∂rψj(D)Srf‖Lp(Rd) .p,d 2j(2jr)−(d−1)/p′‖f‖Lp(Rd).

We remark that it is natural for the bounds for ∂rψj(D)Srf to be 2j larger than
those for ψj(D)Srf ; this reflects the uncertainty principle, that ψj(D) introduces
a spatial uncertainty of 2−j, and so one should not be able to detect changes in r
of less than 2−j.

Proof We have already proven these claims for p = 2, so by interpolation (either
real or complex will do) it suffices to verify them for p = 1. The first claim follows
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since Sr is a contraction, so it suffices to prove the second claim. We rescale j = 0
and reduce to showing that

‖∂rψ0(D)Srf‖L1(Rd) .d ‖f‖L1(Rd)

when r & 1. The operator ∂rψ0(D)Sr is an integral operator with kernel

K(x, y) := ∂r

∫

Sd−1

ψ̌0(x− y − rω) dω

and from the Schwartz nature of ψ̌0 one readily verifies that

K(x, y) = Od(r
−d〈|x − y| − r〉−100d).

The claim then follows from Minkowski’s inequality (or Schur’s test).

For the low frequency case, we have a very satisfactory pointwise estimate:

Lemma 5.2. If 2j . 1/r, then |ψ≤j(D)Srf(x)| .d Mf(x).

Proof We may rescale j = 0 and x = 0, so r = O(1). From Fubini we observe that

ψ≤0(D)Srf(0) =

∫

Rd

(

∫

Sd−1

ψ̌≤0(−x− rω) dω)f(x) dx.

Since r = O(1) and ψ̌≤0 is rapidly decreasing, we easily verify that
∫

Sd−1

ψ̌≤0(−x− rω) dω = O(〈x〉−100d)

(say), and the claim then follows by standard dyadic decomposition.

We almost have enough tools to control the full maximal function. Let us first deal
with a warm-up case, when the radius is restricted to 1 ≤ r ≤ 2.

Proposition 5.3. Let d ≥ 3 and p > d
d−1 . Then for all Schwartz f

‖ sup
1≤r≤2

Sr|f |‖Lp(Rd) .p,d ‖f‖Lp(Rd).

Proof By interpolation we may take d
d−1 < p < 2. We may take f non-negative.

By Lemma 5.2 we have

|ψ≤0(D)Srf(x)| .d Mf(x)

for all 1 ≤ r ≤ 2, hence by the triangle inequality

sup
1≤r≤2

Srf(x) .d Mf(x) +

∞∑

j=1

sup
1≤r≤2

|ψj(D)Srf |.

Thus by the triangle inequality again, it will suffice to show that

‖ sup
1≤r≤2

|ψj(D)Srf |‖Lp(Rd) .p,d 2−εj‖f‖Lp(Rd)

for all j ≥ 1, and some ε > 0 depending only on p and d.
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Of course, we want to use Lemma 5.1. Observe from the fundamental theorem of
calculus that for any interval I,

sup
r∈I

|ψj(D)Srf | ≤ ψj(D)SrIf +

∫

I

|∂rψj(D)Srf | dr

where rI is the centre of I. We could apply this directly with I = [1, 2] but this
gives a bad estimate (the integral over I dominates too much). The optimal size
of I (in which both terms on the right-hand side balance) is when |I| ∼ 2−j . Then
from Minkowski’s inequality and Lemma 5.1 we see that

‖ sup
r∈I

|ψj(D)Srf |‖Lp(Rd) .p,d 2−j(d−1)/p′‖f‖Lp(Rd).

Now if we partition [1, 2] into 2j intervals I1, . . . , I2j of length 2−j and use the
obvious pointwise bound

sup
1≤r≤2

|ψj(D)Srf | ≤ (

2j∑

k=1

sup
r∈Ik

|ψj(D)Srf |p)1/p

we conclude that

‖ sup
1≤r≤2

|ψj(D)Srf |‖Lp(Rd) .p,d 2j/p2−j(d−1)/p′‖f‖Lp(Rd).

Since p > d/(d− 1) by hypothesis, the claim follows.

One may wonder whether the condition p > d/(d− 1) is sharp. There are standard
counterexamples to establish this (see Q2). The condition d ≥ 3 can be lowered
to d ≥ 2, but this is somewhat more difficult (and was first achieved by Bourgain,
with a significant later simplification by Sogge).

Having tackled the range 1 ≤ r ≤ 2, let us now deal with an opposite case, when r
is restricted to be a power of two.

Lemma 5.4. Let d ≥ 2. Then for any 1 < p ≤ ∞ we have

‖ sup
n∈Z

S2n |f |‖Lp(Rd) .p,d ‖f‖Lp(Rd).

Proof Again we may take 1 < p ≤ 2 and f non-negative. Using Lemma 5.2, we
have the pointwise estimate

sup
n∈Z

S2nf .d Mf +

∞∑

k=1

sup
n

|ψ−n+k(D)S2nf |

so it suffices by the triangle inequality to establish a bound of the form

‖ sup
n

|ψ−n+k(D)S2nf |‖Lp(Rd) .p,d 2−εk‖f‖Lp(Rd)

for some ε > 0 depending on p, d.

Let’s first deal with an L2 estimate. By estimating a supremum by a square function
we have

‖ sup
n

|ψ−n+k(D)S2nf |‖L2(Rd) ≤ (
∑

n

‖ψ−n+k(D)S2nf‖2L2(Rd))
1/2.
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Next observe that ψ−n+k(D)S2nf depends only on the Fourier coefficients of f at
frequencies |ξ| ∼ 2−n+k (note that S2n and ψ−n+k(D) are both Fourier multipli-
ers and hence commute with each other). Thus we may write ψ−n+k(D)S2nf =

ψ−n+k(D)S2n ψ̃−n+k(D)f for some suitable bump function ψ̃−n+k. Applying (14)
we conclude

‖ sup
n

|ψ−n+k(D)S2nf |‖L2(Rd) .d 2−(d−1)k/2(
∑

n

‖ψ̃−n+k(D)f‖2L2(Rd))
1/2

and then by orthogonality we conclude

‖ sup
n

|ψ−n+k(D)S2nf |‖L2(Rd) .d 2−(d−1)k/2‖f‖L2(Rd).

Now we obtain a weak (1, 1) estimate for the same maximal function, namely

|{sup
n

|ψ−n+k(D)S2nf | ≥ λ}| . k

λ
‖f‖L1(Rd); (16)

interpolating this with the L2 bound we obtain the desired Lp bound.

Now we prove (16). We can use dilations and homogeneity to rescale ‖f‖L1(Rd), λ ∼
1. We use the Calderón-Zygmund decomposition at level λ to split f = g+

∑
Q bQ,

where ‖g‖2 .d 1, Q are disjoint cubes with
∑

Q |Q| .d 1, and each bQ is supported

on Q, has mean zero, and
∫
Q
|bQ| .d |Q|. Then, as usual,

|{sup
n

|ψ−n+k(D)S2nf | ≥ λ}| . |{sup
n

|ψ−n+k(D)S2ng| ≥ λ/2}|+
∑

Q

|Q|+|{x 6∈
⋃

Q

2Q :
∑

Q

sup
n

|ψ−n+k(D)S2nbQ| ≥

The first term is Od(1) by the L2 theory (in fact we even get the much better
estimate of Od(2

−(d−1)k), but we won’t use that here). The second term is also
Od(1). As for the second term, we use Chebyshev’s inequality to estimate it by

. ‖
∑

Q

sup
n

|ψ−n+k(D)S2nbQ|‖L1(Rd\
⋃

Q 2Q) =
∑

Q

‖ sup
n

|ψ−n+k(D)S2nbQ|‖L1(Rd\2Q)

and so it will suffice to show for each cube Q that

‖ sup
n

|ψ−n+k(D)S2nbQ|‖L1(Rd\2Q) .d k|Q|

whenever bQ is supported on Q with mean zero and ‖bQ‖L1(Q) . |Q|. We may
rescale so that Q is the standard unit cube. First consider the high frequency case
when n ≤ 0. Then it is not hard (using the rapid decrease of ψ̌−n+k, and the fact
that we are excluding 2Q) to obtain the bound

‖ψ−n+k(D)S2nbQ‖L1(Rd\2Q) .d 2−100dn

(in fact we even get an arbitrarily large exponential decay in k also, though we do
not need this) and so this term sums. Now for the medium frequencies 0 < n ≤ k,
each term contributes at most O(1) by Fubini’s theorem or Young’s inequality, so
the net contribution here is O(k) by the triangle inequality. Let’s now look at the
high frequencies n > k. Here we expand out

ψ−n+k(D)S2nbQ(x) =

∫

Rd

∫

Sd−1

ψ̌−n+k(x− y − 2nω)bQ(y) dydµ(ω).



18 TERENCE TAO

As usual, we use the trick that if bQ has mean zero, we can subtract a constant
from the other factor, to obtain

ψ−n+k(D)S2nbQ(x) =

∫

Rd

∫

Sd−1

[ψ̌−n+k(x−y−2nω)−ψ̌−n+k(x−yQ−2nω)]bQ(y) dydµ(ω)

where yQ is the centre of Q. We use the fundamental theorem of calculus to write

ψ̌−n+k(x−y−2nω)−ψ̌−n+k(x−yQ−2nω) =

∫ 1

0

(y−yQ)·∇ψ̌−n+k(x−(1−t)y−tyQ−2nω) dt

and then take absolute values everywhere to conclude that

‖ψ−n+k(D)S2nbQ‖L1(Rd) .d ‖∇ψ̌−n+k‖L1(Rd)‖bQ‖L1(Rd) . 2−n+k

and this sums properly in the region n ≥ k. This proves (16), and the claim follows.

By combining the two arguments together we can now control the full maximal
function.

Theorem 5.5. [Stein’s spherical maximal inequality] Let d ≥ 3 and p > d
d−1 . Then

for all Schwartz f

‖MSf‖Lp(Rd) .p,d ‖f‖Lp(Rd).

Proof Once again, we can take 1 < p ≤ 2 and f non-negative. We split r = 2nt,
where n is an integer and 1 ≤ t < 2, and use Lemma 5.2 to obtain the pointwise
estimate

MSf .Mf +

∞∑

k=1

sup
1≤t<2

sup
n

|ψn+k(D)S2ntf |

and so it will suffice to show that

‖ sup
1≤t<2

sup
n

|ψn+k(D)S2ntf |‖Lp(Rd) .p,d 2−εk‖f‖Lp(Rd)

for all k ≥ 1 and some ε > 0 depending only on p, d. Now from the proof of the
previous lemma, we already know for each 1 ≤ t < 2 that

‖ sup
n

|ψn+k(D)S2ntf |‖L2(Rd) .d 2−(d−1)k/2‖f‖L2(Rd)

and

‖ sup
n

|ψn+k(D)S2ntf |‖L1,∞(Rd) .d k‖f‖L1(Rd)

and thus by Marcinkeiwicz interpolation

‖ sup
n

|ψn+k(D)S2ntf |‖Lp(Rd) .p,d k2
−(d−1)k/p′‖f‖Lp(Rd).

A similar argument also gives

‖ sup
n

|∂tψn+k(D)S2ntf |‖Lp(Rd) .p,d k2
k2−(d−1)k/p′‖f‖Lp(Rd)

and so by the fundamental theorem of calculus as before

‖ sup
n

sup
t∈I

|ψn+k(D)S2ntf |‖Lp(Rd) .p,d k2
−(d−1)k/p′‖f‖Lp(Rd)
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for any interval I ⊂ [1, 2] of length 2−k. We sum this as before to obtain

‖ sup
n

sup
1≤t<2

|ψn+k(D)S2ntf |‖Lp(Rd) .p,d k2
k/p2−(d−1)k/p′‖f‖Lp(Rd)

and the claim follows as before.

Now we obtain a qualitative consequence of the above theorem.

Theorem 5.6 (Stein’s spherical maximal theorem, qualitative version). Let d ≥ 3,
and let f ∈ Lp(Rd) for some p > d/(d − 1). (For this theorem, it is important
that we do not identify functions if they agree almost everywhere.) Then for almost
every x ∈ Rd, the averages Srf(x) are well-defined and finite for all r > 0, are
continuous in r, and limr→0 Srf(x) = f(x).

Proof We may take f non-negative. Let us first deal with a special case when
f is zero almost everywhere and bounded by 1. Then for any ε we can cover the
support of f by an open set U of measure at most ε. For any Schwartz function
0 ≤ g ≤ 1 supported on U , we know from Stein’s maximal inequality that

‖ sup
r
Srg‖Lp(Rd) . ε

and thus by monotone convergence

‖ sup
r
Sr1U‖Lp(Rd) . ε.

Since 1U pointwise dominates f , we then easily conclude that for almost every x,
Srf = 0 for all r > 0.

The same claim then clearly follows if f is bounded by some other constant than
1, and then by countable additivity and monotone convergence the same is true for
unbounded f also. By subadditivity we conclude that we can modify f on sets of
measure zero without affecting the conclusion. In particular we may now assume
that f is Borel measurable. This implies that the restriction of f to any sphere is
also Borel measurable on that sphere, and so Srf(x) is well-defined but possibly
infinite.

Let us now assume temporarily that f is bounded, so that Srf is also bounded.
Now, a standard limiting argument (approximating f pointwise almost everywhere
and in Lp by Schwartz functions, using the preceding discussion to neglect the mea-
sure zero set where pointwise convergence fails) using Stein’s maximal inequality
and dominated convergence shows that

‖ sup
0<r<R

Srf‖Lp(Rd) . ‖f‖Lp(Rd)

for any R > 0 (in particular, the maximal function is mesaurable), and thus by
monotone convergence

‖ sup
r>0

Srf‖Lp(Rd) . ‖f‖Lp(Rd).

If we write f as the suitably rapid Lp and pointwise limit of Schwartz functions fn,
we conclude that for almost every x,

sup
r>0

|Srf − Srfn|(x) → 0 as n→ ∞
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which in particular implies that for almost every x, Srf(x) is continuous in r and
converges to f(x).

Finally, we remove the boundedness hypothesis by a monotone convergence argu-
ment and yet another application of the Stein maximal inequality.

6. Hardy-Littlewood maximal function in high dimensions

For many weeks now we have taken advantage of boundedness properties of the
Hardy-Littlewood maximal operator

Mf(x) := sup
r>0

Ar|f |(x) = sup
r>0

1

|B(x, r)|

∫

B(x,r)

|f(y)| dy

and in particular the weak (1, 1) inequality

‖Mf‖L1,∞(Rd) .d ‖f‖L1(Rd)

and the strong Lp inequality

‖Mf‖Lp(Rd) .d,p ‖f‖Lp(Rd).

For any fixed dimension d, these estimates have many ramifications for various
analytical questions on Rd. However, there is the question of how the implicit
constants depend on d as d→ ∞. The proof of the weak (1, 1) estimate (and hence
the strong (p, p)) relies ultimately on the Vitali covering lemma and on the doubling
properties of balls in Rd. Since the doubling constant is 2d, the constants in these
arguments will also grow exponentially in d. However, it is possible to do better
than this.

Firstly, when p = ∞, we of course have the trivial estimate

‖Mf‖L∞(Rd) ≤ ‖f‖L∞(Rd).

For 1 < p < ∞, we can bound the Hardy-Littlewood function by the spherical
maximal function. Indeed, from polar coordinates one sees that

Arf(x) =

∫ r

0

Strf(x)dt
d−1 dt

and so

Mf(x) ≤MSf(x).

Thus to bound the Hardy-Littlewood function independently of dimension, it would
suffice to do the same for the spherical maximal function. Of course, our estimates
for that operator also rely heavily on the dimension. Nevertheless, by using the
deceptively simple method of rotations, one can obtain universal estimates:

Proposition 6.1. Let d0 ≥ 3 and p > d0/(d0 − 1). Then for all d ≥ d0, we have

‖MSf‖Lp(Rd) .p,d0
‖f‖Lp(Rd).
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The point here is that the implied constant stays bounded even in the limit d→ ∞.

Proof We embed Rd0 in Rd in the usual manner. Now we let O(Rd) be the
orthogonal group on Rd, and let ν be the normalised Haar measure on this compact
Lie group (thus ν(O(Rd)) = 1). We claim the rotation formula

∫

Sd−1

f(ω)dµ(d)(ω) =

∫

O(Rd)

∫

Sd0−1

f(Uω)dµ(d0)(ω)dν(U)

for any continuous function f on Sd−1, where we use the superscripts to emphasise
the ambient dimension. Indeed, both sides are rotation-invariant bounded linear
functionals on C(Sd−1), and by the uniqueness of Haar measure, they must there-
fore agree up to a constant. Setting f ≡ 1 we obtain the identity.

This rotation formula gives us an expression for the d-dimensional spherical average
in terms of d0-dimensional spherical averages:

S(d)
r f(x) =

∫

O(Rd)

∫

Sd0−1

f(x+ rUωy) dµ(d0)(ω)dν(U)

and thus

M
(d)
S f(x) ≤

∫

O(Rd)

sup
r>0

∫

Sd0−1

|f(x+ rUωy)| dµ(d0)(ω)dν(U).

By Minkowski’s inequality, it thus suffices to show that

‖ sup
r>0

∫

Sd0−1

|f(x+ rUωy)| dµ(d0)(ω)‖Lp(Rd) .p,d0
‖f‖Lp(Rd)

uniformly in U . But by rotating f by U we may set U to be the identity matrix.
Now we split Rd = Rd0 ×Rd−d0 and x = (x(d0), x′), and observe that

sup
r>0

∫

Sd0−1

|f(x+ rUωy)| dµ(d0)(ω) =M
(d0)
S fx′(x(d0)),

where fx′ : Rd0 → C is the function fx′(x(d0)) := f(x(d0), x′). The claim then
follows from the Stein’s maximal inequality in Rd0 and Fubini’s theorem.

Corollary 6.2 (Stein-Stromberg Lp maximal inequality). For any 1 < p <∞ and
d ≥ 1 we have

‖Mf‖Lp(Rd) .p ‖f‖Lp(Rd).

Proof Let d0 be the first integer such that p > d0/(d0 − 1). The cases d ≤ d0 can
be handled by the usual Hardy-Littlewood inequality, since d is bounded by Op(1).
The cases d > d0 follow from the previous proposition.

It is still an open question as to whether M is of weak-type (1, 1) uniformly in
d. The best bound known is O(d), due to Stein and Stromberg; it is based on
comparing M with the maximal operator for the Poisson semigroup and using an
abstract maximal inequality for semigroups known as the Dunford-Hopf-Schwartz
maximal inequality. A more geometric proof based on covering-type lemmas can
give a bound of O(d log d).
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7. Exercises

• Q1. Prove Lemma 2.9.
• Q2. (Stein’s counterexample) For any 0 < δ < 1, let Dδ denote the disk

{(x′, xd) ∈ Rd−1 ×R : |x′| ≤ δ; |xd| ≤ δ2}.
Use the indicator functions of these disks to show that Proposition 5.3 fails
when p < d

d−1 . Then use a suitable linear combination of these indicator

functions to show that Proposition 5.3 also fails for p = d
d−1 . Manipulate

this further (by taking linear combinations of translates of these examples)
to show that if p ≤ d

d−1 , then one can find a non-negative f ∈ Lp(Rd) such

that lim supr→0 Srf(x) = +∞ for almost every x ∈ Rd, which is about as
convincing a counterexample to almost everywhere convergence of spherical
means as one can hope for.

• Q3. (Weyl bound for the circle problem) In the plane R2, show that

ˆ1B(0,1)(ξ) . 〈ξ〉−3/2

for all ξ ∈ R2. Using this, show that

|Z2 ∩B(0, R)| = πR2 +O(R2/3)

for all R ≥ 1. (Hint: let 0 < r < 1 be chosen later (the optimal value turns
out to be r = R−1/3) and use the Poisson summation formula to compute

∑

n∈Z2

1B(0,R) ∗ φr(n)

where φr is a non-negative approximation to the identity supported on
B(0, r). By varying R to R+ r or R− r you will then get upper and lower
bounds on |Z2 ∩B(0, R)|.)

The circle problem is to reduce the error term as much as possible, ideally
to Oε(R

1/2+ε) (it is known that O(R1/2) is not possible). While some
fractional improvement over the 2/3 exponent is known, the full problem
remains well out of reach of current technology. (It shares some features
in common with the Riemann hypothesis, though the latter is undoubtedly
more difficult still.)
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