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1. The T (1) theorem

We now return to the study of Calderón-Zygmund operators T , using our recently
established paraproduct estimates to establish one of the most celebrated theorems
in the subject - the T (1) theorem of David and Journé.

Recall that Calderón-Zygmund operators T have two properties. Firstly, they have
a singular kernel K(x, y), thus K : Rd ×Rd → C obeys the bounds

K(x, y) = Od(|x− y|−d) (1)

and

K(x, y)−K(x′, y) = Od,θ(|x− x′|θ|x− y|−d−θ) (2)

K(x, y)−K(x, y′) = Od,θ(|y − y′|θ|x− y|−d−θ) (3)

whenever x 6= y and |x − x′|, |y − y′| ≤ 1
2 |x − y| and some 0 < θ ≤ 1. We assume

K is a kernel for T in the sense that

Tf(x) =

∫
Rd

K(x, y)f(y) dy (4)

whenever f is bounded with compact support, and x lies outside the support of f .
The second property is that T is bounded on L2(Rd).

Once one has these two properties, one obtains several additional properties for
free, such as boundedness on Lp(Rd) for all 1 < p < ∞; also T and T ∗ both map
L∞ to BMO. However, it is not always easy to verify these properties in practice.
The singular kernel properties are usually not too difficult, as the kernel can often
be expressed directly, and then estimated pointwise in a fairly straightforward fash-
ion. The L2 boundedness however can often be tricky - we are asking to bound Tf
for all functions f ∈ L2(Rd), which is a large class to exhaust over. With assump-
tions such as translation invariance one can diagonalise T , which makes verification
of L2 boundedness much easier (it is equivalent to the Fourier multiplier symbol
being bounded), but in general such invariance is not available. (In the case of
pseudodifferential operators there is an almost orthogonality property which is sort
of a weak version of translation invariance and serves to almost block-diagonalise
T ; again, this is not always available in general.)

There is however a remarkable theorem - the T (1) theorem - which says that once
one has the kernel bounds, verification of the L2 bounds is equivalent to verifying
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bounds on Tf (or T ∗f) on just a handful of functions, such as the constant function
1. This is particularly useful in a number of PDE applications in which T 1 and T ∗1
can be easily computed. The function 1 can be replaced by more general functions b
- leading to a family of T (b) theorems - but we will not pursue these generalisations
here.

To avoid some minor technicalities let us make the qualitative assumptions that the
singular kernel K is bounded and compactly supported (but our final bounds will
not depend on exactly how bounded or compactly supportedK is). Also, we assume
that the formula (4) is valid for all f ∈ L2(Rd) and x ∈ Rd, not just compactly
supported f and for x outside the support of f ; note from Schur’s test and our
qualitative hypotheses that the integral operator in (4) is absolutely convergent
and bounded on L2(Rd) (but with a qualitative bound rather than a quantitative
one). In particular the adjoint of T is given by

T ∗g(y) =

∫
Rd

K(x, y)g(x) dx.

It also allows us to define the functions T 1 and T ∗1 without any technical difficulty.

Theorem 1.1 (T (1) theorem). Let K be a singular kernel which is also bounded
and compactly supported, and let T be the integral operator (4). Suppose also we
have the following three properties:

• ‖T (1)‖BMO(Rd) .d 1.
• ‖T ∗(1)‖BMO(Rd) .d 1.
• (Weak boundedness) For any ball B, we have 〈T 1B, 1B〉 = Od(|B|).

Then we have ‖T ‖L2(Rd)→L2(Rd) .d,θ 1.

In the converse direction, if T is bounded on L2, then it is a CZO, and the bound-
edness of T (1) and T ∗(1) follows (with a norm of Od,θ(1)) since T and T ∗ map L∞

to BMO. The weak boundedness follows from the strong boundedness by Cauchy-
Schwarz. Thus the above three properties give a necessary and sufficient condition
for L2 boudnedness of operators with singular kernels, at least assuming some qual-
itative assumptions. It turns out that none of the three hypotheses are redundant;
they deal with three separate components of T , namely the “low-to-high”, “high-
to-low”, and ”high-to-high” frequency behaviours (more on this later; the similarity
with the paraproduct decomposition is not coincidental).

We begin proving the T (1) theorem. The first step is to show that the weak
boundedness property, when combined with the BMO bounds, can be bootstrapped
to a stronger estimate.

Lemma 1.2. Let T be as in Theorem 1.1. Then for any ball B, we have∫
B

|T 1B|2 dx .d,θ |B|

and ∫
B

|T ∗1B|2 dx .d,θ |B|
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The point here is that the absolute values are inside the integral, whereas with
weak boundedness they are outside.

Proof As the hypotheses of Theorem 1.1 are invariant under replacing T with T ∗,
it suffices to prove the first claim.

Since T 1 lies in BMO, we have∫
B

|T 1(x)− cB|2 dx .d,θ |B|

for some cB. Also, using (1), (2), (4) we have the pointwise bounds

|T (1− 1B)(x)− T (1− 1B)(xB)| .d,θ 1 + log
rB

dist(x, ∂B)

for all x ∈ B, where rB is the radius of the ball and ∂B is the boundary (one should
deal with the contribution of 12B − 1B and 1− 12B separately). Thus∫

B

|T (1− 1B)(x) − T (1− 1B)(xB)|2 dx .d,θ |B|

and thus by the triangle inequality∫
B

|T 1B(x)− c′B|2 dx .d,θ |B|

for some c′B. By Cauchy-Schwarz we see in particular that

|
∫
B

(T 1B(x)− c′B) dx| .d,θ |B|.

On the other hand, from weak boudnedness we have

|
∫
B

T 1B(x) dx| .d,θ |B|

and so by the triangle inequality we have c′B = Od,θ(1). The claim then follows
from one final application of the triangle inequality.

We now allow 1B to be replaced by other functions adapted to B.

Lemma 1.3. Let T be as before. Let φB be a bump function adapted to a ball B.
Then ∫

B

|TφB|2 dx .d,θ |B|

and ∫
B

|T ∗φB|2 dx .d,θ |B|

Proof For x ∈ B, let us examine the commutator

TφB(x) − φB(x)T 1B(x).

We can expand this expression as∫
B

K(x, y)(φB(y)− φB(x)) dy.
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Since φB is a bump function, we can bound φB(y) − φB(x) = Od(|y − x|/rB).
Applying (1) we then conclude that

TφB(x)− φB(x)T 1B(x) =

∫
B

K(x, y)(φB(y)− φB(x)) dy = Od(1)

for all x ∈ B. The first claim then follows from the previous lemma and the triangle
inequality; the second claim is proven similarly.

For technical reasons we shall need to replace bump functions by Schwartz functions
of mean zero.

Lemma 1.4. Let T be as before. Let φB be a Schwartz function of height 1 adapted
to a ball B with radius rB, such that

∫
Rd φB = 0. Then∫

B′

|TφB|2 .d,θ |B|〈dist(B,B′)/rB〉−d−θ

for all balls B′ of radius equal to that of B.

Proof We can split up into two cases, when φB is supported in 5B′ and when
it is supported outside of 2B′. (A standard smooth decomposition doesn’t quite
work because one needs to preserve the mean zero condition. Instead, remove the
portion of φB supported on and around 2B′, and move it, say, 2rB units in an
arbitrary direction, to create the component which vanishes outside of 2B′ and
which continues to have mean zero; the other term is then the difference between
the new function and the old one.). If φB is supported in 5B′, then (by the Schwartz
property) it is equal to 〈dist(B,B′)/rB〉−100d (say) times a bump function adapted
to 5B′, then the claim follows from the previous lemma. If instead φB vanishes
outside of 5B′, we can use the mean zero property of φB to write

TφB(x) =

∫
Rd

(K(x, y)−K(xB′ , y))φB(y) dy.

By (2) and the decay of φB we see that TφB(x) = Od,θ(〈dist(B,B′)/rB〉−d−θ|B|)
for all x ∈ B′, and the claim follows.

Until now we have only bounded T on very special types of functions. Now we
take our first step toward bounding T on all functions. We use Littlewood-Paley
decomposition to write

T =
∑
j,k

ψj(D)ψj(D)Tψk(D)ψk(D) (5)

for appropriate Littlewood-Paley multipliers ψj .

We can first deal with a single term:

Lemma 1.5. Let the notations and hypotheses be as above. For any j, k, we have

‖ψj(D)Tψk(D)f‖L2(Rd) .d,θ ‖f‖L2(Rd).

for all f ∈ L2(Rd).
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Proof By duality we may assume that k ≥ j. Observe that

ψj(D)Tψk(D)f(x) =

∫
Rd

Kj,k(x, y)f(y) dy

where

Kj,k(x, y) =

∫
Rd

ψ̌j(x− z)TTransyψ̌k(z) dz.

Applying the previous lemma, noting that ψ̌k is a Schwartz functions of height 2dk

adapted to B(0, 2−k), we have∫
B(w,2−k)

|TTransyψ̌k(z)| dz .d,θ 〈2k|w − y|〉−d−θ

for all balls B(w, 2−k) of radius 2−k. On the other hand, ψ̌j is a Schwartz function

of height 2dj adapted to the ball B(0, 2−j), which one can cover by O(2d(k−j)) balls
of radius 2k. From this we conclude that

Kj,k(x, y) = Od,θ(2
dj〈2j|x− y|〉−d−θ)

and the claim then follows from Schur’s test.

The above lemma does not quite let us sum in j, k; it turns out we need some
additional decay away from the diagonal j = k. Let us first consider the case
k < j − 10, so that the input is much lower frequency than the output. The idea
here is to approximate a low frequency function by a constant. Roughly speaking,
we want to exploit the heuristic

Tφ ≈ φT 1

when φ is low frequency (and thus slowly varying). The precise way of formulating
this requires the following variant of Lemma 1.4.

Lemma 1.6. Let T be as before. Let φB be a Schwartz function of height 1 adapted
to a ball B of radius rB . Let B′ be another ball with smaller radius rB′ < rB, and
let φB′ be a Schwartz function of height 1 adapted to B′ such that∫

Rd

φB′ =

∫
Rd

φBφB′ = 0.

Then

|
∫
Rd

φB′TφB − φB′φBT 1| .d,θ
rB′

rB
)θ/2|B′|〈dist(B,B′)/rB〉−d−θ/2 (6)

for all balls B′ of radius equal to that of B.

Proof We can write the integral in (6) explicitly as∫
Rd

∫
Rd

φB′(x)K(x, y)[φB(y)− φB(x)] dxdy.

To compute this integral we shall split K into two parts. Let r :=
√
rBrB′ , and let

χr be a bump function adapted to B(0, r) which equals 1 on B(0, r), and split K =
K1+K2 whereK1(x, y) := K(x, y)χr(x−y) and K2(x, y) := K(x, y)(1−χr(x−y)).
Observe that K1 and K2 are also singular kernels.
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Let’s first deal with the contribution of the local kernel K1, where we have x− y =

O(r). In this regime we have the Lipschitz bound φB(y)−φB(x) = Od(
|x−y|
rB

〈dist(x,B)/rB〉−100d).

Inserting this bound, and the bounds K1(x, y) = Od(|x − y|−d1|x−y|=O(r)), we see
that

|
∫
Rd

K1(x, y)[φB(y)− φB(x)] dy| ≪d
r

rB
〈dist(x,B)/rB〉−100d

and from this we quickly see that the contribution of K1 to (6) is acceptable.

Now we turn to K2. Here we use duality to rewrite the contribution to (6) as∫
Rd

φBT
t
2φB′ − T t

2(φBφB′) dx

where T2 is the integral operator associated to K2, and T
t
2 is the transpose operator.

Let’s look at T t
2φB′(x). Using the fact that φB′ has mean zero, we can write this

as

T t
2φB′(x) =

∫
Rd

(K2(x, y)−K2(x, xB′))φB′ (y)dy

where xB′ is the centre of B′. But we can verify (by some tedious case checking)
that

|K2(x, y)−K2(x, xB′ )| .d,θ 〈y − xB′/r〉100d |xB′ − y|θ
(r + |x− xB′ |)d+θ

and thus

|T t
2φB′(x)| .d,θ

rθB′

(r + |x− xB′ |)d+θ
|B′|

which shows (with the usual decay bounds on φB) that the contribution of
∫
Rd φBT

t
2φB′

is acceptable. Similarly one can show that

|T t
2(φBφB′ )(x)| .d,θ

rθB′

(r + |x− xB′ |)d+θ
|B′|〈dist(B,B′)/rB〉−100d

and so the second integral
∫
Rd T

t
2(φBφB′) is also acceptable.

Corollary 1.7. Let the notations and hypotheses be as above. If k < j − 10, then

‖ψj(D)Tψk(D)f − ψj(D)((T 1)(ψk(D)f))‖L2(Rd) .d,θ 2
−θ(j−k)/2‖f‖L2(Rd)

for all f ∈ L2(Rd).

Proof We can write

ψj(D)Tψk(D)f − ψj(D)((T 1)(ψk(D)f))(x) =

∫
Rd

K ′
jk(x, y)f(y) dy

where

K ′
jk(x, y) :=

∫
Rd

∫
Rd

ψ̌j(x− z)TTransyψ̌k(z)− ψ̌j(x− z)Transyψ̌k(z)T 1(z) dz.

Applying the previous lemma we obtain

|K ′
jk(x, y)| . 2−θ(j−k)/22−dk〈2k|x− y|〉−d−θ/2

and the claim follows from Schur’s test.
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Now we can prove the T (1) theorem. By duality it suffices to show that

|〈Tf, g〉| .d,θ ‖f‖L2(Rd)‖g‖L2(Rd)

for all Schwartz f, g. Using (5) and the triangle inequality, it suffices to show that

|
∑
j

∑
k

〈ψj(D)ψj(D)Tψk(D)ψk(D)f, g〉| .d,θ ‖f‖L2(Rd)‖g‖L2(Rd).

Let us first deal with the diagonal case j = k +O(1). Here we use Lemma 1.5 and
Cauchy-Schwarz (throwing one factor of ψj(D) to the other side) to bound this
contribution by

.d,θ

∑
j,k:j=k+O(1)

‖ψj(D)g‖L2(Rd)‖ψk(D)f‖L2(Rd).

By Schur’s test this is

.d,θ (
∑
j

‖ψj(D)g‖2L2(Rd))
1/2(

∑
k

‖ψk(D)f‖2L2(Rd))
1/2

which is acceptable by the Littlewood-Paley inequality (or orthogonality).

Now we need to deal with off-diagonal cases. By symmetry it suffices to deal with
the contributions when k < j − 10. We split this contribution into

|
∑

j,k:k<j−10

〈ψj(D)ψj(D)[(ψk(D)ψk(D)f)T 1], g〉|

+ |
∑

j,k:k<j−10

〈ψj(D)(ψj(D)Tψk(D)ψk(D)f − ψj(D)[(ψk(D)ψk(D)f)T 1]), g〉|.

Let’s first deal with the error term. Applying Corollary 1.7 and Cauchy-Schwarz,
we can bound this by

.d,θ

∑
j,k:k<j−10

2−θ(j−k)/2‖ψk(D)f‖L2(Rd)‖ψj(D)f‖L2(Rd)

which is acceptable by Schur’s test as before. As for the main term, we can rewrite
this as

|〈πlh(f, T 1), g〉|
for some low-high paraproduct πlh. But since ‖T 1‖BMO = Od,θ(1), we see that

‖πlh(f, T 1)‖L2 .d,θ ‖f‖L2

and the claim follows by Cauchy-Schwarz. (Note that the hypothesis that T ∗1 is
bounded in BMO will be similarly used to deal with the opposite case k > j +10.)

2. Sample application: the Cauchy integral

Just to illustrate the T (1) theorem, we use it to analyse the Cauchy integral for
Lipschitz curves with small Lipschitz constant. (One can also handle the case of
large Lipschitz constant with substantially more effort; but in that case it is actually
better to replace the T (1) theorem by a more general theorem, the T (b) theorem,
which we will not discuss here. Suffice to say that sometimes 1 is not the most
convenient function to test T or T ∗ on.)
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We begin with some (rather informal) motivation from complex analysis; further
discussion can be obtained for instance in Michael Christ’s lectures on singular
integral operators.

Let Γ be a compact subset of the complex plane C (typically Γ will be a segment of
a curve, or something similar), and let µ be a positive Radon measure on Γ. Given
any f ∈ L2(µ), we can define the Cauchy integral Cµ(f) on C\Γ by

Cµ(f)(z) :=
1

2πi

∫
Γ

f(w)

z − w
dµ(w).

This is complex analytic outside of Γ. One can also (under reasonable conditions
on Γ, f, µ) define the Cauchy integral on Γ itself by a subtly different formula:

Cµ(f)(z) :=
1

2πi
p.v.

∫
Γ

f(w)

z − w
dµ(w) := lim

ε→0

1

2πi

∫
Γ;|w−z|>ε

f(w)

z − w
dµ(w).

It is usually not the case that the value of Cµ(f) outside of Γ converges pointwise
to the value of Cµ(f) on Γ; recall for instance the Plemelj formulae from previous
notes. However, they are certainly related. For instance, if f and Cµ(f) are both
bounded on Γ, one can show (again assuming reasonable hypotheses on Γ) that
Cµ(f) is then also bounded on C\Γ.

In this section we shall consider an important special case, when Γ is a Lipschitz
curve

Γ := {x+ iA(x) : x ∈ I}
where I is a compact interval and A : I → R is a Lipschitz function, and µ is the
pushforward of Lebesgue measure dx by the map x 7→ x + iA(x). There are many
reasons why it is natural to impose the Lipschitz condition, but one of them is that
the Cauchy integral Cµ on Γ is conjugate (using the map x 7→ x + iA(x), which is
invertible on L2) to the operator

C̃µf(x) := p.v.
1

2πi

∫
I

f(y)

x− y + i(A(x) −A(y))
dy

on L2(I). Notice that the Lipschitz condition onA ensures that kernel 1
2πi

1
x−y+i(A(x)−A(y))

is a singular kernel (ignoring for now the technicality that the domain is only I in-
stead of a Euclidean space such as R; one can introduce Calderón-Zygmund theory
on much more general domains than Rd, but we will not pursue this topic here.).
A fundamental theorem here, first conjectured by Calderón and then proven in full
generality by Coifman, McIntosh, and Meyer, is

Theorem 2.1 (Cauchy integral is bounded on Lipschitz curves). Let A : I → R be

Lipschitz. Then Cµ is bounded on L2(Γ) (or equivalently, C̃µ is bounded on L2(I)),
with constant depending only on the Lipschitz constant of A.

We will not fully prove this celebrated theorem here, but will show a special case
of it, at least, can be obtained from the T (1) theorem.

The set Γ is said to have non-zero analytic capacity if it is possible to have a non-
constant bounded analytic function on C\Γ. The full study of analytic capacity
is well beyond the scope of this course. But from the preceding discussion, we see



LECTURE NOTES 7 9

that one necessary condition for having non-zero analytic capacity (again assuming
some reasonable hypotheses on Γ) is that there exists a measure µ supported on
Γ non-trivial f ∈ L∞(µ) for which Cµ(f) also lies in L∞(µ). (Actually, one does
not even need f to be bounded; it is enough for f to be in L1(µ), as long as all
truncated versions of Cµ(f) are uniformly in L∞(µ).)

At first glance, this appears difficult to achieve, since the Cauchy integral is a
singular integral operator and thus highly unlikely to map L∞(µ) to itself; dually,
it is unlikely to map L1(µ) to itself. However, we only need to find one non-trivial
L∞(µ) function whose image is also in L∞(µ). Curiously, such a fact is implied by
a dual statement, namely that of being of weak-type (1, 1). For technical reasons
(having to do with the bad duality properties of L∞(µ)) we will have to work
instead with the space of continuous functions C(Γ), together with its dual C(Γ)∗,
the space of finite Radon measures. More specifically:

Lemma 2.2 (Weak (1, 1) and duality). Let Γ be a locally compact Hausdorff space
with a non-negative finite Radon measure µ which is not identically zero, and let
T : C(Γ)∗ → C(Γ) be a linear operator whose adjoint T ∗ : C(Γ)∗ → C(Γ) obeys the
weak-type (1, 1) bound

‖T ∗ν‖L1,∞(µ) < K‖ν‖C(Γ)∗

for some K > 0. Then there exists f ∈ C(Γ) with the pointwise bound 0 ≤ f ≤ 1
and

∫
Γ f dµ ≥ µ(Γ)/2 (so in particular f is non-trivial) such that

‖Tf‖C(Γ) ≤ 2K.

Proof We normalise K = 1/2 and µ(Γ) = 1. Suppose for contradiction that the
claim failed, then we see that the convex set

{Tf : 0 ≤ f ≤ 1;

∫
Γ

f dµ ≥ 1/2}

avoids the unit ball of C(Γ). Applying the Hahn-Banach theorem, there thus exists
ν with ‖ν‖C(Γ)∗ = 1 such that

|
∫
Tf dν| ≥ 1

for all 0 ≤ f ≤ 1 with
∫
Γ
f dµ ≥ 1/2. On the other hand, from the weak-type

bound we know that

µ({|T ∗ν| ≥ 1}) < 1

2
so if one sets f := 1|T∗ν|<1 then

∫
Γ
f dµ ≥ 1/2 and

|
∫
Tf dµ| = ‖

∫
T ∗νf | < 1,

a contradiction.

Ignoring some moderate technicalities (such as distinguishing the Cauchy integral
on Γ with the Cauchy integral away from Γ, and regularising the Cauchy integral
so that it does indeed map measures to continuous functions), we thus see that to
establish non-zero analytic capacity on a Lipschitz curve Γ it suffices to show that
the Cauchy integral operator is of weak-type (1, 1). Since this operator has (after
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conjugating by x 7→ x+iA(x)) a singular kernel, Calderón-Zygmund theory reduces
matters to establishing L2 boundedness. Thus, assuming Theorem 2.1, we obtain

Corollary 2.3. Any set Γ which contains a Lipschitz curve has non-zero analytic
capacity.

In fact a slight refinement of the argument shows that any set which contains a
rectifiable set of positive length has non-zero analytic capacity (settling an old
conjecture of Denjoy). The theory of analytic capacity has since been developed
substantially, but this is well beyond the scope of these notes.

It remains to establish Theorem 2.1. We first consider the perturbative case when
the Lipschitz constant ‖A‖Lip is small; this case was established by Calderón. Here
the idea is to simply perform a Taylor expansion of the kernel:

1

2πi

1

x− y + i(A(x)−A(y))
=

∞∑
j=0

1

2πi

(−i(A(x)−A(y)))j

(x− y)j+1
.

This leads to the study of the Calderón commutators

Tjf(x) := p.v.

∫
I

(A(x) −A(y))j

(x− y)j+1
f(y) dy.

Note that the kernels here are all singular kernels (with constants O(Cj‖A‖jLip) for
some absolute constant j). These commutators are so named because they are con-
nected to commutators of the Hilbert transform H with the operation of multipli-
cation by A; for instance, up to constants, T1 is (formally) equal to d

dx [H,A]+A
′H ,

and so the L2 boundedness of T1 is equivalent to the fact that [H,A] maps L2(R)
to W 1,2(R).

In order to prove Theorem 2.1 in the small Lipschitz constant case, it will (formally)
suffice by the triangle inequality to establish an exponential bound of the form

‖Tjf‖L2(I) . Cj+1‖A‖jLip‖f‖L2(I)

for all Schwartz f , all j ≥ 0 and for some absolute constant C independent of
A, I, f . (One can make the summation rigorous by various qualitative tricks such
as regularisation; we won’t dwell on that here.) Note that by homogeneity we can
now normalise ‖A‖Lip = 1.

The operator T0 is (up to constants) just the Hilbert transform and is thus bounded
on L2 (with operator norm O(1)). As for T1, we can use the T (1) theorem. Firstly
we can extend the interval I to all of R (by extending A in some arbitrary Lipschitz
manner). Strictly speaking, T1 is not given by an integral kernel, but this can be
achieved by a standard regularisation and limiting argument which we omit. Since
the kernel is a singular kernel, it suffices to show that T11 and T ∗

1 1 lie in BMO(R)
with a norm of O(1). Since T1 is an anti-symmetric operator it just suffices to check
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T11. But we (formally) have1

T11(x) =

∫
R

A(x) −A(y)

(x− y)2
dx

=

∫
R

∫
x<z<y

A′(z)(x− y)−2 dzdx

=

∫
R

A′(z)/(z − y) dz

= CHA′(x)

for some absolute constant C. (One needs to take a bit more care with the principal
value integration to make this rigorous.) Since A is Lipschitz, A′ is bounded and
so HA′ is in BMO as desired.

The higher commutators Tj can be handled inductively. Again, the main task is to
show that Tj1 lies in BMO. This can be achieved by a formal identity of the form

Tj1 = Tj−1A
′ (7)

which generalises the previous identity. If Tj−1 was already shown to be a CZO,
then it maps the bounded function A′ to BMO, and hence Tj1 is in BMO. From this
and induction one can then show that all the Tj are CZOs (with bounds growing
exponentially in j.)

In the previous discussion we tried to control the Cauchy integral operator Cµ by a
power series expansion, which by its nature only is going to work in a perturbative
regime. One can instead look for arguments that tackle the operator directly, so
that they have a better chance of working non-perturbatively. One starting point
is the identity

p.v.
2πi∫

Γ

1

z − w
dw = 0

which (formally) follows from the Cauchy integral formula (at least if Γ is smooth

and flat at infinity). In terms of the conjugated operator C̃µ, this is essentially
asserting that

C̃µ(1 + iA′) = 0

or equivalently that
C̃µ(1) = −iC̃µ(A

′).

This identity is closely related to (7), indeed one can view (7) as the jth term of the
multilinear expansion of the above identity in A. Now formally, since CZOs map
L∞ to BMO we have

‖C̃µ(A
′)‖BMO . ‖C̃µ‖CZO‖A‖Lip

while the T (1) theorem (in a quantitative form) shows that

‖C̃µ‖CZO . 1 + ‖C̃µ(1)‖BMO.

Combining all these together, we obtain (formally at least) another proof of the
boundedness of the Cauchy integral when the Lipschitz constant is small.

1This is related to the identity T1 = C( d

dx
[H,A] + A′H) mentioned earlier; indeed, on taking

adjoints, we get T1 = −T ∗

1
= C([H,A] d

dx
+ HA′), since H and d

dx
are skew-adjoint and A′ is

self-adjoint.
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To deal with the large Lipschitz constant case there are a number of possible strate-
gies. One strategy, introduced by Peter Jones, is to use quantitative versions of the
Radamacher differentiation theorem, which asserts that Lipschitz functions are al-
most everywhere differentiable; another way of thinking about this is that curves
with large Lipschitz constant can usually be approximated by (affine images of)
curves with small Lipschitz constant. By introducing a suitable stopping time de-
composition to make this quantitative, one can decompose the majority of a Cauchy
integral operator for large Lipschitz constant curves into pieces made up of Cauchy
integral operators for small Lipschitz constant curves.

The more modern way to incorporate this strategy is to remove the focus on the
function 1 that C̃µ is being applied to, and instead replace it with a more general
function b; in this specific case, the most natural function to use is b := 1+iA′, since
we have C̃µb = 0. This led to the development of T (b) theorems, in which hypotheses
such as Tb1 ∈ BMO and T ∗b2 ∈ BMO were used to deduce L2 boundedness. Of
course, some non-degeneracy hypotheses have to be placed on b1, b2 in order for this
to work (if b1 = b2 = 0 for instance then the hypotheses are trivial and thus useless).
In the case of b = 1+ iA′, the relevant property is that the real part of b is bounded
away from zero, a property known as accretivity for reasons arising from PDE. More
recently, more “local” analogues of accretivity (pseudoaccretivity, para-accretivity,
etc.) have been used as substitutes. The proof of the T (b) theorem is most easily
accomplished by using Haar-type wavelets adapted to the chosen functions b1, b2,
rather than (or in conjunction with) the Littlewood-Paley approach presented here;
but discussing this in detail is beyond the scope of these notes.

3. Exercises

• Q1. Let K be a singular kernel which is also bounded and compactly
supported, and let T be the integral operator (4). Suppose that we have
the estimates ∫

B

|T 1B| .d |B|

and ∫
B

|T ∗1B| .d |B|

for all balls B. Show that ‖T ‖L2(Rd)→L2(Rd) .d,θ 1.
• Q2. (Calderón commutator estimate) Let a ∈ S(R), and let H be the
Hilbert transform. Show that the following are equivalent up to changes of
constant:

– ‖a‖BMO(R) . 1.
– For all 1 < p <∞ and f ∈ Lp(R), we have

‖[a,H ]f‖Lp(R) .p ‖f‖Lp(R)

where [a,H ]f = aHf −H(af).
(Hints: to deduce the latter from the former, one can try to rewrite [a,H ]f
in terms of various paraproducts and Hilbert transforms in such a way that
a is always measured as a high frequency, so that BMO type paraproduct
estimates can be exploited. To obtain the reverse implication, look at what
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〈[a,H ]f, g〉 behaves like when f, g are supported on nearby intervals of the
same size. It may be better for you to try to prove an estimate of the form
‖a‖BMO(R) ≤ C + 1

2‖a‖BMO(R).)
• Q3. Working formally (ignoring issues of convergence, principal value inte-
gration, etc.) derive (7) for all j ≥ 1.
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