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Analysis in general tends to revolve around the study of general classes of func-
tions (often real-valued or complex-valued) and operators (which take one or more
functions as input, and return some other function as output). Harmonic analysis1

focuses in particular on the quantitative properties of such functions, and how these
quantitative properties change when apply various (often quite explicit) operators.
A good example of a quantitative property is for a function f(x) being uniformly
bounded in magnitude by an explicit upper bound M , or perhaps being square
integrable with some bound A, thus

∫
|f(x)|2 dx ≤ A. A typical question in har-

monic analysis might then be the following: if a function f : Rn → R is square
integrable, and its gradient ∇f exists and is also square integrable, does this imply
that f is uniformly bounded? (The answer is yes when n = 1, no when n > 2, and
just barely no when n = 2; this is a special case of the Sobolev embedding theorem,
which is of fundamental importance in the analysis of PDE.) If so, what are the
precise bounds one can obtain?

Real and complex functions, such as a real-valued function f(x) of one real variable
x ∈ R, are of course very familiar in mathematics, starting back in high school. In
many cases one deals primarily with special functions - polynomials, exponentials,
trigonometric functions, and other very explicit and concrete functions. Such func-
tions typically have a very rich algebraic and geometric structure, and there are
many techniques from those fields of mathematics that can be used to give exact
solutions to many questions concerning these functions.

In contrast, analysis is more concerned with general classes of functions - functions
which may have some qualitative property such as measurability, boundedness,
continuity, differentiability, smoothness, analyticity, integrability, decay at infinity,
etc., but which cannot be usefully expressed as a special function, and thus has little
or no algebraic or geometric structure. These types of generic functions occur quite
frequently for instance in the study of ordinary and partial differential equations,
since the solutions to such equations often cannot be given in an explicit algebraic
form, but are nevertheless known to obey various qualitative properties such as
differentiability. In other cases, the functions can be very explicit and structured,
but for one reason or another it is difficult to exploit this structure in a purely
algebraic manner, and one must rely (at least in part) on more analytical tools

1Strictly speaking, this sentence describes the field of real-variable harmonic analysis. There

is another field of abstract harmonic analysis, which is primarily concerned with how real or
complex-valued functions (often on very general domains) can be studied using symmetries such

as translations or rotations (for instance via the Fourier transform and its relatives); this field is of
course related to real-variable harmonic analysis, but is perhaps closer in spirit to representation
theory and functional analysis, and will not be discussed here.
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instead. A typical example is the Airy function Ai(x) :=
∫∞
−∞ ei(xξ+ξ3) dξ, which

is given as an explicit integral, but in order to understand such basic questions
as whether Ai(x) is always a convergent integral, and whether this integral goes
to zero as x → ±∞, it is easiest to proceed using the tools of harmonic analysis.
In this case, one can use the principle of stationary phase to answer both these
questions affirmatively, although there is the perhaps surprising fact that the Airy
function decays almost exponentially fast as x → +∞, but only polynomially fast
as x → −∞.

Harmonic analysis, as a sub-field of analysis, is particularly interested in the study
of quantitative bounds on these functions. For instance, instead of merely assuming
that a function f is bounded, one could ask how bounded it is - in particular, what
is the best bound M ≥ 0 available such that |f(x)| ≤ M for all (or almost all)
x ∈ R; this number is known as the sup norm or L∞ norm of f and is denoted
‖f‖L∞ . Or instead of assuming that f is absolutely integrable, one can quantify this
by introducing the L1 norm ‖f‖L1 :=

∫
|f(x)| dx; more generally one can quantify

pth-power integrability for 0 < p < ∞ via the Lp norm ‖f‖Lp := (
∫
|f(x)|p dx)1/p.

Similarly, most of the other qualitative properties mentioned above can be quan-
tified by a variety of norms, which assign a non-negative number (or +∞) to any
given function and which provide some quantitative measure of one characteristic of
that function. Besides being of importance in pure harmonic analysis, quantitative
estimates involving these norms are also useful in applied mathematics, for instance
in performing an error analysis of some numerical algorithm.

Functions tend to have infinitely many degrees of freedom, and it is thus unsur-
prising that the number of norms one can place on a function are similarly infinite;
there are many ways one can quantify how “large” a function is. These norms can
often differ quite dramatically from each other. For instance, it is possible for a
function f to have large L∞ norm but small L1 norm (think of a very spiky function
which is large on a very small set, but zero elsewhere), or conversely to have small
L∞ norm but large L1 norm (think of a very broad function which is very small
but spread out over a very large set). Similarly if one compares the L2 norm with
the L1 or L∞ norms. However, it turns out that the L2 norm lies in some sense
“between” the L1 and L∞ norms, in the sense that if one controls both the L1 and
L∞ norms, then one also automatically controls the L2 norm. Intuitively, the point
is that L∞ control eliminates all the spiky functions, and L1 control eliminates most
of the broad functions, and the remaining functions end up being well behaved in
the intermediate norm L2. More quantitatively, we have the inequality

‖f‖L2 ≤ ‖f‖1/2
L1 ‖f‖1/2

L∞

which is a simple consequence of the algebraic fact that if |f(x)| ≤ M , then
|f(x)|2 ≤ M |f(x)|. This is a special case of Hölder’s inequality, which is one of
the fundamental inequalities in harmonic analysis; the idea that control of two “ex-
treme” norms automatically implies further control on “intermediate” norms can be
generalized tremendously and leads to the very powerful and convenient methods
of interpolation theory, which is another basic tool in harmonic analysis.
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The study of a single function and all its norms eventually gets somewhat tire-
some, though. As in many other fields of mathematics, the subject gets a lot more
interesting when one not only considers these objects (functions) in isolation, but
also introduces maps from one object to another; these maps, which take one (or
more) functions as input and returns another as output, are usually referred to as
operators or transforms. Operators may seem like fairly complicated mathematical
objects - after all, their inputs and outputs are functions, which in turn have in-
puts and outputs which are usually numbers - however they encode many natural
operations one performs on these functions, such as differentiation

f(x) 7→ d

dx
f(x)

and its well-known (partial) inverse, integration

f(x) 7→
∫ x

−∞
f(y) dy.

A less intuitive, but particularly important, example is the Fourier transform

f(x) 7→ f̂(x) :=
∫ ∞

−∞
e−2πixyf(y) dy. (1)

It is also of interest to consider operators which take two or more inputs; two
particularly common examples are pointwise product

(f(x), g(x)) 7→ f(x)g(x),

and convolution

(f(x), g(x)) 7→ f ∗ g(x) :=
∫ ∞

−∞
f(y)g(x− y) dy.

There are of course many other operators of interest in harmonic analysis. His-
torically, harmonic analysis was first concerned with the operations that were con-
nected to Fourier analysis, real analysis, and complex analysis; nowadays, however,
the methods of harmonic analysis have been brought to bear on a much broader
set of operators. These techniques have been particularly fruitful in understanding
the solutions of various linear and non-linear partial differential equations (with
the solution being viewed as an operator applied to the initial data), as well as in
analytic and combinatorial number theory, when one is faced with understanding
the oscillation present in various expressions such as exponential sums. Harmonic
analysis has also been applied to analyze operators which arise in geometric mea-
sure theory, probability theory, ergodic theory, numerical analysis, and differential
geometry.

A primary concern of harmonic analysis is in obtaining both qualitative and quan-
titative information about how these sorts of operators act on generic functions. A
typical example of a quantitative estimate is the inequality ‖f ∗g‖L∞ ≤ ‖f‖L2‖g‖L2

for all f, g ∈ L2, which is a special case of Young’s inequality and is easily proven
using the Cauchy-Schwarz inequality; as a consequence of this we have the qualita-
tive conclusion that the convolution of two L2 functions is necessarily continuous
(this is basically because the continuous functions form a closed subspace of L∞,
and because L2 functions can be approximated to arbitrary accuracy by smooth,
compactly supported functions). We give some further examples of qualitative and
quantitative analysis of operators in the next section.



4 TERENCE TAO

1. Example: Fourier summation

To illustrate the interplay between quantitative and qualitative results, we sketch
some of the basic theory of summation of Fourier series, which historically was one
of the main motivations for studying harmonic analysis in the first place.

In this section, the function f under consideration will always be assumed be pe-
riodic with period 2π, thus f(x + 2π) = f(x) for all x; for instance, f could be
a trigonometric polynomial such as f(x) = 3 + sin(x) − 2 cos(3x). If f is also a
continuous function (or at least an absolutely integrable one), then we can define
the Fourier coefficients f̂(n) for all integers n by the formula

f̂(n) :=
1
2π

∫ 2π

0

f(x)e−inx dx.

The theory of Fourier series then suggests one has the identity

f(x) =
∞∑

n=−∞
f̂(n)einx

but the rigourous justification of this identity requires some effort. If f is a trigono-
metric polynomial (i.e. a finite linear combination of functions of the form sin(nx)
and cos(nx)) then all but finitely many of the coefficients f̂(n) are zero, and the
identity is easily verified; however the problem becomes more subtle when f is not a
trigonometric polynomial. It is then natural to introduce the Dirichlet summation
operators SN for N = 0, 1, 2, 3, . . . by

SNf(x) :=
N∑

n=−N

f̂(n)einx.

One can then ask whether SNf necessarily converges to f as N →∞. The answer
to this question turns out to be surprisingly complicated, depending on how one
defines “convergence”, and on what assumptions one places on the function f . For
instance, one can construct examples of continuous f for which SNf fails to con-
verge uniformly to f , or even to converge pointwise; however, SNf will necessarily
converge to f in the Lp topology for any 0 < p < ∞, and will also converge point-
wise almost everywhere (i.e. the set where pointwise convergence fails will have
measure zero). If instead one only assumes f to be absolutely integrable, then it is
possible for the partial sums SNf to diverge pointwise everywhere, as well as being
divergent in the Lp topology for any 0 < p ≤ ∞. All of these results ultimately rely
on very quantitative results in harmonic analysis, and in particular on various Lp

type estimates on the Dirichlet sum SNf(x), as well as the closely related maximal
operator supN>0 |SNf(x)|.

As these results are a little tricky to prove, let us first discuss a simpler result, in
which the Dirichlet summation operators SN are replaced by the Fejér summation
operators FN , defined for N = 1, 2, . . . by the formula

FN :=
1
N

(S0 + . . . + SN−1).
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One can verify the identity

FNf(x) =
∫ π

−π

sin2(Ny/2)
N sin2(y/2)

f(x− y) dy.

Also, it is easy to show that FNf converges uniformly to f whenever f is a trigono-
metric polynomial, since this will imply that SNf = f for all but finitely many
values of N . To extend this result from trigonometric polynomials to a larger class
of functions, such as continuous functions, let us make the quantitative estimate

‖FNf‖L∞ ≤ ‖f‖L∞

for all continuous periodic functions f and all N ≥ 1. Indeed, from the triangle
inequality (and the positivity of sin2(ny/2)

n sin2(y/2)
) we have

|FNf(x)| ≤
∫ π

−π

sin2(ny/2)
n sin2(y/2)

‖f‖L∞ dy = FN1(x)‖f‖L∞ .

But FN1 = 1, and the claim follows. Using this quantitative estimate, one can
now deduce that FNf converges uniformly to f for any continuous f . To see this,
first observe by the Weierstrass approximation theorem that given any continuous
f and any ε > 0, there exists a trigonometric polynomial g such that ‖f − g‖L∞ ≤
ε. Applying the above estimate (and the linearity of FN ) we also have ‖FNf −
FNg‖L∞ ≤ ε for all N . Finally, since g is a trigonometric polynomial we have
‖g−FNg‖L∞ ≤ ε for all sufficiently large N . By the triangle inequality we conclude
that ‖f − FNf‖L∞ ≤ 3ε for all sufficiently large N , and the claim follows.

A similar argument (using Minkowski’s integral inequality instead of the triangle
inequality) shows that ‖FNf‖Lp ≤ ‖f‖Lp for all 1 ≤ p ≤ ∞, f ∈ Lp and N ≥ 1.
As a consequence, one can modify the above argument to show that FNf converges
to f in the Lp topology for every f ∈ Lp. A slightly more difficult result (relying
on a basic result in harmonic analysis known as the Hardy-Littlewood maximal
inequality) asserts that for every 1 < p ≤ ∞, there exists a constant Cp such that
one has the maximal inequality ‖ supN |FNf |‖Lp ≤ Cp‖f‖Lp for all f ∈ Lp; as a
consequence, one can show that FNf converges to f pointwise almost everywhere
for every f ∈ Lp and 1 < p ≤ ∞. A slight modification of this argument also
allows one to treat the endpoint case when f is merely assumed to be absolutely
integrable; see the discussion on the Hardy-Littlewood maximal inequality in the
next section.

Now we return briefly to Dirichlet summation. Using moderately sophisticated
techniques in harmonic analysis (such as Calderón-Zygmund theory) one can show
that when 1 < p < ∞, the Dirichlet operators SN are bounded in Lp uniformly in
N , or in other words there exists a constant 0 < Cp < ∞ such that ‖SNf‖Lp ≤
Cp‖f‖Lp for all f ∈ Lp and all N . As a consequence, one can show that SNf
converges to f in the Lp topology for all f ∈ Lp and 1 < p < ∞. However, the
quantitative estimate on SN fails at the endpoints p = 1 and p = ∞, and from
this one can also show that the convergence result also fails at these endpoints
(either by explicitly constructing a counterexample, or by using general results
such as the uniform boundedness principle). The question of almost everywhere
pointwise convergence is significantly harder. It is known that one has an estimate
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of the form ‖ supN |SNf |‖Lp ≤ Cp‖f‖Lp for 1 < p < ∞; this result (the Carleson-
Hunt theorem) implies in particular that the Dirichlet sums of an Lp function
converge almost everywhere when 1 < p ≤ ∞. On the other hand, this estimate
fails at the endpoint p = 1, and in fact there is an example of Kolmogorov of an
absolutely integrable function whose Dirichet sums are everywhere divergent. These
results require quite a lot of harmonic analysis theory, in particular using many
decompositions of both the spatial variable and the frequency variable, keeping
the Heisenberg uncertainty principle in mind, and then reassembling these pieces
carefully and exploiting various manifestations of orthogonality.

To summarize, quantitative estimates such as Lp estimates on various operators
provide an important route to establishing qualitative results, such as convergence
of certain series or sequences. In fact there are a number of principles (notably the
uniform boundedness principle and Stein’s maximal principle) which assert that
in certain circumstances this is the only route, in the sense that a quantitative
estimate must exist in order for the qualitative result to be true.

2. Some general themes in harmonic analysis: decomposition,
oscillation, geometry

One feature of harmonic analysis methods is that they tend to be local rather than
global; for instance, it is quite common for a function f to be analyzed by applying
cutoff functions in either the spatial or frequency variables to decompose f into a
number of localized pieces. These pieces would then be estimated separately and
then recombined later. One reason for this “divide and conquer” strategy is that
a generic function f tends to have many different features (e.g. f could be very
“spiky”, “discontinuous”, or “high frequency” in some places, and “smooth” or “low
frequency” in others), and it would be difficult to treat all of these features at once.
A well chosen decomposition of the function f can isolate these features from each
other, so that each component only has one salient feature that could cause diffi-
culty. In reassembling the estimates from the individual components, one can use
crude tools such as the triangle inequality, or more refined tools, for instance those
relying on some sort of orthogonality, or perhaps a clever algorithm that groups the
components into manageable clusters. The main drawback of the decomposition
method (other than aesthetic concerns) is that it tends to give bounds that are not
quite optimal; however in many cases one is content with estimates which differ
from the best possible one by a multiplicative constant.

To give a simple example of the method of decomposition, let us consider the Fourier
transform f̂(ξ) of a function f : R → C, defined (for suitably nice functions f) by
the formula

f̂(ξ) :=
∫
R

f(x)e−2πixξ dx.

From the triangle inequality it is clear that if f lies in L1, then f̂ lies in L∞.
The Plancherel theorem implies, among other things, that if f lies in L2, then f̂
also lies in L2. The question is then what happens if f lies in an intermediate Lp

space for some 1 < p < 2. Since Lp is not contained in either L1 or in L2, one
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cannot use either of the above two results directly. However, by decomposing f
into two pieces, one supported on where f is large (e.g. where |f(x)| ≥ λ for some
suitable threshold λ) and one where f is small (e.g. |f(x)| < λ), then one can
apply the triangle inequality to the first piece (which will be in L1, since |f(x)| ≤
|f(x)|p/λp−1 here) and the Plancherel theorem to the second piece (where |f(x)|2 ≤
λ2−p|f(x)|p) to obtain a good estimate. Indeed, by utilizing this strategy for all
λ and then combining all these estimates together, one can obtain the Hausdorff-
Young inequality, which asserts that for every 1 < p < 2 there exists a constant
Cp such that ‖f̂‖Lp′ ≤ Cp‖f‖Lp for all f ∈ Lp, where p′ := p/(p − 1) is the dual
exponent to p. This particular decomposition method is an example of the method
of real interpolation. It does not give the best possible value of Cp, which turns out
to be p1/2p/p′

1/2p′ and is computed by more delicate methods.

Another basic theme in harmonic analysis is the attempt to quantify the elusive
phenomenon of oscillation. Intuitively, if an expression oscillates wildly in phase,
then its average value should be relatively small in magnitude. For instance, if a 2π-
periodic function f is smooth, then its Fourier coefficients f̂(n) = 1

2π

∫ π

−π
f(x)e−inx

will be rapidly decreasing as n → ±∞ (in other words limn→±∞ |n|k|f̂(n)| = 0
for any fixed k). This assertion is easily proven by repeated integration by parts.
Generalizations of this phenomenon include the principle of stationary phase, which
among other things allows one to obtain precise control on the Airy function Ai(x)
discussed earlier, as well as the Heisenberg uncertainty principle, which relates the
decay and smoothness of a function to the decay and smoothness of its Fourier
transform.

A somewhat different manifestation of oscillation lies in the principle that if a se-
quence of functions oscillate in different ways, then their sum should be smaller than
what the triangle inequality would predict. For instance, the Plancherel theorem
in Fourier analysis implies, among other things, that a trigonometric polynomial∑N

n=−N cneinx has an L2 norm of

(
1
2π

∫ 2π

0

|
N∑

n=−N

cneinx|2)1/2 = (
N∑

n=−N

|cn|2)1/2,

which is smaller than the upper bound of
∑N

n=−N |cn| that can be obtained from
the triangle inequality. This identity can be viewed as a special case of Pythagoras’
theorem, together with the observation that the harmonics einx are all orthogonal
to each other with respect to the inner product 〈f, g〉 := 1

2π

∫ 2π

0
f(x)g(x) dx. This

concept of orthogonality has been generalized in a number of ways, for instance to
a more general and robust concept of almost orthogonality, which roughly speaking
means that a collection of functions have inner products which are small rather
than vanishing completely.

Many arguments in harmonic analysis will, at some point, involve a combinatorial
statement about certain types of geometric objects such as cubes, balls, or boxes.
For instance, one useful such statement is the Vitali covering lemma, which asserts
that given any collection B1, . . . , Bk of balls in Euclidean space Rn, there exists
a subcollection of balls Bi1 , . . . , Bim

which are disjoint, and furthermore contain a
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significant fraction of the volume covered by the original balls, in the sense that

vol(
m⋃

j=1

Bij
) ≥ 5−nvol(

k⋃
j=1

Bj).

(The constant 5−n can be improved, but this will not concern us here.) This result
is proven by a standard greedy algorithm argument, where at each stage of the
algorithm one selects the largest ball amongst the Bj which is disjoint from all
the balls already selected. One consequence of this lemma is the Hardy-Littlewood
maximal inequality

vol{x ∈ Rn : sup
r>0

1
vol(B(x, r))

∫
B(x,r)

|f(y)| dy > λ} ≤ 5n ‖f‖L1

λ

for any λ > 0 and f ∈ L1(Rn), where B(x, r) denotes the ball of radius r centred
at x; this is proven by observing that the set appearing on the left-hand side can
be covered by balls B(x, r) on which the integral of |f | is at least λvol(B(x, r)),
and then applying the Vitali covering lemma. This quantitative inequality then
implies as a qualitative consequence the Lebesgue differentiation theorem, which
asserts that for all absolutely integrable f on Rn, we have

lim
r→0

1
vol(B(x, r))

∫
B(x,r)

f(y) dy = f(x)

for almost every x ∈ Rn. This example demonstrates the importance of the un-
derlying geometry (in this case, the combinatorics of metric balls) in harmonic
analysis.
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