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Plan
e From’t Hooft expansiorto some questions ifmee probability

e Some arguments from free probability to analyze the firséoad 't
Hooft expansion and the associated (planar) combinatomddiem.



Reminder on Jean-Bernard Zuber's talk

Let 1. be the law of aV x N complex Gaussian Wigner matriss JE).
LetV = 5" | G;«" be a polynomial.

Then, 't Hooft expansion reads as the equality between foseraes
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with M, ((k;,1)1<i<n) the number of maps with genygi.e connected
graphs embedded in a surface of gepuwith k; vertices of degreéall
half-edges labelled)



Several matrices generalization

Let 1 be the law of aV x N complex Gaussian Wigner matriss UE).
LetV =>"" | 5iq;(X1, -, X,,) be a polynomial inn
non-commutative variableg; monomials.

Then, 't Hooft expansion reads

1
N

_ZNQQ

geN Jkn,eEN1=1

with M, ((k;, qi)lgign) the number of maps with genygi.e connected
graphs embedded in a surface of gepuwith &; stars of typey;.
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Several matrices generalization

Let un be the law of aV x N complex Gaussian Wigner matrissUE).
LetV =>" | 5iqi(X1, -, X,,) be a polynomial inn
non-commutative variables.

Then, 't Hooft expansion reads, for any monomjal
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with M, ((k;, qi)lgign, (k,q)) the number of maps with genyqi.e
connected graphs embedded in a surface of gew#h £; stars of type
g; andq stars of type.



Several matrices generalization

Let un be the law of aV x N complex Gaussian Wigner matrissUE).
LetV =>" | 5iq;(X1, -+, X,,) be a polynomial in
m-non-commutative variables. Letbe a monomial.

Then, 't Hooft expansion reads
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From formal series to larg®’ limit

Let 1 be the law of aV x N complex Gaussian Wigner matriss UE).
LetV =>""  Biq1(X1,- -+, X,,) be a polynomial ang be a monomial.

Then, a largeV limit of 't Hooft expansion gives, for any monomial(G-
Maurel Segala, Alea 06)

lim fin(q) = (ki) gi)1<i<n, (1,q))
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It holds if
1. V=V*with (2X;, --- X;,)" =zX;,_--- X;

11"

2. 3¢ >0,V 4+ 55" X2 is convexin the sense that
XNEH)eHN, 1<i<m—tr(V(XY,---, X)) convexvN.

3. Thej!s are small enougfdepending om).



From formal series to larg® limit:removing the convexity hypothesis

Let iy, be the Gibbs measure with potenfialwrt (GUE). Let
V=>" . 0iq(Xi,- -, Xm) beapolynomial inn-non-commutative
variables. Lety be a monomial.

Then, a largeV limit of 't Hooft expansion reads (G- Maurel Segala 06)

. 1
lim Ntr(Q(Xla T 7Xm))d:uJ]‘<f(X17 e 7X’in)
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It holds if

2. There existgy > 0 for all € < ¢g, max; |3;| < e and
LO(E) < L < L1<€), lim._,g LQ(E) = 2 andlim€_>0 Ll(E) = +00



|dea of the proof.

AssumeV + (1 — ¢)/2>" X? convex. The limit points- of iz;, as a
linear functional orlC(Xy,--- , X,,,), are such that

1. There existf? = R(c) < cos.t. |[7(X;, - X;, )| < R(e)F.

2. 7 1s solution to Schwinger-Dyson equation : For all
PeC(Xy, -, Xy, alie{l,--- m},

with 8@'P:ZP:P1X@-P2 P, ®P2’DiP:ZP:P1XiP2 PP,

Thm:There exists a unique solution f@'s small enough. It is such that

7(q) = ]C@,Qz)1<z<n7 (1,q9))

- k,eEN1=1



Free probability issues

e BeinggivenV € C(X,---, X,,), IS there aunique tracial state,
i.er € C(Xq, -, X)) such that

r(PP*) >0, 7(PQ) = 7(QP), (1) = 1
sothatforallP € C(Xy,---,X,,),alli € {1,--- ;m},

l.e& = (D;V)i<i<m IS the conjuguate variable of
Recall: Voiculescu(00):if is polynomial, then it belongs to the
cyclic gradient space, G-Cabanal Duvillard (03): Sutshare dense.

o fV =33 X2+ 8igi, 7v(q) = 7(8,),:.. (¢) depends
analyticallyon the parameters?; ) <;<,, small enoughWhendoes
analyticity breaks dowr? How (study of the critical exponents)?

What does it mean about the related algebras ?
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Result 1:Unigueness

Thm: Assume thal/ is ‘sufficiently locally convex. There exists a
uniquer, law of m non-commutative variables boundediy, s.t

Def: Letx be an involution and set

1
XY == XY 4+ Y, X7).
2 Z:Zl( 1 _I_ 1 )
V'is (¢, M)-convex iff for any X = (X,..., X,,) and
Y = (Y1,...,Y,) insomeC*-algebra( A4, || - || ) such that

1X;llcos [Villoo < M, =1,...,mwe have

m

DV(X)—DV(Y).(X -Y) > (X —Y).(X =) (1)

‘sufficiently locally convex’=V (¢, M)-convex withM > M (c), ¢ > 0

(bV — b(C))
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Remarks on Result 1

e We did not assum& = V'*

o If V =V~ 7y isthe law ofm self-adjoint non-commutative
variables, i.e itX; = X7, (2 X;, --- X;,)" = 2X,, - - X4y,

Tv(PP?) 20, 7(PQ) = 7(QP), 7(1) = 1

e Otherwise, there exisis = vy the law of (X;, X)1<i<m SO that
v (P) =vy(P(X1, -, Xm)).

oIf V=25 XZ+5"  Biqi, Vis (%, M) convexfor any M
provided the3;’s are small enougfdepending onl\/).
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Result 2:Analyticity

LetV = V3 =>"" | B:q; where(g;)1<i<, are monomials. Let
T(c, M) C C™ be the interior of the subset of parametgrs: (5;)1<i<n
such that/s is (¢, M )-convex. Assumé/ > M (c).

Then, foranyP ¢ C(X1,---, X.,,),
B €T (c, M)— 1y, (P)is analytic

In particular,

Mo((ki,q:))

(—3)"
g — i Zk H ki!)

extends analytically to the interior of the set®)fs where
% St X2+ Bigiis (¢, M)-convex forM > My(c) .
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Result 3: Algebras are similar to those generated by samuHers
Assume thatl” is (¢, M )-convex withM > M (c).
Let Z with law 7y, (or Z, Z* with law vy if V' £ V).

The(C*-algebra generated k¥ is exact, projectionles@n particular any
P(Z,Z*) has a connected support).

The von Neumann algebra associated withZ*) has theHaagerup
approximation propertand admits an embedding into the ultrapower of
the hyperfinite || factor.
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Reminder about Jean-Bernard Zuber’s talk
Whenm = 1, to solve explicitlyr,), .., (zP) itis enough
e To use Schwinger-Dyson equation to find that
G(2) = Tt;)1 <1 (2 — ) 1) satisfies

G(2) = %(W(Z) —VW(2)2 = R(2)) W(z)=2z+V'(2)

with R a polynomial of degree smaller to dég) — 2.

e To determinef? by proving thatr;,), _,_.. IS @ probability measure
with aconnected compact suppar R.
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Norm convergence

Haagerup and Thorbjornsen (02) proved

Jim IP(X]Y, ..., X)) oo = |1P(X1, ..., Xon)]|oo @.S.

if XN, ... XY follows the GUE andX, - - - , X,, are free semi-circular.

Thm: If Vis (¢, c0)-convex,V = V*, the limit holds withX# ... XV
with law p % and X1, - - -, X,,, with law 7.
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ldea of the proof: Le coup du Processus

1. Seeuy has an invariant measure of

1
dX}¥ =dH} — §D7;V(X5V )dt

with H aHermitian Brownian motion

2. Seery has an invariant measure of

1

with S afree Brownian motion

3. Show thatifl" is (¢, M) convex,M > M (c), such a process
(a) Stays below the treshold if X has norm below some
(b) Has any solution of Schwinger-Dyson has an invariantasuee.
(c) Has a unique invariante measure uniformly boundedby b.
(d) Converges in the uniform norm 6 with law 7, whenX, = 0.
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Conclusion

1. The generating function of maps is given as the solution of
Schwinger-Dyson equation which stays sufficiently bounded

2. Itis also given as the invariant measure of a free SDE.

3. What happens at the phase transition ?
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