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Abstract. Let P be an abeliap-group,E a cyclicp’-group acting freely on

P andk an algebraically closed field of characterigtic 0. In this work, we

prove that every self-equivalence of the stable module categaryok E|
comes from a self-equivalence of the derived categoy| 8f x E]. Work

of Puig and Rickard allows us to deduce that if a bl@tlith defect group

P and inertial quotien¥ is Rickard equivalent t&[P x E], then they are
splendidly Rickard equivalent. That is, Bi@a original conjecture implies
Rickard's refinement of the conjecture in this case. All of this follows from

a general result concerning the self-equivalences of the thick subcategory
generated by the trivial module.

1 Introduction

Let G be a finite group and a field of characteristip > 0. The study of
module categories has come to play a major role in the modular represen-
tation theory of finite groups. On the one hand, equivalences of the derived
categories of blocks of group algebras are implied in the local representa-
tion theory involved with the conjectures of Alperin and Bede.g. see [5]).

Here the objective is to discern the relationship between the representation
theory of a block ok G and that of a corresponding block of some subgroup
such as the normalizer of a defect group of the block. On the other hand
the structure of the categories plays a large part in the basic homological
properties of modules (e. g. see [4]).
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In this paper we study properties of equivalences of derived and sta-
ble categories in some cases. Of particular interest is the thick subcategory
T (G) of the stable category generated by the trivial module. In a real sense
this subcategory controls cohomology and extensions of modules. The im-
portance of the subcategory has been highlighted in several recent works [4,
7]. Our main theorem in the next section is that any equivalence between
T(G) andT (H) for groupsG and H must take endo-trivial modules to
endo-trivial modules. So after tensoring with a suitable endo-trivial module
we can assume that any such equivalence takes the #ivimhodule to the
trivial £k H-module. In addition, the theorem implies that if tysgroups have
equivalent stable categories then their group algebras are isomorphic. The
same had been proved by Linckelmann for integral group ringsgrbups
over thep-adic integers and its extensions.

It is known that if the centralizers of every non-triviaelement in G is
p-nilpotent, then the subcategofy(G) is equal to the entire stable category
of the principal block ofG. This fact was proved fgp > 2 in [3] and in
full generality by Benson in [2]. Also we know from [9] that the endo-trivial
modules over abeligmgroups are all Heller translates of the trivial module.
Using these facts, we consider the Picard groups of self equivalences of the
group algebra of an extension of an abeliagroup P by a cyclicp’-group
E that acts freely onP. Our main result is that the Picard group of the
stable category 0f[P x E] is generated by the Picard group of the module
category and the translation functor. So self-equivalences (of Morita type)
of the stable category all lift to equivalences of the derived category.

In the last section we consider further conditions which imply that stable
equivalences lift to derived (Rickard) equivalences and also lift to corre-
sponding categories @?G-modules. For the case 6f ~ P x E as above
we are able to show the equivalence of conjectures of 8emd Rickard
concerning the existence of derived equivalences betwégblack e and
the block of a maximat-subpair. Also in the case that is cyclic or el-
ementary abelian of ordel, we prove that some results of Linckelmann,
Rickard and the second author on the existence of Rickard equivalence are
all equivalent.

2 Stable equivalences and endo-trivial modules

Let k£ be an algebraically closed field of characterigtis 0 and letG be a
finite group. Unless otherwise indicated, the tensor proddich NV of two
kG-modulesM and NV will be the tensor product over the base field with
diagonalG-action.

Throughoutthe paper we latod (kG ) denote the category of all finitely
generated leftG-modules and lestmod(kG) be the corresponding sta-
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ble category oftG-modules modulo projectives. The stable category is
triangulated with triangles istmod (kG) corresponding roughly to exact
sequences imod(kG). The translation functor in the triangulation is the
Heller translate? ! where for akG-moduleM, £2—1(M) is isomorphic to
the cokernel of an injective hul/ — Q. Recall that a subcategos! of
stmod(kG) is thick provided it is triangulated and it is closed under di-
rect summands. Lélomy (M, N) = Hompg(M,N)/PHomyg (M, N)
where PHomyg(M, N) is the set of all homomorphisms which factor
through a projective module. By definitiddom is the Hom functor

for stmod(kG). For further discussion of the triangulated categories see
[10] or [6].

Let 7(G) (or T) be the thick subcategory stmod (kG) generated by
the trivial modulek. That is,7 is the smallest full triangulated subcategory
of stmod(kG) containingk and closed under taking direct summands. Let
A be the smallest full subcategory aiod(kG) containing the syzigies
2"k of the trivial module © € Z) and closed under taking extensions and
direct summands. Thed and7 have the same collection of objects. The
objects ofA are direct summands of what were caliedial-homology (TH)
modules in [3]. The canonical functaiod (kG) — stmod(kG) induces
an essentially surjective functer — 7. Note thatA is a tensor subcategory
of mod(kG) inthe sense thatitis closed under the taking of tensor products.
We know from [3,2] that4 is the module category of the principal block
of kG if and only if the centralizers of non-trivial-subgroups of7 are
p-nilpotent.

Let K (7) be the image of the Grothendieck group/ofn the Grothen-
dieck group oktmod(kG) (i.e., the subgroup of the Grothendieck group
of stmod(kG) generated by the classes of the object$ pf

Lemma 2.1. The groupK (7)) is generated by the clags] of the trivial
module and its order is equal to the order of a Sylesubgroup ofG.

Proof. The order of the clagg| of the trivial module in the Grothendieck
group ofstmod(kG) is the smallest non zero integesuch that there is a
virtually projective charactey equal ton times the Brauer character bf

By [24, Sect. 16.1, Tkoreme 35 et Exercice 3], this integer is the order of
a Sylowp-subgroup of5.

Note that wher(G is the direct product of a-group P and ap’-group,
then7 is equivalent to the stable categorykaP-modules and the result is
trivial.

So suppose that/ is a module ind and thatp is its Brauer character. In
order to show that the class 8f in K (7)) is equal todim M - [k], we have
to show that the class functigiwhich vanishes op-singular elements and
which is equal t@ — ¢(1)1 onp-regular elements is a generalized character.
For thenf will be a virtually projective character.
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Thanks to Brauer’s theorem on characterization of characters [&4, Th
oreme 21],f is a generalized character if and only if its restriction to every
nilpotent subgroup o~ is a generalized character. i is a subgroup of
G, then restriction induces a funct®i(G) — 7 (H). So, we have to prove
that for every nilpotent subgroufl of G, the class inK (7 (H)) of the
restriction of M isdim M - [k]. As we have seen, the lemma holds wiién
is nilpotent, and hence we are done. O

Remark 1.In general, the canonical map from the Grothendieck group of a
thick triangulated subcategory of a triangulated cate@oty the Grothen-
dieck group ofD is not injective.

Nevertheless, it may well be that the Grothendieck group aiself is
generated by the classbfind has order the order of a Sylgwsubgroup of
G or equivalently, that the canonical map from the Grothendieck group of
T to the Grothendieck group stmod(kG) is injective. This is certainly
the case whenl is the module category of the principal block/g.

Recall that &G-module) is endo-trivial if M @ M* ~ k@ P, whereP
is a projective module. Thusiff is endo-trivial then\/ ® — andM* ® — in-
duce inverse self-equivalences of the stable module categoigd (kG).

Let H be another finite group. Suppose that: stmod(kG) —
stmod(kH) and F’ : stmod(kH) — stmod(kG) are two triangu-
lated functors such that(7(G)) € T(H), F'(T(H)) € T(G) and that
the restrictions of” andF” to functors7 (G) — T (H) andT (H) — T (G)
are inverse equivalences. Then we can prove the following.

Proposition 2.2. If M is an endo-trivial module irV (G), then F'(M) is
endo-trivial. SoF and I induce inverse isomorphisms between the groups
of isomorphisms classes of endo-trivial module%iiz) and 7 (H).

Proof. We may assume that divides the order off. By composing the
self-equivalence oftmod(kG) given by M ® — with F', we may also
assume thad/ is the trivial modulek.

The functorsF’ and F’ induces inverse isomorphisms: K (7 (G)) —
K(T(H))and¢' : K(T(H)) — K(T(G)).LetV = F(k). Then, the class
x of Vin K(T(H)) is a Z-module) generator, by Lemma 2.1. So, there
is @ non-zero integer prime top such thaty = r[k]. So,dim V' = r[p?],
wherep?® is the order of a Sylow-subgroup offf. Hencedim V' is prime
to p.
It follows that there is & H-moduleX such tha @ V* ~ k& X as
kH-modules [1, Theorem 3.1.9]. Now, for every integewe have

Homy, (2, V @ V*) ~ Homyy (2°V, V) ~ Homyg(2'k, k)
~ HY(G, k).
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So,dim H(G, k) > dim H'(H, k) for all i, where
HY (G, k) ~ Homya(2°k, k)

is the Tate cohomology. Swapping the roles(éfand H in the discus-
sion above shows thatim H(H, k) > dim H'(G, k) for all i. Hence,
dim H (G, k) = dim H(H, k) for all i, andHomyz; (2°k, X') = 0 for all
i. SinceX isin T (H), this implies thatX is projective [3, Corollary 3.8].
0

Corollary 2.3. The functqrﬁ = (F(k)* ® —) o F gives an equivalence
T(G) — T(H) such thatF'(k) ~ k (in T(H)).

Note that Linckelmann’s analogous result[14, Theorem 3. JJ4mroups
H, G and a discrete valuation rir@@ of characteristic zero with residue field
k follows immediately. That is, if” : stmod(OG) — stmod(OH) is an
equivalence, theR’ @ k : stmod(kG) — stmod(kH) is an equivalence,
henceF(O) ® k is endo-trivial, saF'(O) is endo-trivial.

The following result answers a question of Linckelmann [14, p.93] (cf
Sect. 3 for the definition of stable equivalences of Morita type) :

Corollary 2.4. Let G and H be twop-groups such that there is a stable
equivalence of Morita type betweéid: and kH. Then,kG and kH are
isomorphic.

Proof. By Corollary 2.3, there is a functdr’ : mod(kG) — mod(kH)
inducing a stable equivalence such thatk) ~ k& projective module. By
[14, Theorem 2.1], there is a functdr: mod (kG) — mod(kH) (adirect
summand of”) inducing a stable equivalence, witl{k) ~ k. Now, by [14,
Theorem 2.1], such a functor gives a Morita equivalence betwéeand
kH. Therefore we are done, because every Morita equivalence bekeen
andkH comes from an isomorphisitz — kH, because both algebras
are basic algebras. O

We should point out that it is a open question as to whether the existence
of an isomorphism betweédtG andk H implies that thep-groupsG and H
are isomorphic.

3 Self stable equivalences for some frobenius groups

In this section we show how the results of the previous section can be used
to characterize the self-equivalences of the stable category in some specific
cases. Throughout the section we assume tha an abeliarp-group,

E is a cyclicp’-group that acts freely o®® andG = P x E. Because

the centralizer of every-element isp-nilpotent, the category is the full
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stable category dfG [3,2,4]. LetE = Hom(FE, k™) be the character group.
For notational convenience we shall identify the element& afith their
underlying modules.

Lemma 3.1. Let ' : stmod(kG) — stmod(kG) be an equivalence.
Then, there is a permutation of £ and an integem such thatF (V) is
isomorphic tof2"o (V) in stmod(kG), forall V € E.

Proof. Let M be an indecomposable endo-trivial module#6f. Then, the
restriction/V of M to kP is endo-trivial, hence isomorphic ¢,k ® (kP)"
for some integers, r by [9, Theorem 10.1]. It follows that/ is a direct
summand of the induced module

Ind% N ~ @ 24,V @ projective module
VeE

Hence,M ~ Q7. V for someV € E.

By Proposition 2.2, we know thaf (V) is endo-trivial forV ¢ E.
Hence, there is a functiom : £ — Z and a functiors : £ — F such that
F(V) is isomorphic ta2"(V)o (V) in stmod(kG) for V € E.

WhenP is cyclic, we havel) = {22k }o<;<|p—1 and QY ~ V for
V e E. Hence in this case we assume thatkes values if0,1}. Note
that we are already done whéhhas order. So, we assumé& has order
greater thar.

Suppose that there are elemehtd”’ € E with o(V) = o(V”). Then,
V'~ 2ty hence, restricting t®, we getk ~ 210V
Assume thal” # V', so thatn(V) # n(V’). If P is not cyclic, then it
has non-periodic cohomology, hence this is impossibl€. ig cyclic, then
2. pk = k, which again is not possible, becauBaloes not have ordex.
Consequently is a permutation as asserted.

Assume thaP is cyclic LetV be an element of’ such that (V) = 0.
LetV' = o~ 1(02725(V)). We have that

Hom(V', V) ~ Hom(2"V)a(V'),0(V)) ~

Hom(2"V)=2(V),0(V)) =~ H"V)=2(G, k).
SinceV’ andV are distinct simple modules, we have thiatm(V’, V') = 0.
Now, H~1(G, k) # 0, and hence:(V’) = 0. Thus (whenP is a cyclic
group)n is constant and we are done. R
From now, we assume thd is not cyclic. LetiW € E with n(W)
minimal. Letr : £ — E defined byr(V) = o(VW)o(W)~!. Thenr is
bijective. Leth : E — Z[[t,t,”!]] given by

h(V) =) dim Ext"(k, V)t".
neL
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We have that 4 4
Ext!(k, VW) ~ Ext'(W, V)

~ Ext!(F(W), F(V)) ~ ExtT"W) =) (k. o(V)o(W) ).
Hence
hVW ) = "WV p(o(V)o (W)™ Y) for V e E,

and R
h(V) = "YW=y (V) for V € E.

LetV € E. There exists an integersuch that" (V) = V. Then,
h(V) = t(VW)=n(W))+(n(r (V)W) =n(W))+(n(r" = (V)W) =n(W)) p (7).

Now h (V') is not periodic, sincé is not cyclic [7]. Hence, we have:.(VTV)
— (W) + (n(r(V)W) = n(W)) + - (n(r" (V)W) — n(W)) = 0.
Becausex (1) is minimal, it follows thatn (7" (V)W) — n(W) > 0 for all
i, hencen(VW) = n(W). So,n is constant. 0

For P cyclic, this lemma is due to Linckelmann [15, (proof of) Proposi-
tion 5.1].

Let O be a commutative ring and let and B be two blocks of finite
groups ovelD. Let C' be a bounded complex ¢, B)-bimodules, each of
which is projective as a lefi-module and as a righB-module. Assume

C®pC*~ A® X as complexes of4, A) — bimodules and

C*®4C ~ B&Y as complexes of B, B) — bimodules.
Then, we say that

— C induces &Rickard equivalencébetweenA and B) if X andY are
homotopy equivalent t6.

— C induces astable equivalence of Morita type C' is concentrated in
degred) and if X andY” are projective.

— C'induces aMorita equivalencef C'is concentrated in degréeand if
X andY are zero.

We denote byPic(A) the Picard group of4, i.e., the group of isomor-
phism classes df4, A)-bimodules)M inducing self Morita equivalences of
A, where the product of the classesMfandN is the class o\ ® 4 V.

Similarly, we denote bystPic(A) the group of isomorphism classes
in the stable category dfA, A)-bimodules of objects inducing self stable
equivalences ofl, where the product of the classesidfand is the class
of M ®4 N.
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If M is a bimodule inducing a self Morita equivalenceAfthen it in-
duces a self stable equivalencefThis gives rise to a morphisRic(A) —
StPic(A). If M is isomorphic toA in the stable category @f4, A)-bimo-
dules, thenV/ is isomorphic (as afA, A)-bimodule) to the direct sum of
with a projective( A, A)-bimodule. Sincel/ is indecomposable, this shows
that M/ and A are isomorphic agA, A)-bimodules. So, the canonical map
Pic(A) — StPic(A) is injective. In what follows we identify the image of
Pic(A)) with its image inStPic(A).

Finally, we denote bylrPic(A) the group of isomorphism classes in
the homotopy category @fd, A)-bicomplexes of objects which induce self
Rickard equivalences od, where the product of the classes/dfand N
is the class of\f @4 N. Recall that a Rickard equivalence framto B
induces an equivalence of the derived categoried ahd B. See [23] for
general properties abofitPic andTrPic.

AssumeC induces a Rickard equivalence betwegand B. In the de-
rived category of A, B)-bimodules(' is isomorphic to a bounded complex
of bimodules which are all projective, except the degneterm M, for
somen. Then, %, 5. M induces a stable equivalence betwetand B
[19, proof of Corollary 5.5] and the isomorphism class8f; . M in the
stable category ofA, B)-bimodules depends only ati. In particular, we
have defined a morphism

p : TrPic(A) — StPic(A).

Our main result in this section is that every self equivalence of the stable
category ok G-modules is, up to Heller translation, induced by a self Morita
equivalence okG.

Theorem 3.2. Suppose thatf = P x E as above. Then
StPic(kG) = Pic(kG) - S(kG),

whereS(kG) is the cyclic subgroup generated B, o) kG. (HereG°
is the opposite group af'.)

Proof. Let M be a(kG, kG)-bimodule inStPic(kG). By Lemma 3.1, there

is anintegen such thatV/’ = (2}, ., . M has the property that/’ ®,c V'

is the direct sum of a simple module and a projective module, for every
V € E.By[14, Theorem 2.1]M" has an indecomposable direct summand
M" such thatM” is in StPic(kG) and thenM” @ V is indecomposable,

for everyV € E. So,M" ®;¢ V is actually simple, fol’ simple. Then it

is a consequence of [14, Theorem 2.1] that actually induces a Morita
equivalencei.e., M" is in Pic(kQG). O

Note that the grouy(kG) is finite precisely whet® is cyclic. Further-
more,S(kG) N Pic(kG) # 1 implies thatP is cyclic.
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Corollary 3.3. For GG as in the theorem, the canonical map TrPic(kG)
— StPic(kG) is surjective. Moreover i be a commutative complete local
ring with residue fieldt, then,

StPic(OG) = Pic(OG) - S(OG)
and the canonical map : TrPic(OG) — StPic(OG) is surjective.

Proof. The image of the class of the comple&|[1], consisting of the one
nonzero termkG concentrated in degree 1, §tPic(kG) is the class of
1axaeykG. By Theorem 3.2, this gives the required surjectivity.

Let M be anindecomposabl®G, OG)-bimodule inStPic(OG) which
becomestrivial istPic(kG). Then,M ®k ~ kG @ L whereL is aprojective
(kG, kG)-bimodule. Hence, there is a projecti®G, OG)-bimodule L'
such thatl’ ® k ~ L and L’ is a direct summand ol/. Since M is
indecomposable, we gét= 0. So,M @k ~ kG,henc€ M @ o M*)®k ~
kG.SinceM @ o M* ~ OG@® X for some projectivéOG, OG)-bimodule
X, we getX = 0. This shows thal/ is in Pic(OG).

So, the kernel of the canonical m8pPic(OG) — StPic(kG) is con-
tained inPic(OG), hence the results ovér follow from those ovek. O

4 Splendid Rickard equivalences

Let O be a complete discrete valuation ring with residue fieldFor V' a
complex ofO-modules, we puklV = k ®o V. In this section we demon-
strate some conditions under which the existence of a Rickard equivalence
between blocks implies also the existence of a splendid Rickard equiva-
lence. Moreover under the proper circumstances the existence of a stable
equivalence of the blocks witt? coefficients implies an equivalence with
k coefficients and vice versa.

Let G be a finite group,P an abelianp-subgroup ofG and letH be
a finite group having® as a normal subgroup. LeiP = {(z,z 1|z €
P} <G x H°.

Lemma 4.1. Let M be ak(G x H°)-module with vertexA P and sourcé/
whereV is an H-stable endo-permutation module. Then, there is a complex
C of O(G x H°)-modules with trivial sources and vertices containedin,

such that:C' has homology only in degrée H°(C) @ k ~ HO(kC) ~ M
andC @y C* is homotopy equivalent tH(C) @y HO(C)*.

Proof. By [20, Theorem 7.2], there is a bounded complexf p-permuta-
tion £ P-modules having the following properties. Fidsthas no terms in
positive degrees, and its homology is honzero only in degradere it is

isomorphictoV. In addition,RestDPo (X ® X*) is homotopy equivalent to
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its 0-homology. Since Rickard’s construction gives a complex that is unique
up to homotopy equivalence (cf [9, Theorem 12.5, (12.8)]), we can assume
thatX is H-stable by removing all of its indecomposable direct summands
that are homotopy equivalent @o

Let X' = Ind§5"" X and letY be the restricted complex

o (GXH°)X(GxH®)°
Y = Res (xnyx(ax1))an

whereA’H = {(1,h™!) x (1,h)|h € H)}. Then by the Mackey Theorem

Yo P 'o Ind (7X@ g AP (AP x @ X+
heH/P

wherez = (1,h71) x (1,1) € (G x H°) x (G x H°) and
AP = {(z,2) x ((z")7L, (z")"Y|z e P

X' o X"

BecauseX is H-stable,

APX(

AP (AP)°
esAhP

AP)° *
) X ® X" ~Res,ip

R X®X*

is homotopy equivalent to itshomology. Note that we regard these modules
ask P-modules through the isomorphistRs— A" P given byx — (z, z)x
((zM)~1, (z")~1). HenceY is homotopy equivalent to i-homology, and
X' @, X' is homotopy equivalent to it3-homology.

Now by [20, Lemma 7.5], there is a direct summaticbf X’ whose
degreed homology is isomorphic td/. ThenC' is a complex ofk(G x
H®)-modules with trivial sources and vertices contained\if such that
C @i C* is homotopy equivalent td/ @ M*. By [20, Lemma 5.1], we
can lift C' to a complexC' of O(G x H°)-modules with trivial sources and
vertices contained iz P such thatC' has no terms in positive degrees and
C is isomorphic tokC.

Note thatC' ®xy C* is a complex ofd(G' x G°)-modules with trivial
sources which becomes isomorphicto ; C* after tensoring by:. This
last complex is isomorphic to the direct sumidf®y gy M* with a complex
homotopy equivalent to zero. The uniqueness of liftings [20, Lemma 5.1]
shows that®' ®py C* is homotopy equivalent té7°(C) ®@or HO(C)*.

O

A bimodule induces a stable equivalence if it does so over the residue
field, as shown by the following well known result.

Lemma 4.2. Let A and B be two blocks of finite groups ové? and let
M an (A ® B°)-module that is projective both as atrmodule and as a
B°-module. Ifk M induces a stable equivalence betwéehand kB, then
M induces a stable equivalance betwetand B.
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Proof. Lete : M*®4 M — Bandn: B — M ®4 M* be the units and
counits given by the biadjoint paitM* ®4 —, M ®p —). Then,1; ® ¢
andl; ® n are the units and counits given by the biadjoint g&ib/* &y 4
— kM ®kp —). S0,(1x ® €)(1x ® n) is an automorphism df B, hencesn
is an automorphism aB. It follows that there is 4B, B)-bimoduleX such
that M* ® 4 M ~ B & X. We know thatX is projective becauskX is
projective. Similarly, one proves thaf @z M* ~ A® projective module,
and hencelf induces a stable equivalence betwetand B. O

Let now A be a block of0G, B a block of O H, both with defect groups
P.Abounded complex’ of A® B° inducing a Rickard equivalence between
AandBiis splendid if all its terms have trivial sources and vertices contained
in AP [20].

Theorem 4.3. Assume there is §A ® (kB)°)-module M whose ver-
tex is AP and whose source i%. Assume that” is an H-stable endo-
permutation module antlf induces a stable equivalence betwetand B.
Assume furthermore that the canonical map®ic(B) — StPic(B) and
TrPic(kB) — StPic(kB) are surjective. Then, the following assertions are
equivalent.

(i) A andB are splendidly Rickard equivalent.

(i) A andB are Rickard equivalent.

(iii) Every stable equivalence of Morita type betweérand B lifts to a
Rickard equivalence.

(iv) kA andkB are splendidly Rickard equivalent.

(v) kA andkB are Rickard equivalent.

(vi) Every stable equivalence of Morita type betwéenhandk B lifts to a
Rickard equivalence.

(vii) The stable equivalence inducedk¥lifts to a splendid Rickard equiv-
alence.

Proof. Clearly (i) implies (ii), (i) implies (v), (iv) implies (v) and (vii)
implies (iv).

We apply Lemma 4.1 and takd = H(C'). Then,M ~ kM andM is
projective as aml-module and as #°-module. By Lemma 4.2}/ induces
a stable equivalence of Morita type, hence (iii) implies (ii).

Now assume (ii). LeC’ be a Rickard complex fod and B and M’ an
(A ® B°)-module associated t0’, inducing a stable equivalence. Lt
be an(A ® B°)-module inducing a stable equivalence. Thafi; @ 4 N
defines an element &ftPic(B), which lifts to a complexy” in TrPic(B)
by the hypothesis. Thed,” @ Y is a Rickard complex liftingV. So, (ii)
implies (iii). Similarly, (v) implies (vi).
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Every splendid Rickard equivalence betwéehandk B lifts to a splen-
did Rickard equivalence betweehand B by [20, Theorem 5.2], hence (iv)
implies (i).

Finally let us assume (vi). L&’ be a Rickard complex liftind/. Re-
placingM by 2" M if necessary, we may chooé# to be the cone of a map
f: M — X, with X a bounded complex of projectiyel ® B°)-modules.
Let C' be a complex associated 3d, as in Lemma 4.1¢' = kC and letg
be the canonical map — HY(C) = M (this is a quasi-isomorphism). Let
D be the cone of g : C — X. Then,D is quasi-isomorphic t&’ and D
is a complex of modules with trivial sources and vertices containetifin

SinceC ®xp C* is homotopy equivalent to a complex concentrated in
degreey, it follows that D ®.p C* is homotopy equivalent to a bounded
complex all of whose terms are projective exceptthe term in dégkéence,

E = D®y,p D* is homotopy equivalent to a bounded complex all of whose
terms are projective except for the degfegerm. SinceC’ is a Rickard
complex andD is quasi-isomorphic t@”, it follows that £ has homology
only in degred), isomorphic tok A. As the positive degree terms afare
projective, we have that is homotopy equivalent to a bounded complex
with no terms in positive degrees. Similarly, the negative degree terms of
E are injective, henc& is homotopy equivalent to a complex concentrated
in degreed, and withH°(E) ~ kA. Therefore from [20, Theorem 2.1] we
have thatD induces a splendid Rickard equivalence betwedrandkB.

So, (vii) is a consequence of (vi). O

Let e a block idempotent 0OG. Let (P, ep) be a maximak-subpair
andN its normalizer. We assume thatis abelian and that' = N/Cq(P)
is a cyclicp’-group acting freely oP. Let H = P x E.

Corollary 4.4. The following assertion are equivalent.

(i) OGeandOH are splendidly Rickard equivalent.

(i) OGeandOH are Rickard equivalent.

(iii) Every stable equivalence of Morita type betwaBt/e and O H lifts
to a Rickard equivalence.

(iv) kGe andkH are splendidly Rickard equivalent.

(v) kGeandkH are Rickard equivalent.

(vi) Every stable equivalence of Morita type betwééfe andk H lifts to
a Rickard equivalence.

(vii) The stable equivalence induced k¥ lifts to a splendid Rickard equiv-
alence.

Proof. Atheorem of Puig[16, Remarque 6.8] asserts that therefisstiable
endo-permutatiort P-moduleV with vertex P and a direct summangl/
of Ind$ 5" V that induces a stable equivalence betweéi andk H. So,
the corollary follows from Corollary 3.3 and the Theorem. O
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Broueé [5, 6.2] has conjectured thatdfs a block of a finite groug: and
if (D, f) is a maximale-subpair such thab is abelian, then the derived
categories o0Ge andON¢ (D, f) f are derived equivalent. Rickard [20]
further conjectured that they are splendidly equivalent. Thus we have verified
that the conjectures are equivalent in this special case.

A few other references should be noted. WHeis cyclic, Rickard has
proven in [17] thakGe andk[P x E] are Rickard equivalent. Linckelmann
[11] proved also thab Ge andO[ P x E] are Rickard equivalent. The Corol-
lary shows directly the equivalence of the two statements and shows further
that we have splendid equivalences as provenin [21,22]. Here, the approach
goes back to [18].

Similarly, whenP is a Klein four group, Linckelmann [12] has proven
thatkGe andk[P x E|] are Rickard equivalent. Hence, we have also that
OGe andO[P x E] are Rickard equivalent. The last result was proved also
by Linckelmann [13] as a consequence of the determination of the source
algebras. The fact thé&?Ge andO[P x E] are splendidly Rickard equivalent
is a result of the second author.
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