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Abstract. LetP be an abelianp-group,E a cyclicp′-group acting freely on
P andk an algebraically closed field of characteristicp > 0. In this work, we
prove that every self-equivalence of the stable module category ofk[P oE]
comes from a self-equivalence of the derived category ofk[P o E]. Work
of Puig and Rickard allows us to deduce that if a blockB with defect group
P and inertial quotientE is Rickard equivalent tok[P o E], then they are
splendidly Rickard equivalent. That is, Broué’s original conjecture implies
Rickard’s refinement of the conjecture in this case. All of this follows from
a general result concerning the self-equivalences of the thick subcategory
generated by the trivial module.

1 Introduction

Let G be a finite group andk a field of characteristicp > 0. The study of
module categories has come to play a major role in the modular represen-
tation theory of finite groups. On the one hand, equivalences of the derived
categories of blocks of group algebras are implied in the local representa-
tion theory involved with the conjectures of Alperin and Broué (e.g. see [5]).
Here the objective is to discern the relationship between the representation
theory of a block ofkG and that of a corresponding block of some subgroup
such as the normalizer of a defect group of the block. On the other hand
the structure of the categories plays a large part in the basic homological
properties of modules (e. g. see [4]).
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In this paper we study properties of equivalences of derived and sta-
ble categories in some cases. Of particular interest is the thick subcategory
T (G) of the stable category generated by the trivial module. In a real sense
this subcategory controls cohomology and extensions of modules. The im-
portance of the subcategory has been highlighted in several recent works [4,
7]. Our main theorem in the next section is that any equivalence between
T (G) andT (H) for groupsG andH must take endo-trivial modules to
endo-trivial modules. So after tensoring with a suitable endo-trivial module
we can assume that any such equivalence takes the trivialkG-module to the
trivial kH-module. In addition, the theorem implies that if twop-groups have
equivalent stable categories then their group algebras are isomorphic. The
same had been proved by Linckelmann for integral group rings ofp-groups
over thep-adic integers and its extensions.

It is known that if the centralizers of every non-trivialp-element in G is
p-nilpotent, then the subcategoryT (G) is equal to the entire stable category
of the principal block ofkG. This fact was proved forp > 2 in [3] and in
full generality by Benson in [2]. Also we know from [9] that the endo-trivial
modules over abelianp-groups are all Heller translates of the trivial module.
Using these facts, we consider the Picard groups of self equivalences of the
group algebra of an extension of an abelianp-groupP by a cyclicp′-group
E that acts freely onP . Our main result is that the Picard group of the
stable category ofk[P o E] is generated by the Picard group of the module
category and the translation functor. So self-equivalences (of Morita type)
of the stable category all lift to equivalences of the derived category.

In the last section we consider further conditions which imply that stable
equivalences lift to derived (Rickard) equivalences and also lift to corre-
sponding categories ofOG-modules. For the case ofG ' P o E as above
we are able to show the equivalence of conjectures of Broué and Rickard
concerning the existence of derived equivalences between aG-block e and
the block of a maximale-subpair. Also in the case thatP is cyclic or el-
ementary abelian of order4, we prove that some results of Linckelmann,
Rickard and the second author on the existence of Rickard equivalence are
all equivalent.

2 Stable equivalences and endo-trivial modules

Let k be an algebraically closed field of characteristicp > 0 and letG be a
finite group. Unless otherwise indicated, the tensor productM ⊗ N of two
kG-modulesM andN will be the tensor product over the base field with
diagonalG-action.

Throughout the paper we letmod(kG) denote the category of all finitely
generated leftkG-modules and letstmod(kG) be the corresponding sta-
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ble category ofkG-modules modulo projectives. The stable category is
triangulated with triangles instmod(kG) corresponding roughly to exact
sequences inmod(kG). The translation functor in the triangulation is the
Heller translateΩ−1 where for akG-moduleM , Ω−1(M) is isomorphic to
the cokernel of an injective hullM ↪→ Q. Recall that a subcategoryM of
stmod(kG) is thick provided it is triangulated and it is closed under di-
rect summands. LetHomkG(M, N) = HomkG(M, N)/PHomkG(M, N)
wherePHomkG(M, N) is the set of all homomorphisms which factor
through a projective module. By definitionHomkG is the Hom functor
for stmod(kG). For further discussion of the triangulated categories see
[10] or [6].

Let T (G) (or T ) be the thick subcategory ofstmod(kG) generated by
the trivial modulek. That is,T is the smallest full triangulated subcategory
of stmod(kG) containingk and closed under taking direct summands. Let
A be the smallest full subcategory ofmod(kG) containing the syzigies
Ωnk of the trivial module (n ∈ Z) and closed under taking extensions and
direct summands. ThenA andT have the same collection of objects. The
objects ofA are direct summands of what were calledtrivial-homology (TH)
modules in [3]. The canonical functormod(kG) → stmod(kG) induces
an essentially surjective functorA → T . Note thatA is a tensor subcategory
ofmod(kG) in the sense that it is closed under the taking of tensor products.
We know from [3,2] thatA is the module category of the principal block
of kG if and only if the centralizers of non-trivialp-subgroups ofG are
p-nilpotent.

Let K̄(T ) be the image of the Grothendieck group ofT in the Grothen-
dieck group ofstmod(kG) (i.e., the subgroup of the Grothendieck group
of stmod(kG) generated by the classes of the objects ofT ).

Lemma 2.1. The groupK̄(T ) is generated by the class[k] of the trivial
module and its order is equal to the order of a Sylowp-subgroup ofG.

Proof. The order of the class[k] of the trivial module in the Grothendieck
group ofstmod(kG) is the smallest non zero integern such that there is a
virtually projective characterχ equal ton times the Brauer character ofk.
By [24, Sect. 16.1, Th́eor̀eme 35 et Exercice 3], this integer is the order of
a Sylowp-subgroup ofG.

Note that whenG is the direct product of ap-groupP and ap′-group,
thenT is equivalent to the stable category ofkP -modules and the result is
trivial.

So suppose thatM is a module inA and thatφ is its Brauer character. In
order to show that the class ofM in K̄(T ) is equal todimM · [k], we have
to show that the class functionf which vanishes onp-singular elements and
which is equal toφ−φ(1)1 onp-regular elements is a generalized character.
For thenf will be a virtually projective character.
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Thanks to Brauer’s theorem on characterization of characters [24, Thé-
orème 21],f is a generalized character if and only if its restriction to every
nilpotent subgroup ofG is a generalized character. IfH is a subgroup of
G, then restriction induces a functorT (G) → T (H). So, we have to prove
that for every nilpotent subgroupH of G, the class inK̄(T (H)) of the
restriction ofM is dimM · [k]. As we have seen, the lemma holds whenG
is nilpotent, and hence we are done. ut
Remark 1.In general, the canonical map from the Grothendieck group of a
thick triangulated subcategory of a triangulated categoryD to the Grothen-
dieck group ofD is not injective.

Nevertheless, it may well be that the Grothendieck group ofT itself is
generated by the class ofk and has order the order of a Sylowp-subgroup of
G or equivalently, that the canonical map from the Grothendieck group of
T to the Grothendieck group ofstmod(kG) is injective. This is certainly
the case whenA is the module category of the principal block ofkG.

Recall that akG-moduleM is endo-trivial ifM ⊗M∗ ' k⊕P , whereP
is a projective module. Thus ifM is endo-trivial thenM ⊗− andM∗⊗− in-
duce inverse self-equivalences of the stable module categorystmod(kG).

Let H be another finite group. Suppose thatF : stmod(kG) →
stmod(kH) and F ′ : stmod(kH) → stmod(kG) are two triangu-
lated functors such thatF (T (G)) ⊆ T (H), F ′(T (H)) ⊆ T (G) and that
the restrictions ofF andF ′ to functorsT (G) → T (H) andT (H) → T (G)
are inverse equivalences. Then we can prove the following.

Proposition 2.2. If M is an endo-trivial module inT (G), thenF (M) is
endo-trivial. SoF andF ′ induce inverse isomorphisms between the groups
of isomorphisms classes of endo-trivial modules inT (G) andT (H).

Proof. We may assume thatp divides the order ofH. By composing the
self-equivalence ofstmod(kG) given byM ⊗ − with F , we may also
assume thatM is the trivial modulek.

The functorsF andF ′ induces inverse isomorphismsφ : K̄(T (G)) →
K̄(T (H)) andφ′ : K̄(T (H)) → K̄(T (G)). LetV = F (k). Then, the class
χ of V in K̄(T (H)) is a (Z-module) generator, by Lemma 2.1. So, there
is a non-zero integerr prime top such thatχ = r[k]. So,dimV ≡ r[pa],
wherepa is the order of a Sylowp-subgroup ofH. Hence,dimV is prime
to p.

It follows that there is akH-moduleX such thatV ⊗ V ∗ ' k ⊕ X as
kH-modules [1, Theorem 3.1.9]. Now, for every integeri, we have

HomkH(Ωik, V ⊗ V ∗) ' HomkH(ΩiV, V ) ' HomkG(Ωik, k)

' Ĥ i(G, k).
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So,dim Ĥ i(G, k) ≥ dim Ĥ i(H, k) for all i, where

Ĥ i(G, k) ' HomkG(Ωik, k)

is the Tate cohomology. Swapping the roles ofG and H in the discus-
sion above shows thatdim Ĥ i(H, k) ≥ dim Ĥ i(G, k) for all i. Hence,
dim Ĥ i(G, k) = dim Ĥ i(H, k) for all i, andHomkH(Ωik, X) = 0 for all
i. SinceX is in T (H), this implies thatX is projective [3, Corollary 3.8].

ut
Corollary 2.3. The functorF̃ = (F (k)∗ ⊗ −) ◦ F gives an equivalence
T (G) → T (H) such thatF̃ (k) ' k (in T (H)).

Note that Linckelmann’s analogous result [14, Theorem 3.1] forp-groups
H, G and a discrete valuation ringO of characteristic zero with residue field
k follows immediately. That is, if̃F : stmod(OG) → stmod(OH) is an
equivalence, theñF ⊗k : stmod(kG) → stmod(kH) is an equivalence,
henceF̃ (O) ⊗ k is endo-trivial, soF̃ (O) is endo-trivial.

The following result answers a question of Linckelmann [14, p.93] (cf
Sect. 3 for the definition of stable equivalences of Morita type) :

Corollary 2.4. Let G and H be twop-groups such that there is a stable
equivalence of Morita type betweenkG and kH. Then,kG and kH are
isomorphic.

Proof. By Corollary 2.3, there is a functorF ′ : mod(kG) → mod(kH)
inducing a stable equivalence such thatF ′(k) ' k⊕ projective module. By
[14, Theorem 2.1], there is a functorF : mod(kG) → mod(kH) (a direct
summand ofF ′) inducing a stable equivalence, withF (k) ' k. Now, by [14,
Theorem 2.1], such a functor gives a Morita equivalence betweenkG and
kH. Therefore we are done, because every Morita equivalence betweenkG

andkH comes from an isomorphismkG
'−→ kH, because both algebras

are basic algebras. ut
We should point out that it is a open question as to whether the existence

of an isomorphism betweenkG andkH implies that thep-groupsG andH
are isomorphic.

3 Self stable equivalences for some frobenius groups

In this section we show how the results of the previous section can be used
to characterize the self-equivalences of the stable category in some specific
cases. Throughout the section we assume thatP is an abelianp-group,
E is a cyclic p′-group that acts freely onP and G = P o E. Because
the centralizer of everyp-element isp-nilpotent, the categoryT is the full
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stable category ofkG [3,2,4]. LetÊ = Hom(E, k×) be the character group.
For notational convenience we shall identify the elements ofÊ with their
underlying modules.

Lemma 3.1. Let F : stmod(kG) → stmod(kG) be an equivalence.
Then, there is a permutationσ of Ê and an integern such thatF (V ) is
isomorphic toΩnσ(V ) in stmod(kG), for all V ∈ Ê.

Proof. Let M be an indecomposable endo-trivial module forkG. Then, the
restrictionN of M tokP is endo-trivial, hence isomorphic toΩn

kP k⊕(kP )r

for some integersn, r by [9, Theorem 10.1]. It follows thatM is a direct
summand of the induced module

IndG
P N '

⊕

V ∈Ê

Ωn
kGV ⊕ projective module.

Hence,M ' Ωn
kGV for someV ∈ Ê.

By Proposition 2.2, we know thatF (V ) is endo-trivial forV ∈ Ê.
Hence, there is a functionn : Ê → Z and a functionσ : Ê → Ê such that
F (V ) is isomorphic toΩn(V )σ(V ) in stmod(kG) for V ∈ Ê.

WhenP is cyclic, we haveÊ = {Ω2ik}0≤i≤|E|−1 andΩ2|E|V ' V for

V ∈ Ê. Hence in this case we assume thatn takes values in{0, 1}. Note
that we are already done whenP has order2. So, we assumeP has order
greater than2.

Suppose that there are elementsV, V ′ ∈ Ê with σ(V ) = σ(V ′). Then,

V ′ ' Ω
n(V ′)−n(V )
kG V , hence, restricting toP , we getk ' Ω

n(V ′)−n(V )
kP k.

Assume thatV 6= V ′, so thatn(V ) 6= n(V ′). If P is not cyclic, then it
has non-periodic cohomology, hence this is impossible. IfP is cyclic, then
ΩkP k = k, which again is not possible, becauseP does not have order2.
Consequentlyσ is a permutation as asserted.

Assume thatP is cyclic LetV be an element of̂E such thatn(V ) = 0.
Let V ′ = σ−1(Ω−2σ(V )). We have that

Hom(V ′, V ) ' Hom(Ωn(V ′)σ(V ′), σ(V )) '
Hom(Ωn(V ′)−2σ(V ), σ(V )) ' Ĥn(V ′)−2(G, k).

SinceV ′ andV are distinct simple modules, we have thatHom(V ′, V ) = 0.
Now, Ĥ−1(G, k) 6= 0, and hencen(V ′) = 0. Thus (whenP is a cyclic
group)n is constant and we are done.

From now, we assume thatP is not cyclic. LetW ∈ Ê with n(W )
minimal. Letτ : Ê → Ê defined byτ(V ) = σ(V W )σ(W )−1. Thenτ is
bijective. Leth : Ê → Z[[t, t,−1 ]] given by

h(V ) =
∑

n∈Z

dim Extn(k, V )tn.
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We have that
Exti(k, V W−1) ' Exti(W, V )

' Exti(F (W ), F (V )) ' Exti+n(W )−n(V )(k, σ(V )σ(W )−1).

Hence

h(V W−1) = tn(V )−n(W )h(σ(V )σ(W )−1) for V ∈ Ê,

and
h(V ) = tn(V W )−n(W )h(τ(V )) for V ∈ Ê.

Let V ∈ Ê. There exists an integerr such thatτ r(V ) = V . Then,

h(V ) = t(n(V W )−n(W ))+(n(τ(V )W )−n(W ))+···(n(τr−1(V )W )−n(W ))h(V ).

Nowh(V ) is not periodic, sinceP is not cyclic [7]. Hence, we have(n(V W )
− n(W )) + (n(τ(V )W ) − n(W )) + · · · (n(τ r−1(V )W ) − n(W )) = 0.
Becausen(W ) is minimal, it follows thatn(τ i(V )W ) − n(W ) ≥ 0 for all
i, hencen(V W ) = n(W ). So,n is constant. ut

ForP cyclic, this lemma is due to Linckelmann [15, (proof of) Proposi-
tion 5.1].

Let O be a commutative ring and letA andB be two blocks of finite
groups overO. Let C be a bounded complex of(A, B)-bimodules, each of
which is projective as a leftA-module and as a rightB-module. Assume

C ⊗B C∗ ' A ⊕ X as complexes of(A, A) − bimodules and

C∗ ⊗A C ' B ⊕ Y as complexes of(B, B) − bimodules.

Then, we say that

– C induces aRickard equivalence(betweenA andB) if X andY are
homotopy equivalent to0.

– C induces astable equivalence of Morita typeif C is concentrated in
degree0 and ifX andY are projective.

– C induces aMorita equivalenceif C is concentrated in degree0 and if
X andY are zero.

We denote byPic(A) the Picard group ofA, i.e., the group of isomor-
phism classes of(A, A)-bimodulesM inducing self Morita equivalences of
A, where the product of the classes ofM andN is the class ofM ⊗A N .

Similarly, we denote byStPic(A) the group of isomorphism classes
in the stable category of(A, A)-bimodules of objects inducing self stable
equivalences ofA, where the product of the classes ofM andN is the class
of M ⊗A N .
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If M is a bimodule inducing a self Morita equivalence ofA, then it in-
duces a self stable equivalence ofA. This gives rise to a morphismPic(A) →
StPic(A). If M is isomorphic toA in the stable category of(A, A)-bimo-
dules, thenM is isomorphic (as an(A, A)-bimodule) to the direct sum ofA
with a projective(A, A)-bimodule. SinceM is indecomposable, this shows
thatM andA are isomorphic as(A, A)-bimodules. So, the canonical map
Pic(A) → StPic(A) is injective. In what follows we identify the image of
Pic(A)) with its image inStPic(A).

Finally, we denote byTrPic(A) the group of isomorphism classes in
the homotopy category of(A, A)-bicomplexes of objects which induce self
Rickard equivalences ofA, where the product of the classes ofM andN
is the class ofM ⊗A N . Recall that a Rickard equivalence fromA to B
induces an equivalence of the derived categories ofA andB. See [23] for
general properties aboutStPic andTrPic.

AssumeC induces a Rickard equivalence betweenA andB. In the de-
rived category of(A, B)-bimodules,C is isomorphic to a bounded complex
of bimodules which are all projective, except the degreen term M , for
somen. Then,Ωn

A⊗B◦M induces a stable equivalence betweenA andB
[19, proof of Corollary 5.5] and the isomorphism class ofΩn

A⊗B◦M in the
stable category of(A, B)-bimodules depends only onC. In particular, we
have defined a morphism

ρ : TrPic(A) → StPic(A).

Our main result in this section is that every self equivalence of the stable
category ofkG-modules is, up to Heller translation, induced by a self Morita
equivalence ofkG.

Theorem 3.2. Suppose thatG = P o E as above. Then

StPic(kG) = Pic(kG) · S(kG),

whereS(kG) is the cyclic subgroup generated byΩk(G×G◦)kG. (HereG◦
is the opposite group ofG.)

Proof. LetM be a(kG, kG)-bimodule inStPic(kG). By Lemma 3.1, there
is an integern such thatM ′ = Ωn

kG⊗kG◦M has the property thatM ′ ⊗kG V
is the direct sum of a simple module and a projective module, for every
V ∈ Ê. By [14, Theorem 2.1],M ′ has an indecomposable direct summand
M ′′ such thatM ′′ is in StPic(kG) and thenM ′′ ⊗kG V is indecomposable,
for everyV ∈ Ê. So,M ′′ ⊗kG V is actually simple, forV simple. Then it
is a consequence of [14, Theorem 2.1] thatM ′′ actually induces a Morita
equivalence,i.e., M ′′ is in Pic(kG). ut

Note that the groupS(kG) is finite precisely whenP is cyclic. Further-
more,S(kG) ∩ Pic(kG) 6= 1 implies thatP is cyclic.
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Corollary 3.3. For G as in the theorem, the canonical mapρ : TrPic(kG)
→ StPic(kG) is surjective. Moreover ifO be a commutative complete local
ring with residue fieldk, then,

StPic(OG) = Pic(OG) · S(OG)

and the canonical mapρ : TrPic(OG) → StPic(OG) is surjective.

Proof. The image of the class of the complexkG[1], consisting of the one
nonzero termkG concentrated in degree 1, inStPic(kG) is the class of
Ωk(G×G◦)kG. By Theorem 3.2, this gives the required surjectivity.

LetM be an indecomposable(OG, OG)-bimodule inStPic(OG) which
becomes trivial inStPic(kG). Then,M⊗k ' kG⊕LwhereL is a projective
(kG, kG)-bimodule. Hence, there is a projective(OG, OG)-bimoduleL′
such thatL′ ⊗ k ' L and L′ is a direct summand ofM . SinceM is
indecomposable, we getL = 0. So,M⊗k ' kG, hence(M⊗OGM∗)⊗k '
kG. SinceM⊗OGM∗ ' OG⊕X for some projective(OG, OG)-bimodule
X, we getX = 0. This shows thatM is in Pic(OG).

So, the kernel of the canonical mapStPic(OG) → StPic(kG) is con-
tained inPic(OG), hence the results overO follow from those overk. ut

4 Splendid Rickard equivalences

Let O be a complete discrete valuation ring with residue fieldk. For V a
complex ofO-modules, we putkV = k ⊗O V . In this section we demon-
strate some conditions under which the existence of a Rickard equivalence
between blocks implies also the existence of a splendid Rickard equiva-
lence. Moreover under the proper circumstances the existence of a stable
equivalence of the blocks withO coefficients implies an equivalence with
k coefficients and vice versa.

Let G be a finite group,P an abelianp-subgroup ofG and letH be
a finite group havingP as a normal subgroup. Let∆P = {(x, x−1)|x ∈
P} ≤ G × H◦.

Lemma 4.1. LetM be ak(G×H◦)-module with vertex∆P and sourceV
whereV is anH-stable endo-permutation module. Then, there is a complex
C̃ ofO(G×H◦)-modules with trivial sources and vertices contained in∆P ,
such thatkC̃ has homology only in degree0, H0(C̃) ⊗ k ' H0(kC̃) ' M
andC̃ ⊗OH C̃∗ is homotopy equivalent toH0(C̃) ⊗OH H0(C̃)∗.

Proof. By [20, Theorem 7.2], there is a bounded complexX of p-permuta-
tion kP -modules having the following properties. FirstX has no terms in
positive degrees, and its homology is nonzero only in degree0, where it is
isomorphic toV . In addition,ResP×P ◦

∆P (X ⊗X∗) is homotopy equivalent to
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its 0-homology. Since Rickard’s construction gives a complex that is unique
up to homotopy equivalence (cf [9, Theorem 12.5, (12.8)]), we can assume
thatX is H-stable by removing all of its indecomposable direct summands
that are homotopy equivalent to0.

Let X ′ = IndG×H◦
∆P X and letY be the restricted complex

Y = Res(G×H◦)×(G×H◦)◦
((G×1)×(G×1)◦)∆′H X ′ ⊗ X ′∗

where∆′H = {(1, h−1) × (1, h)|h ∈ H)}. Then by the Mackey Theorem

Y '
⊕

h∈H/P

z−1 ⊗ Ind((G×1)×(G×1)◦)(∆′H)z

∆hP
Res∆P×(∆P )◦

∆hP
X ⊗ X∗

wherez = (1, h−1) × (1, 1) ∈ (G × H◦) × (G × H◦) and

∆hP = {(x, x) × ((xh)−1, (xh)−1)|x ∈ P}.

BecauseX is H-stable,

Res∆P×(∆P )◦

∆hP
X ⊗ X∗ ' Res∆P×(∆P )◦

∆1P
X ⊗ X∗

is homotopy equivalent to its0-homology. Note that we regard these modules
askP -modules through the isomorphismsP → ∆hP given byx 7→ (x, x)×
((xh)−1, (xh)−1). Hence,Y is homotopy equivalent to its0-homology, and
X ′ ⊗kH X ′∗ is homotopy equivalent to its0-homology.

Now by [20, Lemma 7.5], there is a direct summandC of X ′ whose
degree0 homology is isomorphic toM . ThenC is a complex ofk(G ×
H◦)-modules with trivial sources and vertices contained in∆P such that
C ⊗kH C∗ is homotopy equivalent toM ⊗kH M∗. By [20, Lemma 5.1], we
can lift C to a complexC̃ of O(G × H◦)-modules with trivial sources and
vertices contained in∆P such thatC̃ has no terms in positive degrees and
C is isomorphic tokC̃.

Note thatC̃ ⊗OH C̃∗ is a complex ofO(G × G◦)-modules with trivial
sources which becomes isomorphic toC ⊗kH C∗ after tensoring byk. This
last complex is isomorphic to the direct sum ofM ⊗kH M∗ with a complex
homotopy equivalent to zero. The uniqueness of liftings [20, Lemma 5.1]
shows thatC̃ ⊗OH C̃∗ is homotopy equivalent toH0(C̃) ⊗OH H0(C̃)∗.

ut
A bimodule induces a stable equivalence if it does so over the residue

field, as shown by the following well known result.

Lemma 4.2. Let A and B be two blocks of finite groups overO and let
M an (A ⊗ B◦)-module that is projective both as anA-module and as a
B◦-module. IfkM induces a stable equivalence betweenkA andkB, then
M induces a stable equivalance betweenA andB.
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Proof. Let ε : M∗ ⊗A M → B andη : B → M ⊗A M∗ be the units and
counits given by the biadjoint pair(M∗ ⊗A −, M ⊗B −). Then,1k ⊗ ε
and1k ⊗ η are the units and counits given by the biadjoint pair(kM∗ ⊗kA

−, kM ⊗kB −). So,(1k ⊗ ε)(1k ⊗ η) is an automorphism ofkB, henceεη
is an automorphism ofB. It follows that there is a(B, B)-bimoduleX such
that M∗ ⊗A M ' B ⊕ X. We know thatX is projective becausekX is
projective. Similarly, one proves thatM ⊗B M∗ ' A⊕ projective module,
and henceM induces a stable equivalence betweenA andB. ut

Let nowA be a block ofOG, B a block ofOH, both with defect groups
P . A bounded complexC of A⊗B◦ inducing a Rickard equivalence between
A andB is splendid if all its terms have trivial sources and vertices contained
in ∆P [20].

Theorem 4.3. Assume there is a(kA ⊗ (kB)◦)-moduleM whose ver-
tex is∆P and whose source isV . Assume thatV is an H-stable endo-
permutation module andM induces a stable equivalence betweenA andB.
Assume furthermore that the canonical mapsTrPic(B) → StPic(B) and
TrPic(kB) → StPic(kB) are surjective. Then, the following assertions are
equivalent.

(i) A andB are splendidly Rickard equivalent.
(ii) A andB are Rickard equivalent.
(iii) Every stable equivalence of Morita type betweenA and B lifts to a

Rickard equivalence.
(iv) kA andkB are splendidly Rickard equivalent.
(v) kA andkB are Rickard equivalent.
(vi) Every stable equivalence of Morita type betweenkA andkB lifts to a

Rickard equivalence.
(vii) The stable equivalence induced byM lifts to a splendid Rickard equiv-

alence.

Proof. Clearly (i) implies (ii), (ii) implies (v), (iv) implies (v) and (vii)
implies (iv).

We apply Lemma 4.1 and takẽM = H0(C̃). Then,M ' kM̃ andM̃ is
projective as anA-module and as aB◦-module. By Lemma 4.2,̃M induces
a stable equivalence of Morita type, hence (iii) implies (ii).

Now assume (ii). LetC ′ be a Rickard complex forA andB andM ′ an
(A ⊗ B◦)-module associated toC ′, inducing a stable equivalence. LetN
be an(A ⊗ B◦)-module inducing a stable equivalence. Then,M ′∗ ⊗A N
defines an element ofStPic(B), which lifts to a complexY in TrPic(B)
by the hypothesis. Then,C ′ ⊗B Y is a Rickard complex liftingN . So, (ii)
implies (iii). Similarly, (v) implies (vi).
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Every splendid Rickard equivalence betweenkA andkB lifts to a splen-
did Rickard equivalence betweenA andB by [20, Theorem 5.2], hence (iv)
implies (i).

Finally let us assume (vi). LetC ′ be a Rickard complex liftingM . Re-
placingM byΩnM if necessary, we may chooseC ′ to be the cone of a map
f : M → X, with X a bounded complex of projective(A ⊗ B◦)-modules.
Let C̃ be a complex associated toM , as in Lemma 4.1,C = kC̃ and letg
be the canonical mapC → H0(C) = M (this is a quasi-isomorphism). Let
D be the cone offg : C → X. Then,D is quasi-isomorphic toC ′ andD
is a complex of modules with trivial sources and vertices contained in∆P .

SinceC ⊗kB C∗ is homotopy equivalent to a complex concentrated in
degree0, it follows thatD ⊗kB C∗ is homotopy equivalent to a bounded
complex all of whose terms are projective except the term in degree0. Hence,
E = D ⊗kB D∗ is homotopy equivalent to a bounded complex all of whose
terms are projective except for the degree0 term. SinceC ′ is a Rickard
complex andD is quasi-isomorphic toC ′, it follows thatE has homology
only in degree0, isomorphic tokA. As the positive degree terms ofE are
projective, we have thatE is homotopy equivalent to a bounded complex
with no terms in positive degrees. Similarly, the negative degree terms of
E are injective, henceE is homotopy equivalent to a complex concentrated
in degree0, and withH0(E) ' kA. Therefore from [20, Theorem 2.1] we
have thatD induces a splendid Rickard equivalence betweenkA andkB.
So, (vii) is a consequence of (vi). ut

Let e a block idempotent ofOG. Let (P, eP ) be a maximale-subpair
andN its normalizer. We assume thatP is abelian and thatE = N/CG(P )
is a cyclicp′-group acting freely onP . Let H = P o E.

Corollary 4.4. The following assertion are equivalent.

(i) OGe andOH are splendidly Rickard equivalent.
(ii) OGe andOH are Rickard equivalent.
(iii) Every stable equivalence of Morita type betweenOGe andOH lifts

to a Rickard equivalence.
(iv) kGe andkH are splendidly Rickard equivalent.
(v) kGe andkH are Rickard equivalent.
(vi) Every stable equivalence of Morita type betweenkGe andkH lifts to

a Rickard equivalence.
(vii) The stable equivalence induced byM lifts to a splendid Rickard equiv-

alence.

Proof. A theorem of Puig [16, Remarque 6.8] asserts that there is anE-stable
endo-permutationkP -moduleV with vertexP and a direct summandM
of IndG×H◦

∆P V that induces a stable equivalence betweenkGe andkH. So,
the corollary follows from Corollary 3.3 and the Theorem. ut
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Broué [5, 6.2] has conjectured that ife is a block of a finite groupG and
if (D, f) is a maximale-subpair such thatD is abelian, then the derived
categories ofOGe andONG(D, f)f are derived equivalent. Rickard [20]
further conjectured that they are splendidly equivalent. Thus we have verified
that the conjectures are equivalent in this special case.

A few other references should be noted. WhenP is cyclic, Rickard has
proven in [17] thatkGe andk[P oE] are Rickard equivalent. Linckelmann
[11] proved also thatOGe andO[P oE] are Rickard equivalent. The Corol-
lary shows directly the equivalence of the two statements and shows further
that we have splendid equivalences as proven in [21,22]. Here, the approach
goes back to [18].

Similarly, whenP is a Klein four group, Linckelmann [12] has proven
thatkGe andk[P o E] are Rickard equivalent. Hence, we have also that
OGe andO[P o E] are Rickard equivalent. The last result was proved also
by Linckelmann [13] as a consequence of the determination of the source
algebras. The fact thatOGe andO[P oE] are splendidly Rickard equivalent
is a result of the second author.
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