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Abstract. Given a reductive algebraic group G defined over a finite field Fq, Deligne and
Lusztig introduced in [DeLu] a family of algebraic varieties acted on by G(Fq), in whose `-
adic cohomology they realized representations of G(Fq). We prove in this note that the `-adic
cohomology of these varieties is independent of `. This is a consequence of the validity of
Beilinson and Tate conjectures for endomorphism rings of the corresponding equivariant Q-
motives. We also explain how this can be used to study rationality properties of unipotent
representations.

1. Introduction

In [DiMiRou], we used motivic cohomology to prove the independence in ` of certain `-adic
cohomology groups of Deligne-Lusztig varieties. We prove here that all cohomology groups
of all Deligne-Lusztig varieties are indeed independent of `. This follows from a more precise
result on motives of Deligne-Lusztig varieties, based on [Lu5]. Note that in [Lu5], Lusztig was
studying the dependence in q, while we are only studying the dependence in `.

Our main general result on motives is that the category of equivariant (unipotent) Deligne-
Lusztig motives (with Q-coefficients) is semi-simple and the Frobenius eigenvalue (well defined
up to a power of q) attached to a unipotent representation is in the field of character values
(Theorem 3.2). This follows from the fact that the indecomposable motives M arising in
Deligne-Lusztig varieties have the property that M∨ ⊗QG M is a direct sum of Tate motives:
in particular, rational, homological and numerical equivalence coincide, and the cycle map is
onto (Beilinson and Tate conjectures, cf [Ka]).

All Deligne-Lusztig motives are (up to numerical equivalence) either of Artin type or super-
singular (cf §3.3 for the list of possibilities). We show that, up to a few exceptions, the endomor-
phism ring of an irreducible rational unipotent representation coincides with the endomorphism
ring of the associated indecomposable motive. As a consequence, we deduce the structure of
the simple Q-algebras associated with unipotent representations from classical properties of
F -isocrystals, as in [Mi].

The use of a group action on a variety and its action on cohomology to prove there are
enough algebraic cohomology classes goes back to Tate [Ta]. He deduced that his conjecture
holds for Fermat hypersurfaces, which are actually certain (parabolic) Deligne-Lusztig varieties
associated with unitary groups [HoMa].

To a large extent, this paper is a mere translation of basic constructions of Lusztig [Lu5, Lu6]
to the setting of motives. Note that the relevance of motives in the study of rationality of
unipotent representations goes back to Ohmori [Oh3].
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2 RAPHAËL ROUQUIER

2. Deligne-Lusztig motives

2.1. Motives.

2.1.1. Let p be a prime number and F̄p an algebraic closure of Fp. Let q = pf where f is a
positive integer and let Fq be the subfield with q elements of F̄p.

We denote by DMZ(Fq) the triangulated category of (geometric) motives over Fq. We put
DM(Fq) = Q⊗Z DM(Fq). There is a motivic homology functor

Hmot =
⊕
i,j

Hom(Q(j)[i],−) : DM(Fq)→ Q-bigrmod,

where Q-bigrmod denotes the category of finitely generated bigraded Q-vector spaces. Its
restriction to the thick subcategory of DM(Fq) generated by Tate motives is an equivalence.

The Frobenius endomorphism (relative to Fq) induces an automorphism F of the identity
functor of DM(Fq), viewed as a triangulated tensor functor. It acts on Q(1) by q.

We denote by M(X) the motive of a variety and by M c(X) its motive with compact support
(in DM(Fq)).

2.1.2. Let G be a finite group. We denote by DM(Fq/G) the triangulated category of G-
equivariant motives over Fq, with coefficients Q. We have a forgetful functor

DM(Fq/G)→ DM(Fq), M 7→ M̃.

We have a bifunctor

HomG : DM(Fq/G)opp ×DM(Fq/G)→ DM(Fq), HomG(M,N) = Hom(M̃, Ñ)G

where Hom(M̃, Ñ) is the internal Hom in DM(Fq).
We have a motivic homology functor

Hmot =
⊕
i,j

Hom(Q(j)[i],−) : DM(Fq/G)→ QG-bigrmod,

where QG-bigrmod denotes the category of finitely generated bigraded QG-modules.

2.1.3. Let ` be a prime, 6̀=p. We have an `-adic realization functor (`-adic homology)

Het : DM(Fq/G)→ Q`G[φ±1]-grmod,

where Q`G[φ±1]-grmod denotes the category of finitely generated graded Q`G[φ±1]-modules
and the action of φ is that of the Frobenius.

The `-adic realization gives rise to a natural transformation of functors (“cycle map”) Hmot →⊕
i∈Z kerHet(φ − qi). This is conjecturally an isomorphism (“Beilinson-Tate conjecture”). It

is known to be so on direct sums of shifted Tate motives, which form a semi-simple thick
subcategory.

If M is an indecomposable object of DM(Fq/G), then the eigenvalues of F acting on M
are conjugate algebraic integers. So, if in addition M̄ is a direct summand of the motive of a
smooth projective variety, then Het(M, Q̄`) is concentrated in a single degree independent of `,
for any prime 6̀=p.
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2.1.4. Let Qq be the unramified extension of degree f of Qp. There is a p-adic realization
functor (rigid homology) [CiDe, §3.2]

Hrig : DM(Fq/G)→
(
(QqG) o 〈σ〉

)
-grmod

where
(
(QqG) o 〈σ〉

)
-grmod denotes the category of finitely generated graded (QqG)-modules

endowed with a semi-linear invertible endomorphism σ (ie, graded G-equivariant isocrystals
over Fq). The endomorphism σ commutes with the G-action, but σα = F (α)σ for α ∈ Qq.

The p-adic realization gives rise to a natural transformation of functors (“cycle map”)Hmot →⊕
i∈Z kerHrig(σf − qi). This is conjecturally an isomorphism (“Beilinson-Tate conjecture”), and

known to be so on Tate motives.

2.2. Deligne-Lusztig varieties. Let G be a reductive algebraic group defined over F̄p and
endowed with an endomorphism F ′, a power of which is a Frobenius endomorphism. Let
G = GF ′ . Let B be the variety of Borel subgroups of G. We denote by W the (finite) set of
G-stable locally closed subvarieties of B × B, where G acts diagonally. We denote by δ the
smallest positive integer such that F ′δ is a Frobenius endomorphism acting trivially on W and
we put F = F ′δ. The Frobenius endomorphism F defines a rational structure of G over a finite
field Fq for some q.

Given Ω ∈ Wn, we put
O(Ω) = Ω1 ×B Ω2 ×B · · · ×B Ωn =

= {(B1, B2, . . . , Bn+1) ∈ Bn+1 | (Bi, Bi+1) ∈ Ωi ∀ 1 ≤ i ≤ n}.
The Deligne-Lusztig variety X(Ω) is a closed subvariety of O(Ω) defined as

X(Ω) = {(B1, B2, . . . , Bn+1) ∈ O(Ω) | Bn+1 = F ′(B1)}.
It is a variety acted on diagonally by G. It is projective if Ωi is closed (equivalently, projective),
for all i. It is smooth if Ωi is smooth for all i, for example, if Ωi is a G-orbit or if dim Ωi ≤
1 + dimB (cf e.g. [DiMiRou, Proposition 2.3.5]).

We denote by DL(G) the smallest thick subcategory of DM(Fq/G) closed under taking direct
summands, under shifts, and under tensoring by Tate motives (with trivial G-action) and
containing the motives of all smooth projective Deligne-Lusztig varieties X(Ω), with Ωi closed
of dimension 1 + dimB. The category DL(G) contains the compactly supported motives of all
Deligne-Lusztig varieties X(Ω) (cf [DeLu, §9.1]).

The following proposition is the key property for our study.

Proposition 2.1. Given M,N ∈ DL(G), then HomG(M,N) is a direct sum of shifted Tate
motives.

Proof. Let S be the subset of Ω of closed orbits of dimension 1 + dimB. Let m,n ≥ 0, let
s ∈ Sm and t ∈ Sn. The varieties X(s) and X(t) are smooth and projective. The dimension of
X(s) is m.

Lusztig [Lu3] showed that there is an F -stable stratification by closed subvarieties ∅ = Y0 ⊂
· · · ⊂ Yr = X(s)×G X(t) such that M c(Yi − Yi−1) is (rationally) a Tate motive (cf [DiMiRou,
Proposition 3.4.2]). As a consequence, HomG(M(X(s)),M(X(t))) 'M(X(s)×GX(t))[2m](m)
is a direct sum of shifted Tate motives.

Since DL(G) is generated, as a triangulated categoy closed under taking direct summands and
tensoring by Tate motives, by the M(X(s)) for s ∈ Sn for some n, the proposition follows. �
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Corollary 2.2. Given 6̀=p a prime, the `-adic realization functor Het : Q` ⊗ DL(G) →
Q`G[φ±1]-grmod is fully faithful, with image contained in the full subcategory of objects where
φ acts semi-simply.

Similarly, the p-adic realization functor Hrig : Qp ⊗DL(G)→
(
(QqG) o 〈σ〉

)
-grmod is fully

faithful, with image contained in the full subcategory of semi-simple isocrystals.
In particular, the category DL(G) is semi-simple.

Proof. Let M,N ∈ DL(G). We have a commutative diagram whose horizontal maps are canon-
ical isomorphisms

Q` ⊗ HomDM(Fq)(Q,HomG(M,N))
∼ //

Het

��

Q` ⊗ HomDM(Fq/G)(M,N)

Het

��
Het(HomG(M,N),Q`)

F
∼

// HomQ`G(Het(M,Q`), H
et(N,Q`))

F

Since HomG(M,N) is a direct sum of shifted Tate motives, the right vertical arrow is an
isomorphism, hence the left vertical arrow is an isomorphism as well.

Since F acts semi-simply on the motive Het(HomG(M,M),Q`), it follows that it acts semi-
simply on EndQ`G(Het(M,Q`)), hence it acts semi-simply on Het(M,Q`).

The statement in the p-adic case is proven in the same way. �

Our independence of ` result is the following.

Theorem 2.3. Let Ω ∈ Wn. The character of G × 〈F 〉 acting on H i
c(X(Ω),Q`) is rational

valued and independent of the prime 6̀=p.

Proof. Consider a simple object M of Q̄ ⊗ DL(G) (cf Corollary 2.2). Its endomorphism ring
is Q̄ and the action of Z(Q̄G) factors through a central character associated with a simple

Q̄G-module V . Fix an embedding Q̄ ⊂ Q̄`. Since there is an isomorphism Q̄` ⊗Q̄ End(M)
∼→

EndQ̄`G(Het(M, Q̄`)) compatible with the actions of Z(Q̄`G) and F , it follows that Het(M, Q̄`)
is concentrated in a single degree and isomorphic to the Q̄`G-module Q̄` ⊗Q̄ V . Furthermore,
F acts by on Het(M, Q̄`) by the same scalar as on M .

Let now N be an object of DL(G). There is a decomposition Q̄ ⊗ N =
⊕n

i=1 Mi with
Mi simple in Q̄ ⊗ DL(G), and the multiset of isomorphism classes of Mi’s is invariant under
Gal(Q̄/Q). Let Vi be a simple Q̄G-module such that Z(Q̄G) acts on Mi through the central
character of Vi and let λi be the eigenvalue of F acting on Mi. We extend the action of G on
Vi to an action of G×〈F 〉 by letting F act as λi. The multiset of isomorphism classes of Vi’s is
invariant under Gal(Q̄/Q) and Q̄`⊗Q`

Het(N,Q`) '
⊕

i Q̄`⊗Q̄ Vi, for any embedding Q̄ ⊂ Q̄`.
So, the character of G×〈F 〉 on Het(N,Q`) is

∑
i χVi⊗λi, and that character is rational valued.

It follows that the character of Het
i (M c(X(Ω)), Q̄`) is rational and independent of `. The

theorem follows by duality. �

Remark 2.4. Theorem 2.3 in the smooth projective case is a general property of `-adic coho-
mology. In general, only the Lefschetz character of a non-smooth or non-projective variety is
known to be independent of ` [DeLu, Proposition 3.3].
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3. Rationality of Deligne-Lusztig motives and unipotent representations

The character fields and realization fields of unipotent representations of finite groups of
Lie type are known. Cf [Ge1, §5] for a general discussion of character fields (when F ′ is a
Frobenius). For the realization fields, cf [Lu6] for general results concerning rational valued
characters and [Ge1] for the reduction to cuspidal characters. The Schur indices for 2An are
determined in [Oh1], for types An, Bn, Cn, Dn and 2Dn in [Lu6, Corollary 1.12 and §1.13]. For
the exceptional groups, cf [Go] for 2B2 and 2G2, and [Ge1, Ge2, Ge3] for all other cases, as well
as [Oh3] for cases in E7 with small p.

We show here how the consideration of motives gives a more uniform approach to those
results.

3.1. Decomposition of categories of equivariant motives.

3.1.1. Let again G be an arbitrary finite group.
Let K be a number field. Denote by IrrK(G) the set of isomorphism classes of simple KG-

modules. Given V ∈ IrrK(G), there is a unique idempotent eV ∈ Z(KG) such that eV acts by
the identity on V and by 0 on any V ′ ∈ IrrK(G) not isomorphic to V .

We have a morphism from Z(KG) to the algebra of endomorphisms of the identity functor
of K ⊗DM(Fq/G), viewed as a triangulated functor. This induces a decomposition

K ⊗DM(Fq/G) =
⊕

V ∈IrrK(G)

(K ⊗DM(Fq/G))V ,

where (K ⊗DM(Fq/G))V is the image of eV . There is an equivalence of categories

HomG(V,−) : (K ⊗DM(Fq/G))V
∼→ EndKG(V )opp ⊗K (K ⊗DM(Fq)),

where V is viewed as a multiple of the trivial motive K. An inverse is given by V ⊗EndKG(V )opp−.

3.1.2. Let M ∈ (K ⊗ DM(Fq/G))V be an indecomposable object and let N = HomG(V,M).
We have a canonical map EndKG(V )opp → EndDM(Fq)(N). Note that M ' V ⊗EndKG(V )opp N ,
hence M̄ is isomorphic to N⊕d in K ⊗DM(Fq), where d = dimEndKG(V )(V ).

Note that M is a direct summand of V ⊗K N , hence M is a direct summand of V ⊗K Ñ for
some indecomposable object Ñ of K ⊗DM(Fq) that is a direct summand of N . It follows that

N is a direct summand of EndKG(V )⊗K Ñ , hence N ' Ñ⊕r for some r ≤ dimK EndKG(V ).

Let ZV = Z(EndKG(V )) and AV = CEndK⊗DM(Fq)(N)(ZV ). Note that the central simple ZV -

algebra EndKG(V )opp is contained in AV , hence

AV = EndKG(V )opp ⊗ZV CAV (EndKG(V )opp)

' EndKG(V )opp ⊗ZV EndK⊗DM(Fq/G)(M).

In particular, the canonical map EndKG(V )opp → EndK⊗DM(Fq)(N) is an isomorphism if and

only if ZV ⊂ Z(EndK⊗DM(Fq)(N)) and ZV
∼→ EndK⊗DM(Fq/G)(M).

We have a commutative diagram, all of whose maps are injective. We will identify below all
the vector spaces involved to subspaces of End(N).
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Z End(V )

��

// End(V )opp

��<
<<

<<
<<

<<
<<

<<
<<

<<
<<

Z End(M) // End(M)

&&MM
MMM

MMM
MMM

K[F ] // Z End(N) //

ggOOOOOOOOOOO

End(N)

In the lemma below, the assumption of the existence of an `-adic realization fully faithful on
M and on N , with semi-simple action of F should always hold (Tate + Beilinson conjecture).
Similarly, it should always be true that K[F ] = Z End(N) (Tate + Beilinson conjecture again).

Lemma 3.1. Assume there is a prime ` 6=p and an embedding K ⊂ Q̄` such that F acts semisim-
ply on Het(M, Q̄`) and `-adic realization gives an isomorphism Q̄` ⊗K EndK⊗DM(Fq/G)(M)

∼→
EndQ̄`G(Het(M, Q̄`))

F .
Then

• Z End(M) is generated by Z End(V ) and K[F ]
• End(M) is a division algebra.

The following assertions are equivalent:

(a1) Z End(V ) = End(M)
(a2) The Q̄`G-module Het(M, Q̄`) is multiplicity-free.

The following assertions are equivalent:

(b1) Z End(V ) ⊂ Z End(N) and K[F ] = Z End(N)
(b2) The eigenspaces of F on Het(M, Q̄`) are isotypic Q̄`G-modules
(b3) Z End(V ) ⊂ K[F ]
(b4) Z End(M) = K[F ].
(b5) Z End(V ) ⊂ Z End(N) and `-adic realization gives an isomorphism

Q̄` ⊗K EndK⊗DM(Fq)(N)
∼→ EndQ̄`

(Het(N, Q̄`))
F .

The following assertions are equivalent:

(c1) The canonical map EndKG(V ) → EndK⊗DM(Fq)(N) is an isomorphism and K[F ] =
Z End(N)

(c2) The eigenspaces of F on Het(M, Q̄`) are non-isomorphic simple Q̄`G-modules.
(c3) End(M) = K[F ].

When the equivalent conditions (c1) and (c2) hold, we have

Z EndKG(V ) = Z EndK⊗DM(Fq/G)(M) = EndK⊗DM(Fq/G)(M) = K[F ] = Z EndK⊗DM(Fq)(N)

and the simple algebra EndKG(V ) splits after completion at any prime ideal above a prime 6̀=p.

Proof. The assumption shows that End(M) is a semi-simple algebra, hence a division algebra
since M is indecomposable. So, Z End(M) is a field and K[F ] a subfield. The assumption
shows also that Z End(M) is generated by its subalgebras Z End(V ) and K[F ].

Since F acts semisimply onHet(M, Q̄`), it acts semisimply onHet(N, Q̄`) ' HomQ̄`G(V,Het(M, Q̄`)).
Note that Z End(N) ⊂ Z End(M) acts faithfully on Het(N, Q̄`) and ZV acts faithfully on
Het(M, Q̄`).
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We have ZV = End(M) if and only if Q̄` ⊗K ZV = EndQ̄`G(Het(M, Q̄`))
F , hence if and only

if Het(M, Q̄`) is a direct sum of non-isomorphic simple Q̄`G-modules.
Note that (b2) is equivalent to Q̄` ⊗K Z End(V ) ⊂ Q̄`[F ], hence equivalent to (b3). Since

Z End(M) is generated by Z End(V ) and K[F ], it follows that (b3) is equivalent to (b4). It is
clear that (b4) is equivalent to (b1).

Assume (b3). Then

EndQ̄`
(Het(N, Q̄`))

F = EndKG(V )⊗ZV EndQ̄`G(Het(M, Q̄`))
F

and (b5) follows.
Assume (b5). We have EndK⊗DM(Fq)(N) = EndKG(V ) ⊗ End(M), hence Z End(V ) ⊂

Z EndQ̄`
(Het(N, Q̄`))

F . Assertion (b3) follows.

Note that (c1) is equivalent to (a1) and (b1), hence to (a2) and (b2), which is equivalent to
(c2). The assertion (c3) is equivalent to (a1) and (b4), hence equivalent to (c1). �

The case End(N) = End(V ) is the optimal scenario: the division ring End(V ) measures
the obstruction for V to be absolutely simple. When End(N) = End(V ), this obstruction is
“absorbed” by the motive N . The condition End(N) = End(V ) holds for K = Q for most
Deligne-Lusztig motives, but fails in a few cases. In those cases, either one of (a2) or (b2) can
fail (but not both). Note that (b3) holds trivially if Z End(V ) = K.

3.2. Unipotent representations. We assume from now on that G = GF ′ as in §2.2.

3.2.1. Unipotent motives. Let K be a number field and V ∈ IrrK(G). We say that V is
unipotent if (K ⊗ DM(Fq/G))V 6=0. This is equivalent to the requirement that Q̄` ⊗K V is a
direct summand of H i

c(X(Ω), Q̄`) for some Ω and some embedding K ⊂ Q̄` (cf Corollary 2.2).
We denote by UnipK(G) the set of unipotent representations in IrrK(G).

Let V ∈ UnipK(G). Consider an indecomposable object M ∈ (K ⊗DM(Fq/G))V . It follows
from Proposition 2.1 that every indecomposable object of (K ⊗ DM(Fq/G))V is isomorphic
to a shift of a Tate twist of M . We denote by MV the unique indecomposable object of
(K ⊗ DM(Fq/G))V such that the eigenvalues of F on K ⊗MV have absolute value 1 (weight
0) or q1/2 (weight 1) and such that Het(MV , Q̄`) is concentrated in degree 0 (for some `, or
any `, cf Theorem 2.3). We put NV = HomG(V,MV ) ∈ K ⊗ DM(Fq). We denote by ÑV an

indecomposable direct summand of NV : there is an integer rV such that NV ' Ñ⊕rVV and ÑV

is well defined up to isomorphism.

Theorem 3.2. We have

K ⊗DM(Fq/G) =
⊕

V ∈UnipK(G)

(K ⊗DM(Fq/G))V

and (K⊗DM(Fq/G))V is equivalent to the category of bigraded modules over the division algebra
End(MV ).

Let V ∈ UnipK(G).

• We have K[F ] ⊂ Z End(V ) and End(MV ) is a division algebra with center Z End(V ).
• If Q̄ ⊗ V is isotypic and K is the extension of Q generated by the character values of
V , then the unique eigenvalue of F acting on MV is in K.
• Given any prime 6̀=p and any embedding K ⊂ Q̄`, no simple Q̄`G-module can appear

as a submodule of two different eigenspaces of F on Het(MV , Q̄`).
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Proof. The decomposition is given in §3.1.1. The equivalence of categories follows from the
structure of objects of (K ⊗ DM(Fq/G))V discussed above and the semi-simplicity of K ⊗
DM(Fq/G) (Corollary 2.2).

Let K ′ be a finite extension of K and let λ1, λ2 ∈ K ′ be two distinct eigenvalues of F acting
on MV . There are V1, V2 ∈ UnipK′(G) such that MVi is a direct summand of the λi-eigenspace
of MV . Since MV1 is not isomorphic to a Tate twist of a shift of MV2 , it follows that V1 6'V2.
As a consequence, K ′[F ] ⊂ Z(End(K ′ ⊗K V )), hence Z End(K ′ ⊗K MV ) = Z(End(K ′ ⊗K V ))
(cf Lemma 3.1). We deduce that Z End(MV ) = Z End(V ) and K[F ] ⊂ Z End(V ). Note that
Z End(V ) is the extension of Q generated by character values of elements of G acting on V . If
Q̄⊗ V is isotypic, then Z End(V ) = K, hence F acts as a scalar in K.

The last statement follows from the discussion above and from Corollary 2.2. �

Remark 3.3. The property that the Frobenius eigenvalue is contained in the field of character
values can be deduced from the case by case determination of all those fields in [Ge1, §5]. It
builds on results on eigenvalues of Frobenius going back to [DiMi, Lu1]. Our proof seems to be
the first direct explanation of that fact.

Remark 3.4. Note that the group G has always a split structure over Fpδ , with Frobenius
endomorphism F0 such that F is a power of F0. In particular, the varieties X(Ω) have an
Fpδ -structure. Since the simple unipotent representations of G are F0-stable, it follows that
given V , there is a motive over Fpδ giving, after extension to Fq, a multiple of NV .

3.2.2. Harish-Chandra induction. Let P be an F ′-stable parabolic subgroup of G. Let U be
its unipotent radical and let L be a Levi complement. Let L = LF

′
and U = UF ′ .

We have a Harish-Chandra induction functor

RG
L : K ⊗DM(Fq/L)→ K ⊗DM(Fq/G), M 7→M(G/U)×LM

and a left and right adjoint Harish-Chandra restriction functor

∗RG
L : K ⊗DM(Fq/G)→ K ⊗DM(Fq/L), M 7→ HomG(M(G/U),M).

These functors are compatible with the corresponding functors on Q̄`-representations, via
`-adic realizations.

Let V ∈ UnipK(G) and V ′ ∈ UnipK(L). If HomKG(V,RG
L (V ′))6=0, then N̄V ' N̄V ′ . In

particular, the isomorphism type of N̄V does not change inside Harish-Chandra series.

Lemma 3.5. Let V ∈ UnipK(G) and let (L, V ′) be a cuspidal pair such that HomKG(V,RG
L (V ′))6=0.

Then

• MV is a direct summand of RG
L (MV ′),

• N̄V ' N̄V ′

• and there is a morphism of fields Z End(V ′)→ Z End(V ).

Proof. We have

HomG(V,RG
L (MV ′)) ' NV ′ ⊗EndKL(V ′) HomKL(∗RG

L(V ), V ′).

We deduce that MV is a direct summand of RG
L (MV ′), hence N̄V = N̄V ′ .

Let K ′ = Z End(V ′) and consider a decomposition K ′ ⊗ V ′ =
⊕

i V
′
i into simple (non-

isomorphic) K ′L-modules. By [Lu2, §3.25], we have HomK′G(RG
L (V ′i ), R

G
L (V ′j )) = 0 if i 6= j.



MOTIVES OF DELIGNE-LUSZTIG VARIETIES 9

It follows that K ′ ⊗ EndKG(RG
L (V ′)) =

⊕
i EndK′G(RG

L (V ′i )). Consequently, the canonical
map K ′ ⊗ Z End(V ′) → K ′ ⊗ EndKG(RG

L (V ′)) has its image contained in the center of K ′ ⊗
EndKG(RG

L (V ′)). We deduce that the canonical map Z End(V ′) → EndKG(RG
L (V ′)) has its

image contained in the center of EndKG(RG
L (V ′)).

Since EndKG(RG
L (V ′)) has a quotient isomorphic to a matrix algebra over EndKG(V ), we

obtain a morphism of algebras Z End(V ′)→ Z End(V ). �

Let us recall an important result from the representation theory of Hecke algebras [Ge1,
Proposition 5.6].

Theorem 3.6. Assume G is simple. Let V ∈ UnipQ(G) and let (L, V ′) be a cuspidal pair such

that HomQG(V,RG
L (V ′))6=0. We have End(V ′) ' End(V ) unless L is a maximal torus and

• G = E7 and V = V1024 corresponds to the sum of the two irreducible representations of
dimension 512 of the Weyl group.
• G = E8 and V ∈ {V81921 , V81922} corresponds to the sum of two irreducible representa-

tions of dimension 4096 of the Weyl group.

3.2.3. Unipotent motives and realizations. We recall here some basic facts of Lusztig’s theory
(Lemmas 3.8 and 3.7) and derive consequences for unipotent motives.

The next lemma, going back to [Lu4, §14.2], states a result that is true for all (simple) groups
and all unipotent representations, except for one case. Given (G,F ) of type 2F 4, we denote
by V21 ∈ UnipQ(G) the unique unipotent representation whose character is a multiple of the

unique cuspidal unipotent character of degree 1
3
q4Φ2

1(q)Φ2(q)2Φ12(q)Φ24(q). Here, Φd denotes
the d-th cyclotomic polynomial.

Lemma 3.7. Assume G is simple. Let V ∈ UnipQ(G). Then Het(MV , Q̄`) is a multiplicity-free
Q`G-module and End(MV ) = Z End(V ), unless (G, F ) has type 2F 4 and V = V21.

Proof. Note that the statement about End(MV ) follows from the multiplicity-free property,
thanks to Lemma 3.1.

Assume F is a Frobenius endomorphism. By [Lu6, Lemma 1.2 and §1.13], there is Ω closed
and i such that every irreducible component of Q̄` ⊗ V occurs with multiplicity 1 in the j-th
`-adic intersection cohomology group of X(Ω). Consequently, by purity, every such component
occurs with multiplicity 1 in the weight j part L of the intersection cohomology (i.e., the sum
of the eigenspaces of F with eigenvalues of absolute value qj/2). By [Lu4, §3], the character
of L is a linear combination with integer coefficients of weight parts of cohomology groups
of smooth projective Deligne-Lusztig varieties (change from the Kazhdan-Lusztig basis in the
Hecke algebra to the generating family given by products of Kazhdan-Lusztig basis elements
associated to simple reflections). Since the motive of a smooth projective variety is the direct
sum of submotives associated to different weights, it follows that the character of L is an integral
linear combination of `-adic homology groups of unipotent motives. Projecting onto DL(G)V ,
we obtain the multiplicity-free result for a direct sum of shifts and Tate twists of MV . It follows
that the result holds for MV itself.

Let us now consider the case where (G, F ) has type 2B2, 2G2 or 2F 4. By [Lu4, Appendix,
pp. 373–376], V occurs with multiplicity 1 in the character of the complex of cohomology of
some Deligne-Lusztig variety, and we can conclude as above. �
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Lemma 3.8. Let V ∈ IrrQ(G) be a cuspidal unipotent simple representation. Then, the
eigenspaces of F on Het(MV , Q̄`) are isotypic Q̄`G-modules, for all 6̀=p.

We have Z End(MV ) = Z End(V ) = Q[F ].

Proof. If Z End(V ) = Q, then Het(MV , Q̄`) is a direct summand of a multiple of the isotypic
module Q̄` ⊗ V , hence Het(MV , Q̄`) is isotypic.

Note that the result holds for those V that occur in the cohomology of a Coxeter Deligne-
Lusztig variety, cf [Lu1, Table 7.3].

We proceed case by case for the remaining V ’s, using Lusztig’s classification (cf for example
[Ca, §13.7]) and Geck’s description of character fields [Ge1, §5]. We assume Z End(V )6=Q and
V does not occur in the cohomology of a Coxeter Deligne-Lusztig variety. Looking at tables,
this happens only in type 2F 4. There is one such V , and there are two non-isomorphic simple
modules occuring in Q̄⊗ V , with distinct λ’s equal to ±i (cf [Ge1, §]).

The last part of the lemma follows from Lemma 3.1 and Theorem 3.2. �

The following proposition would be a consequence of Belinson+Tate conjectures.

Proposition 3.9. Let V ∈ UnipQ(G). The algebra End(ÑV ) is a central simple Q[F ]-algebra
that splits at places above 6̀=p and at complex places.

The motive ÑV has weight 0 or 1. If it has weight 0, then End(ÑV ) = Q[F ]. If it has weight
1, then EndQG(V ) has Hasse invariants 1

2
at real places and 1

2
[Q[F ]ν : Qp] at places ν above p.

Given any 6̀=p, the `-adic realization gives an isomorphism

Q` ⊗ End(ÑV )
∼→ EndQ`

(Het(ÑV ,Q`))
F .

Proof. Thanks to Lemma 3.5, it is enough to consider the case where V is cuspidal. In that
case, the result follows from Lemmas 3.8 and 3.1. �

Theorem 3.10. Let V ∈ UnipQ(G). The algebras EndQG(V ), End(MV ) and End(NV ) split at
all places above 6̀=p and at all complex places.

Assume G is simple and ((G, F ), V ) is not (2F 4, V21), (E7, V1024) nor (E8, V8192i) for some
i ∈ {1, 2}.

Then EndQG(V ) = End(NV ) and Z EndQG(V ) = Q[F ].
If NV has weight 0, then EndQG(V ) = Q[F ].
If NV has weight 1, then EndQG(V ) has Hasse invariants 1

2
at real places and 1

2
[Q[F ]ν : Qp]

at places ν above p.

Proof. Proposition 3.9 shows that End(NV ) has trivial Hasse invariants at complex places and
a places above ` 6= p.

Lemma 3.7 shows that End(MV ) = Z End(V )
When V is cuspidal, Lemma 3.8 shows that Z End(V ) = Q[F ]. Theorem 3.6 shows that this

property remains true for any V .
Lemma 3.1 shows that End(V ) = End(NV ). The theorem follows now from Proposition

3.9. �

Remark 3.11. In [BrMa], it is conjectured that the algebra of Q`G-endomorphisms of the `-
adic cohomology of certain Deligne-Lusztig varieties is the Hecke algebra of a complex reflection
reflection group. We conjecture that, in the same setting, the endomorphism ring of the G-
equivariant motive of that variety is that same Hecke algebra, now taken over Q. We actually
expect a similar integral statement to hold.
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3.3. Cuspidal motives. We assume G is simple. We give here, for each unipotent rational
cuspidal representation V of G, the structure of the various associated endomorphism rings,
and the minimal polynomial of the Frobenius endomorphism.

The cuspidal unipotent representations are given in [Lu4]. The information on Frobenius
eigenvalues is provided in [Lu1, Lu2] and [Lu4, §11 and 14.2] (cf also [GeMa]).

Recall that Z End(V ) = Z End(MV ) = K[F ] for any cuspidal V . Recall also that EndKG(V )
splits at finite places that are not above p.

3.3.1. Weight 0 case (Artin case). We assume NV has weight 0.

• Assume (G,F ) 6= (2F 4, V21). We have EndQG(V ) = Q[F ] and the table below describes
the minimal polynomial of F .

Bn2+n Φ2

Cn2+n Φ2

D(n+1)2 Φ2
2D(n+1)2 Φ2

2Am(m+1)/2, Φ2

E6 Φ3

E8 Φ1,Φ1,Φ2,Φ3,Φ4,Φ5,Φ6

F4 Φ1,Φ1,Φ2,Φ3,Φ4

G2 Φ1,Φ2,Φ3
3D4 Φ1,Φ2
2E6 Φ1,Φ3
2F 4 Φ2,Φ2,Φ2,Φ4,Φ4,Φ6

Here, n ≥ 1, m ≥ 2 and [m(m+ 1)/4] is assumed to be even.

• Assume (G, V ) = (2F 4, V21). We have Φ2(F ) = 0 and End(ÑV ) = Q. It is known that
mQ(χ21) = 2 [Ge1, Theorem 1.6]. Also mQ`

(χ21) = 1 for all ` 6=2 [Oh2, Proposition 5]. So
EndQG(V ) is the quaternion algebra over Q that splits at all finite places except at 2. We have
End(MV ) ' EndQG(V ).

We sketch now a conjectural geometrical explanation for the occurence of this quaternion
algebra, via the action of a braid monoid. Following [BrMa, 5.11 Folgerung], we expect there
is a faithful action of the Hecke algebra

H = Q〈T1, T2〉/(T1T2T1 = T2T1T2, {T 2
i + q

√
2Ti + q2}i=1,2)

on MV , coming from a geometrical action of the classical Artin braid group B3 (up to inverting
purely inseparable morphisms) on a Deligne-Lusztig variety. Putting ti = q−1

√
2Ti, we obtain

a description of H as

H = Q〈t1, t2〉/(t1t2t1 = t2t1t2, {t2i + 2ti + 2}i=1,2).

There is an algebra decomposition H = H′×H′′, where H′′ ' Q(
√
−2) and H′′ is a quaternion

algebra over Q splitting at all finite places except 2. We expect the action above induces an
isomorphism H′′ ∼→ End(MV ). Note that we have deformed the rational group algebra of S3

in such a way that the simple 2-dimensional representation is not defined over Q anymore.
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3.3.2. Weight 1 case (supersingular case). In that case, the invariant of EndQG(V ) ' End(ÑV )
is 0 at complex infinite places and is 1/2 at real places.

The possible cases, together with the minimal polynomial of F are given below.

E7 X2 + q
2Am(m+1)/2 X +

√
q

2B2 X2 +
√

2qX + q
2G2 X2 + q
2G2 X2 +

√
3qX + q

2G2 X2 + q

Here m ≥ 2, [m(m + 1)/4] is assumed to be odd and q is an even prime power in the case
2Am(m+1)/2.

Hasse Invariants of EndQG(V ):
• X +

√
q, q even prime power. inv∞ = invp = 1

2

• X2 + q

• invν = 1
2

for ν above p if q is an even power of p and p ≡ 1 (mod 4)
• EndQG(V ) = Q[F ] otherwise.

• X2 + 2nX + 22n−1, q = 22n−1. EndQG(V ) = Q[F ].

• X2 + 3nX + 32n−1, q = 32n−1. EndQG(V ) = Q[F ].
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