
ERRATA

RAPHAËL ROUQUIER

1. Isométries parfaites dans les blocs à défaut abélien des groupes
symétriques et sporadiques

p.659, Corollary 2.10: Replace “x est de e-type σ, comme élément de Swe” by “x est de la
forme x = (f ;σ)”.

p.665, §3.3.1, l.4: One should read “CG(x) = CH(x) = 3×S3”.
p.668, §3.3.4, l.4: One should read “H̃ = NG̃(P ) = H.2 (non-trivial extension)”.

2. The derived category of blocks with cyclic defect groups

• p.209, proof of Lemma 2.13. “φ ∈ EndO(M)” should be replaced by “φ ∈ EndO(M)×”.
• p.220. In the Brauer tree, “P p−ε

4
” should be “P p+ε−2

4
”.

• p.220, Read “Restricting a surjective map
⊕

0≤λ≤ p−3
2

...”.

3. Centers and simple modules for Iwahori-Hecke algebras

The proof of the first implication in Theorem 3.3 (i) (the “easier” part) is incomplete, and
the following should be added (as discussed with M. Geck).

The setting is that of Theorem 3.3. We assume the map 1k⊗dO/p : k⊗R̄0(kpH)→ k⊗R̄0(kH)
is an isomorphism.

By duality, the map 1k ⊗ eO/p : k ⊗ K̄0(kH) → k ⊗ K̄0(kpH) is an isomorphism. It follows
that 1O/p ⊗ eO/p is an isomorphism as well.

Let k̃ be a finite separable extension of k neutralizing for kH and A a discrete valuation ring,
unramified extension of O/p, with residue field k̃. Let Â be its completion. Then, we have an

isomorphism tK0

Â
: K0(ÂH)→ K0(k̃H) = K̄0(kH). So, we deduce that 1Â⊗t

K0
F : Â⊗K0(ÂH)→

Â⊗K0(FH) is an isomorphism, where F is the field of fractions of Â. As a consequence, the

restriction of (·, ·)F to K0(FH) × F(ÂH) takes values in Â. Since K0(FH) = K̄0(kpH), it

follows that the restriction of (·, ·)kp to K̄0(kpH)×F((O/p)H) takes values in Â ∩ kp = O/p.
The first part of the proof of Theorem 3.3 shows then that the restriction of the bilinear form

(·, ·) ˆ̃Op
to K0(

ˆ̃Op)×F(H) has values in O.

Note that in the proof of Theorem 3.3, we should have written O/p⊗ ch R̄0(kpH) instead of
ch R̄0(kpH) (this occurs twice).
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4. Complex reflection groups, braid groups, Hecke algebras

Fact 1.7(2) is not correct, as pointed out by Sinead Wilson in ”Stabilisers of eigenvectors in
complex reflection groups”, §3.7.2. It fails for the infinite family G(r, p, n). In that case, every
chain of parabolic subgroups is conjugate in G(r, 1, n) (but not necessarily in G(r, p, n)) to a
chain given by admissible subdiagrams. As explained by G. Chapuy and T. Douvropoulos in
”Coxeter factorizations with generalized Jucys-Murphy weights and matrix tree theorems for
reflection groups” (arXiv:2012.04519), Lemma 4.2, Fact 1.7(2) can be corrected by replacing
”g ∈ W” by ”g ∈ NGL(V )(W )”.

5. Block theory via stable and Rickard equivalences

p.119, “5-dimensional” should be “4-dimensional”.

6. Complexes de châınes étales et courbes de Deligne-Lusztig

• §4.1.1 p.502, line -17: Remove “Le morphisme Y → Y/GF est étale”.

• Lemme 4.1 p.502: Read “Soit L un p′-sous-groupe de GF × (T F )◦”. Cf O. Dudas and
R. Rouquier, “Coxeter orbits and Brauer trees III”, J. AMS 27 (2014), 1117-1145, Lemma 2.1
for a more general statement and a proof.

7. Categorification of sl2 and braid groups

• In §8.1.3, Theorem 8.3, one should assume in addition that A is idempotent complete and
that η is a split injection.

I thank Paul Balmer for bringing this to my attention. Cf Paul Blamer, “Descent in trian-
gulated categories”, Math. Ann. 353 (2012), no. 1, 109–125 for a study of Barr-Beck Theorem
in triangulated categories.

• In §9.1.1, replace “We denote by {αs}s∈S... for s ∈ S)” by “Given s ∈ S, we denote by αs
an element of V ∗ such that ker(s− id) = kerαs”.

8. Derived equivalences and sl2-categorifications

p.278, Theorem 6.6: The assumption “λ ≥ 0” is not necessary for the statement of the
theorem nor for its proof.

p.287, l.8: Replace “(i− 1, i)” by “(i, i+ 1)”.

9. Category O for rational Cherednik algebras

p.620, l.6: Add the requirement that Bi and B̄i are finitely generated k-modules for all i ∈ Z.
p.621, l.4: ”locally finite” should be replaced by ”locally nilpotent”.

p.621, l.7: ”Homk(B, k) should be replaced by ”Homgr•k(B, k)”.

p.623, Proof of Corollary 2.8 Let P be a projective object of O such that every ∆(E) is
a quotient of P . By Proposition 2.2, every object M of O has an ascending filtration 0 =
M0 ⊂ M1 ⊂ · · · ⊂ M with M =

⋃
iMi and Mi/Mi−1 is a quotient of ∆(Ei) for some Ei. By

assumption, there are morphisms fi : P → Mi that induce surjections P → Mi/Mi−1. So,∑
i fi : P (Z) → M is a surjection. It follows that P is a progenerator of O. So, Corollary 2.8

follows from Corollary 2.7.
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In the definition in §5.2.5 of the Hecke algebra, one should read det(s)j instead of det(s)−j.

10. Coxeter orbits and modular representations

As pointed out by H. Wang, the isomorphism in l.18, p.30 is false. This is used in l.19, p.30
to obtain a disjointness result. A correct proof of that disjointness result is given in Proposition
3.4.3 of

H. Wang, L’espace symmétrique de Drinfeld et correspondance de Langlands locale II,
preprint (2014), arXiv:1402.1965.

11. Dimensions of triangulated categories

• Proposition 4.8
The statement of the Proposition 4.8 needs to be changed: one assumes End∗(X) is coherent

(i.e., a submodule of a finitely generated module is finitely generated) and one replaces ”locally
finitely generated” by ”locally finitely presented” in the statement of the Proposition.

I thank Hang Xing Chen for pointing out the following issues.

• Proposition 4.13,
(i): One should read “...for any r ≥ 0, the system (Hni+r)i≥1...”.
(iv) One should read “H2n → colimHi”

proof of that Proposition
line 3, one should read “Given i ≥ 2,...”.
Let us justify that the left most vertical sequence of the diagram is exact. Let Vi be the

homology at the middle of that sequence. There is a surjective map si : H(J) → Vi such that
si+1 = can ◦ si. Since the canonical map Ki → Ki+1 evaluates to 0 on I ′[−1], it follows that
the induced map Vi → Vi+1 is 0. We deduce that Vi = 0 for i ≥ 2.

line 10, one should read “By induction...for any i ≥ n...”.

• Proof of Lemma 5.8.
line 9, read “i2∗i

!
2j1∗j

∗
1C → ...”.

In the proof, one should note that since i2∗i
∗
2i1∗i

∗
1 ' i1∗i

∗
1i2∗i

∗
2, it follows that i2∗i

∗
2 preserves

I1-local objects, hence j2∗j
∗
2 preserves I1-local objects.

12. Derived equivalences and finite dimensional algebras

Remark 2.14: the conjecture is false. Take G of type B2, L a maximal torus of type w0. By
[Digne, Michel and Rouquier, “Cohomologie des variétés de Deligne-Lusztig”, Theorem 3.4],
the graded character of H∗(XU) is 1 + q3(σ + τ + 2ρ) + q4St, where σ and τ are the unipotent
characters associated with the linear characters of B2 different from 1, ε and ρ is the unipotent
character associated with the reflection representation.

13. Perverse equivalences and Broué’s conjecture

p.10, l.19: P should be T .
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14. Representations of rational Cherednik algebras

Section 1: The categories of finite-dimensional modules for rational Cherednik algebras em-
bedd in, but can be smaller than, the ones for trigonometric Cherednik algebras, contrarily
to what is stated. On the other hand, trigonometric and elliptic Cherednik algebras have
equivalent categories of finite-dimensional modules, cf M. Varagnolo and E. Vasserot, “Finite-
dimensional representations of DAHA and affine Springer fibers: the spherical case”, Duke
Math. J. 147 (2009), 439–540.

15. q-Schur algebras and complex reflection groups

p.131, Proposition 4.19. The category Copp is not a module category in general, it should be
replaced by Aopp-mod, where C = A-mod.

p.132, Lemma 4.21: The proof is incomplete (in the induction, it is not clear that M/M0

is projective over k). A complete proof is given in R. Rouquier, P. Shan, M. Varagnolo and
E. Vasserot, “Categorifications and cyclotomic rational double affine Hecke algebras”, Lemma
2.7.

p.143, §5.2.1: The functor KZ should be modified by multiplying the action of an s-generator
of the monodromy around H by qH,0.

I would like to thank Iain Gordon for bringing to my attention a gap in the proof of Theorem
5.5 and for his help in fixing it.

We start in the setting of §5.2.1: m is a maximal ideal of C[{hu}], k′ the completion at m, k
the residue field of k′. We denote by K the field of fractions of k′.

We have a bijection

Irr(W )
∼→ Irr(KH), E 7→ KZ(∆(E)).

Let L = C({q1/l
u }) as in §3.1.2: the algebra LH is split semi-simple. We have a canonical

morphism L → K, q
1/l
u 7→ e2iπhu/l and an induced bijection Irr(LH)

∼→ Irr(KH). Composing
with the bijection above, we obtain a bijection

ρh· : Irr(W )
∼→ Irr(LH).

Let τ ∈ tZ. We put h̃· = h· + τ . We have an automorphism γτ of L given by q
1/l
u 7→.

We have a bijection as above ρh̃· : Irr(W )
∼→ Irr(LH) and

ρh̃· = γ∗τ ◦ ρh· .

This gives us a permutation στ = ρh·ρh̃· of Irr(W ). As noted by Opdam, we have cστ (χ) = cχ.
This is due to the fact that the automorphism γτ acts trivially on irreducible representations
of rank 1 parabolic subalgebras of H, because those are defined over C({qu}).

The statement of Theorem 5.5 is now

Theorem 5.5. Assume xH,j 6= xH,j′ for all H ∈ A and j 6= j′. Let τ ∈ tZ. Assume and
assume the order ≤ on Irr(W ) defined by h· and the the one ≤τ defined by h· + τ are related
by χ ≤τ χ′ if and only if στ (χ) ≤ στ (χ

′).

Then, there is an equivalence O(h·)
∼→ O(h· + τ) of quasi-hereditary covers of kH.
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16. Quiver Hecke algebras and 2-Lie algebras

Proof of Proposition 2.1:
line 3: Rw′ = Rw − {(i, i+ 1)} should be replaced by Rw′ = si(Rw)− {(i, i+ 1)}.
line -3: Rv = Rw ∪ {(j, j + 1)} should be replaced by Rv = sj(Rw) ∪ {(j, j + 1)}.
Proof of Theorem 4.25, line 9: “left inverse to Ψ” should be replaced by “left inverse to Φ”.

§3.3.3. p.19, lines -4, -5: Ei should be replaced by Fi.


