SOME EXAMPLES OF RICKARD COMPLEXES

RAPHAËL ROUQUIER

Talk given at the Constanta Conference on Representation Theory October 6, 1995

ABSTRACT. After a presentation of Broué's conjecture for principal blocks with an abelian defect group, we describe a Rickard complex for $GL_2(q)$ arising from the ℓ -adic cohomology of a Deligne-Lusztig variety, in accordance with the explicit form given by Broué to his conjecture in the case of Chevalley groups in non natural characteristic.

1. Overview of Broué's conjecture

Let G be a finite group and ℓ a prime number. Let P be a Sylow ℓ -subgroup of G and assume P is abelian. Let $H = N_G(P)$. Let \mathcal{O} be the ring of integers of a finite unramified extension K of \mathbf{Q}_{ℓ} , such that KG and KH are split. Let A and B be the principal blocks of G and H over \mathcal{O} . Let us denote by H° the group opposite to H. Similarly, B° denotes the algebra opposite to B. We put $\Delta P = \{(x, x^{-1}) | x \in P\} \leq G \times H^{\circ}$. The sign \otimes means $\otimes_{\mathcal{O}}$. Finally, if M is an \mathcal{O} -module, we put $KM = K \otimes M$.

Conjecture 1. The blocks A and B are Rickard equivalent. More precisely, there is a complex C of (left) $A \otimes B^{\circ}$ -modules which are direct summands of relatively ΔP -projective permutation modules such that :

$$C^* \otimes_A C \simeq B \text{ in } K^b(B \otimes B^\circ)$$
$$C \otimes_B C^* \simeq A \text{ in } K^b(A \otimes A^\circ).$$

For the sake of simplicity and for the lack of a final form of the conjecture in the general case, we have stated the conjecture for principal blocks only. The original statement of the conjecture [Br1] makes no assumption on C. That C should be of this special type ("splendid") appeared in [Ri4].

The conjecture is known (to the author) to hold in the following cases :

- P cyclic [Ri1, Li, Rou];
- $G = \mathbf{G}(\mathbf{F}_q)$ the group of rational points of a connected reductive algebraic group, when $\ell | q 1$ but ℓ does not divide the order of the Weyl group [Pu];
- $G = A_5$ and $\ell = 2$ [Ri4];
- $G = SL_2(8)$ and $\ell = 2$ [Rou];
- G is ℓ -solvable.

For Chevalley groups, when ℓ is not the natural characteristic of the group, there is a very precise conjecture of Broué giving a candidate for C, in terms of ℓ -adic cohomology of certain Deligne-Lusztig varieties [Br-Ma]. The aim of the second part is to present the simplest case of this conjecture.

2. A Geometrical construction for $GL_2(q)$, $\ell|q+1$

Let q be a prime power. Consider the affine curve X with equation $(xy^q - x^q y)^{q-1} = -1$ over an algebraic closure $\bar{\mathbf{F}}_q$ of \mathbf{F}_q . The group $G = GL_2(\mathbf{F}_q)^1$ acts naturally on the affine plane over $\bar{\mathbf{F}}_q$ and this induces an action of G on X. There is also an action of the group of rational points $T \simeq \mathbf{F}_{q^2}^*$ of a Coxeter torus of $GL_2(\bar{\mathbf{F}}_q)$ by scalar multiplication (in the isomorphism above, F acts on T as $x \mapsto x^q$ on $\mathbf{F}_{q^2}^*$). Finally, the variety X is defined over \mathbf{F}_q , with corresponding Frobenius endomorphism F.

This variety is actually the Deligne-Lusztig variety associated to the non trivial element of the Weyl group² [De-Lu, 2.2].

Let $\ell | q + 1$ be an odd prime and \mathcal{O} be the ring of integers of a finite unramified extension K of \mathbf{Q}_{ℓ} , such that KG and KH are split, where $H = N_G(T) = T \rtimes W$ and |W| = 2. Let P be the ℓ -Sylow subgroup of T.

Our object of study is the complex $\mathrm{R}\Gamma_c(X, \mathcal{O})$ (\mathcal{O} is the constant ℓ -adic sheaf) giving rise to the compact support ℓ -adic cohomology : this is an object in the derived category of $(\mathcal{O}G) \otimes (\mathcal{O}T)^\circ$ -modules. Actually,

¹In the talk, the case of $SL_2(q)$ had been considered, where the same methods apply.

²This is a Coxeter variety, *i.e.*, the variety associated to a Coxeter element of the Weyl group. These varieties should be studied by the author in a future paper.

we will consider the finer invariant $C = \Lambda_c(X, \mathcal{O})$ in the homotopy category of $(\mathcal{O}G) \otimes (\mathcal{O}T)^\circ$ -modules, as defined by J.Rickard [Ri3]. This is a complex of direct summands of permutation $\mathcal{O}(G \times T^\circ)$ -modules. Note that there is an action of the Frobenius F on C, giving rise to a right action of $\mathcal{O}T \rtimes F$.

Let e be the sum of the ℓ -blocks with positive defect of $\mathcal{O}G$. Define $A = \mathcal{O}Ge$ and $B = \mathcal{O}H$.

Proposition 1. ³ The action of $\mathcal{O}T \rtimes F$ on C factors through an action of an algebra isomorphic to B. The action of $\mathcal{O}G$ on C factors through an action of A: the complex C is then a complex of direct summands of relatively ΔP -projective permutation modules. We have

$$C^* \otimes_A C \simeq B$$
 in $K^b(B \otimes B^\circ)$ and
 $C \otimes_B C^* \simeq A$ in $K^b(A \otimes A^\circ)$.

Proof. Since X is an affine curve, the cohomology groups $H_c^i(X, \mathcal{O})$ are zero for i = 0 and i > 2. Since X is in addition smooth, the cohomology groups $H_c^1(X, \mathcal{O})$ and $H_c^2(X, \mathcal{O})$ are free as \mathcal{O} -modules [SGA4 $\frac{1}{2}$, Arcata, III.§3].

Since both G and T act freely on X, the complex C is perfect (*i.e.* isomorphic to a bounded complex of projective modules) as an object of $\mathcal{D}^b(\mathcal{O}G)$ and as an object of $\mathcal{D}^b(\mathcal{O}T)$ [De-Lu, (proof of) 3.5].

The representation of $G \times T^{\circ}$ on $H^2_c(X, \mathcal{O})$ is isomorphic to the permutation representation on the connected components of X. Its character is

$$\sum_{\alpha \in \operatorname{Irr}(\mathbf{F}_q^*)} \det_{\alpha} \otimes \alpha$$

where \det_{α} is the character $\alpha \circ \det$ of G. The Frobenius morphism F acts with the eigenvalue q on $H^2_c(X, \mathcal{O})$.

The character of the $KG \otimes (KT)^{\circ}$ -module $H^1_c(X, K)$ is [Di-Mi2, 15.9] :

$$\sum_{\alpha \in \operatorname{Irr}(\mathbf{F}_q^*)} \operatorname{St}_{\alpha} \otimes \alpha + \sum_{\substack{\omega \in \operatorname{Irr}(\mathbf{F}_{q^2}^*)/W, \\ \omega^{q-1} \neq 1}} [q-1]_{\omega} \otimes (\omega + \omega^q)$$

where $St_{\alpha} = St \cdot det_{\alpha}$, St is the Steinberg character of G and

$$\{[q-1]_{\omega}\}_{\omega\in\operatorname{Irr}(\mathbf{F}_{q^2}^*)/W,\ \omega^{q-1}\neq 1}$$

³The proposition actually holds for \mathcal{O} replaced by \mathbf{Z}_{ℓ} , as suggested by K.W.Roggenkamp.

RAPHAËL ROUQUIER

is the set of irreducible characters of G with degree q-1. The Frobenius F acts with the eigenvalue 1 on the G-isotypic component with character $\operatorname{St}_{\alpha}$ and with eigenvalues $\sqrt{-q}$ and $-\sqrt{-q}$ on the component with character $[q-1]_{\omega}$ (this is a consequence of Lefschetz formula, [Di-Mi1, V.1.3]). From this description of the character of $H^*(C)$, it follows that $\mathcal{O}G$ acts on C through A.

Let $\sigma \in KT \rtimes F$ defined by

$$\sigma = \frac{i}{q-1}(2F - 1 - q) + \frac{i-1}{\sqrt{-q}}F$$

where $i = \frac{1}{q^2-1} \sum_{t \in T} t^{q-1}$ and where $\sqrt{-q} \in \mathcal{O}$ is chosen such that $\ell | 1 - \sqrt{-q}$. Note that σ is actually in $\mathcal{O}T \rtimes F$, since

$$\sigma = \frac{-1}{(q-1)^2} \sum_{t \in T} t^{q-1} - \frac{1}{\sqrt{-q}} F + \frac{1 - \sqrt{-q}}{\sqrt{-q}(q-1)^2(1 + \sqrt{-q})} \sum_{t \in T} t^{q-1} F.$$

For $t \in T$, we have $\sigma t = t^q \sigma$ since $Ft = t^q F$. Now, we see that σ acts trivially on $H^2_c(X, K)$, with eigenvalue -1 on the *G*-isotypic components of $H^1_c(X, K)$ with character $\operatorname{St}_{\alpha}$ and with eigenvalues 1 and -1 on the *G*-isotypic components with character $[q-1]_{\omega}$; in particular, σ^2 acts trivially on $H^*_c(X, K)$. Finally, the image in $\operatorname{End}_{K^b(KA)}(KC)$ of the sub-algebra of $KT \rtimes F$ generated by T and σ is isomorphic to KH. But it is clear that $\operatorname{End}_{K^b(KA)}(KC)$ is isomorphic to KH: this means that the image in $\operatorname{End}_{K^b(KA)}(KC)$ of the sub-algebra of $KT \rtimes F$ generated by T and σ is actually the image of $KT \rtimes F$. Hence, we have proven the analog of the proposition where scalars are extended to K.

For $\alpha \in \operatorname{Irr}(\mathbf{F}_q^*)$, let e_{α} be the sum of the blocks of G containing the characters $[q-1]_{\omega}$ with $\omega^{q+1} = \alpha$ and the characters \det_{α} and $\operatorname{St}_{\alpha}$. Let $C_{\alpha} = e_{\alpha}C$. Since $H^i(C)$ is free over \mathcal{O} and C is perfect in $\mathcal{D}^b(\mathcal{O}G)$, it is isomorphic to a complex of projective modules $0 \to C^1 \xrightarrow{\varphi} C^2 \to 0$ as an $\mathcal{O}G$ -module. Let us choose C^1 such that $\operatorname{Im} \varphi$ has no projective direct summand. Put $C_{\alpha}^i = e_{\alpha}C^i$. Then, C_{α}^2 is a projective cover of \det_{α} , since $H^2(C_{\alpha}) \simeq \det_{\alpha}$. Now, C_{α} splits as

$$0 \to C'^1_{\alpha} \to C^2_{\alpha} \to 0 \oplus 0 \to C''^1_{\alpha} \to 0 \to 0$$

where $C'^{1}_{\alpha} \to C^{2}_{\alpha}$ is the beginning of a projective resolution of \det_{α} . From this description and from the knowledge of the characters of $C'^{1}_{\alpha}, C''^{1}_{\alpha}$ and C^{2}_{α} , it follows that C is a tilting complex for A.

Let B' be the image of the sub-algebra of $\mathcal{O}T \rtimes F$ generated by T and σ in $\operatorname{End}_{K^b(A)}(C)$. The algebra B' is isomorphic to $\mathcal{O}H$ and C is perfect in $\mathcal{D}^b(B')$, since it is perfect in $\mathcal{D}^b(\mathcal{O}T)$. A proof similar to the one above shows that C is a tilting complex for B'. Now, by [Br2, théorème 2.3], this implies that C is a two-sided tilting complex for $A \otimes B^{\circ}$, *i.e.*, the isomorphisms of the proposition hold in the derived categories and a priori not in the homotopy categories. Note that we have obtained that B' is the whole of $\operatorname{End}_{K^b(A)}(C)$, hence B' is the image of $\mathcal{O}T \rtimes F$ in $\operatorname{End}_{K^b(A)}(C)$.

If S is a non trivial ℓ -subgroup of $G \times T^{\circ}$ which is not conjugate to ΔP , then S acts freely on X, hence by [Ri3, Corollary 3.3], C is a complex of direct summands of relatively ΔP -projective permutation modules. If S is a non trivial ℓ -subgroup of $G \times T^{\circ}$, then the fixed points set X^S has dimension zero, hence $\Lambda_c(X^S, \mathcal{O})$ is concentrated in degree 0. Hence, by [Ri3, Theorem 4.2], C is homotopic to a bounded complex of modules which are all projective $A \otimes B^{\circ}$ -modules, except C^0 ; this implies that the isomorphisms of the proposition hold indeed in the homotopy category [Ri2, (proof of) Corollary 5.5].

References

- [Br1] M. Broué, Isométries parfaites, types de blocs, catégories dérivées, Astérisque 181–182 (1990), 61–92.
- [Br2] M. Broué, Isométries de caractères et équivalences de Morita ou dérivées, Publ. Math. IHES 71 (1990), 45–63.
- [Br-Ma] M. Broué und G. Malle, Zyklotomische Heckealgebren, Astérisque 212 (1993), 119–189.
- [De-Lu] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Annals of Math. 103 (1976), 103–161.
- [Di-Mi1] F. Digne and J. Michel, "Fonctions L des variétés de Deligne-Lusztig et descente de Shintani", Mémoires de la Soc. Math. de France 20, 1985.
- [Di-Mi2] F. Digne and J. Michel, "Representations of finite groups of Lie type", London Math. Soc. Student Texts 21, Cambridge University Press, 1991.
- [Li] M. Linckelmann, Derived equivalence for cyclic blocks over a p-adic ring, Math. Z. 207 (1991), 293-304.
- [Pu] L. Puig, Algèbres de source de certains blocs des groupes de Chevalley, Astérisque 181–182 (1990), 221–236.
- [Ri1] J. Rickard, Derived categories and stable equivalences, J. Pure and Appl. Algebra 61 (1989), 303–317.
- [Ri2] J. Rickard, Derived equivalences as derived functors, J. London Math. Soc. 43 (1991), 37–48.
- [Ri3] J. Rickard, Finite group actions and étale cohomology, Publ. Math. IHES 80 (1994), 81–94.
- [Ri4] J. Rickard, Splendid equivalences : derived categories and permutation modules, to appear in Proc. London Math. Soc.
- [Rou] R. Rouquier, From stable equivalences to Rickard equivalences for blocks with cyclic defect, proceedings of "Groups 1993, Galway–Saint-Andrews

conference" volume 2, 512–523, London Math. Soc. series 212, Cambridge University Press, 1995.

 $[{\rm SGA4}\frac{1}{2}]$ P. Deligne et al., "Séminaire de géométrie algébrique du Bois-Marie, SGA $4\frac{1}{2}$ ", Cohomologie étale, Springer Lecture Notes 569, 1977.