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varieties II
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Abstract

This paper is a continuation and a completion of the work of the first

and the third author on the Jordan decomposition. We extend the Jordan

decomposition of blocks: we show that blocks of finite groups of Lie type in

nondescribing characteristic are Morita equivalent to blocks of subgroups

associated to isolated elements of the dual group — this is the modular ver-

sion of a fundamental result of Lusztig, and the best approximation of the

character-theoretic Jordan decomposition that can be obtained via Deligne-

Lusztig varieties. The key new result is the invariance of the part of the

cohomology in a given modular series of Deligne-Lusztig varieties associated

to a given Levi subgroup, under certain variations of parabolic subgroups.

We also bring in local block theory methods: we show that the equiva-

lence arises from a splendid Rickard equivalence. Even in the setting of the

original work of the first and the third author, the finer homotopy equiv-

alence was unknown. As a consequence, the equivalences preserve defect

groups and categories of subpairs. We finally determine when Deligne-

Lusztig induced representations of tori generate the derived category of

representations. An additional new feature is an extension of the results to

disconnected reductive algebraic groups, which is required to handle local

subgroups.
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1. Introduction

Let G be a connected reductive algebraic group over an algebraic closure

of a finite field, endowed with an endomorphism F , a power of which is a

Frobenius endomorphism. Let ` be a prime number distinct from the defining

characteristic of G and K a finite extension of Q`, large enough for the finite

groups considered. Let O be the ring of integers of K over Z` and k the residue

field. We will denote by Λ a ring that is either K, O or k.
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The main tool for the study of representations of GF over Λ is the Deligne-

Lusztig induction. Let L be an F -stable Levi subgroup of G contained in a

parabolic subgroup P with unipotent radical V so that P = Vo L. Consider

the Deligne-Lusztig variety

YP = {gV ∈ G/V | g−1F (g) ∈ V · F (V)}.

It has a left action of GF and a right action of LF by multiplication. The

corresponding complex of `-adic cohomology induces a triangulated functor

RG
L⊂P : Db(ΛLF )→ Db(ΛGF ), M 7→ RΓc(YP,Λ)⊗L

ΛLF M

and a morphism

RG
L⊂P = [RG

L⊂P] : G0(ΛLF )→ G0(ΛGF ).

This is the usual Harish-Chandra construction when P is F -stable.

1.A. Jordan decomposition. Let G∗ be a group Langlands dual to G, with

Frobenius F ∗. Consider the set Irr(GF ) of characters of irreducible represen-

tations of GF over K. Deligne and Lusztig gave a decomposition of Irr(GF )

into rational series

Irr(GF ) =
∐
(s)

Irr(GF , (s)),

where (s) runs over the set of G∗F
∗
-conjugacy classes of semi-simple elements

of G∗F
∗
. The unipotent characters of GF are those in Irr(GF , 1).

Let L be an F -stable Levi subgroup of G with dual L∗ ⊂ G∗ containing

CG∗(s). Lusztig constructed a bijection

Irr(LF , (s))
∼−→ Irr(GF , (s)), ψ 7→ ±RG

L⊂P(ψ).

If s ∈ Z(L∗), then there is a bijection

Irr(LF , (1))
∼−→ Irr(LF , (s)), ψ 7→ ηψ,

where η is the one-dimensional character of LF corresponding to s, and we

obtain a bijection

Irr(LF , (1))
∼−→ Irr(GF , (s)).

This provides a description of irreducible characters of GF in the rational series

(s) in terms of unipotent characters of another group, when CG∗(s) is a Levi

subgroup of G∗.

Let us now consider the modular version of the theory described above.

Let s be a semi-simple element of G∗F
∗

of order prime to `. Let us consider∐
t Irr(GF, (t)), where (t) runs over conjugacy classes of semi-simple elements

of G∗F
∗

whose `′-part is (s). Broué and Michel [BM89] have shown this is a
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union of blocks of OGF . The sum of the corresponding block idempotents is

an idempotent eG
F

s ∈ Z(OGF ), and we obtain a decomposition

OGF -mod =
⊕
(s)

OGF eG
F

s -mod,

where (s) runs over G∗F
∗
-conjugacy classes of semi-simple `′-elements of G∗F

∗
.

Let L be an F -stable Levi subgroup of G with dual L∗ containing CG∗(s).

Let P be a parabolic subgroup of G with unipotent radical V and Levi com-

plement L. Broué [Bro90] conjectured that the (OGF ,OLF )-bimodule

HdimYP(YP,O)eL
F

s

induces a Morita equivalence betweenOGF eG
F

s andOLF eLFs . This was proven

by Broué [Bro90] when L is a torus and in [BR03] in general.

Broué also conjectured that the truncated complex of cohomology

GΓc(YP,O)eL
F

s

(Rickard’s refinement of RΓc(YP,O)eL
F

s , well defined in the homotopy cate-

gory [Ric94]) induces a splendid Rickard equivalence between OGF eG
F

s and

OLF eLFs : it induces not only an equivalence of derived categories, but even

an equivalence of homotopy categories, and it induces a similar equivalence for

centralizers of `-subgroups. One of our main results here is a proof of that con-

jecture. In order to show that there is a homotopy equivalence, for connected

groups, we show that the global functor induces local derived equivalences for

centralizers of `-subgroups. Since such centralizers need not be connected, we

need to extend the results of [BR03] to disconnected groups. So, part of this

work involves working with disconnected groups.

We also extend the “Jordan decomposition equivalences” (Morita and

splendid Rickard) to the “quasi-isolated case”: assume now only C◦G∗(s) ⊂ L∗,

and that L∗ is minimal with respect to this property. We show that the right

action of LF on HdimYP(YP,O)eL
F

s extends to an action of N = NGF (L, eL
F

s )

commuting with the action of GF , and the resulting bimodule induces a Morita

equivalence between OGF eG
F

s and ONeLFs . Similarly, the complex

GΓc(YV,O)eG
F

s

induces a splendid Rickard equivalence between OGF eG
F

s and ONeLFs .

As a consequence, we deduce that the bijection between blocks ofOGF eG
F

s

and ONeLFs preserves the local structure and, in particular, preserves defect

groups. Cabanes and Enguehard have proven this under some assumptions on

` [CE99, Prop. 5.1], and Kessar and Malle in the setting of [BR03], when one

of the blocks under consideration has abelian defect groups (modulo a cen-

tral `-subgroup) [KM13, Th. 1.3], an important step in their proof of half of

Brauer’s height zero conjecture for all finite groups [KM13, Th. 1.1] and the

second half for quasi-simple groups [KM15, Main Theorem].
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Let us summarize this.

Theorem 1.1. Assume C◦G∗(s) ⊂ L∗ and that L∗ is minimal with respect

to this property.

The right action of LF on GΓc(YP,O)eL
F

s extends to an action of N ,

and the resulting complex C induces a splendid Rickard equivalence between

OGF eG
F

s and ONeLFs . The bimodule HdimYP(C) induces a Morita equivalence

between OGF eG
F

s and ONeLFs .

The bijections between blocks of OGF eG
F

s and ONeLFs induced by those

equivalences preserve the local structure.

Significant progress has been made recently on counting conjectures for

finite groups, using the classification of finite simple groups, and [BR03] has

proved very useful. We hope this theorem will lead to simplifications and new

results.

The character-theoretic consequence of this theorem is that, for groups

with disconnected center, the Jordan decomposition shares many of the prop-

erties of that for the connected case. In type A, the Jordan decomposition of

characters links all series to unipotent series of smaller groups: even in that

case, the good behavior of those correspondences was known only when q is

large (Bonnafé [Bon06] for SLn and Cabanes [Cab13] for SUn).

1.B. Generation of the derived category. One of the two key steps in

[BR03] was the proof that the category of perfect complexes for OGF is gen-

erated by the complexes RΓc(YB), where B runs over Borel subgroups of G

with an F -stable maximal torus. We show here a more precise result of gener-

ation of the derived category of OGF . Let E be the set {RΓc(YB)⊗L
OTF M},

where T runs over F -stable maximal tori of G, B over Borel subgroups of G

containing T, and M over isomorphism classes of OTF -modules.

Theorem 1.2. The set E generates Db(OGF ) (as a thick subcategory) if

and only if all elementary abelian `-subgroups of GF are contained in tori.

This, in turn, requires an extension of the results of Broué-Michel [BM89]

on the compatibility between Deligne-Lusztig series of characters and the

Brauer morphism, to disconnected groups. We are able to achieve this by

refining our result on the generation of the category of perfect complexes to a

generation of the category of `-permutation modules whose vertices are con-

tained in tori. (The crucial case is that of connected groups.) Such a result

allows us to obtain a generating result for the full derived category, under the

assumption that all elementary abelian `-subgroups are contained in tori.

Note that the condition is automatically satisfied for GLn and Un (see

Examples 3.17) and when ` is very good for G.
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1.C. Independence of the Deligne-Lusztig induction of the parabolic in a

given series. It is known in most cases, and conjectured in general, that the

mapRG
L⊂P on Grothendieck groups is actually independent of P ([DL76, Lus78]

when L is a torus and [BM11] when q > 2 and F is a Frobenius endomorphism

over Fq). On the other hand, the functor RG
L⊂P does depend on P. Our main

new geometrical result proves the independence after truncating by a suitable

series.

Let P1 and P2 be two parabolic subgroups admitting a common Levi

complement L. Denote by V∗i the unipotent radical of the parabolic subgroup

of G∗ corresponding to Pi.

Theorem 1.3. Let s be a semi-simple element of L∗F
∗

of order prime

to `. If

CV∗1∩F
∗V∗1

(s) ⊂ CV∗2
(s) and CV∗2∩F

∗V∗2
(s) ⊂ CF∗V∗1

(s),

then there is an isomorphism of functors between

RG
L⊂P1

: Db(ΛLF eL
F

s ) −→ Db(ΛGF eG
F

s )

and

RG
L⊂P2

[m] : Db(ΛLF eL
F

s ) −→ Db(ΛGF eG
F

s ),

where m = dim(YG
P2

)− dim(YG
P1

).

For instance, if CV∗1
(s) = CV∗2

(s), then the assumption of Theorem 1.3 is

satisfied.

This is the key result to prove Theorem 1.1. This result shows that when

C◦G∗(s) ⊂ L∗, the (OGF ,OLF )-bimodule HdimYP(YP,O)eL
F

s is independent

of P, a question left open in [BR03]. We deduce that the bimodule is stable

under the action of N = NGF (LF , eL
F

s ). Using an embedding in a group with

connected center, we show that the obstruction for extending the action of LF

to N does vanish.

Remark. Theorem 1.3 is used in [Dat16] to construct equivalences of cate-

gories between tamely ramified blocks of p-adic general linear groups. Roughly

speaking, the main idea of [Dat16] is to “glue” the bimodules giving the Morita

equivalences of [BR03] along a suitable building. The gluing process crucially

uses the independence of the bimodules on the choice of parabolic subgroups.

1.D. Structure of the article. We begin in Section 3 with the study of

generation of the category of perfect complexes, then we move to complexes of

`-permutation modules, and finally we derive our result on the derived category.

A key tool, due to Rickard, is that the Brauer functor applied to the complex

of cohomology of a variety is the complex of cohomology of the fixed point

variety.
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Section 4 is devoted to the study of rational series and their compatibility

with local block theory. Broué and Michel proved a commutation formula

between generalized decomposition maps and Deligne-Lusztig induction. We

need to extend the compatibility between Brauer and Deligne-Lusztig theory

to disconnected groups and check that the local blocks obtained from a series

satisfying C◦G∗(s) ⊂ L∗ also satisfy a similar assumption C◦(C◦G(Q))∗(s) ⊂ (L ∩
C◦G(Q))∗.

From Section 5 onwards, the group G is assumed to be connected. Sec-

tions 5 and 6 are devoted to the study of the dependence of the Deligne-Lusztig

induction with respect to the parabolic subgroup. The first section is devoted

to the particular case of varieties associated with Borel subgroups (and gener-

alizations involving sequences of elements). It is convenient there to work with

a reference maximal torus. This is the crucial case, from which the general one

is deduced in the latter section, where we go back to Levi subgroups that do

not necessarily contain that fixed maximal torus.

Section 7 is devoted to the Jordan decomposition. We start by providing

an extension of the action of N on the cohomology bimodule by proving that

the cocycle obstruction would survive in a similar setting for a group with

connected center, where the action does exist. The Rickard equivalence is

obtained inductively, and that induction requires working with disconnected

groups.

In an appendix, we provide some results on the homotopy category of

complexes of `-permutation modules for a general finite group.

We would like to thank the Referee for an extraordinarily thorough list of

suggestions, which greatly improved our paper.

2. Notation

2.A. Modules. Let ` be a prime number, K a finite extension of Q` large

enough for the finite groups considered, O its ring of integers over Z` and k its

residue field. We will denote by Λ a ring that is either K, O or k.

Given C an additive category, we denote by Compb(C) the category of

bounded complexes of objects of C and by Hob(C) its homotopy category.

Let A be a Λ-algebra, finitely generated and projective as a Λ-module. We

denote by Aopp the algebra opposite to A. We denote by A-mod the category

of finitely generated A-modules and by A-proj its full subcategory of projective

modules. We denote by G0(A) the Grothendieck group of A-mod.

We put Compb(A) = Compb(A-mod), Db(A) = Db(A-mod) and Hob(A) =

Hob(A-mod). We denote by A-perf ⊂ Db(A) the thick full subcategory of

perfect complexes (complexes quasi-isomorphic to objects of Compb(A-proj)).

Let C ∈ Compb(A). There is a unique (up to a nonunique isomorphism)

complex Cred that is isomorphic to C in the homotopy category Hob(A) and
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that has no nonzero direct summand that is homotopy equivalent to 0. Note

that C ' Cred ⊕ C ′ for some C ′ homotopy equivalent to zero.

We denote by End•A(C) the total Hom-complex, with degree n term⊕
j−i=n HomA(Ci, Cj).

Let B be Λ-algebra, finitely generated and projective as a Λ-module. Let

C be a bounded complex of (A⊗Λ B
opp)-modules, finitely generated and pro-

jective as left A-modules and as right B-modules. We say that C induces a

Rickard equivalence between A and B if the canonical map B → End•A(C) is

an isomorphism in Ho(B⊗ΛB
opp) and the canonical map A→ End•Bopp(C)opp

is an isomorphism in Ho(A⊗Λ A
opp).

2.B. Finite groups. Let G be a finite group. We denote by Gopp the

opposite group to G. We put ∆G = {(g, g−1)|g ∈ G} ⊂ G × Gopp. Given

g ∈ G, we denote by |g| the order of g.

Let H be a subgroup of G and x ∈ G. We denote by x∗ the equivalence

of categories

x∗ : Λ(x−1Hx)-mod
∼−→ ΛH-mod,

where x∗(M) = M as a Λ-module and the action of h ∈ H on x∗(M) is

given by the action of x−1hx on M . We also denote by x∗ the corresponding

isomorphism of Grothendieck groups

x∗ : G0(Λ(x−1Hx))
∼−→ G0(ΛH).

We assume Λ = O or Λ = k in the remainder of Section 2.B.

An `-permutation ΛG-module is defined to be a direct summand of a

finitely generated permutation module. We denote by ΛG-perm the full sub-

category of ΛG-mod with objects the `-permutation ΛG-modules.

Let Q be an `-subgroup Q of G. We consider the Brauer functor BrQ :

ΛG-perm → k[NG(Q)/Q]-perm. Given M ∈ ΛG-perm, we define BrQ(M) as

the image of MQ in (kM)Q, where (kM)Q is the largest quotient of kM =

k ⊗Λ M on which Q acts trivially.

We denote by brQ : (ΛG)Q → kCG(Q) the algebra morphism given by

brQ(
∑
g∈G λgg) =

∑
g∈CG(Q) λgg, where λg ∈ Λ for g ∈ G. Given M ∈

ΛG-perm and e ∈ Z(ΛG) an idempotent, we have BrQ(Me) = BrQ(M)brQ(e).

Let H be a subgroup of G, let b be an idempotent of Z(ΛG) and c an

idempotent of Z(ΛH). Let C ∈ Compb(ΛGb ⊗ (ΛHc)opp). We say that C

is splendid if the (Cred)i’s are `-permutation modules whose indecomposable

direct summands have a vertex contained in ∆H.

2.C. Varieties. Let p be a prime number different from ` and F an alge-

braic closure of Fp. By variety, we mean a quasi-projective algebraic variety

over F.
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Let X be a variety acted on by a finite group G. There is an object

GΓc(X,Λ) of Hob(ΛG-perm), well defined up to a unique isomorphism. It is

a representative in the homotopy category of ΛG-modules of the isomorphism

class of the complex of étale Λ-cohomology with compact support of X con-

structed as τ6 2 dimX of the Godement resolution (cf. [Rou02, §2], [DR14, §1.2],

and [Ric94]). We denote by RΓc(X,Λ) the image of GΓc(X,Λ) in Db(ΛG).

Assume Λ = O or k, and let Q be an `-subgroup of G. The inclusion

XQ ↪→ X induces an isomorphism [Ric94, Th. 4.2]

GΓc(X
Q, k)

∼−→ BrQ(GΓc(X,Λ)) in Hob(kNG(Q)-perm).

2.D. Reductive groups. Let G be a (possibly disconnected) reductive al-

gebraic group endowed with an endomorphism F , a power F δ of which is a

Frobenius endomorphism defining a rational structure over a finite field Fq of

characteristic p. We refer to [DM94], [DM15] for basic results on disconnected

groups.

Recall that a torus of G is torus of G◦. Following the classical terminology

(cf., for example, [Spr98, §6.2]), we define a Borel subgroup of G to be a max-

imal connected solvable subgroup of G. We define a parabolic subgroup of G

to be a subgroup P of G such that G/P is complete. We define the unipo-

tent radical V of a parabolic subgroup P to be its unique maximal connected

unipotent normal subgroup. A Levi complement to V in P is a subgroup L

of P such that P = V o L.

Note that a closed subgroup P of G is a parabolic subgroup of G if and

only if P◦ is a parabolic subgroup of G◦. Let P be a parabolic subgroup of

G. We have P◦ = P ∩G◦. The unipotent radical V of P coincides with that

of P◦. A Levi complement to V in P is a subgroup of the form L = NP(L◦),

where L◦ is a Levi complement of V in P◦. (Then L◦ = L◦ and P = V o L.)

Note that our definition of parabolic subgroup is more general than that of

“parabolic” subgroup of [DM94], which requires P = NG(P◦).

We denote by ∇(G, F ) the set of pairs (T, θ) where T is an F -stable

maximal torus of G and θ is an irreducible character of TF . Note that here T

is a torus of G◦.

Given an integer d, we denote by ∇d′(G, F ) the set of pairs (T, θ) ∈
∇(G, F ) such that the order of θ is prime to d. We put ∇Λ(G, F ) = ∇(G, F )

if Λ = K and ∇Λ(G, F ) = ∇`′(G, F ) if Λ = O or k. (Recall that k is a field

of characteristic `.)

2.E. Deligne-Lusztig varieties. Given P a parabolic subgroup of G with

unipotent radical V and F -stable Levi complement L, we define the Deligne-

Lusztig variety

YV = YG
V = YP = YG

P = {gV ∈ G/V | g−1F (g) ∈ V · F (V)}.
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This is a smooth variety, as in the case of connected reductive groups. It has a

left action by multiplication of GF and a right action by multiplication of LF .

(Note that the left and right actions of Z(G)F coincide.) This provides a

triangulated functor

(2.1)
RG

L⊂P : Db(ΛLF ) −→ Db(ΛGF )

M 7−→ RΓc(YV,Λ)⊗L
ΛLF

M

and a morphism

RG
L⊂P = [RG

L⊂P] : G0(ΛLF )→ G0(ΛGF ).

We put XG
P = {gP ∈ G/P | g−1F (g) ∈ P · F (P)} = YG

P /L
F .

Remark 2.2. Since YP depends only on V, it is endowed with an action

of NGF (P◦,L◦), which is the group of rational points of the maximal Levi

subgroup with connected component L◦.

3. Generation

The aim of this section is to extend [BR03, Th. A] to the case of discon-

nected groups and to deduce a generation theorem for the derived category.

In this section, G is a (possibly disconnected) reductive algebraic group.

3.A. Centralizers of `-subgroups. Let P be a parabolic subgroup of G

admitting an F -stable Levi complement L, and let V denote the unipotent

radical of P. It is easily checked [DM94, proof of Prop. 2.3] that

(3.1) YG
V =

∐
g∈GF /G◦F

gYG◦
V = GF ×G◦F YG◦

V .

It follows immediately from (3.1) that

(3.2) RG
L⊂P ◦ IndLF

L◦F ' R
G
L◦⊂P◦ ' IndGF

G◦F ◦R
G◦
L◦⊂P◦ .

If G = P ·G◦, then the isomorphism G◦/V×L◦ L ' G/V induces an isomor-

phism

(3.3) RG◦
L◦⊂P◦ ◦ ResL

F

L◦F ' ResG
F

G◦F ◦R
G
L⊂P.

Proposition 3.4. Let Q be a finite solvable p′-group of automorphisms

of G that commute with F and normalize (P,L).

(a) The group GQ is reductive.

(b) PQ is a parabolic subgroup of GQ whose unipotent radical is VQ and admit-

ting LQ as an F -stable Levi complement. In particular, VQ is connected.

(c) The natural map GQ/VQ → (G/V)Q of (GQ, NG(P◦,L◦)Q)-varieties is

an isomorphism.

(d) (V · FV)Q = VQ · F(VQ).
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(e) The natural map YGQ

VQ → (YG
V)Q of ((GQ)F , (NG(P◦,L◦)Q)F )-varieties

is an isomorphism. If Q is an `-group, it gives rise to an isomorphism

BrQ(GΓc(Y
G
V , k))

∼−→GΓc(Y
GQ

VQ , k) in Hob(k((GQ)F×(NG(P◦,L◦)Q)Fopp).

Proof. Assume first that Q is cyclic, generated by an element l. (a) and

(b) follow from [DM94, Prop. 1.3, Th. 1.8, Prop. 1.11].

(c) Note that that both varieties are smooth. (For (G/V)Q, this follows

from the fact that Q is a p′-group and G/V is smooth.) The injectivity of the

map is clear.

Let us prove the surjectivity. Let gV ∈ (G/V)Q. Then, g−1l(g) ∈ V.

Denote by ad(g) the automorphism x 7→ gxg−1 of G. Since ad(g)−1l ad(g) is

semisimple, it stabilizes a maximal torus of P◦ (see [Ste68, Th. 7.5]), and hence

it stabilizes the unique Levi complement L′ of P◦ containing this maximal

torus. Since all Levi complements are conjugate under the action of V, there

exists v ∈ V such that v−1L′v = L◦. It follows that (gv)−1l(gv) ∈ V and

(gv)−1l(gv) normalizes L◦, hence (gv)−1l(gv) = 1, so gv ∈ GQ, as desired.

The tangent space at V of (G/V)Q is the Q-invariant part of the tangent

space of G/V at V. That last tangent space is a quotient of the tangent space

of G at the origin. It follows that the canonical map GQ → (G/V)Q induces

a surjective map between tangent spaces at the origin. Consequently, the

canonical map GQ/VQ → (G/V)Q induces a surjective map between tangent

spaces at the origin. We deduce that the map is an isomorphism.

(d) The number of F -stable maximal tori of L is a power of p (see [Ste68,

Cor. 14.16]). Since Q is a p′-group, it normalizes some F -stable maximal torus.

Using now the root system with respect to this maximal torus, we deduce that

there exists a Q-stable subgroup V′ of V such that V = V′ · (V ∩ F (V)) and

V′ ∩ F (V) = 1. Therefore, V · F (V) = V′ · F (V) and the result follows.

(e) follows immediately from (c) and (d).

We prove now the proposition by induction on |Q|. Let Q1 be a normal

subgroup of Q of index a prime number and let l ∈ Q, l 6∈Q1. Let Q2 be

the subgroup of Q generated by l. By induction, the proposition holds for

Q replaced by Q1: we have a reductive group G1 = GQ1 and a parabolic

subgroup P1 = PQ1 with unipotent radical V1 = VQ1 and an F -stable Levi

complement L1 = LQ1 . These are all stable under Q2. The cyclic case of

the proposition applied to the action of Q2 on (G1,P1,V1,L1) establishes the

proposition for the action of Q on (G,P,V,L). �

Remark 3.5. If Q is a finite solvable p′-subgroup of GF , then NG(Q)

is reductive. If in addition Q normalizes (P,L), then NP(Q) is a parabolic

subgroup of NG(Q) with unipotent radical VQ and Levi complement NL(Q).

The maps defined in (e) of Proposition 3.4 are equivariant for the diagonal

action of NG(P◦,L◦, Q)F .
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We will need a converse to Proposition 3.4, in the case of tori.

Lemma 3.6. Let Q be a finite solvable p′-group of automorphisms of G

that commute with F . We assume Q stabilizes a maximal torus of G and a

Borel subgroup containing that maximal torus.

Let TQ be an F -stable maximal torus of GQ contained in a Borel sub-

group BQ of GQ. Then, CG◦(TQ) is an F -stable maximal torus of G that is

contained in a Q-stable Borel subgroup B of G such that (BQ)◦ = BQ.

Proof. Note that the lemma holds for Q cyclic by [DM94, Th. 1.8]. We

proceed by induction on |Q| as in the proof of Proposition 3.4, and we keep

the notation of that proof. We know (the lemma for Q2) that TQ1 = CG◦1
(TQ)

is an F -stable maximal torus of G◦1. By induction, CG◦(TQ) = NG◦(TQ1)◦ =

CG◦(TQ1) is an F -stable maximal torus of G.

The existence of the Borel subgroup can be obtained as in [DM94, p. 350].

Let T′ be a maximal torus of G stable under Q and B′ be a Borel subgroup of

G containing T′ and stable under Q. By Proposition 3.4, (T′Q)◦ is a maximal

torus of GQ and (B′Q)◦ is a Borel subgroup containing it. So, there is x ∈
(GQ)◦ such that TQ = x(T′Q)◦ and BQ = x(B′Q)◦. Let B = xB′. This is a

Q-stable Borel subgroup of G containing CG◦(TQ). By Proposition 3.4, (BQ)◦

is a Borel subgroup of GQ, hence (BQ)◦ = BQ. �

To complete Proposition 3.4, note the following result.

Lemma 3.7. Let P be an `-subgroup of GF × NGF (P,L)opp such that

(YG
V)P 6= ∅. Then P is (GF × 1)-conjugate to a subgroup of ∆NGF (P,L).

Proof. Replacing L by NG(P,L), we can assume that NG(P,L) = L. Let

Q ⊂ LF (resp. R ⊂ GF ) denote the image of P through the second (resp. first)

projection, and let yV ∈ (YG
V)P .

If g ∈ R, then there exists l ∈ Q such that (g, l) ∈ P . Therefore, gylV =

yV, hence y−1gyV = l−1V. This implies that y−1Ry ⊂ QV. We denote by

η : R → Q the composition R
∼−→ y−1Ry ↪→ QV � Q. Since R (resp. Q) acts

freely on G/V as they are `-groups, the previous computation shows that η is

an isomorphism and that

P = {(g, η(g)) | g ∈ R}.

Now, there exists a positive integer m such that Fm(P) = P and y−1Ry

⊂ PFm . So y−1Ry acts by left translation on PFm/LF
m

. Since y−1Ry is a

finite `-group and |PFm/LF
m | = |VFm | is a power of p, it follows that y−1Ry

has a fixed point in PFm/LF
m

. Consequently, there exists v ∈ V such that

y−1lyvL = vL for all l ∈ R. In other words, (yv)−1R(yv) ⊂ L. This means

that, by replacing y by yv if necessary, we may assume that y−1Ry ⊂ L.

Therefore, y−1Ry = Q and P = {(yly−1, l) | l ∈ Q}.
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Now, y−1F (y) ∈ V · F (V) but, since F (yly−1) = yly−1 for all l ∈ Q, we

deduce that y−1F (y) ∈ CG(Q). So

y−1F (y) ∈ (V · F (V)) ∩ CG(Q) = CV(Q) · F (CV(Q)) ⊂ C◦G(Q);

see Proposition 3.4(b) and (d). So, by Lang’s Theorem, there exists x ∈ C◦G(Q)

such that y−1F (y) = x−1F (x). This implies that h = yx−1 ∈ GF , and

P = {(hlh−1, l) | l ∈ Q},

as expected. �

Corollary 3.8. The indecomposable direct summands of the complex

of O(GF ×NGF (P,L)opp)-module GΓc(Y
G
V ,O)red have a vertex contained in

∆NGF (P,L).

Proof. Let Q be an `-subgroup of GF×NGF (P,L)opp that is not (GF×1)-

conjugate to a subgroup of ∆NGF (P,L). We have BrQ(GΓc(Y
G
V ,O)) '

GΓc((Y
G
V)Q, k) ' 0 in Hob(kNGF×(LF )opp(Q)) by Lemma 3.7. The result fol-

lows now from Lemma A.2. �

3.B. Perfect complexes and disconnected groups. Given M a simple ΛGF -

module, we denote by Y(M) the set of pairs (T,B) such that T is an F -stable

maximal torus of G and B is a (connected) Borel subgroup of G contain-

ing T such that RHom•ΛGF (RΓc(YB,Λ),M) 6= 0. We then set d(M) =

min(T,B)∈Y(M) dim(YB). The following two theorems are proved in [BR03,

Th. A] whenever G is connected.

Theorem 3.9. Let M be a simple ΛGF -module. Then Y(M) 6= ∅. More-

over, given (T,B) ∈ Y(M) such that d(M) = dim(YB), we have

HomDb(ΛGF )(RΓc(YB,Λ),M [−i]) = 0

for all i 6= d(M).

Proof. By (3.2), we have

HomDb(ΛGF )(RΓc(Y
G
B ,Λ),M [−i])

= HomDb(ΛG◦F )(RΓc(Y
G◦
B ,Λ),ResG

F

G◦F M [−i]).

Since M is simple and G◦F C GF , it follows that ResG
F

G◦F M is semisimple.

Since the theorem holds in G◦F (see [BR03, proof of Th. A]), we know that

Y(M) is not empty. The second statement follows from the fact that, if two

simple ΛG◦F -modules M1 and M2 occur in the semisimple module ResG
F

G◦F M ,

then they are conjugate under GF , and so d(M1) = d(M2) = d(M). �
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Theorem 3.10. The triangulated category ΛGF -perf is generated by the

complexes RΓc(YB,Λ), where T runs over the set of F -stable maximal tori of

G and B runs over the set of Borel subgroups of G containing T.

3.C. Generation of the derived category. In this subsection, we assume

Λ = O or k. We refer to Appendix A for the needed facts about `-permutation

modules.

Let Q be an `-subgroup of GF , and let M be an indecomposable `-

permutation Λ[GF ×Qopp]-module with vertex ∆Q. We denote by Y[M ] the

set of pairs (T,B) satisfying the following conditions:

• T is an F -stable maximal torus of G contained in a Borel subgroup B of

G such that Q normalizes (T,B);

• M is a direct summand of a term of the complexÄ
Res

GF×N
GF

(B,T)opp

GF×Qopp GΓc(YB,Λ)
äred

.

We set d[M ] = min(T,B)∈Y[M ] dim(Y
C◦G(Q)

C◦B(Q) ).

Lemma 3.11. If Q normalizes a pair (T ⊂ B), where T is an F -stable

maximal torus and B a Borel subgroup of G, then Y[M ] 6= ∅. Moreover, given

(T,B) ∈ Y[M ] such that d[M ] = dim(YC◦B(Q)), the degree i term of the com-

plex
Ä
Res

GF×N
GF

(B,T)opp

GF×Qopp GΓc(YB,Λ)
äred

has no direct summand isomorphic

to M if i 6= d[M ].

Proof. Note thatNGF×Qopp(∆Q)=(CG(Q)F×1)∆Q. We identify CG(Q)F

with NGF×Qopp(∆Q)/∆Q via the first projection. Let V = Br∆Q(M), an inde-

composable projective kCG(Q)F -module. Let L be the simple quotient of V .

Now, let BQ be a Borel subgroup of CG(Q) admitting an F -stable maximal

torus TQ. By Lemma 3.6, CG(TQ)◦ is an F -stable maximal torus of G and it

is contained in a Borel subgroup B of G such that BQ = C◦B(Q).

We set D=
Ä
Res

CG(Q)F×TFopp
Q

CG(Q)F×1
GΓc(Y

CG(Q)
BQ

, k)
äred

. By Proposition 3.4(e),

we have

Br∆Q(GΓc(Y
G
B ,Λ)) ' GΓc

Ä
(YG

B )∆Q, k
ä
' GΓc(Y

CG(Q)
BQ

, k) ' D

in Hob(kCG(Q)F ). It follows from Lemma A.2 that M is a direct summand

of the i-th term of
Ä
Res

GF×TFopp
Q

GF×Qopp GΓc(Y
G
B ,Λ)

äred
if and only if V is a direct

summand of Di. So the result follows from Theorem 3.9. Note that d[M ] =

d[V ] = d(L) = dimY
CG(Q)
BQ

. �

Recall that given a Borel subgroup B of G with an F -stable maximal

torus T, the variety YB has a right action of NGF (T,B) (cf. Remark 2.2).
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Let A be the thick subcategory of Hob(ΛGF ) generated by the complexes

of the form

GΓc(YB,Λ)⊗ΛQ L,

where

• T runs over F -stable maximal tori of G;

• B runs over Borel subgroups of G containing T;

• Q is an `-subgroup of NGF (T,B);

• and L is a ΛQ-module, free of rank 1 over Λ.

Let B be the full subcategory of ΛGF -mod consisting of modules whose

indecomposable direct summands have a one-dimensional source and a vertex

Q that normalizes a pair (T ⊂ B), where T is an F -stable maximal torus and

B a Borel subgroup of G.

Theorem 3.12. We have A = Hob(B).

Proof. Given N an indecomposable ΛGF -module with a one-dimensional

source L and a vertex Q that normalizes a pair (T ⊂ B), where T is an F -stable

maximal torus and B a Borel subgroup, we set d[N ] to be the minimum of the

numbers d[M ], where M runs over the set of indecomposable `-permutation

Λ(GF ×Qopp)-modules with vertex ∆Q and such that N is a direct summand

of M ⊗ΛQ L.

Note that if M is an indecomposable `-permutation Λ(GF×Qopp)-module

with vertex properly contained in ∆Q, then the indecomposable direct sum-

mands of M ⊗ΛQ L have vertices of size < |Q| and a one-dimensional source.

Since the Λ(GF ×Qopp)-module ΛG is a direct sum of indecomposable mod-

ules with vertices contained in ∆Q, we deduce that there is an indecomposable

`-permutation Λ(GF × Qopp)-module M with vertex ∆Q and such that N is

a direct summand of M ⊗ΛQ L.

We now proceed by induction on the pair (|Q|, d[N ]) (ordered lexico-

graphically) to show that N ∈ A. Fix M an indecomposable `-permutation

Λ(GF × Qopp)-module M with vertex ∆Q and such that N is a direct sum-

mand of M ⊗ΛQ L, with d[N ] = d[M ]. Let (T,B) ∈ Y[M ] be such that

dim(YB) = d[M ], and let D =
Ä
Res

GF×N
GF

(T,B)opp

GF×Qopp GΓc(Y
G
B ,Λ)

äred
.

If i 6= d[M ], then Lemma 3.11 and Corollary 3.8 show that the indecom-

posable direct summands M ′ of Di have vertices of size < |Q|, or have vertex

∆Q and satisfy d[M ′] < d[M ]. Therefore, the indecomposable direct sum-

mands N ′ of Di⊗ΛQ L have vertices of size < |Q| or have vertex Q and satisfy

d[N ′] < d[N ]. We deduce from the induction hypothesis that Di ⊗ΛQ L ∈ A
for i 6= d[N ]. Since N is a direct summand of Dd[N ] ⊗ΛQ L and D ⊗ΛQ L ∈ A
by construction, we deduce that N ∈ A. �
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Corollary 3.13. Assume every elementary abelian `-subgroup of GF

normalizes a pair (T ⊂ B), where T is an F -stable maximal torus and B a

Borel subgroup of G. Then Db(ΛGF ) is generated, as a triangulated category

closed under direct summands, by the complexes RΓc(YB,Λ)⊗ΛQ L, where T

runs over the set of F -stable maximal tori of G, B runs over the set of Borel

subgroups of G containing T, Q runs over the set of `-subgroups of NGF (T,B)

and L runs over the set of (isomorphism classes) of ΛQ-modules that are free

of rank 1 over Λ.

Proof. Since the category Db(ΛGF ) is generated, as a triangulated cate-

gory closed under taking direct summands, by indecomposable modules with

elementary abelian vertices and one-dimensional source [Rou14, Cor. 2.3], the

statement follows from Theorem 3.12. �

Remark 3.14. It is easy to show conversely that if Db(ΛGF ) is generated

by the complexes RΓc(YB,Λ) ⊗ΛQ L as in Corollary 3.13, then Db(ΛGF ) is

generated by indecomposable modules with a one-dimensional source and an

elementary abelian vertex that normalizes a pair (T ⊂ B), where T is an

F -stable maximal torus and B a Borel subgroup.

In particular, the generation assumption for Λ = k implies that all ele-

mentary abelian `-subgroups of GF are contained in maximal tori.

The particular case GF = GLn(Fq) (for arbitrary n) is enough to ensure

that Db(H) is generated by indecomposable modules with elementary abelian

vertices and one-dimensional source, for any finite group H — this fact is a

straightforward consequence of Serre’s product of Bockstein’s Theorem, but

we know of no other proof. It would be interesting to find a direct proof of

that result for GLn(Fq).

Recall that an element of G0(ΛGF ) is uniform if it is in the image of∑
TR

G
T (G0(ΛTF )), where T runs over the set of F -stable maximal tori of G.

One can actually describe exactly which complexes are “uniform”.

Corollary 3.15. Let T be the full triangulated subcategory of Db(ΛGF )

generated by the complexes RΓc(YB,Λ)⊗ΛN
GF

(T,B) M where T runs over the

set of F -stable maximal tori of G, B runs over the set of Borel subgroups of G

containing T and M runs over the set of (isomorphism classes) of finitely gen-

erated ΛNGF (T,B)-modules. Assume that every elementary abelian `-subgroup

of GF normalizes a pair (T ⊂ B), where T is an F -stable maximal torus and

B a Borel subgroup of G.

An object C of Db(ΛGF ) is in T if and only if [C] ∈ G0(ΛGF ) is uniform.

Proof. The statement follows from Corollary 3.13 and from Thomason’s

classification of full triangulated dense subcategories [Tho97, Th. 2.1]. �
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Remark 3.16. Note that Corollary 3.15 holds also for Λ = K: in the proof,

Corollary 3.13 is replaced by Theorem 3.10.

Examples 3.17. (1) If G = GLn(F) or SLn(F), then all abelian subgroups

consisting of semisimple elements are contained in maximal tori. This just

amounts to the classical result in linear algebra that says a family of commuting

semisimple elements always admits a basis of common eigenvectors.

(2) Assume G is connected. Let π(G) denote the set of prime numbers

that are bad for G or divide |(Z(G∗)/Z(G∗)◦)F
∗ |. If ` 6∈ π and if t is an `-

element of GF , then CG(t) is a Levi subgroup of G and π(CG(t)) ⊂ π(G)

[CE04, Prop. 13.12(iii)]. An induction argument shows the following fact.

(3.18)

If ` 6∈ π, then all abelian `-subgroups of GF are contained in maximal tori.

So Corollary 3.13 can be applied if ` 6∈ π. This generalizes (1).

Counter-example 3.19. Assume here, and only here, that ` = 2 (so that

p 6= 2) and that G = PGL2(F). Let t (resp. t′) denote the class of the matrix(
1 0
0 −1

)
(resp. ( 0 1

1 0 )) in G. Then 〈t, t′〉 is an elementary abelian 2-subgroup of

G which is not contained in any maximal torus of G. (Indeed, since G has

rank 1, all finite subgroups of maximal tori of G are cyclic.)

4. Rational series

4.A. Rational series in connected groups. We assume in this subsection

that G is connected.

Let d be a positive integer divisible by δ and such that (wF )d(t) = tq
d/δ

for all t ∈ T and w ∈ NG(T). Let ζ be a generator of F×
qd/δ

. Recall [DM91,

Prop. 13.7] that the map

N : Y (T) −→ TF

λ 7−→ NF d/F (λ(ζ)) = λ(ζ) F(λ(ζ)) · · · F d−1
(λ(ζ))

is surjective and it induces an isomorphism Y (T)/(F − 1)(Y (T))
∼−→ TF . The

morphism

Y (Y)×X(T)→ K×, (λ, µ) 7→ ζ〈µ,λ+F (λ)+···+F d−1(λ)〉

factors through N × 1 and induces a morphism TF × X(T) → K×. The

corresponding morphism X(T) → Hom(TF ,K×) = Irr(TF ) is surjective and

induces an isomorphism X(T)/(F −1)(X(T))
∼−→ Irr(TF ) [DM91, Prop. 13.7].

Let (G∗,T∗, F ∗) be a triple dual to (G,T, F ) [DL76, Def. 5.21]. The

isomorphisms X(T)/(F − 1)(X(T))
∼−→ Irr(TF ) and X(T)/(F − 1)(X(T)) =

Y (T∗)/(F ∗ − 1)(Y (T∗))
∼−→ T∗F induce an isomorphism Irr(TF )

∼−→ T∗F
∗
.

Let (T, θ) ∈ ∇(G, F ), and let Φ (resp. Φ∨) denote the root (resp. coroot)

system of G relative to T.
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We set θY = θ ◦N : Y (T)→ K× and

Φ∨(θ) = Φ∨ ∩Ker(θY ).

Note that Φ∨(θ) is closed and symmetric, hence it defines a root system.

We denote by W ◦G(T, θ) its Weyl group. It is a subgroup of the Weyl group

NG(T)/T, and it is contained in the stabilizer WG(T, θ) of θY .

This can be translated as follows in the dual group [DM91, Prop. 2.3]. Let

s ∈ T∗F
∗

be the element corresponding to θ. Identifying the coroot system Φ∨

with the root system of G∗, we obtain that

Φ∨(θ) = {α∨ ∈ Φ∨ | α∨(s) = 1}
is the root system of CG∗(s). If V∗ is a unipotent subgroup of G∗ normal-

ized by T∗, then CV∗(s) is generated by the one-parameter subgroups of G∗

normalized by T∗, contained in V∗, and corresponding to elements of Φ∨(θ).

The groupW ◦G(T, θ) is identified with the Weyl groupW ◦(T∗, s) of C◦G∗(s)

relative to T∗, while WG(T, θ) is identified with the Weyl group W (T∗, s) of

CG∗(s).

Recall that (T1, θ1) and (T2, θ2) are in the same geometric series if there

exists x ∈ G such that (T2, θ
Y
2 ) = x(T1, θ

Y
1 ) and x−1F (x)T1 ∈ WG(T1, θ1).

The pairs are in the same rational series if, in addition, the element s2 ∈
T∗F

∗
1 corresponding to x−1

θ2 is G∗F
∗
-conjugate to s1. We have now a direct

description of rational series.

Proposition 4.1. The pairs (T1, θ1) and (T2, θ2) are in the same ratio-

nal series if and only if there exists x ∈ G such that (T2, θ
Y
2 ) = x(T1, θ

Y
1 ) and

x−1F (x)T1 ∈W ◦G(T1, θ1).

Proof. Note that given x ∈ G such that xT1 is F -stable, then x−1F (x) ∈
NG1(T1).

Let T∗i be an F ∗-stable maximal torus of G∗, and let si ∈ T∗F
∗

i be such

that the G∗F
∗
-orbit of (T∗i , si) corresponds to the GF -orbit of (Ti, θi). Then

the statement of the proposition is equivalent to the following:

(∗) s1 and s2 are G∗F
∗
-conjugate if and only if there exists x ∈ G∗ such that

(T∗2, s2) = x(T∗1, s1) and x−1F ∗(x)T∗1 ∈W ◦(T∗1, s1).

So let us prove (∗).
First, if s1 and s2 are G∗F

∗
-conjugate, then there exists x ∈ G∗F

∗
such

that s2 = xs1x
−1. Then T∗1 and x−1T∗2x are two maximal tori of C◦G∗(s1),

so there exists y ∈ C◦G∗(s1) such that yT∗1y
−1 = x−1T∗2x. Then (T∗2, s2) =

xy(T∗1, s1) and

(xy)−1F ∗(xy) = y−1F ∗(y) ∈ C◦G∗(s1),

as desired.

Conversely, assume that there exists x ∈ G∗ such that (T∗2, s2) = x(T∗1, s1)

and x−1F ∗(x)T∗1 ∈W ◦(T∗1, s1). By Lang’s Theorem applied to the connected
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group C◦G∗(s1), there exists y ∈ C◦G∗(s1) such that x−1F ∗(x) = y−1F ∗(y).

Then xy−1 ∈ G∗F
∗

and s2 = xy−1s1yx
−1. The proof of (∗) is complete. �

We can now translate the properties of regularity and super-regularity

defined in [BR03, §11.4]. Let P be a parabolic subgroup of G, and let L be

a Levi subgroup of P. We assume that L is F -stable. Let X ⊂ ∇(L, F ) be a

rational series.

Proposition 4.2. The rational series X is (G,L)-regular (resp. (G,L)-

super-regular) if and only if W ◦G(T, θ) ⊂ L (resp. WG(T, θ) ⊂ L) for some

(or any) pair (T, θ) ∈ X .

Proof. This follows immediately from [BR03, Lemma 11.6]. �

4.B. Coroots of fixed points subgroups. Now we again consider a not nec-

essarily connected reductive group G.

We fix an element g ∈ G that stabilizes a pair (T,B), where B is a Borel

subgroup of G and T is a maximal torus of B. Such an element is called quasi-

semisimple in [DM94] and [DM15]. For instance, any semisimple element of G

is quasi-semisimple. Recall from [DM94, Th. 1.8] that CG(g)◦ is a reductive

group, that CB(g)◦ = B ∩ CG(g)◦ is a Borel subgroup of CG(g) and that

CT(g)◦ = T ∩ CG(g)◦ is a maximal torus of CB(g). We shall be interested in

determining the coroot system of the fixed points subgroup CG(g)◦.

Let Φ (resp. Φ∨) be the root (resp. coroot) system of G◦ relative to T.

Let Φ(g) (resp. Φ∨(g)) denote the root (resp. coroot) system of CG(g)◦ relative

to CT(g)◦. If Ω is a g-orbit in Φ, we denote by cΩ ∈ F× the scalar by which

g|Ω| acts on the one-parameter unipotent subgroup associated with α (through

any identification of this one-parameter subgroup with the additive group F).

We denote by (Φ/g)a the set of g-orbits Ω in Φ such that there exist α, β ∈ Ω

such that α+ β ∈ Φ. We denote by (Φ/g)b the set of other orbits. We set

Φ[g] = {Ω ∈ (Φ/g)a | cΩ = 1 and p6=2} ∪ {Ω ∈ (Φ/g)b | cΩ = 1}.

Finally, if Ω ∈ (Φ/g)a (resp. Ω ∈ (Φ/g)b), then let Ω
∨

= 2
∑
α∈Ω α

∨ (resp. Ω
∨

=∑
α∈Ω α

∨). Note that Ω
∨

is g-invariant, so it belongs to Y (T)g = Y (CT(g)◦).

Proposition 4.3. Φ∨(g) = {Ω∨ | Ω ∈ Φ[g]}.

Proof. The statement depends only on the automorphism induced by g

on G◦ and can be proved with assuming that G◦ is semisimple. Since this

automorphism can then be lifted uniquely to the simply-connected covering

of G◦ (see [Ste68, 9.16]), we may also assume that G◦ is simply-connected.

Therefore, g permutes the irreducible components of G◦, and an easy reduc-

tion argument shows that we may assume that G◦ is quasi-simple. Let U

denote the unipotent radical of B, U− the unipotent radical of the opposite

Borel subgroup and, if α ∈ Φ, let Uα denote the corresponding one-parameter
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unipotent subgroup. We also denote by Gα the subgroup generated by Uα

and U−α: it is isomorphic to SL2(F) because G◦ is simply-connected.

If Ω ∈ Φ/g, we denote by UΩ the unipotent subgroup generated by

(Uα)α∈Ω. We follow the proof of [Ste68, Th. 8.2]. According to this proof,

any one-parameter unipotent subgroup V normalized by CT(g)◦ is contained

in some of these UΩ’s, and one of the following holds:

(1) Ω ∈ (Φ/g)b and cΩ = 1;

(2) Ω ∈ (Φ/g)a and cΩ = −1;

(3) Ω ∈ (Φ/g)a, cΩ = 1 and p 6= 2;

In all cases, V = CUΩ
(g). Let V− = CUΩ

(g).

In case (1), as [Uα,Uβ] = 1 if α, β ∈ Ω, the group 〈UΩ,U−Ω〉 is a direct

product of groups isomorphic to SL2(F) that are permuted by g. It then follows

that the coroot corresponding to the one-parameter subgroup V = CUΩ
(g)

(since cΩ = 1) is equal to ω∨ = Ω
∨

.

In cases (2) or (3), it follows from the classification that |Ω| = 2. (This

case only occurs in type A2n.) Let α ∈ Ω. Then UΩ = UαUg(α)Uα+g(α). In

case (2), the computations done in [Ste68, proof of Th. 8.2(2′′′′)] show that

V = Uα+g(α). Therefore V ⊂ UΩ′ , where Ω′ is the g-orbit (of cardinality 1)

of α+ g(α) and Ω′ ∈ (Φ/g)b, and we are back to case (1).

In case (3), the computations done in [Ste68, proof of Th. 8.2,(2′′′′)] show

that 〈V,V−〉 ' SO3(F) ' PGL2(F) and that the associated coroot is 2(α∨ +

g(α∨)) = Ω
∨

. �

Remark 4.4. If Ω ∈ (Φ/g)a, then it follows from the classification that |Ω|
is even, and so the order of g is even.

4.C. Centralizers and rational series. Let g ∈ GF be a quasi-semisimple

element of G. Let (S, θ) ∈ ∇(C◦G(g), F ). We then set S+ = CG◦(S). It follows

from [DM94, Th. 1.8(iv)] that S+ is a maximal torus of G◦ (containing S).

It is stable under the action of g, so we have a map Lg : S+ → S+, t 7→
t−1gtg−1 = [g, t] (which is a morphism of groups because S+ is abelian). If

t = Lg(s), then tgtg
2
t · · · gm−1

t = Lgm(s). In particular, if t ∈ CS+(g) = KerLg,
then tm = Lgm(s). This shows that any element of CS+(g) ∩ Lg(S+) has

order dividing the order of g. Note further that CS+(g)◦ = S (see [DM94,

Th. 1.8(iii)]). We have

dim(S · Lg(S+)) = dim(S) + dim(Lg(S+)) = dim(S) + dim(S+)− dim(kerLg)◦

= dim(S) + dim(S+)− dim(S) = dim(S+).

We deduce that

(4.5)

S+ = S · Lg(S+) and S ∩ Lg(S+) is finite of exponent dividing the order of g.
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Now, if H is a g-stable finite subgroup of S+ of order prime to the order of g,

then CH(g) ⊂ S (because the order of CS+(g)/S divides the order of g by

[DM94, Prop. 1.28]) and

(4.6) H = CH(g)× Lg(H).

So, if the linear character θ of SF has order prime to the order of g, then it can

be extended canonically to a linear character θ+ of S+F as follows (we use the

discussion above with H the subgroup of S+F of elements with order dividing

a power of the order of θ): θ+ is trivial on Lg(S+F ), is trivial on elements of

S+F of order prime to the order of θ and coincides with θ on SF . The fact

that θ+ is trivial on Lg(S+F ) is equivalent to

(4.7) θ+ is g-stable.

Note that, since S+∩C◦G(g) = S by [DM94, Th. 1.8], we may identify the Weyl

group of C◦G(g) relative to S to a subgroup of the Weyl group of G◦ relative

to S+. Through this identification, we get

Lemma 4.8. If the order of θ is prime to the order of g, then WC◦G(g)(S, θ)

⊂WG◦(S
+, θ+) and W ◦C◦G(g)(S, θ) ⊂W

◦
G◦(S

+, θ+).

Proof. Let w ∈ WC◦G(g)(S, θ). Then w stabilizes S+ = CG◦(S) and its

action on S commutes with the action of g. So it follows from the construction

of θ+ that w stabilizes θ+.

Let us now prove the second statement. Let α∨ be a coroot of C◦G(g)

relative to S such that θY (α∨) = 1. Let sg,α denote the corresponding reflection

in W ◦C◦G(g)(S, θ). It is sufficient to prove that sg,α ∈ W ◦G◦(S
+, θ+). Then it

follows from Proposition 4.3 that there exists a coroot β∨ of G◦ relative to S+

and m ∈ {1, 2} such that

α∨ = m
r−1∑
i=0

gi(β∨),

where r > 1 is minimal such that gr(β∨) = β∨. It follows from Remark 4.4

that, if m = 2, then g has even order. Now,

1 = θ+Y (α∨) =
r−1∏
i=1

θ+Y (gi(β∨))m = θ+Y (β∨)mr,

because θ+ is g-stable. Since m and r divide the order of g, mr is prime to the

order of θ+, so this implies that θ+Y (β∨) = 1. In particular,

sβ, sg(β), . . . , sgr−1(β) ∈W ◦G◦(S+, θ+).

It follows from [Ste68, Proof of Th. 8.2(2′′′)] that then sg,α belongs to the

subgroup generated by sβ, sg(β),. . . , sgr−1(β). �
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Let (T1, θ1), (T2, θ2) ∈ ∇(G, F ). We say that (T1, θ1) and (T2, θ2) are ge-

ometrically conjugate (resp. in the same rational series) if there is t ∈ NGF (T1)

such that (T1,
tθ1) and (T2, θ2) are geometrically conjugate (resp. in the same

rational series) for ∇(G◦, F ). We denote by ∇(G, F )/ ≡ the set of rational

series.

Let Q be the subgroup of G generated by g, and let N be a subgroup of

NG(Q) containing CG(Q).

Corollary 4.9. Let (S1, θ1), (S2, θ2) ∈ ∇|g|′(N, F ) .

(a) If (S1, θ1) and (S2, θ2) are geometrically conjugate in N, then (S+
1 , θ

+
1 ) and

(S+
2 , θ

+
2 ) are geometrically conjugate in G.

(b) If (S1, θ1) and (S2, θ2) are in the same rational series of N, then (S+
1 , θ

+
1 )

and (S+
2 , θ

+
2 ) are in the same rational series of G.

So, the injective map ∇|g|′(N, F ) → ∇|g|′(G, F ), (S, θ) 7→ (S+, θ+) induces a

map

iGQ : ∇|g|′(N, F )/ ≡ −→ ∇|g|′(G, F )/ ≡ .

Proof. (a) If (S1, θ1) and (S2, θ2) are geometrically conjugate in N◦ =

C◦G(g) then, by definition, there exists x ∈ C◦G(g) such that S2 = xS1 and

θY2 = xθY1 = F (x)θY1 (as linear characters of Y (S2)). Since x commutes with g,

it sends Lg(S+
1 ) to Lg(S+

2 ), so it is immediately checked that θ+Y
2 = xθ+Y

1 =
F (x)θ+Y

1 . The case of geometric conjugacy in N and G follows immediately.

(b) If (S1, θ1) and (S2, θ2) are in the same rational series of C◦G(g), then,

by Proposition 4.1, there exists x ∈ C◦G(g) such that T2 = xT1, θY2 = xθY1
(as linear characters of Y (S2)) and x−1F (x) ∈ W ◦C◦G(g)(S1, θ1). So the result

follows from (a) and from Propositions 4.1 and 4.3. The case of rational series

in N and G follows immediately. �

Let L be an F -stable Levi complement of a parabolic subgroup P of G

containing g. Then CL(g) is an F -stable Levi complement of CP(g) [DM94,

Prop. 1.11].

Corollary 4.10. Let X ∈∇|g|′(C◦L(g), F )/≡be a rational series. If iLQ(X )

is (G◦,L◦)-regular (resp. (G◦,L◦)-super regular), then X is (C◦G(g), C◦L(g))-

regular (resp. (C◦G(g), C◦L(g))-super regular).

Proof. This follows from Proposition 4.2 and Lemma 4.8. �

The results above extend by induction to general nilpotent p′-subgroups.

Let Q be a nilpotent subgroup of GF of order prime to p. Fix a sequence

1 = Q0 ⊂ Q1 ⊂ · · · ⊂ Qr = Q of normal subgroups of Q such that Qi/Qi−1 is

cyclic for 1 6 i 6 r. Let Gi = NG(Q1 ⊂ · · · ⊂ Qi).
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The construction above defines a map

(4.10) ∇|Q|′(Gi+1/Qi, F ) = ∇|Q|′(NGi/Qi(Qi+1/Qi), F )→ ∇|Q|′(Gi/Qi, F )

that preserves rational and geometric series.

Fix 0 6 j 6 i 6 r. Let (T, θ) ∈ ∇|Q|′(Gi, F ). The kernel of the canonical

map TF → (T/(T ∩Qj))F has order a divisor of a power of the order of Qj ,

and so does its cokernel, since it is isomorphic to H1(F,T ∩ Qj). Since θ is

trivial on TF ∩Qj , it factors through a character of TF /(TF ∩Qj) that comes

by restriction from a (unique) character θ′ of (T/(T∩Qj))F . We obtain a pair

(T/(T ∩ Qj), θ′) ∈ ∇|Q|′(Gi/Qj , F ). This correspondence defines a bijection

∇|Q|′(Gi, F )
∼−→ ∇|Q|′(Gi/Qj , F ) that preserves rational and geometric series.

Composing those bijections with the map in (4.10), we obtain a map

∇|Q|′(Gi+1, F )→ ∇|Q|′(Gi, F ),

and composing all those maps, we obtain a map

∇|Q|′(NG(Q1 ⊂ · · · ⊂ Qr), F )→ ∇|Q|′(G, F ).

Finally, composing with the canonical map∇|Q|′(CG(Q), F )→ ∇|Q|′(NG(Q1 ⊂
· · · ⊂ Qr), F ), we obtain a map

∇|Q|′(CG(Q), F )→ ∇|Q|′(G, F )

that preserves rational and geometric series. Note that this map depends not

only on Q, but also on the filtration Q1 ⊂ · · · ⊂ Qr. Summarizing, we have

the following proposition.

Proposition 4.11. Let Q be a nilpotent subgroup of GF of order prime

to p. Fix a sequence 1 = Q0 ⊂ Q1 ⊂ · · · ⊂ Qr = Q of normal subgroups of Q

such that Qi/Qi−1 is cyclic for 1 6 i 6 r.
The constructions above define a map

iGQ• : ∇|Q|′(CG(Q), F )/ ≡ → ∇|Q|′(G, F )/ ≡ .

Let L be an F -stable Levi complement of a parabolic subgroup P of G

containing Q. Let X ∈ ∇|Q|′(CL(Q), F )/ ≡ be a rational series. Then

• CL(Q) is an F -stable Levi complement of CP(Q);

• if iLQ•(X ) is (G◦,L◦)-regular, then X is (C◦G(Q), C◦L(Q))-regular;

• if iLQ•(X ) is (G◦,L◦)-super regular, then X is (C◦G(Q), C◦L(Q))-super regu-

lar.

The map iGQ• is actually independent of the choice of the filtration of Q;

cf. Remark 4.15 below.
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4.D. Generation and series. Given (T, θ) ∈ ∇Λ(G, F ), we denote by e◦θ
the block idempotent of ΛTF not vanishing on θ.

We have now a generalization of [BR03, Th. A].

Given X ∈ ∇Λ(G, F )/ ≡, let CX be the thick subcategory of (ΛGF )-perf

generated by the complexes RΓc(YB)e◦θ where (T, θ) runs over X and B runs

over Borel subgroups of G◦ containing T.

Note that, by definition of rational series for nonconnected groups, we

obtain the same thick subcategory by taking instead the complexes RΓc(YB)eθ,

where eθ =
∑
t∈N

GF
(T,B)/CN

GF
(T,B)(θ)

e◦tθ.

Theorem 4.12. Let X ∈ ∇Λ(G, F )/ ≡. There is a (unique) central

idempotent eX of ΛGF such that CX = (ΛGF eX )-perf.

We have a decomposition in central orthogonal idempotents of ΛGF :

1 =
∑

X∈∇Λ(G,F )/≡
eX .

Proof. Note first that the theorem holds for G◦ by [BR03, Th. A]. Let

(Ti, θi) ∈ ∇Λ(G, F ), and let Bi be a Borel subgroup of G◦ containing Ti for

i ∈ {1, 2}. By (3.2) and (3.3), we have

Hom•ΛGF (RΓc(Y
G
B1

)e◦θ1 ,RΓc(Y
G
B2

)e◦θ2)

' Hom•ΛG◦F (RΓc(Y
G◦
B1

)e◦θ1 ,
⊕

t∈N
GF

(T2,B2)/TF2

RΓc(Y
G◦
B2

)e◦tθ2).

The connected case of the theorem shows this is 0 unless (T1, θ1) and (T2,
tθ2)

are in the same rational series of (G◦, F ) for some t.

We have shown that the categories CX1 and CX2 are othogonal for X1 6=X2.

The theorem follows now from [BR03, Prop. 9.2] and Theorem 3.10. �

Let X ∈ ∇Λ(G, F )/ ≡. Let AX be the thick subcategory of Hob(ΛGF )

generated by the complexes of the form

GΓc(YB,Λ)eθ ⊗ΛQ L,

where

• (T, θ) runs over X ;

• B runs over Borel subgroups of G◦ containing T;

• Q is an `-subgroup of NGF (T,B);

• and L is a ΛQ-module, free of rank 1 over Λ.

Let BX be the full subcategory of ΛGF eX -mod consisting of modules

whose indecomposable direct summands have a one-dimensional source and a

vertex Q that normalizes a pair (T ⊂ B), where T is an F -stable maximal

torus and B a Borel subgroup of G.

Theorem 4.13. Let X ∈ ∇Λ(G, F )/ ≡. We have AX = Hob(BX ).
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Proof. By Theorem 4.12, we have GΓc(YV,Λ)eθ ⊗ΛQ L ∈ Hob(BX ) if

(T, θ) ∈ X . It follows that AX ⊂ Hob(BX ). Since A =
⊕
X∈∇Λ(G,F )/≡AX , the

theorem follows from Theorem 3.12. �

4.E. Decomposition map and Deligne-Lusztig induction. The following re-

sult generalizes [BM89, Th. 3.2] to noncyclic `-subgroups and to disconnected

groups (needed to handle the noncyclic case by induction).

Theorem 4.14. Let Q be an `-subgroup of GF . The map iGQ• (cf. Propo-

sition 4.11) is independent of the filtration of Q, and we denote it by iQ = iGQ .

Let X ∈ ∇`′(G, F )/ ≡. We have

brQ(eX ) =
∑

Y∈i−1
Q (X )

eY .

Proof. Assume first that Q is cyclic. Let Y ∈ i−1
Q (X ), and let (S, θ) ∈ Y.

Let BQ be a Borel subgroup of CG(Q) containing S. Note that GΓc(YBQ , k)eθ
is not acyclic, because its class in G0(kCG(Q)F ) is nonzero. We have

GΓc(YBQ , k)eθ ' eYGΓc(YBQ , k)eθ.

Let (S+, θ+) = iQ(T, θ) ∈ X and let B be a Q-stable Borel subgroup of G

containing S+ (cf. Lemma 3.6). We have

Br∆Q(GΓc(YB, k)eθ+) ' Br∆Q(eXGΓc(YB, k)eθ+)

' br∆Q(eX ⊗ 1)GΓc(YBQ , k)br∆Q(1⊗ eθ+)

' brQ(eX )GΓc(YBQ , k)eθ ' brQ(eX )eYGΓc(YBQ , k)eθ.

Similarly,

Br∆Q(GΓc(YB, k)eθ+) ' GΓc(YBQ , k)eθ 6=0.

It follows that brQ(eX )eY 6= 0. Since∑
X ′∈∇`′ (G,F )/≡

brQ(eX ′) = 1 =
∑

Y ′∈∇`′ (CG(Q),F )/≡
eY ′ ,

we deduce that brQ(eX ) =
∑
Y∈i−1

Q (X ) eY .

By transitivity of brQ, we obtain the formula for brQ for a general Q by

induction on |Q|, with iQ replaced by iQ• . This shows that actually iQ• is

independent of the chosen filtration of Q. �

Remark 4.15. Let Q = Q′ × Q′′ be a product of two cyclic groups of

coprime orders. Fix a filtration Q1 = Q′ and Q2 = Q. We have iQ• = iQ. It is

easy to deduce now from Theorem 4.14 that iQ• is independent of Q for any

nilpotent p′-group Q.
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Broué-Michel’s proof of Theorem 4.14 for G connected and Q cyclic relies

on the compatibility of Deligne-Lusztig induction with generalized decomposi-

tion maps. This does generalize to disconnected groups, as we explain below.

A direct approach along the lines of Broué-Michel is possible, based on the

results of [DM15]. While we will not use the results in the remaining part of

this section, they might be useful for character theoretic questions.

Let π be a set of prime numbers not containing p. An element of finite

order of G is a π-element (resp. a π′-element) if its order is a product of primes

in π (resp. not in π).

Let g be an automorphism of finite order of an algebraic variety X. Write

g = lx = xl, where l is a π-element and x a π′-element. The following result is

an immediate consequence of [DL76, Th. 3.2]:

(4.16)
∑
i > 0

(−1)i Tr(g,Hi
c(X, Q̀ )) =

∑
i > 0

(−1)i Tr(x,Hi
c(X

l, Q̀ )).

Proof. Write x = su = us, where s has order prime to p and u has order

a power of p. Then l, s and u commute and have coprime orders. By [DL76,

Th. 3.2], we have∑
i > 0

(−1)i Tr(g,Hi
c(X, Q̀ )) =

∑
i > 0

(−1)i Tr(u,Hi
c(X

ls, Q̀ ))

and ∑
i > 0

(−1)i Tr(x,Hi
c(X

l, Q̀ )) =
∑
i > 0

(−1)i Tr(u,Hi
c((X

l)s, Q̀ )).

So the result follows from the fact that Xls = (Xl)s because 〈ls〉 = 〈l, s〉. �

Given H a finite group and h ∈ H a π-element, we have a generalized

decomposition map from the vector space of class functions H → K to the

vector space of class functions on π′-elements of CH(h) given by dHh (f)(u) =

f(hu) for u a π′-element of CH(h).

The following result generalizes the character formula for RG
L⊂P [DM94,

Prop. 2.6], which corresponds to the case where π is the set of all primes

distinct from p,

Proposition 4.17. Let P be a parabolic subgroup of G, let V be its

unipotent radical, let L be a Levi complement of P, and assume that L is

F -stable. Let g ∈ GF be a π-element. We have

dG
F

g ◦ RG
L⊂P =

∑
x∈CG(g)F \GF /LF

g∈xL

R
CG(g)
CxL(g)⊂CxP(g) ◦ d

xLF

g ◦ x∗.

Proof. Given H a finite group, we denote by Hπ (resp. Hπ′) the set of

π-elements (resp. π′-elements) of H. The proof follows essentially the same

argument as the proof of the character formula (see, for instance, [DM91,
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Prop. 12.2]). Let λ be a class function on LF , and let u ∈ CG(g)Fπ′ be a

π′-element. By definition of the Deligne-Lusztig induction and by using (4.16),

we get

RG
L⊂P(λ)(gu) =

1

|LF |
∑
l∈LFπ

∑
v∈CL(l)F

π′

λ(lv)
∑
i > 0

(−1)i Tr((gu, lv),Hi
c(YV, Q̀ )).

=
1

|LF |
∑
l∈LFπ

∑
v∈CL(l)F

π′

λ(lv)
∑
i > 0

(−1)i Tr((u, v),Hi
c(Y

(g,l)
V , Q̀ )).

But it follows from Lemma 3.7 that Y
(g,l)
V 6= ∅ if and only if there exists

x ∈ GF such that x−1gx = l. Moreover, in this case, then Y
(g,l)
V ' Y

CG(g)
CxV(g) by

Proposition 3.4. Therefore,

RG
L⊂P(λ)(gu) =

1

|LF | · |CG(g)F |
∑
x∈GF

g∈xL

∑
v∈CL(l)F

π′

λ(x−1gxv)

×
∑
i > 0

(−1)i Tr((u, v),Hi
c(Y

(g,x−1gx)
V , Q̀ ))

=
1

|LF | · |CG(g)F |
∑
x∈GF

g∈xL

∑
v∈CxL(g)F

π′

d
xL
g (x∗(λ))(v)

×
∑
i > 0

(−1)i Tr((u, v),Hi
c(Y

CG(g)
CxV(g), Q̀ )).

Now, if x ∈ GF is such that g ∈ xL, then

|CG(g)FxLF | = |CG(g)F | · |LF |
|CxL(g)F |

.

So the result follows. �

5. Comparing Y-varieties

From now on, and until the end of this article, we assume G is connected.

Deligne-Lusztig varieties can be associated to sequences of elements of W ,

and there is a canonical isomorphism X(v, w)
∼−→ X(vw) when l(vw) = l(v) +

l(w). We will show in this section that while such an isomorphism fails when

l(vw)6=l(v) + l(w), its consequence on cohomology remains true for local sys-

tems associated to characters of tori satisfying certain regularity conditions

with respect to (v, w).

In this section we will prove the preliminary statements necessary for

our proof of Theorem 1.3. Roughly speaking, the main result of this section

(Theorem 5.16) is almost equivalent to Theorem 1.3 whenever L is a maximal
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torus. As Theorem 1.3 will be proved by reduction to this case, Theorem 5.16

may be seen as the crucial step.

In this section, we fix an F -stable maximal torus T contained in an F -

stable Borel subgroup B, and we denote by U its unipotent radical. We put

W = NG(T)/T. We denote by Φ the associated root system, by Φ+ the set of

positive roots and by ∆ the basis of Φ. Let α ∈ Φ. We denote by sα ∈W the

corresponding reflection, and by α∨ ∈ Φ∨ the corresponding coroot. We put

Tα∨ = Im(α∨) ⊂ T and we denote by Uα the one-parameter subgroup of G

normalized by T and associated with α. We define Gα as the subgroup of G

generated by Uα and U−α.

5.A. Dimension estimates and further. In this section we fix four para-

bolic subgroups P1, P2, P3 and P4 admitting a common Levi complement L.

We denote by V1, V2, V3 and V4 the unipotent radicals of P1, P2, P3 and

P4 respectively.

We define the varieties

Y1,2,3 = {(g1V1, g2V2, g3V3) ∈ G/V1 ×G/V2 ×G/V3 | g−1
1 g2 ∈ V1 ·V2

and g−1
2 g3 ∈ V2 ·V3},

Ycl
1,2,3 = {(g1V1, g2V2, g3V3) ∈ Y1,2,3 | g−1

1 g3 ∈ V1 ·V3},
and

Y1,3 = {(g1V1, g3V3) ∈ G/V1 ×G/V3 | g−1
1 g3 ∈ V1 ·V3}.

We denote by i1,3 : Ycl
1,2,3 ↪→ Y1,2,3 the closed immersion, and we define

π1,3 : Ycl
1,2,3 −→ Y1,3

(g1V1, g2V2, g3V3) 7−→ (g1V1, g3V3).

All these varieties are endowed with a diagonal action of G, and the morphisms

i1,3 and π1,3 are G-equivariant.

Proposition 5.1. We have

(a) dim(V1) = dim(V2) = dim(V3);

(b) dim(Y1,2,3) − dim(Y1,3) = dim(V1) + dim(V1 ∩ V3) − dim(V1 ∩ V2) −
dim(V2 ∩V3);

(c) dim(Y1,2,3)− dim(Y1,3) = 2
Ä
dim(V1 ∩V3)− dim(V1 ∩V2 ∩V3)

ä
.

Proof. (a) is well known. Also,

dim(Y1,2,3) = dim(G/V1) + dim(V1 ·V2/V2) + dim(V2 ·V3/V3)

= dim(G/V1) + dim(V1)− dim(V1 ∩V2)

+ dim(V2)− dim(V2 ∩V3)
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while

dim(Y1,3) = dim(G/V1) + dim(V1 ·V3/V3)

= dim(G/V1) + dim(V1)− dim(V1 ∩V3).

So (b) follows from the two equalities (and from (a)).

Let us now prove (c). For this, we may assume that T ⊂ L. Let Φi denote

the set of roots α ∈ Φ such that Uα ⊂ Vi. Then Φ1 ∪ −Φ1 = Φ2 ∪ −Φ2 =

Φ3 ∪ −Φ3 = Φ \ ΦL. In particular,

Φ1 ∪ −Φ1 = (Φ1 ∪ Φ2 ∪ Φ3) ∪ −(Φ1 ∩ Φ2 ∩ Φ3).

Therefore,

2|Φ1| = |Φ1 ∪ Φ2 ∪ Φ3|+ |Φ1 ∩ Φ2 ∩ Φ3|.
On the other hand, by general facts about the cardinality of a union of finite

sets,

|Φ1∪Φ2∪Φ3| = |Φ1|+|Φ2|+|Φ3|−|Φ1∩Φ2|−|Φ1∩Φ3|−|Φ2∩Φ3|+|Φ1∩Φ2∩Φ3|.

Hence (c) follows from (a), (b) and from these last two equalities. �

Let d1,3 = dim(V1 ∩V3) − dim(V1 ∩V2 ∩V3). By Proposition 5.1, we

have

d1,3 =
1

2

Ä
dim(Y1,2,3)− dim(Y1,3)

ä
.

Let
κ1,3 : G/(V1 ∩V3) −→ Y1,3

g(V1 ∩V3) 7−→ (gV1, gV3)

and
κcl

1,2,3 : G/(V1 ∩V2 ∩V3) −→ Ycl
1,2,3

g(V1 ∩V2 ∩V3) 7−→ (gV1, gV2, gV3).

Both maps are G-equivariant morphisms of varieties.

Proposition 5.2. The maps κ1,3 and κcl
1,2,3 are isomorphisms of vari-

eties.

Proof. The fact that κ1,3 is an isomorphism is clear. It is also clear that

κcl
1,2,3 is a closed immersion. It is thus sufficient to prove that κcl

1,2,3 is surjective.

So, let (g1V1, g2V2, g3V3) ∈ Ycl
1,2,3. Using the G-action and the fact that

κ1,3 is an isomorphism, we may assume that g1 = g3 = 1. Therefore,

g2 ∈ (V1 ·V2) ∩ (V3 ·V2).

Given i ∈ {1, 3}, the multiplication map (Vi ∩V−2 ) × (Vi ∩V2) → Vi is an

isomorphism of varieties, since Vi and V2 have a common Levi complement.

Here, V−2 denotes the unipotent radical of the parabolic subgroup opposite

to P2. It follows that

(V1 ·V2) ∩ (V3 ·V2) = (V1 ∩V3 ∩V−2 ) ·V2 = (V1 ∩V3) ·V2.
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So there exists h ∈ V1 ∩ V3 such that hV2 = g2V2. It is then clear that

(g1V1, g2V2, g3V3) = κcl
1,2,3(h), as desired. �

Corollary 5.3. The map π1,3 is a smooth morphism with fibers isomor-

phic to the affine space of dimension d1,3. Moreover,

dim(Y1,2,3)− dim(Ycl
1,2,3) = dim(Ycl

1,2,3)− dim(Y1,3) = d1,3.

Proof. Using the isomorphisms κ1,3 and κcl
1,2,3 of Proposition 5.2, the map

π1,3 may be identified with the canonical projection G/(V1 ∩ V2 ∩ V3) −�
G/(V1 ∩V3). The corollary follows. �

Let us now define

Ycl
1,2,3,4 = {(g1V1, g2V2, g3V3, g4V4) ∈ G/V1 ×G/V2 ×G/V3 ×G/V4 |

g−1
1 g2 ∈ V1 ·V2, g

−1
2 g3 ∈ V2 ·V3, g

−1
3 g4 ∈ V3 ·V4

and g−1
1 g4 ∈ V1 ·V4},

Ycl,2
1,2,3,4 = {(g1V1, g2V2, g3V3, g4V4) ∈ Ycl

1,2,3,4 | g−1
1 g3 ∈ V1 ·V3},

and Ycl,3
1,2,3,4 = {(g1V1, g2V2, g3V3, g4V4) ∈ Ycl

1,2,3,4 | g−1
2 g4 ∈ V2 ·V4}.

Then:

Corollary 5.4. Assume that at least one of the following holds :

(1) V1 ⊂ V4 ·V2;

(2) V2 ⊂ V1 ·V3;

(3) V3 ⊂ V2 ·V4;

(4) V4 ⊂ V3 ·V1.

Then Ycl,2
1,2,3,4 = Ycl,3

1,2,3,4 = Ycl
1,2,3,4.

Proof. Using the fact that the map

(g1V1, g2V2, g3V3, g4V4) 7→ (g4V4, g1V1, g2V2, g3V3)

induces an isomorphism Ycl
1,2,3,4

∼−→ Ycl
4,1,2,3 (with obvious notation), we see that

it is sufficient to prove only one of the statements.

So let us assume that V2 ⊂ V1 · V3. Let (g1V1, g2V2, g3V3, g4V4) ∈
Ycl

1,2,3,4. Then g−1
1 g3 = (g−1

1 g2)(g−1
2 g3) ∈ V1 ·V2 ·V3 = V1 ·V3 and so Ycl,2

1,2,3,4 =

Ycl
1,2,3,4. So it remains to prove that (g1V1, g2V2, g3V3, g4V4) ∈ Ycl,3

1,2,3,4. Using

the action of G and the isomorphism κcl
1,3,4 of Proposition 5.2, we may assume

that g1 = g3 = g4 = 1. Since V2 ⊂ V1 ·V3, we have V1 ∩V3 ⊂ V2, hence

g−1
2 g4 = g−1

2 ∈ (V2 ·V3) ∩ (V2 ·V1) ⊂ V2 · (V1 ∩V3) ⊂ V2, as desired. �

Remark 5.5. Let w1, w2 and w3 be three elements of W , and let us assume

here that V1 = U, V2 = w1V1, V3 = w1w2V1 and V4 = w1w2w3V1. Then the
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conditions (1), (2), (3) and (4) of Corollary 5.4 are respectively equivalent to

the following:
(1) l(w2w3) = l(w1w2w3) + l(w1);

(2) l(w1w2) = l(w1) + l(w2);

(3) l(w2w3) = l(w2) + l(w3);

(4) l(w1w2) = l(w1w2w3) + l(w3).

5.B. Setting. We fix a positive integer r. Given a family m1, . . . ,mr of

objects belonging to a structure acted on by F , we put mj+er = F e(mj) for

1 6 j 6 r and e > 0.

Let n = (n1, . . . , nr) be a sequence of elements of NG(T). We denote

by wi the image of ni in W , and we put w = w1 · · ·wr.
We define

Y(n) = {(g1U, g2U, . . . , grU) ∈ (G/U)r | gj
nj

gj+1 ∀1 6 j 6 r},

where gj
nj gj+1 means g−1

j gj+1 ∈ UnjU. This variety has a left action by

multiplication of GF and a right action of TwF , where t ∈ TwF acts by right

multiplication by (t, tn1 , . . . , tn1···nr−1).

We define the functor Rn = RΓc(Y(n),Λ) ⊗L
ΛTwF

− : Db(ΛTwF ) →
Db(ΛGF ), and we put Rn = [Rn] : G0(ΛTwF )→ G0(ΛGF ) as in [BR03, §5.2].

We fix a positive integer m such that Fm(ni) = ni for all i. The action of

Fm on (G/U)r restricts to an action on Y(n).

Given Z a variety of pure dimension n, we will consider

RΓdim
c (Z,Λ) = RΓc(Z,Λ)[n](n/2),

where (n/2) denotes a Tate twist.

Given 2 6 j 6 r, we denote by Ycl
j (n) the Fm-stable closed subvariety of

Y(n) defined by

Ycl
j (n) = {(g1U, g2U, . . . , grU) ∈ Y(n) | gj−1

nj−1nj
gj+1},

and we denote by Yop
j (n) its open complement. They are both stable under the

action of GF ×TwF . We denote by πj : (G/U)r → (G/U)r−1 the morphism

of varieties that forgets the j-th component, and we set

cj(n) = (n1, n2, . . . , nj−2, nj−1nj , nj+1, . . . , nr)

and

dj(n) =
l(wj−1) + l(wj)− l(wj−1wj)

2
.

Let in,j : Ycl
j (n) ↪→ Y(n) denote the closed immersion and

πn,j : Ycl
j (n)→ Y(cj(n))

denote the restriction of πj . Note that πn,j is (GF ,TwF )-equivariant and

commutes with the action of Fm.
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Lemma 5.6. If 2 6 j 6 r, then πn,j is a smooth morphism with fibers

isomorphic to an affine space of dimension dj(n). Moreover, the codimension

of Ycl
j (n) in Y(n) is also equal to dj(n).

Proof. Let L = T, V1 = U, V2 = nj−1U and V3 = nj−1njU. There is a

cartesian square

Ycl
j (n)

πn,j

��

(g1U,...,grU) 7→(gj−1V1,gjn
−1
j−1V2,gj+1n

−1
j n−1

j−1V3)
// Ycl

1,2,3

π1,3

��
Y(cj(n))

(h1U,...,hr−1U)7→(gj−1V1,gj+1n
−1
j n−1

j−1V3)

// Y1,3.

The lemma follows from now from Corollary 5.3 by base change. �

The map πn,j induces a quasi-isomorphism of complexes of (ΛGF ,ΛTwF )-

bimodules

(5.7) RΓc(Y
cl
j (n),Λ)

∼−→ RΓc(Y(cj(n)),Λ)[−2dj(n)](−dj(n)).

Composing this isomorphism with the morphism

i∗n,j : RΓc(Y(n),Λ)→ RΓc(Y
cl
j (n),Λ),

we obtain a morphism of complexes of (ΛGF ,ΛTwF )-bimodules

Ψn,j : RΓdim
c (Y(n),Λ) −→ RΓdim

c (Y(cj(n)),Λ)

that commutes with the action of Fm and whose cone is quasi-isomorphic to

RΓdim
c (Yop

j (n),Λ)[1].

5.C. Preliminaries. We first recall some results from [BR03]. We denote

by B the braid group of W , and by σ : W → B the unique map (not

a group morphism) that is a right inverse to the canonical map B → W

and that preserves lengths. We extend it to sequences of elements of W by

σ(w1, . . . , wr) = σ(w1) · · ·σ(wr).

We denote by n 7→ n̄ : NG(T) → W the quotient map. We fix σ̇ :

NG(T)→ BnT a map (not a group morphism) such that σ̇(nt) = σ̇(n)t for all

t ∈ T and such that the image of σ̇(n) in B = (BnT)/T is equal to σ(n̄). We

extend it to sequences of elements of NG(T) by σ̇(n1, . . . , nr) = σ̇(n1) · · · σ̇(nr).

The following result is [BR03, Prop. 5.4].

Lemma 5.8. Let n′ be a sequence of elements of NG(T). Then

(a) if σ̇(n) = σ̇(n′) (they are elements of BnT), then the varieties Y(n) and

Y(n′) are canonically isomorphic GF -varieties-TwF ;

(b) if σ(n) = σ(n′) (they are elements of B), then the varieties Y(n) and

Y(n′) are (noncanonically) isomorphic GF -varieties-TwF .

Proof. (a) is proved in [BR03, 5.5], while (b) is [BR03, Prop. 5.4]. �



DERIVED CATEGORIES AND DELIGNE-LUSZTIG VARIETIES 641

Using Lemma 5.8(a), we shall now write Y(n) = Y(n′) when σ̇(n) =

σ̇(n′). Strictly speaking, Lemma 5.8(a) says that these two varieties are only

isomorphic but, since this isomorphism is canonical, we shall use the symbol

= to simplify the exposition.

We define the cyclic shift sh(n) of n by

sh(n) = (n2, . . . , nr, F (n1)).

The next result is proved in [DMR07, Prop. 3.1.6] for the varieties X(w) and

X(w′). The same proof shows the more precise result below.

Lemma 5.9. The map

Y(n) −→ Y(sh(n))

(g1U, . . . , grU) 7−→ (g2U, . . . , grU, F (g1)U)

induces an equivalence of étale sites. Moreover, it is a morphism of GF -

varieties-TwF , where t ∈ TwF acts on Y(sh(n)) by right multiplication by

n−1
1 tn1. Consequently, the diagram

Db(ΛTw−1
1 wF (w1)F )

n1,∗ //

Rsh(n)

##

Db(ΛTwF )

Rn

~~
Db(ΛGF )

is commutative.

Assume in the remaining part of Section 5.C that 3 6 j 6 r (in particular,

r > 3). Note that cj−1(cj(n)) = cj−1(cj−1(n)). Consider the diagram

(5.10)

RΓdim
c (Y(n),Λ)

Ψn,j //

Ψn,j−1

��

RΓdim
c (Y(cj(n)),Λ)

Ψcj(n),j−1

��
RΓdim

c (Y(cj−1(n)),Λ)
Ψcj−1(n),j−1

// RΓdim
c (Y(cj−1(cj(n)),Λ).

It does not seem reasonable to expect that the diagram (5.10) is commutative

in general. However, it is in some cases.

Let us first define the following two varieties:

Ycl
j,j−1(n) = Ycl

j−1(cj(n))×Y(cj(n)) Y
cl
j (n)

and

Ycl
j−1,j(n) = Ycl

j−1(cj−1(n))×Y(cj−1(n)) Y
cl
j−1(n).
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More concretely, they are the closed subvarieties of Y(n) defined by

Ycl
j,j−1(n) = {(g1U, . . . , grU)

∈ Y(n) | gj−2
nj−2nj−1nj

gj+1 and gj−1
nj−1nj

gj+1}

and

Ycl
j−1,j(n) = {(g1U, . . . , grU)

∈ Y(n) | gj−2
nj−2nj−1nj

gj+1 and gj−2
nj−2nj−1

gj}.

Lemma 5.11. If Ycl
j,j−1(n) = Ycl

j−1,j(n), then the diagram (5.10) is com-

mutative.

Proof. There is a commutative diagram, in which all the arrows of the

form ↪−→ are closed immersions and all the arrows of the form −� are smooth

morphisms with fibers isomorphic to an affine space:

(5.12) Y(n)

Ycl
j−1(n)

% �

in,j−1

33

πn,j−1

����

Ycl
j (n)

8 X

in,j
kk

πn,j

����

Ycl
j−1,j(n)
0 P

i

``

π

����

Ycl
j,j−1(n)
0�

i′

@@

π′

����

� �

Y(cj−1(n)) Y(cj(n))

Ycl
j−1(cj−1(n))
0 P

icj−1(n),j−1

aa

πcj−1(n),j−1

"" ""

Ycl
j−1(cj(n))

/�

icj(n),j−1

@@

πcj(n),j−1

}}}}
Y(cj−1(cj(n)))
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Note that the two squares marked with the symbol � are cartesian by defini-

tion. By the proper base change theorem, the composition Ψcj−1(n),j−1◦Ψn,j−1

is obtained as the composition of (in,j−1 ◦ i)∗ with the inverse of the isomor-

phism induced by (πcj−1(n),j−1◦π)∗. Similarly, the composition Ψcj(n),j−1◦Ψn,j

is equal to the composition of (in,j ◦ i′)∗ with the inverse of the isomorphism

induced by (πcj(n),j−1 ◦ π′)∗. The lemma follows. �

Lemma 5.13. Assume that one of the following holds :

(1) l(wj−2wj−1) = l(wj−2) + l(wj−1);

(2) l(wj−1wj) = l(wj−1) + l(wj);

(3) l(wj−2wj−1) = l(wj−2wj−1wj) + l(wj);

(4) l(wj−1wj) = l(wj−2) + l(wj−2wj−1wj).

Then the diagram (5.10) is commutative.

Proof. It is sufficient, by Lemma 5.11, to prove that, if (1), (2), (3) or

(4) holds, then Ycl
j,j−1(n) = Ycl

j−1,j(n). This follows, after base change, from

Corollary 5.4. �

5.D. Comparison of complexes. We start with the description of varieties

of the form Yop
1 (n) in a very special case, which will be the fundamental step

in the proof of Theorem 5.16.

Let w = n̄ = (w1, . . . , wr). Given α ∈ ∆, we define a subgroup of Tr+1

S(α,w) = {(a1, . . . , ar+1) ∈ Tr+1 | a−1
1 sαa2s

−1
α

∈ Tα∨ , a
−1
i wi−1ai+1w

−1
i−1 = 1 for 2 6 i 6 r

and a−1
r+1wrF (a1)w−1

r = 1}.

Let x ∈ {1, sα}. The group morphism

T→ Tr+1, a 7→ (a, x−1ax,w−1
1 x−1axw1, . . . , w

−1
r−1 · · ·w

−1
1 x−1axw1 · · ·wr−1)

restricts to an embedding of TxwF in S(α,w).

Given a = (a1, . . . , am) and b = (b1, . . . , bn) two sequences, we denote the

concatenation of the sequences by a • b = (a1, . . . , am, b1, . . . , bn).

Lemma 5.14. Let α ∈ ∆, and let ṡ be a representative of sα in NG(T)

∩Gα. We assume that Gα ' SL2(F). There exist a closed immersion Y(ṡ•n)

↪→ Yop
2 ((ṡ, ṡ−1) • n) and an action of S(α,w) on Yop

2 ((ṡ, ṡ−1) • n) such that

Yop
2 ((ṡ, ṡ−1) • n) ' Y(ṡ • n)×TsαwF S(α,w),

as GF -varieties-TwF .

Proof. Given i ∈ {1, . . . , r}, consider a reduced decomposition wi =

si,1 · · · si,di . We put w̃ = (s1,1, . . . , s1,d1 , s2,1, . . . , s2,d2 , . . . , sr,1, . . . , sr,dr). Note
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that S(α,w) is isomorphic to the group S(sα • w̃, 1 • w̃) defined in [BR03,

§4.4.3]:

S(sα • w̃, 1 • w̃)
∼−→ S(α,w), (a1, . . . , a1+d1+···+dr)

7→ (a1, a2, a2+d1 , a2+d1+d2 , . . . , a2+d1+···+dr−1).

The following computation in SL2(F) ' Gα,

(#),Ç
1 x

0 1

åÇ
0 1

−1 0

åÇ
1 y

0 1

åÇ
0 −1

1 0

åÇ
1 z

0 1

å
=

Ç
1− xy x+ z − xyz
−y 1− yz

å
shows that the map

Uα × (Uα \ {1})×Uα −→ UαTα∨ ṡUα = Gα \B ∩Gα

(u1, u2, u3) 7−→ u1ṡu2ṡ
−1u3

is an isomorphism of varieties. Let Uα = U ∩ ṡU. Let (g1U, . . . , gr+2U) ∈
Y((ṡ, ṡ−1) • n). We have (g1U, . . . , gr+2U) ∈ Yop

2 ((ṡ, ṡ−1) • n) if and only if

g−1
1 g3 ∈ (UṡUṡ−1U) \U = Uα · (UαṡUaṡ

−1Uα \Uα)

= Uα · (UαTα∨ ṡUα) = UTα∨ ṡU.

Furthermore, if (g1U, . . . , gr+2U) ∈ Yop
2 ((ṡ, ṡ−1) • n), then g2U is determined

by g1U and g3U.

Therefore, one may forget the second coordinate in the definition of the

variety Yop
2 ((ṡ, ṡ−1) • n) and we get

(5.15)
Yop

2 ((ṡ, ṡ−1) • n) ' {(gU, g1U, . . . , grU) | g−1g1 ∈ UTα∨ ṡU

and g1
n1 g2

n2 · · · nr−1 gr
nr F (g)}.

This description shows that the group S(α,w) acts on Yop
2 ((ṡ, ṡ−1) • n)

(as the restriction of the action by right multiplication of Tr+1 on (G/U)r+1).

Also, since UṡU is closed in UTα∨ṡU, it follows that the natural map

Y(ṡ •n) ↪→Yop
2 ((ṡ, ṡ−1) •n) is a closed immersion. We have embeddings TsαwF

↪→ S(α,w) and TwF ↪→ S(α,w) and

S(α,w) = TsαwF · S(α,w)◦ = S(α,w)◦ ·TwF

(see [BR03, Prop. 4.11]). The stabilizer of the closed subvariety Y(ṡ • n)

under this action is TsαwF , so it is readily checked that the componentwise

multiplication induces an isomorphism of GF -varieties-TwF

Y(ṡ • n)×TsαwF S(α,w)
∼−→ Yop

2 ((ṡ, ṡ−1) • n),

as desired. �
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The next theorem is the main result of this section. It provides a sufficient

condition for Ψn,j to induce a quasi-isomorphism

RΓdim
c (Y(n),Λ)eθ

∼−→ RΓdim
c (Y(cj(n)),Λ)eθ.

Given x, y ∈W , we put

Φ+(x, y) = {α ∈ Φ+ | x−1(α) ∈ −Φ+ and (xy)−1(α) ∈ Φ+}.

We define Nw : Y (T)→ TwF , λ 7→ NF d/wF (λ(ζ)) (cf. §4.A).

Theorem 5.16. Let θ : TwF → Λ× be a character. Let j ∈ {2, 3, . . . , r},
and assume that θ(Nw(w1 · · ·wj−2(α∨))) 6= 1 for all α ∈ Φ+(wj−1, wj). We

have RΓc(Y
op
j (n),Λ)eθ = 0, and

Ψn,j,θ : RΓdim
c (Y(n),Λ)eθ

∼−→ RΓdim
c (Y(cj(n)),Λ)eθ

is a quasi-isomorphism of complexes of (ΛGF ,ΛTwF )-bimodules commuting

with the action of Fm.

Proof. If 2 6 j 6 r, we denote by P(n, j, θ) the following property:

P(n, j, θ) for all α ∈ Φ+(wj−1, wj), we have θ(Nw(w1 · · ·wj−2(α∨))) 6= 1.

We want to prove that P(n, j, θ) implies that RΓc(Y
op
j (n),Λ)eθ = 0. By [BR03,

Prop. 5.19, Rem. 5.21], it is sufficient to prove it whenever [G,G] is simply

connected, and we will assume this holds.

So assume from now that P(n, j, θ) holds. We will prove by induction on

l(wj−1) that RΓc(Y
op
j (n),Λ)eθ = 0. Note that the induction hypothesis does

not depend on r. But first, note that if j > 3, then P(n, j, θ) is equivalent

to P(sh(n), j − 1, θ ◦ n1) and that the morphism constructed in Lemma 5.9

sends Yop
j (n) to Yop

j−1(sh(n)). Thus RΓc(Y
op
j (n),Λ)eθ = 0 is equivalent to

RΓc(Y
op
j−1(sh(n)),Λ)eθ◦n1 = 0. By successive applications of this remark, this

shows that we may assume that j = 2.

First case: Assume that l(w1) = 0. This means that n1 ∈ T, and it follows

from Lemma 5.6 (or Lemma 5.8(a)) that Yop
2 (n) = ∅. So the result follows in

this case.

Second case: Assume that l(w1) = 1 and n1n2 = 1. Let α ∈ ∆ be such

that w1 = sα. By Lemma 5.8, we may assume that n1 = ṡ is a representative

of sα lying in Gα. Note also that, since [G,G] is simply connected, we have

Gα ' SL2(F). Define S = S(α, (w3, . . . , wr)). Lemma 5.14 shows that

RΓc(Y
op
2 (n),Λ)eθ = RΓc(Y(ṡ, n3, . . . , nr),Λ)⊗ΛTsαwF RΓc(S,Λ)eθ.

But Φ+(w1, w2) = Φ+(sα, sα) = {α}, so θ(Nw(α∨)) 6= 1 by hypothesis. Note

also that TwF ∩ S◦ acts trivially on the cohomology groups of the complex

RΓc(S), as its action extends to the connected group S◦. Since Nw(α∨)∈S◦
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(see [BR03, proof of Prop. 4.11, equality (a)]), this proves that RΓc(S,Λ)eθ = 0

and so RΓc(Y
op
2 (n),Λ)eθ = 0, as desired.

Last case: Assume that l(w1) > 1. Let α ∈ ∆ be such that w1 = sαw
′
1,

with l(w′1) = l(w1) − 1. Let ṡ be a representative of sα in Gα, and let n′1 =

ṡ−1n1. We will write n′ = (n′1, n2, . . . , nr). Then n′1 is a representative of

w′1 and, by Lemma 5.8(a), we have Y(n) = Y(ṡ • n′). (See also the remark

following Lemma 5.8.)

It is well known that

Φ+(w1, w
−1
1 ) = Φ+ ∩ w1(−Φ+) = {α}

∐
sα(Φ+(w′1, w

−1
1 )).

Therefore,

Φ+(w1, w2) = Φ+ ∩ w1(−Φ+) ∩ w1w2(Φ+)

=
Ä
{α} ∩ w1w2(Φ+)

ä∐
sα
Ä
Φ+ ∩ w′1(−Φ+) ∩ w′1w2(Φ+)

ä
=
Ä
{α} ∩ w1w2(Φ+)

ä∐
sα(Φ+(w′1, w2)),

and hence

(#) Φ+(w1, w2) =

sα
Ä
Φ+(w′1, w2)

ä
if l(w′1w2) < l(w1w2),

{α}∐ sα
Ä
Φ+(w′1, w2)

ä
if l(w′1w2) > l(w1w2).

Let us now consider the diagram (5.12) with n replaced by ṡ•n′ and j replaced

by 3. Since c2(ṡ • n′) = n, it follows from Lemma 5.13(1) that (5.10) gives a

commutative diagram

RΓdim
c (Y(ṡ • n′))eθ //

��

RΓdim
c (Y(c3(ṡ • n′)))eθ

��
RΓdim

c (Y(n))eθ // RΓdim
c (Y(c2(n)))eθ.

The left vertical map is an isomorphism since Y(ṡ • n′) ' Y(n). By (#), we

have Φ+(w′1, w2) ⊂ sα(Φ+(w1, w2)), hence Property P(ṡ • n′, 3, θ) is fulfilled.

So, the top horizontal map is an isomorphism by induction.

In order to show that the bottom horizontal map is an isomorphism, it

remains to show that the right vertical map is an isomorphism. Note that

c3(ṡ • n′) = ṡ • c2(n′). Two cases may occur:

• Assume first that l(w′1w2) < l(w1w2). Then Yop
2 (c3(ṡ • n′)) = ∅, and the

result follows.

• Assume now that l(w′1w2) > l(w1w2). Then, again by Lemma 5.8(a), we

have Y(ṡ • c2(n′)) = Y((ṡ, ṡ−1) • c2(n)) and, through this identification,

Yop
2 (c3(ṡ • n′)) is identified with Yop

2 ((ṡ, ṡ−1) • c2(n)). So the result now

follows from the second case (thanks to (#)). �
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Remark 5.17. Theorem 5.16 provides a comparison of modules, together

with the Frobenius action. Consider the case Λ = K. We have an isomorphism

of KGF -modules, compatible with the Frobenius action

H i
c(Y(n),K)⊗KTwF Kθ ' H i−2r

c (Y(cj(n)),K)⊗KTwF Kθ(−r),

where r = dj(n).

Following the same lines as in the proof of Theorem 5.16, we obtain a new

proof of the following classical result.

Theorem 5.18. If Λ is a field, then Rn = Rw.

Proof. By [BR03, Prop. 5.19, Rem. 5.21], it is sufficient to prove the The-

orem whenever [G,G] is simply connected, and we assume this holds. Also,

by proceeding step-by-step, it is enough to prove that Rn = Rcj(n). For this,

let RΓop
n,j denote the class of the complex RΓc(Y

op
j (n),Λ) in G0(ΛGF ⊗ΛTwF ).

We only need to prove that RΓop
n,j = 0.

Proceeding by induction on l(wj) as in the proof of Theorem 5.16, and

following the same strategy and arguments, we see that it is enough to prove

Theorem 5.18 whenever j = 1, n1 = ṡ = n−1
2 , where ṡ is a representative in

Gα of sα (for some α ∈ ∆). By Lemma 5.14, it is sufficient to prove that the

class RΓα,w of the complex RΓc(S(α,w),Λ) in G0(ΛTsαwF ⊗ ΛTwF ) is equal

to 0.

Now, let T denote the subgroup of TsαwF × TwF consisting of pairs

(t1, t2) such that t1t2 ∈ S(α,w)◦, and let RΓ◦ denote the class of the com-

plex RΓc(S(α,w)◦) in G0(ΛT ). Then RΓα,w = IndTsαwF×TwF
T RΓ◦. But the

action of T on S(α,w) extends to an action of the connected group S(α,w)◦,

hence T acts trivially on the cohomology groups of S(α,w)◦. Since the Euler

characteristic of a torus is equal to 0, this gives RΓ◦ = 0, and consequently

RΓα,w = 0, as desired. �

Corollary 5.19. Let n′ = (n′1, n
′
2, . . . , n

′
r′) be a sequence of elements of

NG(T), let x ∈ W , and let w′ denote the image of n′1n
′
2 · · ·n′r′ in W . We

assume that Λ is a field and that w′ = x−1wF (x). Then the diagram

G0(ΛTn′F )
x∗ //

Rn′

  

G0(ΛTnF )

Rn

~~
G0(ΛGF )

is commutative.
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Proof. Let n′′ = (ẋ−1, n1, n2, . . . , nr, F (ẋ)). Then, by Lemma 5.9,

Rn′′ = Rn•(F (ẋ),F (ẋ)−1) ◦ x∗.

But, by Theorem 5.18, Rn′′ = Rw′ = Rn′ and Rn•(F (ẋ),F (ẋ)−1) = Rw = Rn. �

The following result is a reformulation of Corollary 5.19 as in [BR03,

§11.1].

Corollary 5.20. Let T′ be an F -stable maximal torus of G, and let

B′ and B′′ be two Borel subgroups of G containing T′. Then RG
T′⊂B′(θ

′) =

RG
T′⊂B′′(θ

′) for all θ′ ∈ Irr(T′F ).

Remark 5.21. Corollary 5.20 is well known. In [DL76, Cor. 4.3], this

result is first proved “geometrically” for θ′ = 1 [DL76, Th. 1.6] by relating the

varieties XG
B′ and XG

B′′ , and extended to the general case using the character

formula [DL76, Th. 4.2]. Note that this result is then used in [DL76, Th. 6.8]

to deduce the Mackey formula for Deligne-Lusztig induction functors.

In [Lus78], Lusztig proposed another argument: the Mackey formula is

proved “geometrically” and a priori [Lus78, Th. 2.3], and Corollary 5.20 follows

[Lus78, Cor. 2.4].

Our argument relies neither on the Mackey formula nor on the character

formula: we lift Deligne-Lusztig’s comparison of XG
B′ and XG

B′′ to a relation

between the varieties YG
U′ and YG

U′′ . (Here U′ and U′′ are the unipotent

radicals of B′ and B′′ respectively.)

Remark 5.22. Some of the results in [BR06] (Lemma 4.3, Proposition 4.5

and Theorem 4.6) rely on a disjointness result used in [BR06, p. 30, line 16].

This disjointness result was “proved” using the isomorphism in [BR06, p. 30,

line 18]: it has been pointed out to the attention of the authors by H. Wang

that this equality is false. However, Wang provided a complete proof of this dis-

jointness result [Wan14, Prop. 3.4.3], so [BR06, Lemma 4.3, Prop. 4.5, Th. 4.6]

remain valid.

Another proof of this disjointness result has been obtained independently

by Nguyen [Ngu] (with slightly different methods). Using a version of Re-

mark 5.17, Wang and Nguyen have been able to keep track of the Frobenius

eigenvalues.

6. Independence with respect to the parabolic subgroup

We assume in this section that G is connected. We fix an F -stable maxi-

mal torus T of G, and we denote by (G∗,T∗, F ∗) a triple dual to (G,T, F ).

We fix a family of parabolic subgroups P1, P2,. . . , Pr admitting L as a

Levi complement.
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The identification of the root system of G with the coroot system of G∗

allows us to define parabolic subgroups P∗1, P∗2,. . . , P∗r , admitting a common

F ∗-stable Levi complement L∗ and such that L∗ and P∗j and are dual to L and

Pj respectively. We denote by Vj and V∗j the unipotent radicals of Pj and

P∗j respectively. We denote by V• the sequence (V1, . . . ,Vr).

Finally, we fix a semisimple element s∈L∗F ∗ whose order is invertible in Λ.

6.A. Isomorphisms. As announced in the introduction, the isomorphism

of functors described in Theorem 1.3 is canonical. So, before giving the proof,

we will explain how it is realized. For this, let us define

YV• = {(g1V1, . . . , grVr)

∈ G/V1 × · · · ×G/Vr | ∀ j ∈ {1, 2, . . . , r}, g−1
j gj+1 ∈ Vj ·Vj+1},

where Vr+1 = F (V1) and gr+1 = F (g1). Given 2 6 j 6 r, we set

Ycl
V•,j = {(g1V1, g2V2, . . . , grVr) ∈ YV• | g−1

j−1gj+1 ∈ Vj−1 ·Vj+1}.

It is a closed subvariety of YV• , and we denote by iV•,j : Ycl
V•,j

↪→ YV•

the closed immersion. Let Yop
V•,j

denote its open complement. We define

the sequence cj(V•) as obtained from the sequence V• by removing the j-th

component. We then define

πV•,j : Ycl
V•,j −→ Ycj(V•)

as the map that forgets the j-th component, and we set

dj(V•) = dim(Vj−1 ∩Vj+1)− dim(Vj−1 ∩Vj ∩Vj+1).

Note that GF acts diagonally on YV• by left translation, that LF acts di-

agonally by right translation, and that this endows YV• with a structure of

GF -variety-LF . The varieties Ycl
V•

and Yop
V•

are stable under these actions,

and the morphisms iV•,j and πV•,j are equivariant. As for their analogues in,j
and πn,j defined in Section 5.B, we have the following properties, which follow

from Corollary 5.3 by base change.

Lemma 6.1. The map πV•,j is smooth with fibers isomorphic to an affine

space of dimension dj(V•). The codimension of Ycl
V•

in YV• is also equal to

dj(V•).

We deduce that πV•,j induces a quasi-isomorphism between complexes of

(ΛGF ,ΛLF )-bimodules

RΓc(Y
cl
V•,j ,Λ) ' RΓc(Ycj(V•),Λ)[−2dj(V•)](−dj(V•)).

The closed immersion iV•,j : Ycl
V•,j

↪→ YV• induces a morphism of complexes

of (ΛGF ,ΛLF )-bimodules

i∗V•,j : RΓc(YV• ,Λ) −→ RΓc(Y
cl
V•,j ,Λ)
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which, composed with the previous isomorphism, induces a morphism

ΨV•,j : RΓdim
c (YV• ,Λ) −→ RΓdim

c (Ycj(V•),Λ).

The main result of this section is the following theorem. We put eL
F

s = eY ,

where Y ∈ ∇Λ(L, F )/ ≡ is the rational series corresponding to the L∗F
∗
-

conjugacy class of s.

Theorem 6.2. Let j ∈ {2, 3, . . . , r} such that CV∗j−1∩V
∗
j+1

(s) ⊂ CV∗j
(s).

We have

RΓc(Y
op
V•,j

,Λ)eL
F

s = 0,

and hence ΨV•,j induces a quasi-isomorphism of complexes of (ΛGF ,ΛLF )-

bimodules

ΨV•,j,s : RΓdim
c (YV•,j ,Λ)eL

F

s
∼−→ RΓdim

c (Ycj(V•),Λ)eL
F

s .

Proof. The proof will proceed in two steps. We first prove the theorem

when L is a maximal torus: in fact, it will be shown that it is a consequence

of Theorem 5.16. We then use [BR03, Th. A′] to deduce the general case from

this particular one.

First step: Assume here that L is a maximal torus. Let a1,. . . , ar be

elements of G such that (L,Pi) = ai(T,B) for all i ∈ {1, 2, . . . , r}). As

usual, we set ar+1 = F (ar). Now, let ni = a−1
i ai+1. It follows from the

definition of the ai’s that ni ∈ NG(T). We set n = (n1, . . . , nr). Note that

n1n2 · · ·nr = a−1
1 F (a1). We denote by wi the image of ni in W , and we set

w = w1w2 · · ·wr. It is then easily checked that the map

(g1V1, . . . , grVr) 7−→ (g1V1a1, . . . , grVrar)

induces an isomorphism of varieties

YV•
∼−→ Y(n)

that sends Ycl
V•,j

to Ycl
j (n). Moreover, conjugacy by a1 induces an isomor-

phism TwF ' LF and it is easily checked that the above isomorphism is

(GF ,LF )-equivariant through this identification. Now, to s is associated a

linear character of LF that, through the identification TwF ' LF , defines a

linear character θ : TwF → Λ×.

By Theorem 5.16, we only need to prove that Condition CV∗j−1∩V
∗
j+1

(s) ⊂
CV∗j

(s) is equivalent to P(n, j, θ). So let us prove this last fact. The property

P(n, j, θ) can be rewritten as follows:

Property P(n, j, θ). If α ∈ Φ+ is such that θ(Nw(w1 · · ·wj−2(α∨)))

= 1 and (wj−1wj)
−1(α) ∈ Φ+, then w−1

j−1(α) ∈ Φ+.
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Let s′ = a−1
1 sa1 ∈ T∗wF

∗
. Note that P(n, j, θ) is equivalent to

Cw1...wj−2U∗(s
′) ∩ w1···wjU∗ ⊂ w1···wj−1U∗.

By conjugating by a1, and since a1n1···niU∗ = V∗i , we get that P(n, j, θ) is

equivalent to CV∗j−1
(s) ∩V∗j+1 ⊂ V∗j , as desired.

Second step: The general case. Let us now come back to the general case:

we no longer assume that L is a maximal torus. Since RΓc(Y
op
V•,j

,Λ)eL
F

s =

RΓc(Y
op
V•,j

,Λ)⊗ΛLF ΛLF eL
F

s , and since ΛLF eL
F

s lives in the category generated

by the complexes RL
T′⊂B′(ΛT

′F eT
′F

s ), where B′ runs over the set of Borel

subgroups of L admitting an F -stable maximal torus T′ whose dual torus

contains s (see [BR03, Th. A’]), it is sufficient to prove that

RΓc(Y
op
V•,j

,Λ)⊗ΛLF RL
T′⊂B′(ΛT′F eT

′F
s ) = 0.

So let (T′,B′) be a pair as above. Let U′ denote the unipotent radical

of B′, let T′∗ be an F ∗-stable maximal torus of L∗, containing s and dual to T′,

and let B′∗ be a Borel subgroup of L∗ containing T′∗ and dual to B′. Then

[DM91, 11.5]

YV• ×LF YL
U′ ' YU′V•

(as GF -varieties-T′F ). Here, we have set U′V• = (U′V1, . . . ,U
′Vr). More-

over, through this isomorphism, Yop
V•,j
×LF YL

U′ is sent to Yop
U′V•,j

hence, by

applying the first step of this proof, we only need to prove that

CU′∗V∗j−1∩U′∗V
∗
j+1

(s) ⊂ CU′∗V∗j
(s).

Since V∗j−1 and V∗j+1 both admit L∗ as a Levi complement and U′∗ ⊂ L∗,

it follows that U′∗V∗j−1 ∩U′∗V∗j+1 ⊂ U′∗(V∗j−1 ∩V∗j+1). On the other hand,

CU′∗(V∗j−1∩V
∗
j+1)(s) = CU′∗(s)CV∗j−1∩V

∗
j+1

(s) ⊂ CU′∗(s)CV∗j
(s) by assumption,

and this completes the proof. �

Remark 6.3. Theorem 6.2 provides a comparison of modules, together

with the Frobenius action. We have an isomorphism of (ΛGF ,ΛLF )-bimodules

compatible with the Frobenius action

H i
c(YV,j ,Λ)eL

F

s ' H i−2r
c (Ycj(V•),Λ)eL

F

s (−r),

where r = dj(V•).

Let sh(V•) = (V2, . . . ,Vr,
FV1). The map

shV• : YV• −→ Ysh(V•)

(g1V1, . . . , grVr) 7−→ (g2V2, . . . , grVr, F (g1V1))

is (GF ,LF )-equivariant and induces an equivalence of étale sites. Therefore,

it induces a quasi-isomorphism of complexes of bimodules

sh∗V• : RΓc(Ysh(V•),Λ)
∼−→ RΓc(YV• ,Λ).
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Applying twice Theorem 6.2, we obtain the following result.

Corollary 6.4. Let j ∈ {2, . . . , r}, and assume that

CV∗j−1∩V
∗
j+1

(s) ⊂ CV∗j
(s) and CV∗j∩V

∗
j+2

(s) ⊂ CV∗j+1
(s).

The map ΨV•,j,s ◦ sh∗V• ◦ Ψ−1
sh(V•),j,s

is a quasi-isomorphism of complexes of

(ΛGF ,ΛLF )-bimodules

RΓdim
c (Ycj(sh(V•)),Λ)eL

F

s
∼−→ RΓdim

c (Ycj(V•),Λ)eL
F

s .

In the case r = 2, Corollary 6.4 becomes the following result.

Corollary 6.5. Assume

CV∗1∩F
∗V∗1

(s) ⊂ CV∗2
(s) and CV∗2∩F

∗V∗2
(s) ⊂ CF∗V∗1

(s).

The map ΨV1,V2,2,s◦sh∗V1,V2
◦Ψ−1

V2,F (V1),2,s is a quasi-isomorphism of complexes

of (ΛGF ,ΛLF )-bimodules

RΓdim
c (YV2 ,Λ)eL

F

s
∼−→ RΓdim

c (YV1 ,Λ)eL
F

s .

As a consequence, we obtain a quasi-isomorphism of functors between

RG
L⊂P1

[dim(YV1)] : Db(ΛLF eL
F

s ) −→ Db(ΛGF eG
F

s )

and RG
L⊂P2

[dim(YV2)] : Db(ΛLF eL
F

s ) −→ Db(ΛGF eG
F

s ).

Remark 6.6. The isomorphism of functors of Corollary 6.5 comes with a

Tate twist. Keeping track of this twist has important applications [Wan14],

[Ngu].

Remark 6.7. Let us make some comments here about the condition

(CV1,V2) CV∗1∩F
∗V∗1

(s) ⊂ CV∗2
(s) and CV∗2∩F

∗V∗2
(s) ⊂ CF∗V∗1

(s).

Note that if CV∗1
(s) = CV∗2

(s), then Condition (CV1,V2) is satisfied. Since

CV∗i
(s) is connected, it follows that if C◦G∗(s) ⊂ L∗, then Condition (CV1,V2)

is satisfied.

Example 6.8. Of course, Condition (CV1,V1) is fulfilled for all s. Gluing the

quasi-isomorphisms obtained from Corollary 6.5, we get a quasi-isomorphism

of complexes of bimodules

ΘV1,V1 : RΓc(YV1 ,Λ)
∼−→ RΓc(YV1 ,Λ).

But, since Yop
V1,V1

= ∅, it is readily checked that ΘV1,V1 = IdRΓc(YV1
,Λ).
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Example 6.9. Similarly, Condition (CV1,F (V1)) is fulfilled for all s. Glu-

ing the quasi-isomorphisms obtained from Corollary 6.5, we obtain a quasi-

isomorphism of complexes of bimodules

ΘV1,F (V1) : RΓc(YV1 ,Λ)
∼−→ RΓc(YF (V1),Λ).

But, since Yop
V1,F (V1) = ∅, it is readily checked that ΘV1,F (V1) = F .

Remark 6.10. If (CV1,V2) holds, we denote by

ΘV1,V2,s : RΓdim
c (YV2 ,Λ)eL

F

s
∼−→ RΓdim

c (YV1 ,Λ)eL
F

s

the quasi-isomorphism defined by ΘV1,V2,s = ΨV1,V2,2,s◦sh∗V1,V2
◦Ψ−1

V2,F (V1),2,s.

Assume moreover that (CV1,V3) and (CV2,V3) hold, so that the quasi-isomor-

phisms of complexes ΘV1,V3,s and ΘV2,V3,s are also well defined. It is natural

to ask the following:

Question. When does the equality ΘV1,V3,s = ΘV1,V2,s ◦ ΘV2,V3,s

hold?

For instance, taking Example 6.8 into account, when does the equality Θ−1
V1,V2,s

= ΘV2,V1,s hold?

We do not know the answer to this question, but we can just say that the

equality does not always hold. Indeed, ifm is minimal such that Fm(V1) = V1,

then the isomorphisms ΘV1,F (V1),s, ΘF (V1),F 2(V1),s,. . . , ΘFm−1(V1),V1
are well

defined and all coincide with the Frobenius endomorphism F (see Example 6.9),

and so

ΘV1,F (V1),s ◦ΘF (V1),F 2(V1),s ◦ · · · ◦ΘFm−1(V1),V1,s = Fm 6= Id = ΘV1,V1,s

(see Example 6.8).

Example 6.11. Let P0 be a parabolic subgroup admitting an F -stable Levi

subgroup L0 containing L. We denote by V0 the unipotent radical of P0 and L∗0
the corresponding Levi subgroup of a parabolic subgroup of G∗ containing L∗,

which is dual to L0. We assume in this example that C◦G∗(s) ⊂ L∗0. Then it

follows from [BR03, Th. 11.7], Corollary 6.5 and Remark 6.7 that we have an

isomorphism of (ΛGF ,ΛLF )-bimodules

Hd0
c (YV0 ,Λ)⊗ΛLF0

RΓdim
c (YL0

V∩L0
,Λ)eL

F

s ' RΓdim
c (YV,Λ)eL

F

s ,

where d0 = dim(YV0).

Remark 6.12. Let us consider the Harish-Chandra case: assume that V1

and V2 are F -stable. The functors RG
L⊂P1

and RG
L⊂P2

are isomorphic without

truncating by any series [DD93], [HL94]. Such isomorphisms are given by ex-

plicit isomorphisms of bimodules, which do not rely on any algebraic geometry.

We do not know if after truncation by a series satisfying (CV1,V2), that they

coincide with our isomorphisms.
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6.B. Transitivity. We will provide here an analogue to Lemma 5.13 in the

more general context of this section. Assume in this subsection, and only in

this subsection, that 3 6 j 6 r (in particular, r > 3). Since cj−1(cj(V•)) =

cj−1(cj−1(V•)), we can build a diagram

(6.13)

RΓdim
c (YV• ,Λ)

ΨV•,j //

ΨV•,j−1

��

RΓdim
c (Ycj(V•),Λ)

Ψcj(V•),j−1

��
RΓdim

c (Ycj−1(V•),Λ)
Ψcj−1(V•),j−1

// RΓdim
c (Ycj−1(cj(V•),Λ).

It does not seem reasonable to expect that the diagram (6.13) is commutative

in general. However, we have the following result, obtained from the results of

Section 5.A below by copying the proof of Lemma 5.13.

Lemma 6.14. Assume that one of the following holds :

(1) Vj−2 ⊂ Vj+1 ·Vj−1;

(2) Vj−1 ⊂ Vj−2 ·Vj ;

(3) Vj ⊂ Vj−1 ·Vj+1;

(4) Vj+1 ⊂ Vj ·Vj−2.

Then the diagram (6.13) is commutative.

7. Jordan decomposition and quasi-isolated blocks

In this section, we assume G is connected. We fix an F -stable maximal

torus T of G, and we denote by (G∗,T∗, F ∗) a triple dual to (G,T, F ).

We start in Section 7.A with a recollection of some of the results of [BR03]

on the vanishing of the truncated cohomology of certain Deligne-Lusztig va-

rieties outside the middle degree. We fix an F -stable Levi subgroup L and

consider s ∈ G∗F
∗

of order invertible in Λ such that C◦G∗(s) ⊂ L∗ — and

we take L minimal with that property. We show that the corresponding mid-

dle degree (ΛGF ,ΛLF )-bimodule H
dim(YP)
c (YP,Λ)eL

F

s does not depend on the

choice of the parabolic subgroup P, up to isomorphism, thanks to the results

of Section 6. In particular, it is stable under the action of the stabilizer N of

eL
F

s in NGF (L).

Section 7.B develops some Clifford theory tools in order to extend the

action of LF on H
dim(YP)
c (YP,Λ)eL

F

s to an action of N . We apply this in

Section 7.C by embedding G in a group G̃ with connected center. This provides

a Morita equivalence, extending the main result of [BR03] to the quasi-isolated

case.
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In section Section 7.D, we show that the action of LF on the complex of

cohomology C = GΓc(YP,Λ)eL
F

s also extends to N , and the resulting complex

provides a splendid Rickard equivalence. This relies on checking that given Q

an `-subgroup of LF , the complex Br∆Q(C) arises in a Jordan decomposition

setting for CG(Q), and then applying the results of the appendix. The main

difficulty is to prove that brQ(eL
F

s ) is a sum of idempotents associated to a

Jordan decomposition setting for CG(Q). An added difficulty is that the group

CG(Q) need not be connected.

7.A. Quasi-isolated setting. We fix a semisimple element s ∈ G∗F
∗

whose

order is invertible in Λ. Let L∗ = CG∗
Ä
Z(C◦G∗(s))

◦
ä
, an F ∗-stable Levi comple-

ment of some parabolic subgroup P∗ of G∗. Note that L∗ is a minimal Levi sub-

group with respect to the property of containing C◦G∗(s) and CG∗(s)/C
◦
G∗(s) is

an abelian `′-group [Bon05, Cor. 2.8(b)]. In particular, the series corresponding

to s is (G,L)-regular.

We denote by (L,P) a pair dual to (L∗,P∗). Note that P is a parabolic

subgroup of G admitting L as an F -stable Levi complement. The unipotent

radical of P will be denoted by V. We put d = dim(YV).

The group CG∗(s) normalizes L∗, and we set N∗ = CG∗(s)
F ∗ · L∗: it is a

subgroup of NG∗(L
∗) containing L∗. Via the canonical isomorphism between

NG∗(L
∗)/L∗ and NG(L)/L, we define the subgroup N of NG(L) containing L

such that N/L corresponds to N∗/L∗. Note that N∗ is F ∗-stable and so N is

F -stable, and that N∗F
∗
/L∗F

∗
and NF /LF are abelian `′-groups.

Let us first derive some consequences of these assumptions. Note that

N∗/L∗ = (N∗/L∗)F
∗

= N∗F
∗
/L∗F

∗
, so that N/L = (N/L)F = NF /LF .

Also, N∗F
∗

is the stabilizer, in NG∗F∗ (L
∗), of the L∗F

∗
-conjugacy class of s.

Therefore,

(7.1) NF is the stabilizer of eL
F

s in NGF (L).

It follows that eL
F

s is a central idempotent of ΛNF . By [BR03, Th. 11.7], we

have

Hi
c(YV,Λ)eL

F

s = 0 for i 6=d.

Our first result on the Jordan decomposition is the independence of the

choice of parabolic subgroups.

Theorem 7.2. Given P′ a parabolic subgroup of G with Levi complement

L and unipotent radical V′, then H
dim(YV)
c (YV,Λ)eL

F

s 'H
dim(YV′ )
c (YV′ ,Λ)eL

F

s

as (ΛGF ,ΛLF )-bimodules.

The (ΛGF ,ΛLF )-bimodule Hd
c(YV,Λ)eL

F

s is NF -stable.

Proof. The first result follows from Remark 6.7 and Corollary 6.5.
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Let n ∈ NF . The isomorphism of varieties G/V
∼−→ G/nV, gV 7→

gVn−1 induces an isomorphism of varieties YV
∼−→ YnV. As a consequence,

we have an isomorphism of (ΛGF ,ΛLF )-bimodules

Hd
c(YV,Λ) ' n∗

Ä
Hd
c(YnV,Λ)

ä
,

where n∗
Ä
Hd
c(YnV,Λ)

ä
= Hd

c(YnV,Λ) as a left ΛGF -module and the right

action of a ∈ ΛLF on n∗
Ä
Hd
c(YnV,Λ)

ä
is given by the right action of nan−1

on Hd
c(YnV,Λ).

Since n fixes eL
F

s , we deduce that

Hd
c(YV,Λ)eL

F

s ' n∗
Ä
Hd
c(YnV,Λ)eL

F

s

ä
.

On the other hand, the first part of the theorem shows that

Hd
c(YV,Λ)eL

F

s ' Hd
c(YnV,Λ)eL

F

s .

It follows that Hd
c(YV,Λ)eL

F

s ' n∗
Ä
Hd
c(YV,Λ)eL

F

s

ä
. �

Recall that if NF = LF (that is, if CG∗(s)
F ∗ ⊂ L∗), then Hd

c(YV,Λ)eL
F

s

induces a Morita equivalence between ΛGF eG
F

s and ΛLF eL
F

s by [BR03, Th. B′].

Note that the assumption in [BR03, Th. B′] is CG∗(s) ⊂ L∗, but it can easily

be seen that the proof requires only the assumption CG∗(s)
F ∗ ⊂ L∗. Theo-

rem 7.2 shows that this Morita equivalence does not depend on the choice of

a parabolic subgroup.

We will generalize the Morita equivalence to our situation. The main

difficulty is to extend the action of LF on Hd
c(YV,Λ)eL

F

s to NF .

7.B. Clifford theory. Let us recall some basic facts of Clifford theory.

Let k be a field. Let Y be a finite group and X a normal subgroup of Y . Let M

be a finitely generated kX-module that is Y -stable, and let A = EndkX(M).

Given y ∈ Y , let Ny be the set of φ ∈ Endk(M)× such that φ(xm) =

yxy−1φ(m) for all x ∈ X and m ∈ M . Note that NyNy′ = Nyy′ for all

y, y′ ∈ Y .

Let N =
⋃
y∈Y Ny, a subgroup of Endk(M)× containing N1 = A× as a

normal subgroup. The action of x ∈ X on M defines an element of Nx, and this

gives a morphism X → N . The Y -stability of M gives a surjective morphism

of groups Y → N/N1, y 7→ Ny.

Let Ŷ = Y ×N/N1
N . There is a diagonal embedding of X as a normal

subgroup of Ŷ . There is a commutative diagram whose horizontal and vertical
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sequences are exact:

1

��

1

��
X

��

X

��
1 // A× // Ŷ //

��

Y //

��

1

1 // A× // Ŷ /X //

��

Y/X

��

// 1

1 1.

The action of X on M extends to an action of Y if and only if the canonical

morphism of groups Ŷ → Y has a splitting that is the identity on X. This is

equivalent to the fact that the canonical morphism of groups Ŷ /X → Y/X is

a split surjection.

The extension of groups

1→ 1 + J(A)→ A× → A×/(1 + J(A))→ 1

splits. Indeed, since A is a finite-dimensional k-algebra, there exists a k-sub-

algebra S of A such that the composition S ↪→ A� A/J(A) is an isomorphism.

Since A = S ⊕ J(A), we have A× = (1 + J(A)) o S×.

If [Y : X]∈k×, then every group extension 1→ 1 + J(A)→Z→Y/X→ 1

splits, since 1 + J(A) is the finite extension of abelian groups

(1 + J(A)i)/(1 + J(A)i+1) ' J(A)i/J(A)i+1,

and those are k(Y/X)-modules. Consequently, if [Y : X] ∈ k×, then the action

of X on M extends to an action of Y if and only if the extension

1→ A×/(1 + J(A))→ Ŷ /X(1 + J(A))→ Y/X → 1

splits.

Consider now Ỹ a finite group with Y and X̃ two normal subgroups such

that X = Y ∩ X̃ and Ỹ = Y X̃. Let M̃ = IndX̃X(M), a Ỹ -stable kX̃-module.

We define Ñy, Ñ and ˆ̃Y as above, replacing M by M̃ .

Given y ∈ Y , we define a map ρ : Ny → Ñy, φ 7→ (a⊗m 7→ yay−1⊗φ(m))

for a ∈ kX̃ and m ∈ M . This gives a morphism of groups N → Ñ extending

the canonical morphism A → EndkX̃(M̃) and a morphism of groups Ŷ /X →
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ˆ̃Y/X̃ giving a commutative diagram

1 // A× //� _

��

Ŷ /X //

��

Y/X

∼
��

// 1

1 // EndkX̃(M̃)× // ˆ̃Y/X̃ // Ỹ /X̃ // 1.

It induces a commutative diagram

1 // A×/(1 + J(A)) //
� _

��

Ŷ /X(1 + J(A)) //

��

Y/X

∼
��

// 1

1 // EndkX̃(M̃)×/(1 + J(EndkX̃(M̃))) // ˆ̃Y/X̃(1 + J(EndkX̃(M̃))) // Ỹ /X̃ // 1

Assume the inclusion

EndkX(M)×/(1 + J(EndkX(M))) ↪→ EndkX̃(M̃)×/(1 + J(EndkX̃(M̃)))

splits; this happens, for example, if EndkX̃(M̃)/J
Ä
EndkX̃(M̃))

ä
'kn for some n,

for in that case the algebra embedding

EndkX(M)/J(EndkX(M)) ↪→ EndkX̃(M̃)/J(EndkX̃(M̃))

has a section. If the surjection ˆ̃Y/X̃(1 + J(EndkX̃(M̃))) → Ỹ /X̃ splits, then

the surjection Ŷ /X(1 + J(EndkX(M)))→ Y/X splits.

As a consequence, we have the following proposition.

Proposition 7.3. Let Ỹ be a finite group and Y , X̃ be two normal sub-

groups of Ỹ . Let X = Y ∩ X̃ . We assume Ỹ = Y X̃ . Let k be a field with

[Y : X] ∈ k×.

Let M be a finitely generated kX-module that is Y -stable. We assume

that

EndkX̃(IndX̃X(M))/J
Ä
EndkX̃(IndX̃X(M))

ä
' kn for some n.

If IndX̃X(M) extends to Ỹ , then M extends to Y .

7.C. Embedding in a group with connected center and Morita equivalence.

We fix a connected reductive algebraic group G̃ containing G as a closed

subgroup, with an extension of F to an endomorphism of G̃ such that F δ

is a Frobenius endomorphism of G̃ defining an Fq-structure, and such that

G̃ = G ·Z(G̃) and Z(G̃) is connected [DL76, proof of Cor. 5.18]. The inclusion

G ↪→ G̃ is called a regular embedding.

Let T̃=T·Z(G̃), an F -stable maximal torus of G̃. Fix a triple (G̃∗, T̃∗, F ∗)

dual to (G̃, T̃, F ). The inclusion i : G ↪→ G̃ induces a surjection i∗ : G̃∗ � G∗.

Let L̃ = L · Z(G̃), so that L̃∗ = (i∗)−1(L∗). Let Ñ = NL̃.
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Let J be a set of representatives of conjugacy classes of `′-elements t̃ ∈
G̃∗F

∗
such that i∗(t̃) = s. (Recall that CG̃∗(t̃) is connected because Z(G̃) is

connected.) Note that J ⊂ L̃∗F
∗
.

Lemma 7.4. We have idempotent decompositions eG
F

s =
∑
t̃∈J e

G̃F

t̃
and

eL
F

s =
∑
n∈NF /LF

∑
t̃∈J ne

L̃F

t̃
n−1.

Proof. The first statement is a classical translation from G∗ to G; cf., for

instance, [Bon06, Prop. 11.7].

Let s̃ be a semisimple element of G̃∗F
∗

such that i∗(s̃) = s. If Λ 6= K, we

will assume that s̃ has order prime to `. (This is always possible as we may

replace s̃ by its `′-part if necessary.) Note that s̃ ∈ L̃∗F
∗
.

Let n ∈ Ñ∗F
∗

such that ns̃n−1 is L̃∗F
∗
-conjugate to s̃. Then n ∈ L̃∗F

∗ ·
CG̃∗(s̃). Since i∗(CG̃∗(s̃)) ⊂ C◦G∗(s) ⊂ L∗, it follows that i∗(n) ∈ L∗F

∗
. We

have N∗F
∗
/L∗F

∗
= Ñ∗F

∗
/L̃∗F

∗
, hence n ∈ L̃∗F

∗
.

It follows that N∗F
∗
/L∗F

∗
acts freely on the set of conjugacy classes of

L̃∗F
∗

whose image under i∗ is the L∗F
∗
-conjugacy class of s. Through the

identification of N∗F
∗
/L∗F

∗
with NF /LF , this shows that given t̃ ∈ J , the

stabilizer in NF of eL̃
F

t̃
is LF . �

Theorem 7.5. The action of kGF eG
F

s ⊗ (kLF eL
F

s )opp on Hd
c(YV, k)eL

F

s

extends to an action of kGF eG
F

s ⊗ (kNF eL
F

s )opp. The resulting bimodule in-

duces a Morita equivalence between kGF eG
F

s and kNF eL
F

s .

Proof. Let P̃ = P · Z(G̃) and let P̃∗ = i∗−1(P∗). Note that L̃ (resp. L̃∗)

is a Levi complement of P̃ (resp. P̃∗) and it is F -stable (resp. F ∗-stable) and

the pair (L̃∗, P̃∗) is dual to (L̃, P̃).

We put

X = (GF × (LF )opp) ·∆L̃F , Y = (GF × (NF )opp) ·∆ÑF ,

X̃ = G̃F × (L̃F )opp and Ỹ = G̃F × (ÑF )opp.

Let ỸV = YG̃
V . Through the embedding G/V ↪→ G̃/V, we identify YV

with a subvariety of ỸV. The stabilizer in X̃ of the subvariety YV of ỸV is X,

hence we have an isomorphism of X̃-varieties IndX̃X YV
∼−→ ỸV.

Let M = Hd
c(YV, k)eL

F

s , a (kX(eG
F

s ⊗ eLFs ))-module. Let M̃ = IndX̃XM ,

a (kX̃(eG
F

s ⊗ eLFs ))-module. We have an isomorphism of (kX̃(eG
F

s ⊗ eLFs ))-

modules M̃
∼−→ Hd

c(ỸV, k)eL
F

s .

We put e =
∑
t̃∈J e

L̃F

t̃
. We have eL

F

s =
∑
n∈ÑF /L̃F nen

−1, and e is a

central idempotent of kL̃F (Lemma 7.4).

The kX-module M is NF -stable (Theorem 7.2), hence the kX̃-module

M̃ is NF -stable as well. It follows that given t̃ ∈ J and n ∈ NF , we have
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n∗(H
d
c(ỸV)eL̃

F

t̃
) ' Hd

c(ỸV)eL̃
F

nt̃n−1 as kX̃-modules. The classical Mackey for-

mula for induction and restriction in finite groups shows now that

Hd
c(ỸV, k)

Ä ∑
n∈NF /LF

eL̃
F

nt̃n−1

ä
' ResỸ

X̃
IndỸ

X̃

Ä
Hd
c(ỸV)eL̃

F

t̃

ä
,

hence

M̃ ' ResỸ
X̃

IndỸ
X̃

Ä
M̃e).

Lemma 7.4 shows that M̃e induces a Morita equivalence between kG̃F eG
F

s

and kL̃F e (cf. [BR03, Th. B′]). In particular, it is a direct sum of indecompos-

able modules, no two of which are isomorphic.

Since ekÑF induces a Morita equivalence between kL̃F e and kÑF eL
F

s , we

deduce that the right action of L̃F on M̃ ' M̃e⊗kL̃eekÑ
F extends to an action

of ÑF commuting with the left action of G̃F and the extended bimodule M̃ ′

induces a Morita equivalence between kG̃F eG
F

s and kÑF eL
F

s . It follows that

EndkX̃(M̃) ' Endk(ÑF×(L̃F )opp)(kÑ
F eL

F

s ).

Given n1, n2 ∈ ÑF with n1 6∈n2L̃
F , the central idempotents n1en

−1
1 and

n2en
−1
2 of kL̃F are orthogonal. It follows that

Endk(ÑF×(L̃F )opp(kÑF eL
F

s ) '
∏

n∈NF /LF

Endk(ÑF×(L̃F )opp)(kÑ
Fnen−1)

'
Ä
Z(kL̃F e)

ä[NF /LF ]
,

the last isomorphism following from the fact that kÑFnen−1 induces a Morita

equivalence between kÑeL
F

s and kL̃Fnen−1 ' kL̃F e.
We deduce that EndkX̃(M̃)×/

Ä
1 + J(EndkX̃(M̃))

ä
' (k×)r for some r.

Since [Y : X] = [N : L] is prime to `, it follows from Proposition 7.3 that the

action of X on M extends to an action of Y . Denote by M ′ the extended mod-

ule. We have ResỸ
X̃

IndỸY (M ′)e ' M̃e ' ResỸ
X̃

(M̃ ′)e, hence IndỸY (M ′) ' M̃ ′.
It follows that IndỸY (M ′) induces a Morita equivalence between kG̃F eG

F

s and

kÑF eL
F

s . We have

EndkG̃F (IndỸY (M ′)) ' EndkG̃F (kG̃F ⊗kGF M ′)

' HomkGF (M ′,M ′ ⊗kNF kÑF )

' EndkGF (M ′)⊗kNF kÑF .

The canonical map kÑF eL
F

s → EndkG̃F (IndỸY M
′) is an isomorphism, hence

the canonical map kNF eL
F

s → EndkGF (M ′) is an isomorphism as well. Also,

M is a faithful kGF eG
F

s -module, since M̃ = IndG̃F

GF M is a faithful kG̃F eG
F

s -

module. We deduce that M ′ induces a Morita equivalence between kGF eG
F

s

and kNF eL
F

s . �
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7.D. Splendid Rickard equivalence and local structure. Recall that L is the

minimal F -stable Levi subgroup of G such that C◦G∗(s) ⊂ L∗.

Theorem 7.6. The action of kGF eG
F

s ⊗(kLF eL
F

s )opp on GΓc(YV, k)eL
F

s

extends to an action of kGF eG
F

s ⊗(kNF eL
F

s )opp. The resulting complex induces

a splendid Rickard equivalence between kGF eG
F

s and kNF eL
F

s .

Proof. Step 1: Identification of End•kGF (GΓc(YV, k)eL
F

s ) in Hob(k(LF ×
(LF )opp)). Let C = (GΓc(YV, k)eL

F

s )red. The vertices of the indecomposable

direct summands of components of C are contained in ∆LF by Corollary 3.8.

Let Q be an `-subgroup of LF . We have Br∆Q(C) ' GΓc(Y
CG(Q)
CV(Q) , k)brQ(eL

F

s )

in Hob(k(CGF (Q) × CLF (Q)opp)) by Proposition 3.4. Let X be the rational

series of (L, F ) corresponding to s, so that eL
F

s = eX . Theorem 4.14 shows

that

brQ(eX ) =
∑

Y∈(iLQ)−1(X )

eY .

Let Y ∈ (iLQ)−1(X ). Proposition 4.11 shows that Y is (C◦G(Q), C◦L(Q))-

regular. It follows from [BR03, Theorem 11.7] that Hi
c(Y

C◦G(Q)

CV(Q) , k)eY = 0

for i6= dimY
C◦G(Q)

CV(Q) , hence Hi
c(Y

CG(Q)
CV(Q) , k)eY = 0 for i6= dimY

CG(Q)
CV(Q) . We have

shown that the cohomology of Br∆Q(C) is concentrated in a single degree.

Note that ReskC
GF

(Q)(Br∆Q(C)) is a perfect complex, hence its homology is

projective as a kCGF (Q)-module. We deduce from Theorem A.4 that

End•kGF (C) ' EndDb(kGF )(C) in Hob(k(LF × (LF )opp)).

Step 2: Study of EndHob(k(GF×(NF )opp))(Ind
GF×(NF )opp

GF×(LF )opp GΓc(YV, k)eL
F

s ).

Let C ′ = Ind
GF×(NF )opp

GF×(LF )opp C. Let P be a projective resolution of kNF , i.e., a

complex of k(NF × (NF )opp)-proj with P i = 0 for i > 0, together with a

quasi-isomorphism P → kNF of k(NF × (NF )opp)-modules. As the terms of

C ′ are projective kGF -modules, we have a commutative diagram

EndHob(k(GF×(NF )opp))(C
′)

��

∼ // HomHob(k(NF×(NF )opp))(kN
F ,End•kGF (C ′))

��
EndDb(k(GF×(NF )opp))(C

′)
∼ // HomHob(k(NF×(NF )opp))(P,End•kGF (C ′))

Using the isomorphisms of complexes in Hob(k(NF × (NF )opp)),

End•kGF (C ′) ' Ind
NF×(NF )opp

LF×(LF )opp (End•kGF (C))

and

EndDb(kGF )(C
′) ' Ind

NF×(NF )opp

LF×(LF )opp (EndDb(kGF )(C)),
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we deduce that

End•kGF (C ′) ' EndDb(kGF )(C
′) in Hob(k(NF × (NF )opp)).

Now, the canonical map

HomHob(k(NF×(NF )opp))(kN
F ,EndDb(kGF )(C

′))

→ HomHob(k(NF×(NF )opp))(P,EndDb(kGF )(C
′))

is an isomorphism, since EndDb(kGF )(C
′) is a complex concentrated in degree 0.

It follows that the top horizontal map in the commutative diagram above is

an isomorphism, hence we have canonical isomorphisms

EndHob(k(GF×(NF )opp))(C
′)
∼−→ EndDb(k(GF×(NF )opp))(C

′)

∼−→ Endk(GF×(NF )opp)(Ind
GF×(NF )opp

GF×(LF )opp Hd
c(YV, k)).

Step 3: Construction of a summand C̃ of Ind
GF×(NF )opp

GF×(LF )opp (GΓc(YV, k)eL
F

s ).

We have shown (Theorem 7.5) that there is a direct summand M ′ of the module

Ind
GF×(NF )opp

GF×(LF )opp Hd
c(YV, k) whose restriction to GF × (LF )opp is isomorphic to

Hd
c(YV, k). Let i be the corresponding idempotent of

Endk(GF×(NF )opp)(Ind
GF×(NF )opp

GF×(LF )opp Hc(YV, k))

and j its inverse image in EndHob(k(GF×(NF )opp))(C
′) via the isomorphisms

above. We have a surjective homomorphism of finite-dimensional k-algebras

EndComp(k(GF×(NF )opp))(C
′)� EndHob(k(GF×(NF )opp))(C

′).

Consequently, j lifts to an idempotent j′ of EndComp(k(GF×(NF )opp))(C
′) [Thé95,

Th. 3.2]. It corresponds to a direct summand C̃ of C ′ quasi-isomorphic to M ′

and Res
GF×(NF )opp

GF×(LF )opp (C̃) is a direct summand of Res
GF×(NF )opp

GF×(LF )opp (C ′)'C⊕[NF :LF ].

Step 4: C̃ lifts GΓc(YV, k)eL
F

s . Let C =
⊕

1 6 r 6 nCr be a decomposition

into a direct sum of indecomposable objects of Hob(k(GF × (LF )opp). This

induces a decomposition M =
⊕

1 6 r 6 nMr, where Mr = Hd(Cr) and Mr

and Mr′ have no isomorphic indecomposable summands for r 6=r′ (cf. proof of

Theorem 7.5). We have Res
GF×(NF )opp

GF×(LF )opp (C̃) ' ⊕1 6 r 6 nC
⊕ar
r in Hob(k(GF ×

(LF )opp) for some integers 0 6 ar 6 [NF : LF ] and
⊕

1 6 r 6 nH
d(Cr)

⊕ar 'M .

It follows that ar = 1 for all r, hence Res
GF×(NF )opp

GF×(LF )opp (C̃) ' C in Hob(k(GF ×
(LF )opp). This shows the first statement.
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Step 5: Rickard equivalence. We have shown above that End•kGF (C̃) '
EndDb(kGF )(C̃) in Hob(k(NF ×(NF )opp)). On the other hand, EndDb(kGF )(C̃)

' EndkGF (M ′) ' kNF eL
F

s . It follows from Corollary A.5 that C̃ induces a

splendid Rickard equivalence. �

We now summarize and complete the description of the Jordan decompo-

sition of blocks.

Theorem 7.7. There is an extension of the complex GΓc(YV,O)redeL
F

s

of (OGF eG
F

s ,OLF eLFs )-bimodules to a complex C of (OGF eG
F

s ,ONF eL
F

s )-

bimodules. The complex C induces a splendid Rickard equivalence between

OGF eG
F

s and ONF eL
F

s .

There is a (unique) bijection b 7→ b′ between blocks of OGF eG
F

s and

ONF eL
F

s such that bC ' Cb′.
Given b a block of OGF eG

F

s , then

• the bimodule HdimYV(bCb′) induces a Morita equivalence between OGF b

and ONF b′;

• the complex bCb′ induces a splendid Rickard equivalence between OGF b and

ONF b′;

• there is a (unique) equivalence (Q, b′Q) 7→ (Q, bQ) from the category of

b′-subpairs to the category of b-subpairs such that bQBr∆Q(C)=Br∆Q(C)b′Q.

In particular, if D is a defect group of b′, then D is a defect group of b.

Proof. Theorem 7.6 provides a complex C ′ of (kGF eG
F

s ⊗ (kNF eL
F

s )opp)-

modules inducing a splendid Rickard equivalence. By Rickard’s Lifting Theorem

[Ric96, Th. 5.2], there is a splendid complex C of (OGF eG
F

s ⊗ (ONF eL
F

s )opp)-

modules, unique up to isomorphism in Comp(O(GF × (NF )opp)), such that

kC ' C ′. Also, [Ric96, proof of Th. 5.2] shows that GΓc(YV,O)redeL
F

s is the

unique splendid complex that lifts GΓc(YV, k)redeL
F

s . As a consequence, there

is an isomorphism of complexes

Res
GF×(NF )opp

GF×(LF )opp (C) ' GΓc(YV,O)redeL
F

s .

By [Ric96, Th. 5.2], the complex C induces a splendid Rickard equivalence.

Since Hd(bkCb′) induces a Morita equivalence, it follows that Hd(bCb′)

induces a Morita equivalence (cf., e.g., [Ric96, proof of Th. 5.2]).

The existence of the bijection between blocks follows from the isomorphism

of algebras Z(OGF eG
F

s )
∼−→ Z(ONF eL

F

s ) induced by the Morita equivalence,

and the blockwise statements on Morita and Rickard equivalence are clear.

By [Pui99, Th. 19.7], it follows that the Brauer categories of kGF b and

kNF b′ are equivalent and, in particular, kGF b and kNF b′ have isomorphic

defect groups. �
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Remark 7.8. If was already known that given b a block of OGF eG
F

s , then

b and b′ have isomorphic defect groups under one of the following assumptions:

• ` does not divide |Z(G)/Z(G)◦)F | nor |Z(G∗)/Z(G∗)◦)F |, ` > 5 and ` > 7

if G has a component of type E8 [CE99, Prop. 5.1];

• CG∗(s) ⊂ L∗, and either b or b′ has a defect group that is abelian modulo

the `-center of GF [KM13, Th. 1.3].

Example 7.9. Assume in this example that C◦G∗(s) = L∗, and assume

that (CG∗(s)/C
◦
G∗(s))

F ∗ is cyclic. The element s defines a linear character

ŝ : LF → O× that induces an isomorphism of algebra OLF eLFs ' OLF eLF1 .

The linear character ŝ is stable under the action of NF so, since NF /LF is

cyclic, it extends to a linear character ŝ+ : NF → O×. Again, ŝ+ induces

an isomorphism of algebra ONF eL
F

s ' ONF eL
F

1 . Combined with this, Theo-

rem 7.5 provides a Morita equivalence between ONF eL
F

1 and OGF eG
F

s .

Example 7.10 (Type A). Assume in this example that all the simple com-

ponents of G are of Type A. (No assumption is made on the action of F .)

Then C◦G∗(s) = L∗ and CG∗(s)/C
◦
G∗(s) is cyclic. Therefore, Example 7.9 can

be applied to provide a Morita equivalence between ONF eL
F

1 and OGF eG
F

s .

Remark 7.11. This article was announced at the end of the introduction of

[BR03]. Unfortunately, we have not been able to settle the problem of finiteness

of source algebras. On the other hand, in addition to what was announced in

[BR03], we have provided an extension of the Jordan decomposition to the

quasi-isolated case.

Appendix A. About `-permutation modules

In this section, we assume Λ = O or Λ = k. Let us recall here some

results of Broué and Puig; cf. [Bro85, §3.6]. Let G be a finite group. Note

that an `-permutation OG-module M is indecomposable if and only if kM is

an indecomposable kG-module.

Let P be an `-subgroup of G. An indecomposable `-permutation ΛG-

module M has a vertex containing P if and only if BrP (M) 6= 0. Also, given V

an indecomposable projective k[NG(P )/P ]-module (it is then an `-permutation

kG-module), there exists a unique indecomposable `-permutation ΛG-module

M(P, V ) such that BrPM(P, V ) ' V . The ΛG-module M(P, V ) has vertex P .

Moreover, every indecomposable `-permutation ΛG-module with vertex P is

isomorphic to such an M(P, V ).

The following lemma is a variant of [Bou98, Prop. 6.4].

Lemma A.1. Let M and N be `-permutation ΛG-modules, and let ψ ∈
HomΛG(M,N). Assume that all indecomposable summands of N have a vertex
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equal to a given subgroup P of G and that BrP (ψ) is a surjection. Then ψ is

a split surjection.

Proof. Proceeding by induction on the dimension of N , we can assume

that N is indecomposable. Fix a decomposition M =
⊕

i∈IMi where Mi

is indecomposable for all i ∈ I, and let ψi : Mi → N denote the restriction

of ψ. Since BrP (ψ) is a surjection and BrP (N) is an indecomposable projective

k[NG(P )/P ]-module, we deduce that BrP (ψi) : BrP (Mi) → BrP (N) is a split

surjection for some i ∈ I.

By [Bro85, Th. 3.2(4)], it follows thatN is isomorphic to a direct summand

of Mi. Since Mi is indecomposable, there is an isomorphism ψ′ : N
∼−→ Mi.

The morphism BrP (ψiψ
′) = BrP (ψi)BrP (ψ′) is an isomorphism, so it is not

nilpotent. Therefore, ψiψ
′ does not belong to the radical of EndΛG(N), hence

it is invertible (because EndΛG(N) is a local ring). So ψi is an isomorphism,

as desired. �

Lemma A.2. Let C be a bounded complex of `-permutation ΛG-modules

and P an `-subgroup of G such that BrQ(C) is acyclic for all `-subgroups of G

that are not conjugate to a subgroup of P . Let D be a bounded complex of

finitely generated projective k[NG(P )/P ]-modules. We assume that BrP (C)

' D in Hob(k[NG(P )/P ]).

Then there exists a bounded complex C ′ of `-permutation ΛG-modules, all

of whose indecomposable summands have a vertex contained in P , such that

C ′ ' C in Hob(ΛG) and BrP (C ′) ' D in Compb(k[NG(P )/P ]).

Proof. Up to isomorphism in Hob(ΛG), we may assume that C = Cred.

We write C = (C•, d•). We will first show by induction on the length of C

that BrP (C) = BrP (C)red and that the indecomposable summands of C have

a vertex contained in P .

Let n be maximal such that Cn+1 6= 0. We fix a decomposition Cn+1 =⊕
i∈IMi where Mi is indecomposable for all i ∈ I, and we denote by pi :

Cn+1 →Mi the projection.

Let i ∈ I, and let Q be the vertex of Mi. Assume that the composition

BrQ(Cn)
BrQ(dn)

// BrQ(Cn+1)
BrQ(pi)// BrQ(Mi)

is surjective. It follows from Lemma A.1 that pid
n : Cn → Mi is a split

surjection: this contradicts the fact that C = Cred. If Q is not conjugate to a

subgroup of P , then BrQ(dn) is surjective by assumption, hence a contradiction.

We deduce by induction that the indecomposable summands of C have a vertex

contained in P .

BrQ(C) = 0 if Q is not conjugate to a subgroup of P .
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We deduce also that the complex

0 // BrP (Cn)
BrP (dn)

// BrP (Cn+1) // 0

has no nonzero direct summand that is homotopy equivalent to 0. By the

induction hypothesis, the complex

· · · // BrP (Cn−1)
BrP (dn−1)

// BrP (Cn) // 0

has no nonzero direct summand that is homotopy equivalent to 0. It follows

that BrP (C) = BrP (C)red.

We deduce from this that D ' BrP (C) ⊕ D′, where D′ is homotopy

equivalent to 0. So D′ is a sum of complexes of the form 0 → V
Id−→ V → 0

with V projective indecomposable (up to a shift), hence there is a bounded

complex C ′ of `-permutation ΛG-modules that is a direct sum of complexes

of the form 0 → M(P, V )
Id−→ M(P, V ) → 0 with V projective indecomposable

such that BrP (C ′) ' D′. We have BrP (C ⊕ C ′) ' D, as desired. �

The following lemma is close to [Bou98, Prop. 7.9].

Lemma A.3. Let G be a finite group and C be a bounded complex of

`-permutation kG-modules. Assume H i(BrQ(C)) = 0 for all i 6= 0 and all

`-subgroups Q of G. Then C ' H0(C) in Hob(kG).

Proof. Replacing C by Cred, we can and will assume that C has no nonzero

direct summands that are homotopy equivalent to 0.

Let i > 0 be maximal such that Ci 6=0. The map di−1
BrQ(C) = BrQ(di−1

C ) :

BrQ(Ci−1) → BrQ(Ci) is surjective for all `-subgroups Q. It follows from

Lemma A.1 that di−1
C is a split surjection: this contradicts our assumption

on C. So Ci = 0 for i > 0. Replacing C by C∗, we obtain similarly that

CiQ = 0 for i < 0. The lemma follows. �

The following theorem is a variant of [Rou01, Th. 5.6].

Theorem A.4. Let G be a finite group and H a subgroup of G. Let C

be a bounded complex of `-permutation k(G ×Hopp)-modules all of whose in-

decomposable summands have a vertex contained in ∆H .

Assume HomDb(kCG(Q))(Br∆Q(C),Br∆Q(C)[i]) = 0 for all i 6= 0 and

all `-subgroups Q of H . Then End•kG(C) is isomorphic to EndDb(kG)(C) in

Hob(k(H ×Hopp)).

Proof. Let R be an `-subgroup of H ×Hopp. By [Ric96, proof of Th. 4.1],

we have BrR(End•kG(C)) = 0 if R is not conjugate to a subgroup of ∆H, and
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given Q 6 H an `-subgroup, we have

Br∆Q(End•kG(C)) ' End•kCG(Q)(Br∆Q(C))

in Comp(k(CH(Q)× CH(Q)opp)).

Note that the indecomposable summands of Br∆Q(C) are projective for

kCG(Q) since their vertices are contained in x(∆H)x−1∩(CG(Q)×1) for some

x ∈ G×Hopp, hence

H i(End•kCG(Q)(Br∆Q(C))) ' HomDb(kCG(Q))(Br∆Q(C),Br∆Q(C)[i])

and this vanishes for i 6= 0. Consequently,

Br∆Q(End•kG(C)) ' EndDb(kCG(Q))(Br∆Q(C))

in Db(k(CH(Q)× CH(Q)opp)).

The conclusion of the theorem follows now from Lemma A.3 applied to

the complex End•kG(C). �

The following corollary, used in the proof of Theorem 7.6, might be useful

in other settings.

Corollary A.5. Let G be a finite group, H a subgroup of G, b a block

idempotent of OG, and c a block idempotent of ΛH . Let C be a bounded

complex of `-permutation (ΛGb,ΛHc)-bimodules, all of whose indecomposable

summands have a vertex contained in ∆H . Assume

HomDb(kCG(Q))(Br∆Q(C),Br∆Q(C)[i]) = 0

for all i 6= 0 and all `-subgroups Q of H and the canonical map kHc →
EndDb(kG)(kC) is an isomorphism. Then C induces a splendid Rickard equiv-

alence between ΛGb and ΛHc.

Proof. Theorem A.4 shows that the canonical map kHc→ End•kG(kC) is

an isomorphism in Hob(k(H×Hopp)). It follows from [Ric96, Th. 2.1] that kC

induces a Rickard equivalence between kGb and kHc. The result follows now

from [Ric96, proof of Th. 5.2]. �
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[Thé95] J. Thévenaz, G-Algebras and Modular Representation Theory, Oxford

Math. Monogr., The Clarendon Press, Oxford Univ. Press, New York, 1995.

MR 1365077. Zbl 0837.20015.

[Tho97] R. W. Thomason, The classification of triangulated subcategories, Com-

positio Math. 105 (1997), 1–27. MR 1436741. Zbl 0873.18003. https:

//doi.org/10.1023/A:1017932514274.

[Wan14] H. Wang, L’espace symétrique de Drinfeld et correspondance de Langlands

locale II, 2014. arXiv 1402.1265.

(Received: November 19, 2015)

(Revised: July 27, 2016)
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