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Abstract. In this paper we complete the determination of the Brauer trees of unipotent blocks (with
cyclic defect groups) of finite groups of Lie type. These trees were conjectured by the first author
in [19]. As a consequence, the Brauer trees of principal `-blocks of finite groups are known for
` > 71.
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1. Introduction

A basic problem in the modular representation theory of finite groups is to determine
decomposition matrices. The theory of blocks with cyclic defect groups that originated
with Brauer [5] and was completed by Dade [21] encodes the Morita equivalence class
of a block in a planar embedded tree. Its vertices correspond to ordinary irreducible rep-
resentations, its edges to modular irreducible representations, and the edges containing a
given vertex correspond to the composition factors of a modular reduction of the ordinary
irreducible representation.

The prospect of determining all Brauer trees associated to finite groups is a fundamen-
tal challenge in modular representation theory. In 1984, Feit [32, Theorem 1.1] proved
that, up to unfolding—broadly speaking, taking a graph consisting of several copies of a
given Brauer tree and then identifying all exceptional vertices—the collection of Brauer
trees of all finite groups coincides with that of the quasisimple groups.

For alternating groups and their double covers, the Brauer trees are known [62], and
for all but the two largest sporadic groups all Brauer trees are known (see [50] for most
of the trees). The remaining quasisimple groups, indeed the ‘majority’ of quasisimple
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groups, are groups of Lie type G(q): if ` is a prime dividing |G(q)| then either ` - q or
` | q—in the latter case, for there to be an `-block with cyclic defect group we must have
G/Z(G) = PSL2(`) and the Brauer tree must be a line.

Thus the major outstanding problem is to determine the Brauer trees of `-blocks of
groups of Lie type when ` - q. Conjecturally, all such blocks are Morita equivalent to
unipotent blocks (‘Jordan decomposition of blocks’). It is known that every block is
Morita equivalent to an isolated block of a possibly disconnected reductive group [1],
and the case of isolated blocks with cyclic defect is currently under investigation by the
first author and Radha Kessar.

Here we complete the determination of the Brauer trees of unipotent blocks of G(q).
We determine in particular the trees occurring in principal blocks. Our main theorem is
the following.

Theorem 1.1. Let G be a finite group of Lie type and let ` be a prime distinct from the
defining characteristic. If B is a unipotent `-block ofG with cyclic defect groups then the
planar-embedded Brauer tree of B is known. Furthermore, the labelling of the vertices
by unipotent characters in terms of Lusztig’s parametrization is known.

Theorem 1.1 has the following corollary.

Corollary 1.2. Let G be a finite group with cyclic Sylow `-subgroups. If ` 6= 29, 41, 47,
59, 71, then the (unparametrized) Brauer tree of the principal `-block of G is known.

Note that a solution of the Jordan decomposition conjecture for isolated blocks with cyclic
defect would extend the previous corollary to all blocks with cyclic defect groups of all
finite groups (for ` > 71 so that no sporadic groups are involved).

A basic method to determine decomposition matrices of finite groups is to induce
projective modules from proper subgroups. In the case of modular representations of finite
groups of Lie type in non-defining characteristic, Harish-Chandra induction from standard
Levi subgroups has similarly been a very useful tool to produce projective modules. Here,
we introduce a new method, based on the construction, via Deligne–Lusztig induction, of
bounded complexes of projective modules with few non-zero cohomology groups. This
is powerful enough to allow us to determine the decomposition matrices of all unipotent
blocks with cyclic defect groups of finite groups of Lie type.

In [30], the second and third authors used Deligne–Lusztig varieties associated to
Coxeter elements to analyse representations modulo `, where the order d of q modulo
` is the Coxeter number. Here, we consider cases where that order is not the Coxeter
number, but we use nevertheless the geometry of Coxeter Deligne–Lusztig varieties, as
they are the best understood, and have certain remarkable properties not shared by other
Deligne–Lusztig varieties.

Our main result is the proof of the first author’s conjecture [19] in the case of blocks
with cyclic defect groups. That conjecture is about the existence of a perverse equivalence
with a specific perversity function. Using the algorithm that determines the Brauer tree
from the perversity function [17], the first author had proposed conjectural Brauer trees
and proved that his conjecture held in many cases. We complete here the proof of that
conjecture.
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The methods we use to determine the Brauer trees are a combination of standard ar-
guments and more recent methods developed in [28, 29, 30]. We start with the subtrees
corresponding to various Harish-Chandra series, giving a disjoint union of lines provid-
ing a first approximation of the tree. The difficulty lies in connecting those lines with
edges labelled by cuspidal modules. Many possibilities can be ruled out by looking at the
degrees of the characters and of some of their tensor products. These algebraic methods
have proved to be efficient for determining most of the Brauer trees of unipotent blocks
(see for instance [48, 49]), but were not sufficient for groups of type E7 and E8. We over-
come this problem by using the mod-` cohomology of Deligne–Lusztig varieties and their
smooth compactifications. This is done by analysing well-chosen Frobenius eigenspaces
on the cohomology complexes of these varieties and extracting

• projective covers of cuspidal modules, giving the missing edges in the tree,
• Ext-spaces between simple modules, yielding the planar-embedded tree.

This strategy requires some control on the torsion part of the cohomology groups, and for
that reason we must focus on small-dimensional Deligne–Lusztig varieties only (often
associated with Coxeter elements).

The simplest statement is obtained when the order of a Coxeter torus and the order of
proper Levi subgroups are prime to `. In that case, we are able to determine part of the
tree (Corollary 4.23). The most delicate part is the last statement below. It involves the
planar embedding of the tree and unipotent representations corresponding to conjugate
eigenvalues of the Frobenius. We show that

• there is a line L starting with the trivial module L0 = K , continuing with r (= Fq -rank
of the group) principal series unipotent representations L1, . . . , Lr , the last of which
Lr is the Steinberg representation St;
• St is connected to the non-unipotent (usually exceptional) vertex by the edge corre-

sponding to the modular Steinberg module St`;
• if a vertex not in L is connected to L by an edge, then it must be connected to the

Steinberg representation or the non-unipotent vertex;
• the (irreducible) representation V corresponding to the part of the r-th cohomology

group with compact support of the Coxeter Deligne–Lusztig variety on which the
Frobenius acts by an eigenvalue congruent to qr modulo ` is attached to St by an edge;
that edge comes after the edge connecting St to Lr−1 and before the edge connecting
St to the non-unipotent vertex, in the cyclic ordering of edges around St.

Stℓ

St

k
1

V

V ∗

1
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We now briefly describe the structure of the article. Section 3 is devoted to general results
on unipotent blocks of modular representations of finite groups of Lie type, using alge-
braic and geometrical methods. In Section 4, we deal specifically with unipotent blocks
with cyclic defect groups. After recalling in §4.1 the basic theory of Brauer trees, we con-
sider in §4.2 the local structure of the blocks. In §4.3, we establish general properties of
the trees, and in particular we relate properties of the complex of cohomology of Coxeter
Deligne–Lusztig varieties to properties of the Brauer tree. A key result is Lemma 4.20
about certain perfect complexes for blocks with cyclic defect groups with only two non-
zero rational cohomology groups. In §5 we complete the determination of the trees, which
are collected in the appendix. The most complicated issues arise from differentiating the
cuspidal modules E8[θ ] and E8[θ

2
] when d = 18 (§5.2.3) and ordering cuspidal edges

around the Steinberg vertex for d = 20 (§5.2.5).

2. Notation

Let R be a commutative ring. Given two elements a and r of R with r prime, we denote
by ar the largest power of r that divides a. If M is an R-module and R′ is a commutative
R-algebra, we write R′M = R′ ⊗R M .

Let ` be a prime number, O the ring of integers of a finite extension K of Q`, and
k its residue field. We assume that K is large enough so that the representations of finite
groups considered are absolutely irreducible over K , and the Frobenius eigenvalues on
the cohomology groups over K considered are in K .

Given a ring A, we denote by A-mod the category of finitely generated A-modules,
by A-proj the category of finitely generated projective A-modules and by Irr(A) the set of
isomorphism classes of simple A-modules. When A is a finite-dimensional algebra over
a field, we identify K0(A-mod) with Z Irr(A) and we denote by [M] the class of an A-
moduleM . Given two complexes C and C′ of A-modules, we denote by Hom•A(C,C

′) =⊕
i,j HomA(C

i, C′j ) the total Hom-complex.
Let3 be either k, O orK and let A be a symmetric3-algebra: A is finitely generated

and free as a 3-module and A∗ is isomorphic to A as an (A,A)-bimodule. An A-lattice
is an A-module that is free of finite rank as a 3-module.

Given M ∈ A-mod, we denote by PM a projective cover of M . We denote by
�(M) the kernel of a surjective map PM � M and we define inductively �i(M) =
�(�i−1(M)) for i ≥ 1, where �0(M) is a minimal submodule of M such that
M/�0(M) is projective. Note that �i(M) is unique up to isomorphism. When M is
an A-lattice, we define �−i(M) as (�i(M∗))∗, using the right A-module structure on
M∗ = Hom3(M,3).

We denote by Hob(A) and Db(A) the homotopy and derived categories of bounded
complexes of finitely generated A-modules. Given a bounded complex C of finitely gen-
erated A-modules, there is a complex Cred of A-modules, unique up to (non-unique)
isomorphism, such that C is homotopy equivalent to Cred and Cred has no non-zero direct
summand that is homotopy equivalent to 0.

Suppose that 3 = k. We denote by A-stab the stable category of A-mod, i.e., the
additive quotient by the full subcategory of finitely generated projective A-modules. Note
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that the canonical functor A-mod → Db(A) induces an equivalence from A-stab to the
quotient of Db(A) by the thick subcategory of perfect complexes of A-modules, making
A-stab into a triangulated category with translation functor �−1.

Suppose that3 = O. We denote by d : K0(KA)→ K0(kA) the decomposition map.
It is characterized by the property d([KM]) = [kM] for an A-lattice M .

Let G be a finite group and A = KG. We identify Irr(A) with the set of K-valued
irreducible characters of G. Given χ ∈ Irr(KG), we denote by bχ the block idempotent
of OG that is not in the kernel of χ . We put eG = |G|−1∑

g∈G g.
Let Q be an `-subgroup of G. We denote by BrQ : OG-mod → kNG(Q)-mod the

Brauer functor: BrQ(M) is the image ofMQ in the coinvariants (kM)Q := k⊗OQM . We
denote by brQ : (OG)Q → kCG(Q) the algebra morphism that is the restriction of the
linear map defined by g 7→ δg∈CG(Q)g, where δg∈H equals 1 if g ∈ H and 0 otherwise.

3. Modular representations and geometry

3.1. Deligne–Lusztig varieties

3.1.1. Unipotent blocks. Let G be a connected reductive algebraic group defined over an
algebraic closure of a finite field of characteristic p, together with an endomorphism F ,
a power of which is a Frobenius endomorphism. In other words, there exists a positive
integer δ such that F δ defines a split Fqδ -structure on G for a certain power qδ of p, where
q ∈ R>0. We will assume that δ is minimal for this property. Given an F -stable closed
subgroup H of G, we will denote by H the finite group of fixed points, HF . The group G
is a finite group of Lie type. We are interested in the modular representation theory of G
in non-defining characteristic, so that we shall always work under the assumption ` 6= p.

Let T ⊂ B be a maximal torus contained in a Borel subgroup of G, both of which are
assumed to be F -stable. Let W = NG(T)/T be the Weyl group of G, and S be the set
of simple reflections of W associated to B. We denote by r = rG the F -semisimple rank
of (G, F ), i.e., the number of F -orbits on S.

Given w ∈ W , the Deligne–Lusztig variety associated to w is

XG(w) = X(w) = {gB ∈ G/B | g−1F(g) ∈ BwB}.

It is a smooth quasi-projective variety endowed with a left action of G by left multiplica-
tion.

Let3 be eitherK or k. Recall that a simple3G-module is unipotent if it is a composi-
tion factor of Hic(X(w),3) for somew ∈ W and i ≥ 0. We denote by Uch(G) ⊂ Irr(KG)
the set of unipotent irreducible KG-modules (up to isomorphism).

A unipotent block of OG is a block containing at least one unipotent character.
Given a parabolic subgroup P of G with unipotent radical U and an F -stable Levi

complement L, we have a Deligne–Lusztig variety

YG(L ⊂ P) = {gU ∈ G/U | g−1F(g) ∈ U · F(U)},
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a variety with a left action of G and a free right action of L by multiplication. The
Deligne–Lusztig induction is defined by

RG
L⊂P : Z Irr(KL)→ Z Irr(KG), [M] 7→

∑
i≥0

(−1)i[Hic(YG(L ⊂ P))⊗KL M].

We also write RGL = R
G
L⊂P. We denote by ∗RG

L⊂P : Z Irr(KG)→ Z Irr(KL) the adjoint
map. We have RG

L⊂P(Uch(L)) ⊂ ZUch(G) and ∗RG
L⊂P(Uch(G)) ⊂ ZUch(L).

Let w ∈ W and let h ∈ G be such that h−1F(h)T = w. The maximal torus L =
hTh−1 is F -stable. It is contained in the Borel subgroup P = hBh−1 with unipotent
radical U. In that case, the map gU 7→ gUh = gh(h−1Uh) identifies Y(L ⊂ P) with the
variety

YG(w) = Y(w) = {gV ∈ G/V | g−1F(g) ∈ VẇV}

where V = h−1Uh is the unipotent radical of B and ẇ = h−1F(h) ∈ NG(T). Further-
more, there is a morphism of varieties

Y(w)→ X(w), gV 7→ gB,

corresponding to the quotient by TwF ' L.

3.1.2. Harish-Chandra induction and restriction. Given an F -stable subset I of S, we
denote byWI the subgroup ofW generated by I and by PI and LI the standard parabolic
subgroup and standard Levi subgroup respectively of G corresponding to I . In that case,
the maps RGLI and ∗RGLI are induced by the usual Harish-Chandra induction and restriction
functors. A 3G-module V is cuspidal if ∗RGLI (V ) = 0 for all proper F -stable subsets I
of S.

The following result is due to Lusztig when L is a torus [54, Corollary 2.19]. The same
proof applies, using Mackey’s formula for the Deligne–Lusztig restriction to a torus.

Proposition 3.1. Let L be an F -stable Levi subgroup of G and ψ an irreducible charac-
ter of L such that (−1)rG+rLRGL (ψ) is an irreducible character ofG. If ψ is cuspidal and
L is not contained in a proper F -stable parabolic subgroup of G, then (−1)rG+rLRGL (ψ)
is cuspidal.

Proof. Let T be an F -stable maximal torus contained in a proper F -stable parabolic
subgroup P of G. The Mackey formula (see [22, 7.1]) provides a decomposition

∗RGT R
G
L (ψ) =

1
|L|

∑
x∈G

T⊂xL

∗R
xL
T (

xψ)

where xψ := ψ ◦ ad x−1. Let x ∈ G with T ⊂ xL. By assumption, xL * P, hence
T lies in the proper F -stable parabolic subgroup xL ∩ P of xL. Since ψ is cuspidal,
ψx is a cuspidal character of xL, hence ∗R

xL
T (

xψ) = 0 by [54, Proposition 2.18]. It
follows that ∗RGT ((−1)rG+rLRGL (ψ)) = 0, hence (−1)rG+rLRGL (ψ) is cuspidal by [54,
Proposition 2.18]. ut
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Let A = OGb be a block of OG. Let P be an F -stable parabolic subgroup of G with
unipotent radical U and an F -stable Levi complement L. Let A′ = OLb′ be a block
of OL. We say that A is relatively Harish-Chandra A′-projective if the multiplication
map bOGeUb′ ⊗OL eUb′OGb → OGb is a split surjection as a morphism of (A,A)-
bimodules. This implies in particular that any projective A-module is a direct summand
of the Harish-Chandra induction of a projective A′-module.

The first part of the following lemma follows from [24, Proposition 1.11] (see
[1, Proposition 3.4(b)] for the general case of a p′-solvable group), while the second part
is immediate.

Lemma 3.2. Let P be an F -stable parabolic subgroup of G with unipotent radical U
and an F -stable Levi complement L. Let Q be an `-subgroup of L. Then P ∩ CG(Q)

◦

is a parabolic subgroup of CG(Q)
◦ with unipotent radical V = U ∩ CG(Q) and Levi

complement L ∩ CG(Q)
◦.

Given b and b′, block idempotents of OG and OL respectively, we have an isomor-
phism of (kCG(Q), kCL(Q))-bimodules Br1Q(bOGeUb′) ' brQ(b)kCG(Q)eV brQ(b′).

Let D be a defect group of A and let H = C◦G(D). Assume that H = CG(D). Let λ be a
character of H that is trivial on Z(D) and brD(b)bλ = bλ.

The following lemma is a variation on [53, Proposition 4.2].

Lemma 3.3. Let P be an F -stable parabolic subgroup of G with unipotent radical U
and an F -stable Levi complement L. Assume that D ≤ L and let λ′ be a character
of CL(D) such that 〈∗RHH∩L(λ), λ

′
〉 6= 0 and λ′ is the lift to CL(D) of a defect zero

character of CL(D)/Z(D). Let A′ = Ob′ be the block of OL of defect groupD such that
brD(b′)bλ′ = bλ′ . Then the block A is relatively Harish-Chandra A′-projective.

Proof. Let V be the unipotent radical of H ∩ P and let M = H ∩ L, a Levi complement
of V in H ∩ P. Note that D ⊂ M = CL(D).

Recall thatH = CG(D). The condition 〈∗RHH∩L(λ), λ
′
〉 6= 0 implies that the multipli-

cation map

bλk(H/Z(D))eV bλ′ ⊗kM/Z(D) eV bλ′k(H/Z(D))bλ→ k(H/Z(D))bλ

is surjective. It follows from Nakayama’s Lemma that the multiplication map

bλkHbλ′ ⊗kM kHbλ′bλ→ kHbλ

is also surjective.
Since brD(eU ) = eV , the commutativity of the diagram

kH ⊗kM kH
� � can //

mult
22

(kG⊗kL kG)
1D mult //

can
����

(kG)1D

can
����

Br1D(kG⊗kL kG) Br1D(mult)
// Br1D(kG)

kH

∼

OO
can

dd
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together with Lemma 3.2 shows that the multiplication map induces a surjection

Br1D(bkGeUb′ ⊗kL b′eUkGb)� Br1D(bkG).

We deduce from [1, Lemma A.1] that the multiplication map gives a split surjective mor-
phism of (OGb,OGb)-bimodules bOGeUb′ ⊗OL b′eUOGb� bOG. ut

3.1.3. Complex of cohomology and Frobenius action. Following [30, Theorem 1.14],
given a variety X defined over Fqδ with the action of a finite group H , there is a bounded
complex R̃0c(X,O) of O(H × 〈F δ〉)-modules with the following properties:

• R̃0c(X,O) is unique up to isomorphism in the quotient of the homotopy category of
complexes of O(H × 〈F δ〉)-modules by the thick subcategory of complexes whose
restriction to OH is homotopic to 0;
• the terms of ResOH R̃0c(X,O) are direct summands of finite direct sums of modules

of the form O(H/L), where L is the stabilizer in H of a point of X;
• the image of R̃0c(X,O) in the derived category of O(H × 〈F δ〉) is the usual complex

R0c(X,O).

Note that in [30] such a complex was constructed over k instead of O, but the same
methods lead to a complex over O. Indeed, note first that there is a bounded complex of
O(H × 〈F δ〉)-modules C constructed in [63, §2.5.2], whose restriction to OH has terms
that are direct summands of possibly infinite direct sums of modules of the form O(H/L),
where L is the stabilizer in L of a point of X. Furthermore, that restriction is homotopy
equivalent to a bounded complex whose terms are direct summands of finite direct sums
of modules of the form O(H/L), where L is the stabilizer in H of a point of X. One can
then proceed as in [30] to construct R̃0c(X,O).

Given λ ∈ k×, we denote by L(λ) the inverse image of λ in O. Given an O〈F δ〉-
module M that is finitely generated as an O-module, we denote by

M(λ) = {m ∈ M | ∃λ1, . . . , λN ∈ L(λ) such that (F δ − λ1) · · · (F
δ
− λN )(m) = 0}

the ‘generalized λ-eigenspace mod `’ of F δ .
The image of R̃0c(X, k)(λ) in Db(kH) will be denoted by R0c(X, k)(λ) and we will

refer to it as the generalized λ-eigenspace of F δ on the cohomology complex of X.
When ` - |TwF |, the stabilizers of points of X(w) under the action of G are `′-groups

and the terms of the complex of OG-modules R̃0c(X(w),O) are projective.

Lemma 3.4. Let w ∈ W be such that TwF has cyclic Sylow `-subgroups. Given ζ ∈ k×,
we have

R0c(X(w), k)(q−δζ ) ' R0c(X(w), k)(ζ )[2] in kG-stab.

Proof. Recall (§3.1.1) that there is a variety Y(w) acted on by G = GF on the left
and acted on freely by TwF on the right such that Y(w)/TwF ' X(w). Consider the
automorphism ϕ of TwF given by the action of F−δ . We have a right action of TwF o 〈ϕ〉
on Y(w) where ϕ acts as F δ . We have R0c(Y(w), k)⊗L

kTwF k ' R0c(X(w), k).
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Let t be a generator of the Sylow `-subgroup D of TwF and let I = (t − 1) · kD. We
have ϕ(t − 1) = q−δ(t − 1) (mod I 2), hence there is an exact sequence of k(D o 〈ϕ〉)-
modules

0→ ker f → kD ⊗ k−qδ
f
−→ kD→ k→ 0

where k−qδ is the one-dimensional module with trivial D-action and where ϕ acts by
multiplication by q−δ . The kernel of f is the socle k((1 + t + · · · + t |D|−1) ⊗ 1) of
kD ⊗ kq−δ . Since ϕ acts on that line by multiplication by q−δ , the exact sequence above
gives a ϕ-equivariant distinguished triangle k → kq−δ [2] → C  in Db(kTwF ), where
C is perfect.

Applying R0c(Y(w), k) ⊗L
kTwF −, we obtain a distinguished triangle in Db(kG),

equivariant for the action of F δ ,

R0c(X(w), k)→ R0c(X(w), k)⊗ kq−δ [2] → C′  ,

where C′ is perfect. The lemma follows by taking generalized q−δζ -eigenspaces. ut

3.1.4. Simple modules in the cohomology of Deligne–Lusztig varieties. By definition,
every simple unipotent kG-module occurs in the cohomology of some Deligne–Lusztig
variety X(w). If w is minimal for the Bruhat order, this module only occurs in middle
degree. This will be an important property to compute the cohomology of X(w) over O
from the cohomology over K . Let us now recall the precise result [3, Propositions 8.10
and 8.12]. We adapt the result to the varieties X(w).

Recall that there is a pairing K0(kG-proj)×K0(kG-mod)→ Z defined by

〈[P ]; [M]〉 = dimk HomkG(P,M)

for P ∈ kG-proj and M ∈ kG-mod. The Cartan map K0(kG-proj) → K0(kG-mod)
is injective and we identify K0(kG-proj) with its image. It is a submodule of finite
index. In other words, for any f ∈ K0(kG-proj), there is a positive integer N such
that Nf ∈ K0(kG-proj). Consequently, the pairing above can be extended to a pairing
K0(kG-mod)×K0(kG-mod)→ Q.

Proposition 3.5. Let M be a simple unipotent kG-module and let w ∈ W . The following
properties are equivalent:

(a) w is minimal such that RHom•kG(R0c(X(w), k),M) 6= 0;
(b) w is minimal such that RHom•kG(M,R0c(X(w), k)) 6= 0;
(c) w is minimal such that 〈[R0c(X(w), k)], [M]〉 6= 0.

Assume that w is such a minimal element. We have HomkG(M,H`(w)c (X(w), k)) 6= 0. If
` - |TwF |, then HomDb(kG)(R0c(X(w), k),M[−i]) = HomDb(kG)(M,R0c(X(w), k)[i])
= 0 for i 6= `(w).
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Proof. We use the variety Y(w) as in the proof of Lemma 3.4. Since the stabilizers for
the action of G on Y(w) are p-groups (and hence `′-groups), the complex R0c(Y(w), k)
is perfect (see §3.1.3) and therefore [R0c(Y(w), k)] ∈ K0(kG-proj).

Let TwF
`′

be the subgroup of elements of TwF of order prime to ` and

bw =
1
|TwF
`′
|

∑
t∈TwF

`′

t

be the principal block idempotent of kTwF .
All composition factors of bwkTwF are trivial, hence R0c(Y(w), k)bw is an exten-

sion of N = |TwF |` copies of R0c(X(w), k). As a consequence, [R0c(Y(w), k)bw] =
N · [R0c(X(w), k)].

Hence 〈[R0c(X(w), k)], [M]〉 6= 0 if and only if 〈[R0c(Y(w), k)bw], [M]〉 6= 0. It
follows also that an integer r is minimal such that HomDb(kG)(M,R0c(X(w), k)[r]) 6= 0
if and only if it is minimal such that HomDb(kG)(M,R0c(Y(w), k)bw[r]) 6= 0. It follows
that w is minimal such that RHom•kG(M,R0c(Y(w), k)bw) 6= 0 if and only if (b) holds.
Similarly, w is minimal such that RHom•kG(R0c(Y(w), k)bw,M) 6= 0 if and only if (a)
holds.

Note also that the statements above with R0c(Y(w), k)bw are equivalent to the same
statements with R0c(Y(w), k) sinceM is unipotent. The equivalence between (a), (b) and
(c) follows now from [3, Proposition 8.12].

Suppose that w is minimal with the equivalent properties (a), (b) and (c). It follows
from [3, Proposition 8.10] that the cohomology of RHom•kG(M,R0c(Y(w), k)bw) is con-
centrated in degree `(w). The last assertions of the lemma follow. ut

Proposition 3.5 shows that for a minimalw, if ` - |TwF |, then the complex of kG-modules
R̃0c(X(w), k)red is isomorphic to a bounded complex of projective modules such that a
projective cover PM of M appears only in degree `(w) as a direct summand of a term of
this complex.

3.2. Compactifications

Let S be a set together with a bijection S
∼
−→ S, s 7→ s. Given s ∈ S, we put BsB =

BsB ∪ B. The generalized Deligne–Lusztig variety associated to a sequence (t1, . . . , td)
of elements of S ∪ S is

X(t1, . . . , td)

=

{
(g0B, . . . , gdB) ∈ (G/B)d+1

∣∣∣∣ g−1
i gi+1 ∈ BtiB for i = 0, . . . , d − 1
g−1
d F(g0) ∈ BtdB

}
.

If w = s1 · · · sd is a reduced expression of w ∈ W then X(s1, . . . , sd) is isomorphic
to X(w) and X(s1, . . . , sd) is a smooth compactification of X(w). It will be denoted by
X(w) (even though it depends on the choice of a reduced expression of w).
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Remark 3.6. Proposition 3.5 also holds for X(w) replaced by X(w) (and the assertions
for X(w) are equivalent to the ones for X(w)), with the assumption ‘` - |TwF |’ replaced
by ‘` - |TvF | for all v ≤ w’ for the last statement. This follows from the fact that

RHom•kG(R0c(X(w), k),M) ' RHom•kG(R0c(X(w), k),M)

whenever RHom•kG(R0c(X(v), k),M) = 0 for all v < w.

The cohomology of X(w) over K is known [25]. We provide here some partial informa-
tion in the modular setting. Recall that two elements w,w′ ∈ W are F -conjugate if there
exists v ∈ W such that w′ = v−1wF(v).

Proposition 3.7. Let w,w′ ∈ W . If ` - |TvF | for all v ≤ w or for all v ≤ w′, then
H∗c(X(w)×G X(w′),O) is torsion-free.

Proof. Given w,w′ ∈ W , Lusztig [56] defined a decomposition of X(w) × X(w′) as a
disjoint union of locally closed subvarieties Za stable under the diagonal action of G.
The quotient by G of each of these varieties has the same cohomology as an affine space.
More precisely, given a, there exists

• a finite group T , isomorphic to TvF for some v ≤ w and to Tv′F for some v′ ≤ w′

(F -conjugate to v), and a quasi-projective variety Z0 acted on byG×T , where T acts
freely, together with a G-equivariant isomorphism Z0/T

∼
−→ Za;

• a quasi-projective variety Z1 acted on freely by G and T , such that

R0c(G\Z1,O)[2 dimZ1] ' O;

• a (G× T )-equivariant quasi-isomorphism

R0c(Z0,O)[2 dimZa]
∼
−→ R0c(Z1,O)[2 dimZ1].

From these properties and [3, Lemma 3.2] we deduce that if T is an `′-group then

R0c(G\Za,O) ' R0c(G\Z0,O) ⊗OT O
' R0c(G\Z1,O) ⊗OT O[2 dimZ1 − 2 dimZa]

' O[−2 dimZa].

As a consequence, the cohomology groups of X(w)×G X(w′) are the direct sums of the
cohomology groups of the varieties G\Za and the proposition follows. ut

Proposition 3.8. Let I be an F -stable subset of S such that ` - |LI |. If M is a simple
kG-module such that ∗RGLI (M) 6= 0, then M is not a composition factor in the torsion of
H∗c(X(w),O) for any w ∈ W .
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Proof. Let V be a simple kLI -module such that HomkLI (V ,
∗RGLI

(M)) 6= 0. Let
v ∈ WI be minimal such that V ∗ occurs as a composition factor, or equivalently as
a direct summand, of H∗c(XLI (v), k). By Remark 3.6, it follows that V ∗ occurs only
in H`(v)c (XLI (v), k). Since OLI -mod is a hereditary category, it follows that there is a
projective OLI -module V ′ such that V ′ ⊗O k ' V ∗ and V ′ is a direct summand of
R0c(XLI (v),O).

Since a projective cover PM∗ of M∗ occurs as a direct summand of RGLI (V
∗), we

deduce that it occurs as a direct summand of RGLI (R0c(XLI (v),O)) ' R0c(X(v),O).
It follows from the Künneth formula that the complex P ∗M ⊗OG R0c(X(w),O) is a di-
rect summand of the complex R0c(X(v) ×G X(w),O). By Proposition 3.7 applied to
X(v)×GX(w), we deduce that the cohomology of P ∗M⊗OGR0c(X(w),O) is torsion-free,
and hence M does not appear as a composition factor of the torsion of H∗c(X(w),O). ut
Remark 3.9. Note two particular cases of the previous proposition:
• if G is an `′-group (i.e. if ` - |G|) then so is every subgroup, therefore H∗c(X(w),O) is

torsion-free;
• if ` - |LI | for all F -stable I ( S, then the torsion in H∗c(X(w),O) is cuspidal.

Lemma 3.10. Let 3 be one of k, O and K . Let J be a subset of W such that if w ∈ J
and w′ < w, then w′ ∈ J and such that given w ∈ W and s ∈ S with l(sw) > l(w) and
l(wF(s)) > l(w), then sw ∈ J if and only if wF(s) ∈ J . Let Z be a thick subcategory of
Db(3G) such that R0c(X(v),3) ∈ Z for all elements v ∈ J that are of minimal length in
their F -conjugacy class. Then R0c(X(v),3) ∈ Z for all v ∈ J and R0c(X(w),3) ∈ Z
for all w ∈ J .
Proof. Consider s ∈ S and v, v′ ∈ W with v = sv′F(s) and v 6= v′.

Assume that `(v) = `(v′), and furthermore that `(sv) < `(v). We have v = sv′′

where `(v) = `(v′′)+ 1 and v′ = v′′F(s). TheG-varieties X(v) and X(v′) have the same
étale site, hence isomorphic complexes of cohomology [22, Theorem 1.6]. If `(sv) >
`(v), then `(vF (s)) < `(v) [51, Lemma 7.2] and v = v′′F(s) with `(v) = `(v′′)+ 1 and
v′ = sv′′. We conclude as above.

Assume now that `(v) = `(v′)+ 2. It follows from [25, Proposition 3.2.10] that there
is a distinguished triangle

R0c(X(sv′),3)[−2] ⊕ R0c(X(sv′),3)[−1] → R0c(X(v),3)
→ R0c(X(v′),3)[−2] .

So, if R0c(X(v′),3) ∈ Z and R0c(X(sv′),3) ∈ Z , then R0c(X(v),3) ∈ Z .
By [43, 45], any element v ∈ W can be reduced to an element of minimal length in

its F -conjugacy class by applying one of the transformations v 7→ v′ above. Note that if
v ∈ J , then v′ ∈ J . The lemma follows from the discussion above. ut

3.3. Steinberg representation

We denote by U the unipotent radical of the Borel subgroup B. Let ψ be a regular
character of U (see [4, §2.1] ), eψ be the corresponding central idempotent in OU and
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0ψ = IndGU (eψOU) be the Gelfand–Graev module attached to ψ . It is a projective OG-
module. Since K0ψ has only one unipotent constituent (namely the Steinberg character,
which we denote by St), the projection of 0ψ onto the sum of unipotent blocks is inde-
composable and does not depend on ψ . Indeed, it is proved in the proof of [46, Theo-
rem 3.2] that any projective module in a unipotent block has a unipotent constituent in its
character (this does not use the connectedness of the centre of G). Consequently, 0ψ has
a unique unipotent simple quotient St`. It is called the modular Steinberg representation.
It is cuspidal if ` - |LI | for all F -stable I ( S [42, Theorem 4.2].

Statement (i) of the proposition below is a result of [27].

Proposition 3.11. Let t1, . . . , td be elements of S ∪ S.

(i) If ti ∈ S for all i, then Hom•OG(0ψ ,R0c(X(t1, . . . , td),O)) ' O[−`(w)] inDb(O),
and hence St` does not occur as a composition factor of Hic(X(t1, . . . , td), k) for
i 6= `(w).

(ii) If ti 6∈ S for some i, then Hom•OG(0ψ ,R0c(X(t1, . . . , td),O)) is acyclic, and hence
St` does not occur as a composition factor of H∗c(X(t1, . . . , td), k).

(iii) St` is not a composition factor of the torsion part of H∗c(X(t1, . . . , td),O).
Proof. (i) follows from [27] when t1 · · · td is reduced, and the general case follows by
changing G and F as in [25, Proposition 2.3.3].

Assume now that ti ∈ S for all i. Using the decomposition of X(t1, . . . , td) into
Deligne–Lusztig varieties associated to sequences of elements of S, we deduce from the
first part of the proposition that the cohomology of Hom•kG(k0ψ ,R0c(X(t1, . . . , td), k))
is zero outside degrees 0, . . . , d . Since X(t1, . . . , td) is a smooth projective variety and
(0ψ )

∗
= 0ψ∗ , we deduce that the cohomology is also zero outside the degrees d, . . . , 2d

and therefore it is concentrated in degree d . As a consequence, the cohomology of
Hom•OG(0ψ ,R0c(X(t1, . . . , td),O)) is free over O and concentrated in degree d . By
[25, Proposition 3.3.15], we have Hom•KG(K0ψ ,R0c(X(t1, . . . , td),K)) = 0, and hence
Hom•OG(O0ψ ,R0c(X(t1, . . . , td),O)) = 0.

(ii) follows now by induction on the number of i such that ti is in S: if one of the ti is
in S, say t1, we consider the distinguished triangle

R0c(X(t1, t2, . . . , td),O)→ R0c(X(t1, t2, . . . , td),O)→ R0c(X(t2, . . . , td),O) 

and use induction. Note that the assumption that one of the ti is in S ensures that we never
reach X(1) = G/B.

Note finally that (iii) follows from (i) and (ii). ut

Proposition 3.12. If ` - |LI | for all F -stable I ( S, then K ⊗O �rO ' St.

Proof. Given i ∈ {1, . . . , r}, let Mi =
⊕

I R
G
LI
◦
∗RGLI

(O), where I runs over F -stable
subsets of S such that |I/F | = i. By the Solomon–Tits Theorem [20, Theorem 66.33],
there is an exact sequence of OG-modules

0→ M → M0
→ · · · → Mr

→ 0 where KM ' St.

By assumption, M i is projective for i 6= r , while Mr
= O. We deduce that M ' �rO.

ut
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3.4. Coxeter orbits

Let s1, . . . , sr be a set of representatives of F -orbits of simple reflections. The product
c = s1 · · · sr is a Coxeter element of (W, F ). Throughout this section and §4.3.5, we
will assume that ` - |TcF |, and hence R̃0c(X(c),O) is a bounded complex of finitely
generated projective OG-modules.

If v ∈ W satisfies `(v) < `(c) then v lies in a proper F -stable parabolic subgroup,
forcing Hom•kG(R0c(X(v), k),M) to be zero for every cuspidal module kG-module M .
Therefore Proposition 3.5 has the following corollary for Coxeter elements.

Corollary 3.13. Let c be a Coxeter element and M be a cuspidal kG-module. If
` - |TcF |, then the cohomology of the complexes RHom•kG(R0c(X(c), k),M) and
RHom•kG(M,R0c(X(c), k)) vanishes outside degree r .

Lemma 3.14. Assume that ` - |TcF |. Let C be a direct summand of R̃0c(X(c),O) in
Hob(OG-mod) such that

(i) the torsion part of H∗(C) is cuspidal;
(ii) Hi(KC) = 0 for i 6= r .

Then Hr(C) is a projective OG-module and Hi(C) = 0 for i 6= r .

Proof. As r = `(c), the complex C can be chosen, up to isomorphism in Hob(OG-mod),
to be a complex with projective terms in degrees r, . . . , 2r and zero terms outside those
degrees. Let i be maximal such that Hi(C) 6= 0 (or equivalently Hi(kC) 6= 0). There
is a non-zero map kC → Hi(kC)[−i] in Db(kG). From Corollary 3.13 and assumption
(i) we deduce that i = r . It follows that the cohomology of C is concentrated in degree r .
Since C is a bounded complex of projective modules, Hr(C) is projective. ut

Proposition 3.15. Let I ⊂ S be an F -stable subset and let cI be a Coxeter element
of WI .

(i) If ` - |LI |, then H∗c(X(cI ),O) is torsion-free.
(ii) If H∗c(X(cI ),O) is torsion-free, then the torsion of H∗c(X(c),O) is killed by ∗RGLI .

Proof. The first statement follows from [29, Corollary 3.3] by using H∗c(X(cI ),O) =
RGLI

(H∗c(XLI (cI ),O)).
The image by ∗RGLI of the torsion of H∗c(X(c),O) is the torsion of H∗c(UI \ X(c),O).

By [55, Corollary 2.10], the variety UI \X(c) is isomorphic to (Gm)
r−rI ×XLI (cI ). The

second statement follows. ut

3.5. Generic theory

We recall here constructions of [7, 8, 9], the representation theory part being based on
Lusztig’s theory.
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3.5.1. Reflection data. Let K = Q(q) and V = K ⊗Z Y , where Y is the cocharacter
group of T. We denote by ϕ the finite order automorphism of V induced by the action
of q−1F .

We denote by |(W, ϕ)| = xN
∏dimV
i=1 (xdj − ζj ) the polynomial order of (W, ϕ). Here,

N is the number of reflections of W and we have fixed a decomposition into a direct sum
of (Gm × 〈ϕ〉)-stable lines L1 ⊕ · · · ⊕ LdimV of the tangent space at 0 of V/W , so that
dj is the weight of the action of Gm on Lj and ζj is the eigenvalue of ϕ on Lj .

Recall that there is some combinatorial data associated withW (viewed as a reflection
group on V ) and ϕ:

• a finite set Uch(W, ϕ);
• a map Deg : Uch(W, ϕ)→ Q[x].

We endow ZUch(W, ϕ) with a symmetric bilinear form making Uch(W, ϕ) an orthonor-
mal basis.

In addition, given a parabolic subgroup W ′ of W and w ∈ W such that ad(w)ϕ(W ′)
= W ′, there is a linear map RW,ϕ

W ′,ad(w)ϕ : ZUch(W ′, ad(w)ϕ)→ ZUch(W, ϕ).

We will denote by ∗RW,ϕ
W ′,ad(w)ϕ the adjoint map to RW,ϕ

W ′,ad(w)ϕ .
The data associated with W and ϕ depends only on the class of ϕ in GL(V )/W . The

corresponding pair G = (W,Wϕ) is called a reflection datum.
A pair L = (W ′, ad(w)ϕ) as above is called a Levi subdatum of (W, ϕ). We put

WL = W ′.
There is a bijection

Uch(G) ∼−→ Uch(G), χ 7→ χq ,

such that Deg(χ)(q) = χq(1).
There is a bijection from the set of W -conjugacy classes of Levi subdata of G to the

set of G-conjugacy classes of F -stable Levi subgroups of G.
Those bijections have the property that given an F -stable Levi subgroup L of G with

associated Levi subdatum L = (W ′, ad(w)ϕ), we have (RG
L (χ))q = RGL (χq) for all

χ ∈ Uch(W, ϕ) (assuming q > 2 if (G, F ) has a component of type 2E6, E7 or E8, in
order for the Mackey formula to be known to hold [2]).

3.5.2. d-Harish-Chandra theory. Let8 be a cyclotomic polynomial overK , i.e., a prime
divisor of Xn − 1 in K[X] for some n ≥ 1. Let V ′ be a subspace of V and let w ∈ W
be such that wϕ stabilizes V ′ and the characteristic polynomial of wϕ acting on V ′ is a
power of 8. Let W ′ = CW (V

′). Then (W ′, ad(w)ϕ) is called a 8-split Levi subdatum
of (W, ϕ).

An element χ ∈ Uch(W, ϕ) is 8-cuspidal if ∗RG
L (χ) = 0 for all proper 8-split

Levi subdata L of G (when G is semisimple, this is equivalent to the requirement that
Deg(χ)8 = |G|8).

A pair (L,λ) is a8-cuspidal pair of G if L = (W ′, ad(w)ϕ) is a8-split Levi subdata
of G and λ ∈ Uch(W ′, ad(w)ϕ) is 8-cuspidal. Given such a pair (L,λ), we denote
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by Uch(G, (L,λ)) the set of χ ∈ Uch(G) such that 〈RG
L (λ),χ〉 6= 0. We denote by

WG(L,λ) = NW (WL)/WL the relative Weyl group.
The 8-Harish-Chandra theory states that

• Uch(G) is the disjoint union of the sets Uch(G, (L,λ)), where (L,λ) runs over W -
conjugacy classes of 8-cuspidal pairs;
• there is an isometry

IG(L,λ) : Z Irr(WG(L,λ))
∼
−→ ZUch(G, (L,λ));

• those isometries have the property that RG
MI

M
(L,λ) = IG

(L,λ) IndWG(L,λ)
WM(L,λ) for all 8-split

Levi subdata M of G containing L.

The sets Uch(G, (L,λ)) are called the 8-blocks of G. The defect of the 8-block
Uch(G, (L,λ)) is the integer i ≥ 0 such that the common value of Deg(χ)8 for
χ ∈ Uch(G, (L,λ)) is 8i (see §4.2.3 for the relation to unipotent `-blocks).

4. Unipotent blocks with cyclic defect groups

4.1. Blocks with cyclic defect groups

We recall some basic facts on blocks with cyclic defect groups (cf. [33] and [32] for the
folding).

4.1.1. Brauer trees and folding

Definition 4.1. A Brauer tree is a planar tree T with at least one edge together with a pos-
itive integer m (the ‘multiplicity’) and, if m ≥ 2, the data of a vertex vx , the ‘exceptional
vertex’.

Note that the data of an isomorphism class of planar trees is the same as the data of a
tree together with a cyclic ordering of the vertices containing a given vertex.

Let d > 1 be a divisor of m. We define a new Brauer tree ∧dT . It has a vertex ṽx ,
and the oriented graph (∧dT ) \ {ṽx} is the disjoint union (T \ {vx})×Z/d of d copies of
T \{vx}. Let l1, . . . , lr be the edges of T containing vx , in the cyclic ordering. The edges of
the tree ∧dT containing ṽx are, in the cyclic ordering, (l1, 0), . . . , (l1, d−1), (l2, 0), . . . ,
(l2, d−1), . . . , (lr , 0), . . . , (lr , d−1). Finally, for every i ∈ Z/d , we have an embedding
of oriented trees of T in ∧dT given on edges by l 7→ (l, i), on non-exceptional vertices
by v 7→ (v, i) and finally vx 7→ ṽx . The multiplicity of ∧dT is m/d . When m 6= d, the
exceptional vertex of ∧dT is ṽx .

There is an automorphism σ of ∧dT given by σ(ṽx) = ṽx and σ(v, i) = (v, i + 1)
for v ∈ T \ {vx}. Let X be the group of automorphisms of ∧dT generated by σ . There is
an isomorphism of planar trees

κ : (∧dT )/X
∼
−→ T , ṽx 7→ vx, X · (v, i) 7→ v for v ∈ T \ {vx}.

In particular the Brauer tree T ′ = ∧dT together with the automorphism group X
determines T .
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Remark 4.2. Given another planar embedding T ′ of 3dT compatible with the automor-
phism σ above and such that κ induces an isomorphism of planar trees T ′/X

∼
−→ T , there

is an isomorphism of planar trees T ′
∼
−→ 3dT compatible with σ .

4.1.2. Brauer tree of a block with cyclic defect. Let H be a finite group and A = bOH
be a block of OH . Let D be a defect group of A and let bD be a block idempotent of
the Brauer correspondent of b in ONH (D). We assume D is cyclic and non-trivial. Let
E = NH (D, bD)/CH (D), a cyclic subgroup of Aut(D) of order e dividing `− 1.

When e = 1, the block A is Morita equivalent to OD. We will be discussing Brauer
trees only when e > 1, an assumption we make for the remainder of §4.1.

We define a Brauer tree T associated to A. We put m = (|D| − 1)/e. An irreducible
character χ of KA is called non-exceptional if d(χ) 6= d(χ ′) for all χ ′ ∈ Irr(KA) for
χ ′ 6=χ (here d is the decomposition map). When m > 1, we denote by χx the sum of the
exceptional irreducible characters of KA (those that are not non-exceptional). We define
the set of vertices of T as the union of the non-exceptional characters together, when
m > 1, with an exceptional vertex corresponding to χx . The set of edges is defined to be
Irr(kA). An edge φ has vertices χ and χ ′ if χ +χ ′ is the character of the projective cover
of the simple A-module with Brauer character φ. Note that the tree T has e edges.

The cyclic ordering of the edges containing a given vertex is defined as follows: the
edge φ2 comes immediately after the edge φ1 if Ext1A(L1, L2)6=0, where Li is the simple
A-module with Brauer character φi .

Recall that the full subgraph of T with vertices the real-valued non-exceptional irre-
ducible characters and the exceptional vertex if m > 1 is a line (the real stem of the tree).
There is an embedding of the tree T in C where the intersection of T with the real line
is the real stem and taking duals of irreducible characters corresponds to reflection with
respect to the real line.

4.1.3. Folding. Let H ′ be a finite group containing H as a normal subgroup and let b′

be a block idempotent of OH ′ such that bb′ 6= 0. We put A′ = b′OH ′ and we denote
by T ′ the Brauer tree ofA′, with multiplicitym′. We assumeD is a defect group of b′. Let
b′D be the block idempotent of ONH ′(D) that is the Brauer correspondent of b′ and let
E′ = NH ′(D, b

′

D)/CH ′(D), an `′-subgroup of Aut(D). Note that E is a subgroup of E′.
Let H ′b be the stabilizer of b in H ′. We have H ′b = HNH ′(D, b

′

D) and there is a Morita
equivalence between bOH ′b and b′OH ′ induced by the bimodule bOH ′b′.

Suppose that E′ 6= E, i.e., m′ 6= m, since [E′ : E] = m/m′. The group X of
1-dimensional characters of E′/E ' H ′b/H acts on Irr(KA′) and on Irr(kA′) and this
induces an action on T ′, the Brauer tree associated to A′.

The result below is a consequence of [32, proof of Lemma 4.3] (the planar embedding
part follows from Remark 4.2).

Proposition 4.3. There is an isomorphism of Brauer trees ∧dT
∼
−→ T ′ such that (χ, i)

maps to a lift of χ , for χ a non-exceptional vertex.

This proposition shows that the data of T ′ and of the action of X on T determine the
tree T (up to parametrization).
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4.2. Structure of unipotent blocks with cyclic defect groups

We assume in §4.2 that the simple factors of [G,G] are F -stable. Note that every finite
reductive group can be realized as GF for such a G.

From now on, we assume that ` is an odd prime.

4.2.1. Centre. We show here that a Brauer tree of a unipotent block of a finite reduc-
tive group (in non-describing characteristic) is isomorphic to one coming from a simple
simply connected algebraic group.

Lemma 4.4. Assume that G is simple and simply connected. Let A be a unipotent block
of kGF whose image in k(GF /(Z(G)F )`) has cyclic defect. Then A has cyclic defect and
Z(G)F` = 1.

Proof. Since ` is odd, it divides |Z(G)F | only in the following cases [60, Corollary
24.13]:

• (G, F ) = SLn(q), n ≥ 2 and ` | (n, q − 1);
• (G, F ) = SUn(q), n ≥ 3 and ` | (n, q + 1);
• (G, F ) = E6(q) and ` | (3, q − 1);
• (G, F ) = 2E6(q) and ` | (3, q + 1).

Let H = GF /(Z(G)F )`. Suppose that the image of A in kH has non-trivial defect
groups.

Assume that (G, F ) = SLn(q), n ≥ 2 and ` | (n, q − 1), or (G, F ) = SUn(q), n ≥ 3
and ` | (n, q + 1). In those cases, the only unipotent block A is the principal block [14,
Theorem 13], so H has cyclic Sylow `-subgroups: this is impossible.

Assume that (G, F ) = E6(q) and ` | (3, q − 1). Note that A cannot be the principal
block, as H does not have cyclic Sylow 3-subgroups. There is a unique non-principal
unipotent block b, and its unipotent characters are the ones in the Harish-Chandra series
with Levi subgroup L of type D4 [31, ‘Données cuspidales 7,8,9’, pp. 352–353]. Those
three unipotent characters are trivial on Z(G)F . It is easily seen that there is no equality
between their degrees nor is the sum of two degrees equal the third one. As a consequence,
they cannot belong to a block of kH with cyclic defect and inertial index at most 2.

The same method (with q replaced by−q) also shows that b cannot have cyclic defect
when (G, F ) = 2E6(q) and ` | (3, q + 1). ut

Let H be a finite simple group of Lie type. Then there is a simple simply connected re-
ductive algebraic group G endowed with an isogeny F such thatH ' GF /Z(G)F , unless
H is the Tits group, (G, F ) = 2F4(2) and we have H = [GF /Z(G)F ,GF /Z(G)F ], a
subgroup of index 2 of GF /Z(G)F .

The previous lemma shows that if the image in kH of a unipotent `-block of kGF has
cyclic defect groups, then the block of kGF already has cyclic defect groups. By folding
(§4.1.3), the Brauer tree of a unipotent block of OGF determines the Brauer tree of the
corresponding block of OH .
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Proposition 4.5. Let A be a unipotent block of OGF with cyclic defect group D. Then
C◦G(x) = C

◦

G(D) andCG(x) = C◦G(x)
F for all non-trivial elements x ∈ D. Furthermore,

one of the following two statements hold:

• D is the Sylow `-subgroup of Z◦(G)F and there is a finite subgroupH ofG containing
[G,G]F such that G = D ×H ;
• |Z(G)F |` = 1, D 6= 1 and A is Morita equivalent to a unipotent block of a simple

factor of G/Z(G) with cyclic defect groups isomorphic to D.

In particular, Z(G)F /Z◦(G)F is an `′-group.

Proof. Let H be a simple factor of [G,G]. Consider a simply connected cover Hsc of H.
The restriction of unipotent characters in A to H and then to HF

sc are sums of unipotent
characters, and the blocks that contain them have a defect group that is cyclic modulo
Z(Hsc)

F . It follows from Lemma 4.4 that ` - Z(Hsc)
F , and therefore ` - Z(Gsc)

F ,
where Gsc is a simply connected cover of [G,G]. Note that as a consequence, both
(Z(G)/Z◦(G))F and (Z(G∗)/Z◦(G∗))F are `′-groups, where G∗ is a Langlands dual
of G.

Let Gad = G/Z(G). By [16, Theorem 17.7], we have A ' OZ(G)F` ⊗ A
′, where

A′ is the unipotent block of Gad containing the unipotent characters of A. Also, D '
Z(G)F` × D

′, where D′ is a defect group of A′. So, if ` divides |Z(G)F |, then ` divides
|Z◦(G)F |, D′ = 1 and D is the Sylow `-subgroup of Z(G)F . Otherwise, consider a
decomposition Gad = G1×· · ·×Gr where the Gi are simple and F -stable factors. There
is a corresponding decomposition A′ = A1 ⊗ · · · ⊗ Ar where Ai is a unipotent block
of Gi . So, there is a unique i such that Ai does not have trivial defect groups, and A is
Morita equivalent to Ai .

Let us now prove the first statement of the proposition. We have C◦G(x)
F
= CG(x) by

[16, Proposition 13.16]. The block idempotent brx(b) gives a (nilpotent) block of OCG(x)
with defect group D. By [10, Theorem 3.2], this is a unipotent block. We deduce from
the other part of the proposition that D ⊂ Z(C◦G(x))

F , and hence C◦G(x) = C
◦

G(D). ut

4.2.2. Local subgroups and characters. Let A be a unipotent block of OG with a non-
trivial cyclic defect group D. Let (D, bD) be a maximal b-subpair as in §4.1.2 and let
E = NG(D, bD)/CG(D). Recall that we assume that ` is odd.

Let Q be the subgroup of order ` of D and let L = C◦G(Q).

Theorem 4.6. • L = C◦G(D) is a Levi subgroup of G.
• D is the Sylow `-subgroup of Z◦(L)F and L = D × H for some subgroup H of L

containing [L,L]F .
• There is a (unique) unipotent character λ of L such that RGL (λ) =

∑
χ∈Uch(KA) εχχ

for some εχ ∈ {±1}.
• We have |Uch(KA)| = |E| and Irr(KA) is the disjoint union of Uch(KA) and of
{(−1)rG+rLRGL (λ⊗ ξ)}ξ∈(Irr(KD)−{1})/E .
• If |E| 6= |D| − 1, then Uch(KA) is the set of non-exceptional characters of A.

Proof. Let A′ be the block of OL corresponding to A. This is a unipotent block with
defect groupD. By Proposition 4.5, we haveQ ≤ Z◦(L) 6= 1, hence L is a Levi subgroup
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of G, since it is the centralizer of the torus Z◦(L). Also, D is the Sylow `-subgroup of
Z◦(L)F and L = D ×H for some subgroup H of L containing [L,L]F .

There is a (unique) unipotent irreducible representation λ in Irr(KA′) and Irr(KA′) =
{λ⊗ ξ}ξ∈Irr(KD).

Let ξ ∈ Irr(KD) \ {1}. The character χξ = (−1)rG+rLRGL (λ ⊗ ξ) is irreducible
and it depends only on IndDoE

D ξ [23, Theorem 13.25]. Furthermore, χξ = χξ ′ implies
ξ ′ ∈ E · ξ .

Assume that |E| 6= |D| − 1. There are at least two E-orbits on the set of non-trivial
characters of D, so the χξ for ξ ∈ (Irr(KD) \ {1})/E are exceptional characters. Since
A and A′ have the same number of exceptional characters, we have found all exceptional
characters of A.

Let χ1 = (−1)rG+rLRGL (λ). We have d(χ1) = d(χξ ) for any ξ ∈ Irr(KD) \ {1}.
There are integers nχ such that χ1 =

∑
ψ∈Uch(KA) nψψ . The restriction of the decom-

position map to ZUch(KA) is injective, since we have removed exceptional characters
(if |E| 6= |D| − 1, otherwise one character) from Irr(KA). It follows that χ1 is the
unique linear combination of unipotent characters of A such that d(χ1) = d(ξ) for some
ξ ∈ Irr(D) \ {1}. On the other hand, this unique solution satisfies nψ = ±1 and the num-
ber of unipotent characters in A′ is |E|. ut

Remark 4.7. Choose a bijection Irr(KE)
∼
−→ Uch(KA′), φ 7→ χφ . Define a map I :

Z Irr(KD o E)
∼
−→ Z Irr(KA′) by I (IndDoE

D ξ) = RGL (ξ) if ξ ∈ Irr(KD) \ {1} and
I (φ) = εχφχφ for φ ∈ Irr(KE). The proof of Theorem 4.6 above shows that I is an

isotypy, with local isometries Ix : Z Irr(KD)
∼
−→ Z Irr(KA′), ξ 7→ λ⊗ξ , for x ∈ D \{1}.

4.2.3. Genericity. We assume in §4.2.3 that F is a Frobenius endomorphism. Let A be a
unipotent block of OG with a non-trivial cyclic defect group D and let L = C◦G(D).

Let d be the order of q modulo `. Note that ` divides8e(q) if and only if e = d`j for
some j ≥ 0.

Broué–Michel [11] and Cabanes–Enguehard [15] showed that under a mild additional
assumption on ` (for quasisimple groups not of type A, ` good is enough), unipotent
characters in `-blocks with abelian defect groups are8d -blocks. We show below that this
results holds for `-blocks with cyclic defect groups without assumptions on `. Using the
knowledge of generic degrees, the unipotent8d -blocks with defect 1 for simple G can be
easily determined, using for example Chevie [61].

Theorem 4.8. With the notations of §4.2.2, we have the following assertions:

• L is a 8d -split Levi subgroup of G;
• D has order |8d(q)|`;
• λ = λq for a unipotent 8d -cuspidal character λ of L and there is a bijection

Uch(G, (L,λ)) ∼−→ Uch(KA) given by χ 7→ χq ;
• the 8d -block Uch(G, (L,λ)) has defect 1;
• if ` is a bad prime for G or ` = 3 and (G, F ) has type 3D4, then we are in one of the

cases listed in Table 1.
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Table 1. Unipotent blocks with cyclic defect for ` bad.

(G, F ) ` d (L, λ)
E6(q) 3 2 (A5(q) · (q − 1), φ321)

2E6(q) 3 1 (2A5(q) · (q + 1), φ321)

E8(q) 3, 5 1 (E7(q) · (q − 1), E7[±i])
E8(q) 3, 5 2 (E7(q) · (q + 1), φ512,11 or φ512,12)

Proof. By Proposition 4.5, we can assume that G is simple and simply connected. When
` is good and different from ` = 3 for type 3D4, the theorem is in [15].

Otherwise, the result follows from [31, Théorème A], by going through the list of
d-cuspidal pairs with `-central defect and checking if the defect groups given in [31,
§3.2] are cyclic. We list the unipotent blocks with cyclic defect for ` bad in Table 1,
following [31, §3.2]. Note that in [31, p. 358, no. 29], ‘E7[±ξ ]’ should be replaced by
‘φ512,11, φ512,12’, as in [8, Table 1, Cases 42, 43]. ut

Broué [6] conjectured that there is a parabolic subgroup P with an F -stable Levi comple-
ment L such that bR0c(YG(L ⊂ P),O) induces a derived equivalence between A and
the corresponding block of ONG(D, bD). In [17], it is conjectured that such an equiva-
lence should be perverse. It is further shown there how the Brauer tree of A could then be
combinatorially constructed from the perversity function. The perversity function can be
encoded in the data of a function π : Uch(KA) → Z that describes the (conjecturally)
unique i such that V ∈ Uch(KA) occurs in Hic(YG(L ⊂ P),K).

In [19], the first author gave a conjectural description γ of the function π , depending
on 8d and not on ` (this is defined for 8d -blocks with arbitrary defect). Using this func-
tion, and the combinatorial procedure to recover a Brauer tree from a perversity function,
[19] associates a generic Brauer tree to a8d -block of defect 1. This is a planar-embedded
tree, together with an exceptional vertex (but no multiplicity) and the non-exceptional ver-
tices are parametrized by the unipotent characters in the given 8d -block. The Brauer tree
of A is conjectured in [19] to be obtained from the generic Brauer tree, by associating
the appropriate multiplicity if it is greater than 1, and turning the exceptional vertex into
a non-exceptional one if the multiplicity is 1. The trees we construct in this paper in §5
match the generic trees constructed in [19], and hence we prove the following theorem.

Theorem 4.9. Let A be a unipotent `-block with cyclic defect of G. Then the unipotent
characters of KA form a unipotent 8d -block and the Brauer tree of A is obtained from
the generic Brauer tree of that 8d -block.

Since the trees constructed in §5 match the conjectural trees in [19] that would result from
a perverse equivalence between D o E and A, we get the following corollary.

Corollary 4.10. There is a perverse derived equivalence between A and D o E with
perversity function γ .

4.2.4. Determination of the trees. Let us now discuss the known Brauer trees. The Brauer
trees for classical groups were determined by Fong and Srinivasan [35, 36]. The Brauer
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trees for the following exceptional groups are known: Burkhart [13] for 2B2, Shamash
[64] for G2, Geck [38] for 3D4, Hiss [47] for 2G2 and 2F4, Hiss–Lübeck [48] for F4 and
2E6 (building on earlier work on F4 by Wings [66]) and Hiss–Lübeck–Malle [49] for E6.

More recently, the second and third authors [30] determined the Brauer trees of the
principal8h-block ofE7 andE8 for h the Coxeter number, using new geometric methods
which are also at the heart of this paper. Also, the first author [19] determined the Brauer
trees of several unipotent blocks with cyclic defect of E7 and E8.

We determine the remaining unknown trees. They correspond to certain unipotent
blocks of 2E6 (cf. Remark 5.1), E7 (§5.1) and E8 (§5.2). We list in Table 2 the group G,
the order d of q modulo ` and the d-cuspidal pair (when the block is not principal) asso-
ciated to each of these blocks. We also indicate the type of the minimal proper standard
F -stable Levi subgroups LI with ` | |LI |.

Table 2. Blocks with unknown Brauer tree.

G d ([L,L], λ) ` | |LI |

2E6 12

E7 9 E6
10 (2A2(q), φ21) D6
14

E8 9 (A2(q), φ3) E6
(A2(q), φ21) E6
(A2(q), φ13) E6

12 (3D4(q),
3D4[1]) E6,D7

15
18 (2A2(q), φ21) E7
20
24

Let us note that the Brauer trees of other blocks of exceptional groups were de-
termined up to choices of fields of character values in each block. Using Lusztig’s
parametrization of unipotent characters we can remove this ambiguity by choosing ap-
propriate roots of unity in Q` with respect to q.

Corollary 4.11. Let G be a finite group with cyclic Sylow `-subgroups. If ` 6= 29, 41,
47, 59, 71, then the (unparametrized) Brauer tree of the principal `-block of G is known.

Proof. Let G be a finite group with a non-trivial cyclic Sylow `-subgroup. Since the
principal block ofG is isomorphic to that ofG/O`′(G), we can assume thatO`′(G) = 1.
If G has a normal Sylow `-subgroup, then the Brauer tree is a star. So, we assume G
does not have a normal Sylow `-subgroup. It follows from the classification of finite
simple groups [34, §5] thatG has a normal simple subgroupH withG/H an `′-subgroup
of Out(H).

If H is an alternating group, the Brauer trees are foldings of those of symmetric
groups, which are lines as all characters are real. IfH is a sporadic group, then the Brauer
tree of the principal block of H is known under the assumptions on ` [50, 18].
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Assume now H is a finite group of Lie type. If ` is the defining characteristic, then
H = PSL2(F`) and the Brauer tree of the principal block is well known. Otherwise, the
Brauer tree is known by Theorem 4.9. ut

4.3. Properties of the trees

We assume here that G is simple and we denote by A a unipotent block with cyclic defect
group D of OG. Let E = NG(D, bD)/CG(D), where (D, bD) is a maximal A-subpair.
We assume |E| > 1. We denote by T the Brauer tree of A. Recall (Theorem 4.6) that its
|E| unipotent vertices are non-exceptional. We define the non-unipotent vertex of T to be
the one corresponding to the sum of the non-unipotent characters inKA. It is exceptional
if |E| 6= |D| − 1.

4.3.1. Harish-Chandra branches. Let I be an F -stable subset of S and let X be a cus-
pidal simple unipotent KLI -module with central `-defect, i.e., such that (dimX)` =

[LI : Z(LI )]`. Since the centre acts trivially on simple unipotent modules, the `-block
bI of LI containing X has central defect group, and X is the unique unipotent simple
module in bI . This yields the following three facts.

(a) There exists a unique (up to isomorphism) OLI -lattice X̃ such that X ' KX̃. The
kLI -module kX̃ is irreducible.

(b) X is the unique unipotent module that lifts kX̃. In particular NG(LI , X) =
NG(LI , kX̃).

(c) If P is a projective cover of X̃, then K ker(P � X̃) has only non-unipotent con-
stituents, therefore RGLI (X) and K ker(RGLI (P )� RGLI

(X̃)) have no irreducible con-
stituents in common.

Under the properties (a) and (b), Geck [37, 2.6.9] showed that the endomorphism algebra
EndOG(RGLI (X̃)) is reduction-stable, i.e.

k EndOG(RGLI (X̃)) ' EndkG(RGLI (kX̃)).

Property (c) was used by Dipper [26, 4.10] to show that the decomposition matrix of
EndOG(RGLI (X̃)) embeds in the decomposition matrix of b.

It follows from [39] that the full subgraph of T whose vertices are in the Harish-
Chandra series defined by (LI , X) is a union of lines. Note that [39] proves a correspond-
ing result for blocks of Hecke algebras at roots of unity, in characteristic 0. The fact that
the tree does not change when reducing modulo ` follows from the following two facts:

• a symmetric algebra over a discrete valuation ring that is an (indecomposable) Brauer
tree algebra over the field of fractions and over the residue field has the same Brauer
tree over those two fields;
• the blocks of the Hecke algebra EndOG(RGLI (X̃)) correspond to blocks of the Hecke

algebra in characteristic 0 for a suitable specialization at roots of unity.

Each such line in T is called a Harish-Chandra branch. In particular, the principal series
part of T is the full subgraph whose vertices are in the Harish-Chandra series of the trivial
representation of a quasi-split torus.
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Proposition 4.12. Let N be an edge of T and let V1 and V2 be its vertices. Let I be a
minimal F -stable subset of S such that ∗RGLI (N) 6= 0. If ` - |LI |, then given i ∈ {1, 2},
the F -stable subset I is also minimal with respect to the property that ∗RGLI (Vi) 6= 0.

Proof. Let M be an OLI -lattice such that KM is simple and N is a quotient of RGLI (M).
Note thatM is projective, hence it follows by Harish-Chandra theory thatKM is cuspidal.
Since RGLI (M) is projective, it follows that V1 and V2 are direct summands of KRGLI (M).
The proposition follows by Harish-Chandra theory. ut

Corollary 4.13. Suppose that ` - |LI | for all F -stable I ( S. Then the edges that are
not in a Harish-Chandra branch are cuspidal.

The following result is a weak form of [46, Theorem 3.5].

Proposition 4.14. If St is a vertex of T , then the edge corresponding to St` connects St
and the non-unipotent vertex.

Proof. Recall that b0ψ is the projective cover of St`. Since St is the unique unipotent
component of K0ψ , the proposition follows. ut

Proposition 4.15. Assume that A is the principal block and ` - |LI | for any F -stable
I ( S. Let L be the full subgraph of T whose vertices are at distance at most r from 1.
Then L is a line whose leaves are 1 and St.

Proof. The tables in [44, Appendix F] show that the Brauer tree of the principal block of
the Hecke algebra EndOG(RGT (O)) is a line with r+1 vertices, with leaves corresponding
to the trivial and sign characters. So, T has a full subgraph L that is a line with r + 1
vertices and with leaves 1 and St. Using Proposition 3.12 and duality, we deduce that all
vertices at distance at most r from 1 are in L. ut

4.3.2. Real stem. We fix a square root of qδ in K (specific choices will be made in Sec-
tion 5). Let V be a unipotent irreducible KG-module. Let w ∈ W be such that V occurs
in Hic(X(w),K). The eigenvalues of F δ on the V -isotypic component of Hic(X(w),K)
are of the form λV q

δj where λV is a root of unity (depending only on V , not on w or i),
for some j ∈ 1

2Z. Note that λV ∗ = λ−1
V .

So, the vertices of the real stem of T consist of the non-unipotent vertex and the
unipotent vertices corresponding to the V such that λV = ±1. For classical groups, all
unipotent characters have this property, and are real-valued, and for exceptional groups,
the unipotent characters with this property are principal series characters and D4-series
characters, which are real-valued by [41, Proposition 5.6], and cuspidal charactersG[±1],
which are rational-valued by [41, Table 1].

4.3.3. Exceptional vertex. Recall from Theorem 4.6 that the `-block A is attached to
a cuspidal pair (L, λ). A non-unipotent character in A is obtained by Deligne–Lusztig
induction from an irreducible non-unipotent character of L. We give here a condition for
that character to be cuspidal.
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Proposition 4.16. Assume that λ is cuspidal and L is not contained in any proper F -
stable parabolic subgroup of G. Let P′ be a proper F -stable parabolic subgroup of G
with unipotent radical U′ and an F -stable Levi complement L′. The (OG,OL′)-bimodule
bOGeU ′ is projective and its restriction to OG is a direct sum of projective indecompos-
able A-modules corresponding to edges that do not contain the non-unipotent vertex. In
particular, the non-unipotent characters of A are cuspidal.

Proof. Let Q be the subgroup of order ` of D and let g ∈ G be such that Qg
≤ L.

Let 1gQ = {(x, g−1xg) | x ∈ Q}. We have Br1gQ(bOGeU ′) ' Br1Q(bOGegU ′g−1) =

bλkLeV where V = gU ′g−1
∩L (Lemma 3.2). By assumption, λ is cuspidal and P′∩L is

a proper F -stable parabolic subgroup of L, hence bλkLeV = 0, so Br1gQ(bOGeU ′) = 0.
Since the ((OG)⊗ (OL′)opp)-module bOG is a direct sum of indecomposable modules
with vertices trivial or containing 1gQ for some g ∈ G, we deduce that the (OG,OLI )-
bimodule bOGeU ′ is projective.

Let ξ ∈ Irr(KD) \ {1}. Since ResL
[L,L]F (λ⊗ ξ) = ResL

[L,L]F (λ), it follows that λ⊗ ξ
is cuspidal. Theorem 4.6 shows that every non-unipotent character of b is of the form
(−1)rG+rL(RGL (λ ⊗ ξ)) for some ξ ∈ Irr(KD) \ {1}. Proposition 3.1 shows that such a
character is cuspidal. ut

The assumptions of Proposition 4.16 are satisfied in the following cases:

• L = T contains a Sylow 8d -torus of G and d is not a reflection degree of a proper
parabolic subgroup of W (e.g. G = E7(q) and d = 14 or G = E8(q) and d ∈
{15, 20, 24}). In that case the trivial character of L is cuspidal, and no proper F -stable
parabolic subgroup of G can contain a Sylow 8d -torus.
• G = E8(q), d = 12 and ([L,L]F , λ) = (3D4(q),

3D4[1]) or d = 18 and ([L,L]F , λ)
= (2A2(q), φ21).

Lemma 4.17. Let w ∈ W and let M be a simple A-module corresponding to an edge
containing χexc. If w has minimal length such that RHom•kG(R0c(X(w), k),M) 6= 0,
then ` | |TwF |. If ` - |TvF | for all v ≤ w, then RHom•kG(R0c(X(w), k),M) = 0.

Proof. Let M be as in the lemma and w be minimal with RHom•kG(R0c(X(w), k),M)
6= 0. Assume that ` - |TwF |. We have (−1)`(w)[bR0c(X(w), k)] =

∑
η aη[Pη], where η

runs over the edges of T and aη ∈ Z. By Proposition 3.5 we have aµ > 0 where µ is the
edge corresponding to M . Since χexc does not occur in [R0c(X(w),K)], it follows that
there is an edge ν containing χexc such that aν < 0. Let N be the simple A-module corre-
sponding to ν. The complex RHom•kG(R0c(X(w), k),N) has non-zero cohomology in a
degree other than−`(w), hence there is v < w such that RHom•kG(R0c(X(v), k),N) 6= 0
by Proposition 3.5, a contradiction. The lemma follows. ut

4.3.4. In the stable category. Assume in §4.3.4 that δ = 1 and L is a maximal torus of
G. This is a 8d -torus. Let w ∈ W be a d-regular element. The next result follows from
[30, Corollary 2.11 and its proof].

Proposition 4.18. Letm ∈ {0, . . . , d−1}. The complex R0c(X(w), k)(qm) is isomorphic
in kG-stab to �2mk.
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Remark 4.19. If TvF is an `′-group for all v < w, then Proposition 4.18 holds with
X(w) replaced by X(w).

4.3.5. Coxeter orbits. The following lemma holds for general symmetric O-algebras A
such that kA is a Brauer tree algebra.

Lemma 4.20. Let C be a bounded complex of finitely generated projective A-modules.
Assume that T has a subtree of the form

Vt
St−1

Vt−1 V2
S1

V1
S0

V0

all of whose vertices are non-exceptional, and

(i) KHi(C) = 0 for i 6∈ {0,−t}, Hi(kC) = 0 for i < −t and KH0(C) ' V0;
(ii) given an edge M of T , an integer i < t and a map f ∈ HomDb(A)(C,M[i]), the

induced map from the torsion part of H−i(C) to M vanishes;
(iii) if M is an edge of T that contains Vi , and M is strictly between Si−1 and Si in the

cyclic ordering of edges at Vi ( for 0 < i ≤ t − 1) or M 6= S0 ( for i = 0), then
HomDb(A)(C,M[j ]) = 0 for j ∈ {i, i + 1} ∩ {0, . . . , t − 1};

(iv) Si is not a composition factor of the torsion part of H−i+1(C) for 1 ≤ i ≤ t − 1.

Then C is homotopy equivalent to

0→ P → PSt−1

δt−1
−−→ PSt−2 → · · ·

δ1
−→ PS0 → 0

where P is a projective A-module in degree −t with KP ' KH−t (C) ⊕ Vt and
HomA(PSi , PSi−1) = Oδi . Furthermore, given i ∈ {0, . . . , t−2}, the composition factors
of the torsion part of H−i(C) correspond to the edges strictly between Si and Si+1 in the
cyclic ordering of edges at Vi .

If V = KH−t (C) is simple and distinct from Vt−1, then there is an edge St between
V and Vt and P ' PSt . Furthermore, the composition factors of the torsion part of
H−t+1(C) correspond to the edges strictly between St−1 and St in the cyclic ordering of
edges at Vt .

Proof. We can assume that C has no non-zero direct summand homotopic to zero. Since
H<−t (kC) = 0, it follows that C<−t = 0. Let m be maximal such that Cm 6= 0. Suppose
that m > 0. By (i), Hm(C) is a non-zero torsion A-module. Let M be a simple quotient
of Hm(C). Assumption (ii) gives a contradiction. We deduce that m = 0.

By (iii), any simple quotient of H0(C)free = H0(C)/H0(C)tor is isomorphic to S0.
Moreover, since KH0(C)free = V0 and S0 occurs only once in any `-reduction of V0,
there exists a surjective map PS0 � H0(C)free. It follows that there is an isomorphism
PS0 ⊕ Q

∼
−→ C0 such that the composite map KQ → KC0

→ KH0(C) vanishes. Let
N be the image of PS0 in H0(C). Suppose that there is a simple quotient M of H0(C)

vanishing on N (i.e. such that N is in the kernel of the quotient map H0(C)� M). Then
M is a quotient of the torsion part of H0(C) and the composite map Q→ H0(C)→ M

is non-zero. We deduce that this map induces a non-zero map from the torsion part of
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H0(C) to M , which contradicts (ii). Consequently, the restriction of C � H0(C) to PS0

is surjective and Q = 0 by minimality of C.
Given 1 ≤ i ≤ t − 1, fix δi : PSi → PSi−1 such that HomA(PSi , PSi−1) = Oδi . We

put δ0 = 0 : PS0 → 0. We prove by induction on i ∈ {0, . . . , t − 1} that 0 → C−i →

C−i+1
→ · · · is isomorphic to the complex 0 → PSi

δi
−→ PSi−1 → · · · → PS1

δ1
−→

PS0 → 0, where PS0 is in degree 0. This holds for i = 0 and we assume now this holds
for some i ≤ t−2. We have dim HomkA(kPSi+1 , kPSi ) = 1 and we denote byN the image
of a non-zero map PSi+1 → PSi . It is contained in k ker δi . LetM be a composition factor
of (k ker δi)/N . If i = 0, then the edge corresponding to M contains V0 and M 6' S0,
or it contains V1 and is strictly between S0 and S1 in the cyclic ordering of edges at V1.
If i > 0, then the edge corresponding to M contains Vi and is strictly between Si−1 and
Si in the cyclic ordering of edges at Vi , or it contains Vi+1 and is strictly between Si
and Si+1 in the cyclic ordering of edges at Vi+1. By (iii), PM is not a direct summand
of C−i−1. It follows from (iv) that there is an isomorphism PSi+1 ⊕ Q

∼
−→ C−i−1 such

that the compositionQ→ C−i−1
→ C−i vanishes. LetM be a simple quotient ofQ. By

minimality ofC,M occurs as a quotient ofH−i−1(C), which is torsion by (i). So (ii) gives
a contradiction. We deduce that C−i−1

' PSi+1 and the differential kC−i−1
→ kC−i is

not zero. This shows that the induction statement holds for i + 1.
We deduce that C is isomorphic to

0→ P → PSt−1

δt−1
−−→ PSt−2 → · · · → PS1

δ1
−→ PS0 → 0

for some projectiveA-module P in degree−t . We have [KP ] = (−1)t [KC]+[KPSt−1 ]−

[KPSt−2 ] + · · · + (−1)t [KPS0 ] = [KH−t (C)] + [Vt ], hence KP ' KH−t (C)⊕ Vt .
If V = KH−t (C) is simple, then KP ' V ⊕ Vt , hence P ' PSt where St is the

edge containing V and Vt . The last statement follows from the fact that the differential
kP → kPSt−1 is non-zero. ut

The following theorem deals with direct summands of R̃0c(X(c),O) that have exactly
two non-zero cohomology groups over K . Extra assumptions on the block are needed
here.

Theorem 4.21. Assume that ` - |TcF |. Let C be a direct summand of bR̃0c(X(c),O) in
Hob(OG-mod). Suppose that there are r ′ ≥ r and t > 0 such that

(i) the torsion part in H∗(C) is cuspidal;
(ii) Hi(KC) = 0 for i 6∈ {r ′, r ′ + t} and V0 = Hr

′
+t (KC) and V ′ = Hr

′

(KC) are
simple KG-modules;

(iii) T has a subgraph with non-exceptional vertices and non-cuspidal edges

Vt
St−1

Vt−1 V2
S1

V1
S0

V0

such that Vt−1 V2
S1

V1
S0

V0 is a connected component of
the subgraph of T obtained by removing the edge St−1 and all cuspidal edges.
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Then

• there is an edge St between Vt and V ′ and C is homotopy equivalent to

C′ = 0→ PSt → PSt−1 → · · · → PS0 → 0

with PSt in degree r ′;
• the complex C′ is, up to isomorphism, the unique complex such that the differential
PSi → PSi−1 generates the O-module Hom(PSi , PSi−1) for 1 ≤ i ≤ t;
• the composition factors of the torsion part of Hr

′
+t−i(C) correspond to the edges

strictly between Si and Si+1 in the cyclic ordering of edges at Vi+1 ( for 0 ≤ i ≤ t−1).
In particular, the edges between St−1 and St around Vt are also cuspidal.

Proof. We apply Lemma 4.20 to C[r ′+t]. Assumptions (i), (ii) and (iv) of the lemma fol-
low from the assumptions of the theorem. By Corollary 3.13, we have HomDb(A)(C,M[i])

= 0 for i > r and M cuspidal. If M is simple non-cuspidal and not in {S0, . . . , St−1},
then M does not occur as a composition factor of Hi(kC) for i > r ′. This shows that
assumption (iii) of the lemma holds. The theorem follows. ut

Assumption (iii) in Theorem 4.21 may look rather difficult to check if only part of the
tree is known. However, it will be satisfied for most of the Brauer trees we will consider,
thanks to the following proposition.

Proposition 4.22. Let V be a simple unipotent KA-module. Assume that

• ` - |TcF |;
• V is a leaf of T , i.e. V remains irreducible after `-reduction;
• the Harish-Chandra branch of V has at least t edges;
• ` - |LI | for all F -stable subsets I ( S.

Then assumptions (i) and (iii) in Theorem 4.21 are satisfied with C = bR̃0c(X(c),O)
and Vt , . . . , V0 = V being the Harish-Chandra branch ending at the leaf V .

Proof. Assumption (i) is satisfied by Proposition 3.15, while assumption (iii) is satisfied
by Corollary 4.13. ut

Corollary 4.23. Let b be the block idempotent of the principal block of OG. Assume that
` - |TcF | and ` - |LI | for all F -stable subsets I ( S. Let T ′ be the full subgraph of T
with vertices at distance at most r + 1 of the trivial character. Then

• the real stem of T ′ is a line with leaves 1 and the non-unipotent vertex;
• the edge St` has vertices St and the non-unipotent vertex;
• any non-real vertex of T ′ is connected to St by an edge;
• V = KHrc(X(c),O)(qr ) is a non-real simple KGb-module and the edge connecting V

and St comes between the one connecting St to a unipotent vertex and St` in the cyclic
ordering of edges at St.
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Stℓ

St

k
1

V

V ∗

1

Proof. The description of Frobenius eigenvalues on the cohomology of X(c) in [55, (7.3)]
shows that KHic(X(c),O)(qr ) = 0 for i 6∈ {r, 2r} and V = KHrc(X(c),O)(qr ) is simple,
under our assumptions on `. The result follows now from Theorem 4.21, Corollary 4.22
and Propositions 4.15 and 3.11(iii). ut

By Remark 3.9, the previous results have a counterpart for the compactification.

Proposition 4.24. Lemma 3.14, Theorem 4.21, Proposition 4.22 and Corollary 4.23 hold
with X(c) instead of X(c) if we replace the assumption ` - |TcF | by ` - |TvF | for all v ≤ c.

Remark 4.25. We have |TcF | = (q + 1)(q6
− q3

+ 1) = 82(q)818(q) for G simple of
type E7(q), and |TcF | = q8

+ q7
− q5
− q4
− q3
+ q + 1 = 830(q) for G simple of type

E8(q). In particular, when ` is good and d /∈ {2, h}, the condition ` - |TcF | will always
be satisfied for E7(q) and E8(q).

Remark 4.26. We can easily read off the cohomology of a complex C as in Theo-
rem 4.21 from the Brauer tree. As a consequence of Theorem 4.9, one can check that
the cohomology of C is concentrated in degrees r and r + t (and irreducible in de-
gree r + t), and is torsion-free. Other calculations in §5 give a strong evidence that
the cohomology of a variety associated to a Coxeter element is always torsion-free.
By [4] this holds for groups of type A. Such a statement does not hold for more gen-
eral Deligne–Lusztig varieties: if H2`(w)−1

c (X(w),K) = 0 and ` divides |TwF |, then
H2`(w)−1
c (X(w), k) = H1(X(w), k)∗ is non-zero since the connected Galois covering

Y(ẇ) � X(w) yields non-trivial connected abelian `-coverings. Therefore by the uni-
versal coefficient theorem, H2`(w)−1

c (X(w),O) is a torsion module. However, one can
ask whether the property ` - |TwF | forces the cohomology to be torsion-free (see also
Proposition 3.8).

4.4. Summary of the algebraic methods

We summarize here some facts and arguments about Brauer trees that we shall use
throughout §5. We consider a unipotent block with a cyclic defect group and non-trivial
automizer. We also assume that the block is real (this is the case for all the unipotent
blocks we will consider).

(Parity) The distance between two unipotent vertices is even if and only if their degree
are congruent modulo `.
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(Real stem) The collection of unipotent vertices V with λV = ±1, together with the non-
unipotent vertex, form a subgraph of the Brauer tree in the shape of a line, called the
real stem. Taking duals of characters corresponds to a reflection of the tree in the
real stem.

(Hecke) The union of the full subgraphs of T obtained by considering unipotent charac-
ters in a given Harish-Chandra series is a collection of lines, which is known.

(Degree) The dimension of the simple module corresponding to an edge is the alternat-
ing sum of the degrees of the vertices in a minimal path from the edge to a leaf.
This dimension is a positive integer, and this can be used to show that certain con-
figurations are not possible. Broadly speaking, the effect of this condition is to force
the degrees of the unipotent characters, as polynomials in q, to increase towards the
non-unipotent node.

(Steinberg) The vertices of the edge St` are St and the non-unipotent vertex. If the proper
standard Levi subgroups of G are `′-groups, then the full subgraph of T whose
vertices are at distance at most r from 1 is a line whose leaves are 1 and St and the
edge St` is cuspidal.

Our strategy is to first study the ‘mod-` generalized eigenspaces’ of F on the cohomology
complex of a Coxeter Deligne–Lusztig variety (or its compactification), for those eigen-
values corresponding to unipotent cuspidal KG-modules. This gives information about
the location of the corresponding vertex with respect to the real stem.

A second step is required if there are cuspidal unipotent KG-modules in the block
that do not occur in the cohomology of a Coxeter Deligne–Lusztig variety. In that case,
we consider the eigenspaces in the complex of cohomology of a Deligne–Lusztig variety
associated to a d-regular element, which is minimal for the property that this module
occurs in the cohomology.

5. Determination of the trees

We now determine the Brauer trees of the blocks from Table 2. The edges corresponding
to cuspidal simple modules will be drawn as double lines.

Throughout this section, A denotes a block of OG with cyclic defect and b is the
corresponding block idempotent.

We shall start with the case of exceptional groups of type E7 and E8, for which δ = 1.
If G is a standard Levi of a simple group of type E8, it follows from Lusztig’s classifi-
cation that a cuspidal unipotent character ρ of G is uniquely determined by the eigen-
value of F on the ρ-isotypic part of the cohomology of the various Deligne–Lusztig vari-
eties. Following the convention in Chevie [61], we will denote by G[α] a cuspidal simple
unipotent KG-module such that the eigenvalues of F in the G[α]-isotypic component of
H∗c(X(w),K) are in q

1
2Zα for any w ∈ W , with the exception of the cuspidal unipotent

character of D4(q) which will be denoted by D4 and not D4[−1]. The choice of a square
root of q is actually only needed when considering the two cuspidal characters of E7(q).
The roots of unity α which occur always have order 6 or less.

For the8d -blocks we will study it will be enough to consider the following situations.
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• If 3 | d (resp. 4 | d , 5 | d), we denote by θ (resp. i, η) the unique third (resp. fourth,
fifth) root of unity in O whose image in k is qd/3 (resp. qd/4, qd/5). The corresponding
cuspidal characters are E6[±θ ], E6[±θ

2
], E8[±θ ] and E8[±θ

2
] (resp. E8[±i], E8[η

j
]

for j = 1, . . . , 4).
• If d = 2e with e odd, we fix a square root

√
q of q in O× and we denote by i the unique

fourth root of unity in O whose image in k is (
√
q)e. The corresponding cuspidal

characters are E7[±i].

5.1. Groups of type E7

For groups of type E7, we need to consider the principal8d -blocks for d = 9, 14 and the
810-block corresponding to the d-cuspidal pair (2A2(q) · (q

5
+ 1), φ21).

5.1.1. d = 14. In that case, the proper Levi subgroups of G are `′-groups. Let us deter-
mine the Brauer tree of the principal 814-block of E7(q). Using (Hecke), (Degree) and
(Steinberg) arguments, we obtain the real stem as shown in Figure 11 (see the Appendix).
The difficult part is to locate the two complex conjugate cuspidal unipotent characters.
Let C = bR̃0c(X(c),O)(−1) be the generalized ‘−1 (mod `)-eigenspace’ of F . By [55,
Table 7.3], we have

KC ' (E7[i])[−7] ⊕K[−14],

where E7[i] is defined as the unipotent cuspidal KG-module that appears with an eigen-
value of F congruent to −1 modulo ` in H7

c(X(c),K).
Corollary 4.23 shows that E7[i] is connected to St and that it is the first edge com-

ing after the edge S6 in the cyclic ordering of edges containing St. This completes the
determination of the tree.

Let us describe more explicitly the minimal representative of the complex C. Let
k = S0, S1, . . . , S6 be the non-cuspidal modules forming the path from the character 1
(the character of the trivial KG-module K) to St in the tree (see Figure 1).

St φ27,37

S6

φ105,26

S5

φ189,17

S4

φ189,10

S3

φ105,5

S2

φ27,2

S1

E7[−i]

E7[i]

1

S0

Fig. 1. Right-hand side of the Brauer tree of the principal 814-block of E7(q).
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The complex bR̃0c(X(c), k)red
(−1) is given as follows:

0→

E7[i]
St`

E7[−i]
S6

E7[i]

→

S6
E7[i]
St` S5

E7[−i]
S6

→

S5
S6 S4
S5

→

S4
S5 S3
S4

→ · · · →

k

S1
k

→ 0.

Remark 5.1. This argument applies to many other trees, especially to those associated
to the principal 8d -block when d is the largest degree of W distinct from the Coxeter
number (in that case the assumptions on ` in Proposition 4.22 are satisfied). This shows
for example that the Brauer tree of the principal812-block of 2E6(q) given in [48] is valid
without any restriction on q. It is also worth mentioning that it gives not only the planar
embedding but also the labelling of the vertices with respect to Lusztig’s classification
of unipotent characters (in terms of eigenvalues of Frobenius). In the previous example
Ext1kG(E7[i],St`) 6= 0, whereas Ext1kG(E7[−i],St`) = 0.

5.1.2. d = 9. It follows from Lemma 3.3 that A is Harish-Chandra projective relatively
to the principal block of E6(q), hence A has no cuspidal simple modules.

The real stem gives most of the Brauer tree of the principal `-block (see Figure 9).
It remains to locate the pairs of complex conjugate characters {E6[θ ]ε, E6[θ

2
]ε} and

{E6[θ ]1, E6[θ
2
]1}. To this end we use the homological information contained in the co-

homology of the Coxeter variety X(c). Let I be a proper subset of S. If LI is not a group
of type E6, then LI is an `′-group and the cohomology of X(cI ) is torsion-free by [29,
Proposition 3.1]. This remains true when LI has type E6.

Lemma 5.2. If q has order 9 modulo `, the cohomology of the Coxeter variety in a simple
group of type E6 is torsion-free.

Proof. Denote by X the Coxeter variety of E6(q). By Proposition 3.15, the torsion of
H∗c(X,O) is cuspidal. Let λ ∈ k× and let Cλ = R0c(X,O)(λ).

Assume that λ 6∈ {1, q6
}. The cohomology of H∗(KCλ) is an irreducible module V

corresponding to a block idempotent bλ of defect zero.
If V is cuspidal, then it occurs in degree 6 in H∗(KCλ), hence H∗(Cλ) is torsion-free

by Lemma 3.14. If V is not cuspidal, then H∗(bλCλ) has no torsion. On the other hand,
H∗((1− bλ)Cλ) is torsion and cuspidal, hence 0 by Lemma 3.14.

Assume now that λ = 1. We have H6(KC1) = St ⊕ E6[θ
2
] and Hi(KC1) = 0 for

i 6= 6, so H∗(C1) is torsion-free by Lemma 3.14 (so, St+E6[θ
2
] is a projective character

of E6(q), as was shown in [49]).
Assume finally that λ = q6. We have H6(KCλ) = E6[θ ], H12(KCλ) = 1 and

Hi(KCλ) = 0 for i 6∈ {6, 12}. Corollary 4.23 shows that H∗(Cλ) is torsion-free. ut

From this lemma together with Proposition 3.15, we deduce that the torsion of
H∗c(X(c),O) is cuspidal, hence the principal block part of H∗c(X(c),O) is torsion-free.
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In particular, the complexes Dλ = bR0c(X(c),O)(λ) for λ ∈ {q6, q7
} have no torsion in

their cohomology. We have

KDq6 ' E6[θ ]ε[−7] ⊕ φ7,1[−13],

KDq7 ' E6[θ ]1[−8] ⊕K[−14].

Theorem 4.21 gives the planar-embedded Brauer tree as shown in Figure 9.

5.1.3. d = 10. For the 810-block the situation is similar: there is a unique proper F -
stable subset I of S such that LI is not an `′-group. This Levi subgroup LI has type D6.
Since the Coxeter number of D6 is 10, [29, Theorem] asserts that H∗c(XLI (cI ),O) is
torsion-free. Let E7[i] be the unipotent cuspidal KG-module that appears with eigen-
value congruent to q6 modulo ` in H7

c(X(c),K). Theorem 4.21 applied to C =

bR̃0c(X(c), k)(q6) gives the planar-embedded Brauer tree as shown in Figure 10.

5.2. Groups of type E8

The blocks we need to consider are

• the three 89-blocks associated to the d-cuspidal pairs (A2.(q
6
+ q3

+ 1), φ) for φ =
φ3, φ21 and φ13 ;
• the 812-block associated to the d-cuspidal pair (3D4(q) · (q

4
+ q2

+ 1), 3D4[1]);
• the 818-block associated to the d-cuspidal pair (2A2(q) · (q

6
− q3

+ 1), φ21);
• the principal 8d -blocks for d = 15, 20 and 24. In those cases, the proper Levi sub-

groups of G are `′-groups.

5.2.1. d = 9. There are three unipotent blocks with non-trivial cyclic defect. The real
stem is given by Figure 9, where we have given the correspondence with vertices of the
E7 tree. For each of the three trees, there are two pairs of complex conjugate characters
that need to be located:

(1) {E6[θ ]φ1,0 , E6[θ
2
]φ1,0} and {E6[θ ]φ′′1,3

, E6[θ
2
]φ′′1,3
} for the block b1 associated to the

d-cuspidal pair (A2, φ3);
(2) {E6[θ ]φ2,1 , E6[θ

2
]φ2,1} and {E6[θ ]φ2,2 , E6[θ

2
]φ2,2} for the block b2 associated to the

d-cuspidal pair (A2, φ21);
(3) {E6[θ ]φ1,6 , E6[θ

2
]φ1,6} and {E6[θ ]φ′1,3

, E6[θ
2
]φ′1,3
} for the block b3 associated to the

d-cuspidal pair (A2, φ13).

To this end we again use the cohomology of the Coxeter variety X(c), which we first show
to be torsion-free on each block bi . Lemma 3.3 shows that all three unipotent blocks are
Harish-Chandra projective relative to the principal block of E6(q). By Lemma 5.2, the
cohomology of the Coxeter variety of E6 is torsion-free. Therefore by Proposition 3.15
the cohomology of X(c), cut by the sum of the bi , is torsion-free.

We can now use the same argument as for the principal 89-block of E7: Theorem
4.21 shows that the part of the tree to the right of the non-unipotent node in Figure 9 is
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correct. We consider the standard Levi subgroup LI of semisimple type E7 and we use
the Harish-Chandra induction of the isomorphism E6[θ ]1 ' �

7O in OLI -mod. It gives

E6[θ ]1 ⊕ E6[θ ]φ2,1 ⊕ E6[θ ]φ2,2 ⊕ E6[θ ]φ′1,3
' �7(O ⊕ φ8,1 ⊕ φ35,2 ⊕ φ112,3)

in OG-stab. By cutting by each bi and using the information above (on the part of the
tree to the right of the non-unipotent node) we get E6[θ ]φ2,2 ' �

7φ35,2 and E6[θ ]φ′1,3
'

�7φ112,3. The same procedure starting with the isomorphism E6[θ ]ε ' �7φ7,1 yields
E6[θ ]φ′′1,3

' �7φ160,7. This completes the determination of the three planar-embedded
trees.

Note that even though each of these three blocks is Morita equivalent to the principal
89-block ofE7, the Harish-Chandra induction functor (cut by each block) does not induce
that equivalence.

5.2.2. d = 12. The real stem is as given in Figure 12, therefore knowing the tree amounts
to locating the cuspidal character E8[−θ

2
].

Let C = bR̃0c(X(c),O)(q6). The non-cuspidal simple A-modules are in the principal
series, hence they cannot occur in the torsion of H∗c(X(c),O). It follows that assump-
tion (i) of Theorem 4.21 is satisfied. Assumption (iii) follows from the knowledge of the
real stem of the tree. Finally, assumption (ii) follows from the decomposition

bH∗c(X(c),K)(q6) ' E8[−θ
2
][−8] ⊕ φ28,8[−14].

Theorem 4.21 shows that Figure 12 gives the correct planar-embedded Brauer tree.

5.2.3. d = 18. The real stem is as in Figure 14.

• Step 1: position of E8[−θ
2
]. The only proper standard F -stable Levi subgroup LI

with ` | |LI | has type E7. It follows from Proposition 4.16 that bRGLI (M) is projective
for any M ∈ OLI -mod. Since 18 is the Coxeter number of E7, [29, §4.3] shows that
the cohomology of the perfect complex bR0c(X(cI ),O) is torsion-free. It follows from
Proposition 3.15 that the torsion of bH∗c(X(c),O) is cuspidal. Since

bKH∗c(X(c),K)(q7) = (E8[−θ
2
])[−8] ⊕ φ8,1[−15],

Proposition 4.22 and Theorem 4.21 show that there is an edge between φ35,74 and
E8[−θ

2
], and that edge comes between the edges φ35,74 −−− φ300,44 and φ35,74 −−− φ8,91

in the cyclic ordering of edges around φ35,74.

• Step 2: E8[θ ] is connected to the non-unipotent node. From the Brauer tree of the
principal 818-block given in [19], we know that �12k lifts to an OG-lattice of character
E6[θ ]1. Now, if E8[θ ] is not connected to the non-unipotent node, then�12φ8,1 lifts to an
OG-lattice of character D4,φ′′1,12

or φ8,91 depending on whether E8[θ ] is connected to the
D4-series or the principal series. Since the degree of φ8,1 ⊗ E6[θ ]1 is smaller than that
of φ8,91 and of D4,φ′′1,12

, we obtain a contradiction. This proves that E8[θ ] and E8[θ
2
] are
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connected to the non-unipotent node, and we obtain the planar-embedded Brauer tree up
to swapping these two characters (see Figure 14).

• Step 3: description of bR0c(X(c),O)(q). Let C = bR̃0c(X(c),O)red
(q). Its cohomology

over K is given by

KC ' (φ⊕7
8,1 ⊕ φ

⊕14
35,2 ⊕ φ

⊕10
300,8 ⊕ φ

⊕4
840,13)[−2] ⊕ (E8[−θ ])[−8].

Corollary 3.13 (or rather its analogue for compactifications, which holds since ` - TvF
for all v ≤ c; see also Remark 3.6) shows that the terms of C are projective and do
not involve the projective cover of a cuspidal module, except possibly in degree 8. The
character of KC shows that only the projective cover of E8[−θ ] can occur, and it occurs
once in degree 8. In addition, the torsion of the cohomology of C must be cuspidal by
Proposition 3.8 (there are no modules lying in an E7-series in b). Let i < 2 be minimal
such that Hi(kC) 6= 0. Then Hi(kC) is cuspidal and (kC)i contains an injective hull of
Hi(kC), a contradiction. So, Hi(kC) = 0 for i < 2. Let P0, . . . , P7 be the projective
indecomposable modules lying in the principal series of A, with [P0] = φ8,1 + φ35,2
and Hom(Pi, Pi+1) 6= 0 for 0 ≤ i < 7, so that [P7] = φ35,74 + φ8,91. It follows from
Lemma 4.20 that

C ' 0→ P → P2 → · · · → P6 → PE8[−θ ]→ 0 (5.1)

where P ' P⊕7
0 ⊕ P

⊕7
1 ⊕ P

⊕4
2 is in degree 2.

• Step 4: the torsion part of bR0c(X(w),O)(q) is cuspidal. Let w ∈ W be the unique (up
to conjugation) element of minimal length for which E8[θ ] occurs in H∗c(X(w)). Here
`(w) = 14. Let us consider R = bR0c(X(w),O)(q). Using the trace formula (see [25,
Corollaire 3.3.8]), we find that

KR ' (φ⊕4
8,1 ⊕ φ

⊕6
35,2 ⊕ φ

⊕3
300,8 ⊕ φ840,13)[−2] ⊕ (E8[θ

2
])[−14].

By Proposition 3.8, the torsion part of the cohomology in R is either cuspidal or in an
E7-series. Since there are no modules in E7-series in A, we deduce that the torsion part
is cuspidal. In particular, if j = 4, 5, 6 then Hom•kG(Pj , kR) ' 0, and if j = 0, . . . , 3 the
cohomology of Hom•kG(Pj , kR) vanishes outside degree 2. Note that Hom•kG(Pj , kR) '
Pj⊗kGkR where Pj is viewed as a right kG-module via the anti-automorphism g 7→ g−1

of G, since Pj is self-dual.

• Step 5: E8[−θ
2
] is not a composition factor of H∗(kR). Let C′ be the cone of the

canonical map PE8[−θ ][−8] → kC. By (5.1) it is homotopic to a complex involving only
projective modules in the principal series. Tensoring by kR gives a distinguished triangle

PE8[−θ ][−8] ⊗kG kR→ kC ⊗kG kR→ C′ ⊗kG kR  .

From the explicit representative of C′ and Step 4 above we know that the cohomology
of C′ ⊗kG kR vanishes outside the degrees 4, 5 and 6. Proposition 3.7 shows that the
cohomology of kC⊗kGkR vanishes outside degree 4. The previous distinguished triangle



Brauer trees of unipotent blocks 37

shows that the cohomology of PE8[−θ ]⊗kG kR vanishes outside the degrees−4, . . . ,−1.
Since Hi(kR) = 0 for i < 0 this proves that E8[−θ

2
] is not a composition factor of

H∗(kR).

• Step 6: E8[−θ ] is not a composition factor of Hi(kR) for i 6= 6, 7, 8. The same
method as in Step 5 with D = bR0c(X(c),O)(q7) ' C

∗
[−16] and D′ = Cone(kD →

PE8[−θ2][−8]) yields a distinguished triangle

kD ⊗kG kR→ PE8[−θ2][−8] ⊗kG kR→ D′ ⊗kG kR  .

Here kD ⊗kG R has non-zero cohomology only in degree 16 by Proposition 3.7. As for
D′ ⊗kG kR, its cohomology vanishes outside the degrees 14, 15 and 16, and we deduce
from the distinguished triangle that E8[−θ ] is not a composition factor of Hi(kR) for
i 6= 6, 7, 8.

If v < w and ` | |TvF |, then v is conjugate to cI , the Coxeter element of type E7.
Since bR0c(X(cI ),O) is perfect, it follows from Lemma 3.10 that bR0c(X(v),O) is
perfect for all v < w.

• Step 7: Given v < w, the complex bR0c(X(v), k) is quasi-isomorphic to a bounded
complex of projective modules whose indecomposable summands correspond to edges
that do not contain the non-unipotent vertex.

Consider v < w. If v is not conjugate to a Coxeter element cI of E7, then ` - |TvF |
and bR0c(X(v), k) is perfect and quasi-isomorphic to a bounded complex of projective
modules whose indecomposable summands correspond to edges that do not contain the
non-unipotent vertex by Lemma 4.17. If v = cI , the perfectness has been shown in Step 1
and the second part holds, because the edges that contain the non-unipotent vertex are
cuspidal. We deduce that the statement of Step 7 holds for all v < w by Lemma 3.10.

• Step 8: H>14(R) = 0. Steps 4, 5 and 6 show that the composition factors of Hi(kR) for
i > 14 are cuspidal modules M corresponding to an edge containing the non-unipotent
vertex. LetM be a simple module corresponding to an edge containing the non-unipotent
vertex. Step 7 shows that the canonical map R0(X(w), k) → R0(X(w), k) induces an
isomorphism

RHom•kG(R0(X(w), k),M) ' RHom•kG(R0(X(w), k),M).

Let M0 = Hi0(kR) be the non-zero cohomology group of kR of largest degree. We
have HomDb(kG)(R0(X(w), k),M0[−i0]) 6= 0. Since R0(X(w), k) has a representative
with terms in degrees 0, . . . , `(w) = 14, we deduce from the previous isomorphism that
i0 ≤ 14.

• Step 9: E8[θ ] and E8[θ
2
] do not occur as composition factors of the torsion part of

H∗(R) and E8[θ
2
] is a direct summand of H14(kR). Step 7 shows that E8[θ ] and E8[θ

2
]

are not composition factors of H∗c(X(v), k) for v < w. It follows that if M is any of the
simple modules E8[θ ] or E8[θ

2
], then the canonical map H∗c(X(w), k) → H∗c(X(w), k)

induces an isomorphism

HomkG(PM ,Hic(X(w), k))
∼
→ HomkG(PM ,Hic(X(w), k)). (5.2)
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Since Hic(X(w), k) = 0 for i < 14, we deduce that E8[θ ] and E8[θ
2
] do not occur

as composition factors of Hic(X(w), k) for i < 14. By Poincaré duality and the iso-
morphism (5.2), it follows that E8[θ ] and E8[θ

2
] cannot occur as composition factors of

Hic(X(w), k) for i > 14. On the other hand,E8[θ ] does not occur in [KR0c(X(w),O)(q)]
(nor does χexc), hence E8[θ ] does not occur as a composition factor of H14

c (X(w), k)(q)
or H14

c (X(w), k)(q). Similarly, E8[θ
2
] occurs with multiplicity 1 as a composition fac-

tor of H14
c (X(w), k)(q) and of H14

c (X(w), k)(q). Proposition 3.5 shows that E8[θ
2
] is

actually a submodule of H14
c (X(w), k)(q) and hence of H14

c (X(w), k)(q) by (5.2). Since
KH14

c (X(w),K)(q) = E8[θ
2
], it follows that E8[θ

2
] is a quotient of H14

c (X(w), k)(q),
hence it is a direct summand.

• Step 10: (E8[θ
2
])[−14] is a direct summand of kR in Db(kG). Let Z be the cone of

the canonical map R0c(X(w), k)(q) → R0c(X(w), k)(q). Step 7 shows that Z can be
chosen (up to isomorphism in Db(kG)) to be a bounded complex of projective modules
that do not involve edges containing the non-unipotent vertex. The complex kR is quasi-
isomorphic to the coneD′ of a map Z[−1] → bR0c(X(w), k)(q), hence to the truncation
τ≤14(D′), a complex N with N i

= 0 for i < 0 and i > 14 and with N i a direct sum of
projective modules corresponding to edges that do not contain the non-unipotent vertex
for i ≤ 13. Note that E8[θ ] and E8[θ

2
] are not composition factors of N13, hence E8[θ ]

is not a composition factor of N14 while E8[θ
2
] is a composition factor of N14 with

multiplicity 1 (see Step 9 above). Consider a non-zero morphism PE8[θ2] → N14 and let
U be its image. Since E8[θ

2
] is a direct summand of H14(N), it follows that the image

of U in H14(N) is E8[θ
2
]. On the other hand, the simple modules corresponding to edges

containing the non-unipotent vertex but neither E8[θ ] nor E8[θ
2
] are quotients of N13,

hence U ' E8[θ
2
] embeds in H14(N). It follows that U [−14] is a direct summand of N .

• Step 11: R0c(X(w),O)(q−2) ' V [−14], where V is an OG-lattice such that the simple
factors ofKV are in theD4-series. LetR′ = R0c(X(w),O)(q−2). We haveKHi(R′) = 0
for i 6= 14 and the simple factors of KH14(R′) are in the D4-series. As in Step 4,
one shows that the torsion of R0c(X(w),O)(q−2) is cuspidal. We show as in Steps 5
and 6 that E8[−θ ] and E8[−θ

2
] are not composition factors of H∗(kR′). Furthermore,

H>14(R′) = 0 as in Step 8. Proceeding as in Step 8, one sees that the canonical map
R0c(X(w), k)→ R0c(X(w), k) induces an isomorphism

RHom•kG(M,R0c(X(w), k)) ' RHom•kG(M,R0c(X(w), k)).

Let i0 be minimal such that Hi0(kR′) 6= 0, and suppose that i0 < 14. Then Hi0(kR′) is
cuspidal and

HomDb(kG)(H
i0(kR′),R0c(X(w), k)[i0])

' RHomDb(kG)(H
i0(kR′),R0c(X(w), k)[i0]) 6= 0.

This contradicts the fact that R0c(X(w), k) has no cohomology in degrees less than 14.
Thus, Hi(kR′) = 0 for i 6= 14.
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• Step 12: Conclusion. Lemma 3.4 shows that R0c(X(w), k)(q−2) ' R0c(X(w), k)(q)[6]
in kG-stab. By Step 11, we deduce that kV has a direct summand isomorphic to
�−6(E8[θ

2
]) in kG-stab. If the Brauer tree is not the one given in Figure 14 (i.e., E8[θ ]

and E8[θ
2
] need to be swapped), then�−6(E8[θ

2
]) is the reduction of a lattice in φ300,44,

which cannot be a direct summand of kV . We deduce that the planar-embedded tree is as
shown in Figure 14.

Remark 5.3. We use the determination of the tree to obtain a character-theoretic state-
ment that will be needed in the study of the case d = 15.

The Brauer tree of the principal 818-block of G is given in [30, Remark 3.11]. In
particular, E6[θ

2
]1 ' �

24k. Since �24φ8,1 ' E8[θ
2
], we deduce that φ8,1 ⊗ E6[θ

2
]1 is

isomorphic to E8[θ
2
] plus a projective OG-module P . If E8[θ ] occurs in the character

of P , then the non-unipotent vertex occurs as well. As the degree of the non-unipotent
vertex is larger than the degree of φ8,1 ⊗ E6[θ

2
]1, we obtain a contradiction. So, the

character of E8[θ ] is not a constituent of φ8,1 ⊗ E6[θ
2
]1.

5.2.4. d = 15. The real stem is known and comprises the principal series characters
in the principal `-block. A (Hecke) argument also gives the two subtrees consisting of
characters in the E6[θ ]-series and the E6[θ

2
]-series as shown in Figure 13.

Except for the two characters E8[θ ] and E8[θ
2
], each Harish-Chandra series meeting

the principal 815-block has a character which appears in the cohomology of the Coxeter
variety. The generalized (λ)-eigenspaces on the cohomology of the Coxeter variety are
given by

bH∗c(X(c),K)(q8) ' E6[θ ]ε[−8] ⊕K[−16],

bH∗c(X(c),K)(q10) ' (E8[ζ
2
])[−8] ⊕ E6[θ ]1[−10],

bH∗c(X(c),K)(q7) ' (E8[ζ ])[−8] ⊕ φ8,1[−15].

Corollary 4.23 applied to λ = q8 shows that there is an edge between St and E6[θ ]ε,
and this edge comes between the one containing φ84,64 and St` in the cyclic ordering of
edges around St.

Only cuspidal characters remain to be located, and since they have a larger degree
than E6[θ ]1, we deduce that E6[θ ]1 remains irreducible modulo `.

From Proposition 4.22 and Theorem 4.21 applied to C = bR0c(X(c),O)(q10), we
deduce that there is an edge between E8[ζ

2
] and E6[θ ]ε.

Similarly, using C = bR0c(X(c),O)(q7), we deduce that there is an edge between
φ112,63 and E8[ζ ], and this edge comes between the one containing φ1400,37 and the one
containing φ8,91 in the cyclic ordering of edges around φ112,63.

Consequently, the trees in Figures 2 and 3 are subtrees of the Brauer tree T (although
we cannot yet fix the planar embedding around E6[θ ]ε).

We claim that E8[θ ] and E8[θ
2
] are not connected to the subtree shown in Figure 2.

Let us assume otherwise. By a (Parity) argument, they are not connected to the non-
unipotent node. Let w ∈ W be an element of minimal length such that E8[θ

2
] appears in

the cohomology of X(w) (we have `(w) = 14). We have

[bH∗c(X(w),K)q2 ] = [E8[θ
2
]] + [φ8,91] = ([φ8,91] + [χexc])− ([St] + [χexc])+ η,
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where η = [KP ] and P is a projective bOG-module whose character does not involve
χexc. Therefore there is an odd integer i such that HomDb(kG)(R0c(X(w), k),St`[i]) 6= 0.
Since i 6= 14, it follows from Proposition 3.5 that 〈[H∗c(X(v), k)],St`〉 6= 0 for some
v < w. One easily checks on the character of H∗c(X(v),K) that this is impossible. As a
consequence, E8[θ ] and E8[θ

2
] are connected to the subtree shown in Figure 3.

We next return to the planar embedding of the edges around the node E6[θ ]ε. If the
embedding is not as in Figure 2 then �−13k would lift to an OG-lattice of character
E6[θ

2
]1, and as �30k lifts to φ8,1, we find that �30k ⊗ �−13k lifts to an OG-lattice

with character the sum of the non-unipotent character plus a projective OG-module.
The sum of the degrees of the non-unipotent characters is (q6

− 1)(q8
− 1)(q10

− 1) ·
(q12
− 11)(q14

− 1)(q18
− 1)(q20

− 1)(q24
− 1)830. Since this is larger than the degree

of E6[θ
2
]1 ⊗ 1φ8,1, we deduce that �−13k does not lift to E6[θ

2
]1, and we obtain the

planar-embedded Brauer tree as in Figure 2.

St φ84,64 φ1344,38 φ4096,26 φ5670,18 φ4096,12 φ1344,8 φ84,4 1

E6[θ ]ε

E6[θ2]ε

E8[ζ 2]

E8[ζ 3]

E6[θ ]φ2,2

E6[θ2]φ2,2

E6[θ ]1

E6[θ2]1

Fig. 2. Subtree of the principal 815-block of E8(q).

φ4096,27 φ1400,37 φ112,63
φ8,91φ5600,19φ4096,11φ1400,7φ112,3φ8,1

E8[ζ 4]

E8[ζ ]

Fig. 3. Subtree of the principal 815-block of E8(q).

It remains to locate E8[θ ] and E8[θ
2
]. If they were not connected to φ8,91, then �19k

would lift to an OG-lattice of character φ112,63, although �30k ⊗�−11k lifts to a lattice
of character φ8,1 ⊗ E6[θ

2
]1 plus a projective module. Since that tensor product has a de-



Brauer trees of unipotent blocks 41

gree smaller than φ112,63, we obtain a contradiction. Consequently, we obtain the planar-
embedded Brauer tree given in Figure 13, up to swapping E8[θ ] and E8[θ

2
]. Assume the

planar embedded tree shown in Figure 13 is not correct. Then �19k lifts to a lattice of
character E8[θ ]. Since�30k⊗�−11k lifts to a lattice of character φ8,1⊗E6[θ

2
]1, we de-

duce that E8[θ ] occurs as a constituent of that tensor product, contradicting Remark 5.3.
Consequently, the tree in Figure 13 is correct.

5.2.5. d = 20. The real stem of the tree is easily determined (see Figure 15). The difficult
part is to locate the six cuspidal characters in the block.

We have
bH∗c(X(c),K)(q8) ' (E8[ζ ])[−8] ⊕K[−16],

bH∗c(X(c),K)(q16) ' (E8[ζ
3
])[−8] ⊕D4,1[−12].

Proposition 4.24 and Corollary 4.23 show that there is an edge connecting E8[ζ ] to St
and that this edge comes between the edge containing φ112,63 and the one containing St`
in the cyclic ordering of edges containing St. Also, there is no cuspidal edge connected to
a principal series character other than St and we have

bR0c(X(c), k)(q8) ' 0→ PE8[ζ ]→ P7 → · · · → P0 → 0, (5.3)

where P0 is in degree 16 and P0, . . . , P7 are projective indecomposable modules labelling
the principal series edges from 1 to St.

Proposition 4.24 and Theorem 4.21 show that there is an edge connecting E8[ζ
3
]

and D4,ε.
We now want to locate the characters E8[i] and E8[−i]. A (Parity) argument shows

that they are not connected to the non-unipotent vertex. The smallest Deligne–Lusztig
variety in which they appear is associated to a 24-regular element w of length 10. Note
that ` - |TvF | for all v ≤ w. In particular, the character η = [bH∗c(X(w),K)(1)] =
[St] + [E8[−i]] is virtually projective. It follows from Lemma 4.17 that χexc +D4,ε does
not occur in the decomposition of η in the basis of projective indecomposable modules.
As a consequence, E8[−i] is not connected by an edge to the D4-series, hence E8[i] and
E8[−i] are connected to the Steinberg character.

Therefore it remains to determine the planar embedding around D4,ε and St. Assume
that we are in the case shown in Figure 4. Let S0, . . . , S4 be the simple modules labelling
the edges from D4,1 to the non-unipotent node so that [PS4 ] = χexc + D4,ε. A minimal
representative of bR̃0c(X(c), k)(q16) is given by

D = 0→

E8[ζ
3
]

S3

E8[ζ
2
]

S4
E8[ζ

3
]

→

S3

E8[ζ
2
]

S4 S2

E8[ζ
3
]

S3

→

S2
S3 S1
S2

→

S1
S2 S0
S1

→

S0

S1
S0

→ 0,

where the cohomology groups (represented by the boxes) are non-zero in degrees 8,
9 and 12 only. A non-zero map PE8[ζ 2] → PE8[ζ 3] gives a non-zero element of
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D4,εD4,φ9,10

E8[ζ 2]

E8[ζ 3]

Fig. 4. Wrong planar embedding for the principal 820-block of E8(q).

HomDb(kG)(D
∗
[−16],D). Consequently, H16(D ⊗kG D) 6= 0. We have

bR0c(X(c),K)(q16) ⊗KG bR0c(X(c),K)(q16) ' K[−24],

and Proposition 3.7 shows that the cohomology of the complex bR0c(X(c),O)(q16)⊗OG
bR0c(X(c),O)(q16) is torsion-free, hence Hi(bR0c(X(c), k)(q16)⊗kGbR0c(X(c), k)(q16))

= 0 for i 6= 24; this gives a contradiction.
We now turn to the four possibilities for the planar embedding around the node la-

belled by the Steinberg character. We need to rule out the three of them shown in Fig-
ure 5. Recall that w denotes a 24-regular element. As in the case of X(c), Proposition

St

E8[ζ 4]

E8[ζ ]

E8[i]

E8[−i]

St

E8[−i]

E8[i]

E8[ζ 4]

E8[ζ ]

St

E8[i]

E8[−i]

E8[ζ 4]

E8[ζ ]

Fig. 5. Wrong planar embeddings for the principal 820-block of E8(q).

3.8 ensures that the torsion part in the cohomology of bR0c(X(w),O) is cuspidal. Let
C = (bR̃0c(X(w),O)(q10))

red, a complex with 0 terms in degrees less than 0 and greater
than 20. We have

KC ' E8[i][−10] ⊕K[−20].

We will completely describe the complex C, and rule out the wrong planar embed-
dings. We will proceed in a number of steps.

• Step 1: The only non-cuspidal simple module that can appear as a composition factor
of H∗(kC) is K , and it can only appear in H20(kC). The simple modules St`, E8[ζ

2
] and

E8[ζ
3
] do not occur as composition factors of H∗(kC).
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The first statement follows from the discussion above. As a consequence, we have
PSi ⊗kG kC ' 0 for i = 0, . . . , 3 and therefore

PE8[ζ 3][−8] ⊗kG kC ' bR0c(X(c), k)(q16) ⊗kG kC.

The latter is a direct summand of R0c(X(c) ×G X(w)), which by Proposition 3.7 has
no torsion in its cohomology. We deduce that PE8[ζ 3] ⊗kG kC is quasi-isomorphic to
zero, which means that E8[ζ

2
] does not occur as a composition factor in H∗(kC).

The same result can be shown to hold for E8[ζ
3
], by replacing bR0c(X(c), k)(q16) by

(bR0c(X(c), k)(q16))
∗
[−16] ' bR0c(X(c), k)(q4). The statement about St` follows from

Proposition 3.11.

• Step 2: E8[ζ
4
] does not occur as a composition factor of H∗(kC) and E8[ζ ] does not

occur as a composition factor of Hi(kC) for i 6∈ {12, 13}. We have bR0c(X(c), k)(1)⊗kG
kC ' k[−20] and R0c(X(c), k)(q8) ⊗kG kC ' k[−36]. Moreover, Pi ⊗kG kC ' 0 for
i = 1, . . . , 7 but P0 ⊗kG kC ' k[−20], so we obtain from (5.3) a distinguished triangle

PE8[ζ ][−9] ⊗kG kC → k[−36] → k[−36] .

Using R0c(X(c), k)(q12) ' (R0c(X(c), k)(q8))
∗
[−16] instead of R0c(X(c), k)(q8), we

obtain a distinguished triangle

k[−20] → k[−20] → PE8[ζ 4][−7] ⊗kG kC  .

The variety X(w) has dimension 10, and therefore its cohomology vanishes outside the
degrees 0, . . . , 20. Therefore PE8[ζ ]⊗kG kC ' 0. We also deduce that PE8[ζ 4]⊗kG kC is
quasi-isomorphic to either 0 or k[−12] ⊕ k[−13].

• Step 3: PS4 , PSt` and PE8[−i] and do not occur in C, while PE8[i] occurs with mul-
tiplicity 1 in C (and this is in C10). The statements about PE8[±i] are clear in view of
Proposition 3.5, while the other two statements follow from Lemma 4.17.

We now have enough information to determine C and rule out the planar embeddings
given in Figure 5.

• Step 4: Ci = 0 for i < 10. Let i be the smallest degree for which Hi(C) has non-
zero torsion. Assume that i ≤ 10. The cohomology Hi−1(kC) is cuspidal with socle
in {S4, E8[i], E8[−i]}. On the other hand, kC<(i−1)

= 0 and the injective hulls of S4
and E8[±i] do not occur as direct summands of kCi−1, a contradiction. It follows that
Hi(C) = 0 for i < 10 and H10(C) is torsion-free. So, Hi(kC) = 0 for i < 10, hence
(kC)i = 0 for i < 10.

• Step 5: Hi(C) = 0 for 14 ≤ i ≤ 19 and H20(C) = O. Lemma 4.20 applied to the
stupid truncation C13

→ C14
→ · · · → C20 (viewed in degrees −7, . . . , 0) shows that

C ' 0→ C10
→ C11

→ C12
→ C13

→ P6 → P5 → · · · → P1 → P0 → 0,

Hi(C) = 0 for 14 ≤ i ≤ 19 and H20(C) = O.
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• Step 6: H10(kC) = E8[i] and H11(C) = 0. By the universal coefficient theo-
rem, H10(kC) is an extension of L = TorO1 (H

11(C), k) by kH10(C) = E8[i]. Since
we have Ext1(M,E8[i]) = 0 for all kG-modules M with composition factors in
{S4, E8[i], E8[−i]}, it follows that the kG-module L is a direct summand of H10(kC),
hence C10 has an injective hull of L as a direct summand of kC10. This shows that
C10
= PE8[i] and L = 0.

• Step 7: Ext1(St`, E8[i]) = 0. The differential C10
→ C11 induces an injective map

�−1E8[i] ↪→ C11. Since PSt` is not a direct summand of C11, it follows that St` does not
occur in the socle of C11, hence not in the socle of �−1E8[i].

This rules out the first possibility of the planar embedding around St in Figure 5.

• Step 8: H12(C) = 0. Let L = TorO1 (H
12(C), k). The kG-module �−2E8[i] has no

composition factors isomorphic to S4, E8[i] or E8[−i], hence Hom(L,�−2E8[i]). It fol-
lows that Ext1(L,�−1E8[i]) = 0, hence an injective hull of L is a direct summand of
kC11, which forces L = 0, hence H12(C) = 0.

• Step 9: C13
' P7. We have C13

' P7 ⊕ R for some projective kG-module R, whose
head is in H13(kC). It follows from Steps 1–3 that R ' P⊕nE8[ζ ]

for some n ≥ 0. Assume
that n > 0. Since St` does not occur as a composition factor of H13(kC), it follows that
E8[εi] must occur immediately after E8[ζ ] in the cyclic ordering around St for some
ε ∈ {+,−} and PE8[εi] occurs as a direct summand of C12: this is a contradiction. We
deduce that C13

' P7.

• Step 10: Conclusion. Assume that the configuration around St is the second one in
Figure 5. Then �−3E8[i] is an extension of S6 by S5. Since S5 does not occur as a com-
position factor of H12(kC), it follows that P5 is a direct summand of C13, a contradiction.
Assume now the configuration is the third one in Figure 5. The socle of �−3E8[i] is St`.
Since St` does not occur as a composition factor of H12(kC) and a projective cover does
not occur as a direct summand of C13, we obtain a contradiction. This concludes the
determination of the Brauer tree. Note that now �−2E8[i] = E8[ζ ], C12

' PE8[ζ ] and
H12(kC) = 0. In particular, H∗(C) is torsion-free and C is

0→ PE8[i]→ PE8[ζ ]→ PE8[ζ ]→ P7 → P6 → · · · → P0 → 0.

5.2.6. d = 24. Several Harish-Chandra series lie in the principal 8d -block, and a
(Hecke) argument gives the corresponding subtrees, as well as the real stem, as shown
in Figure 16.

• Step 1: Cuspidal modules E8[−θ ] and E8[−θ
2
]. The two cuspidal characters E8[−θ ]

and E8[−θ
2
] appear in the cohomology of a Coxeter variety X(c). To locate them on the

Brauer tree we shall look at the cohomology of a compactification X(c) and proceed as at
the beginning of §5.2.5. We have

bR0c(X(c),K)(q8) ' (E8[−θ
2
])[−8] ⊕K[−16].
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We deduce from Corollary 4.23 and Theorem 4.21 (see Proposition 4.24) that

bR0c(X(c),O)(q8) ' 0→ PE8[−θ2]→ P7 → · · · → P0 → 0, (5.4)

where P1, . . . , P7 is the unique path of projective covers of non-cuspidal simple modules
corresponding to edges from k to St in the Brauer tree, and the tree in Figure 6 is a
subtree of T . Furthermore, the only principal series vertex connected by an edge to a
non-principal-series vertex is St.

St φ35,74 φ160,55 φ350,38 φ448,25 φ350,14 φ160,7

E8[−θ2]

E8[−θ ]

φ35,2 1

Fig. 6. Subtree of the principal 824-block of E8(q).

• Step 2: E6-series. We now locate the E6-series characters. By a (Degree) argument,
E6[θ ]φ′′1,3

andE6[θ
2
]φ′′1,3

are not leaves in the tree, so, by a (Parity) argument, must be con-
nected to one of the non-unipotent vertices, D4,φ′′8,9

or D4,φ′8,3
, and they are connected to

the same node. Note that E6[θ
±1
]φ′′1,3

is connected to exactly two characters: E6[θ
±1
]φ2,2

and the real character above (by a (Parity) argument, it cannot be connected to E8[±i]).
For all q, the degree of

[D4,φ′′8,9
] −

(
[E6[θ ]φ′′1,3

] − [E6[θ ]φ2,2 ] + [E6[θ
2
]φ′′1,3
] − [E6[θ

2
]φ2,2 ]

)
is negative, hence it cannot be the class of a kG-module. As a consequence, E6[θ

±1
]φ′′1,3

is not connected to D4,φ′′8,9
. The same statement holds for D4,φ′8,3

, hence E6[θ
±1
]φ′′1,3

is
connected to the non-unipotent node.

Again, (Parity) and (Degree) arguments show that the charactersE8[±i] are connected
to the non-unipotent node, or one of the nodes D4,φ′′8,9

, E6[θ ]φ2,2 or E6[θ
2
]φ2,2 . Note that,

from the subtree constructed so far and sinceE8[±i] andE6[θ
±1
]φ′1,3

have the same parity,
they must both be leaves in the tree and so remain irreducible modulo `.

Let w ∈ W be a regular element of order 24 and length 10. We have

bR0c(X(w),K)(q11) ' E8[i][−10], bR0c(X(w),K)(q14) ' E6[θ ]φ′1,3
[−12].

• Step 3:E8[−θ ] andE8[−θ
2
] do not occur in H∗c(X(w), k)(λ). Let λ be either q11 or q14.

The torsion part in bR0c(X(w),O)(λ) is cuspidal by Proposition 3.8. Since its character
has no composition factor in the principal series, we have R0c(X(w), k)(λ)⊗kGPi = 0 for
i ∈ {0, . . . , 7}. Using Proposition 3.7 for the variety X(w)×GX(c) together with (5.4) and
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the dual description of bR0c(X(c),O)(1), we deduce that R0c(X(w), k)(λ)⊗kGPE8[−θ ] =

R0c(X(w), k)(λ) ⊗kG PE8[−θ2] = 0. This ensures that neither E8[−θ ] nor E8[−θ
2
] can

occur as a composition factor of the cohomology of bR0c(X(w), k)(λ).

• Step 4: bR0c(X(w), k)(q11) and position of E8[±i]. Let C = bR0c(X(w), k)(q11) and
let M = Hi(C) be the non-zero cohomology group with largest degree. Suppose i > 10.
The moduleM is cuspidal and its composition factors are cuspidal modules different from
E8[−θ ] andE8[−θ

2
]. Proposition 3.5 shows that RHom•kG(R0c(X(v), k),M) = 0 for all

v < w. By the construction of the smooth compactifications, we obtain an isomorphism

RHom•kG(R0(X(w), k),M)
∼
→ RHom•kG(R0c(X(w), k),M).

Since R0(X(w), k) has a representative with terms in degrees 0, . . . , `(w) = 10, we
deduce that HomDb(kG)(R0c(X(w), k),M[−i]) = 0, which is impossible since C is a
direct summand of R0c(X(w), k) and the map C → M[−i] = Hi(C)[−i] is non-zero.
This shows that Hj (C) = 0 for j > 10. Using the same argument with the isomorphism

RHom•kG(M,R0c(X(w), k))
∼
→ RHom•kG(M,R0c(X(w), k))

and the fact that R0c(X(w), k) has a representative with terms in degrees 10 = `(w), . . . ,
2`(w) = 20, we deduce that Hj (C) = 0 for j < 10. Therefore C ' H10(C)[−10].

Now, Proposition 4.18 and Remark 4.19 show that E8[i] ' �12k. We deduce that
E8[±i] are connected to the non-unipotent node and this gives the whole tree as shown in
Figure 16, up to swapping the E6[θ ]- and E6[θ

2
]-series.

• Step 5: bR0c(X(w), k)(q14) and conclusion. The previous argument applied to the com-
plex D = bR0c(X(w), k)(q14) shows that the cohomology of D vanishes outside the
degrees 10, 11 and 12, and that H12(D) is a module with simple head isomorphic to
E6[θ ]φ′1,3

. The radical of H12(D) is cuspidal. SinceE6[θ ]φ′1,3
has no non-trivial extensions

with simple cuspidal modules, we deduce that H12(D)=E6[θ ]φ′1,3
and H12

c (X(w),O)(q14)

is torsion-free.
Let us denote the simple modules in the E6[θ ]-series as in Figure 7. There exists a

E6[θ ]φ′′
1,3

S3
S2

E6[θ ]φ2,2

S1

E6[θ ]φ′
1,3

Fig. 7. Subtree of the principal 824-block of E8(q).

representative of D of the form

D = 0→ X→ P ′ ⊕ PS2 → PS1 → 0,
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where P ′ is a projective module with no cuspidal simple quotient except possibly E8[−θ ]

or E8[−θ
2
] (by Proposition 3.5). Since H11(D) is a cuspidal module with no composition

factor isomorphic to E8[−θ ] or E8[−θ
2
], we deduce that the representative of D can be

chosen so that P ′ = 0. By the universal coefficient theorem, H10(D) ' H11(D). We have
H11(D) = 0 or H11(D) = S3. In both cases, X is a module with composition factors S2
and S3.

Proposition 4.18 and Remark 4.19 show that X ' �18k in kG-stab. We deduce that
�18k lifts to an OG-lattice of character E6[θ ]φ′′1,3

, which gives the planar embedding.

5.3. Other exceptional groups

The Brauer trees of unipotent blocks for exceptional groups other than E7(q) and E8(q)

were determined in [13, 64, 47, 38, 48, 49] (under an assumption on q for one of the
blocks in 2E6(q)), but only up to the choice of a field of values in each block. This
ambiguity can be removed using Lusztig’s parametrization of unipotent characters. We
achieve this by choosing carefully the roots of unity in Q` associated with the cuspidal
characters, as we did in the previous sections.

5.3.1. E6(q), 2E6(q), F4(q) and G2(q). For each of the exceptional groups of type
E6(q), 2E6(q), F4(q) and G2(q) there are only two blocks with cyclic defect groups
whose Brauer trees are not lines. One of the blocks corresponds to the principal 8h-
block with h the Coxeter number, and this case was solved in [29]. For the other one,
one proceeds exactly as in §5.1.1, where only a pair of conjugate cuspidal characters lies
outside the real stem (these characters appear in the cohomology of a Coxeter variety).
The planar-embedded Brauer trees can be found in [19].

5.3.2. 2B2(q
2) and 2G2(q

2). For the Suzuki groups 2B2(q
2) and the Ree groups

2G2(q
2), the Frobenius eigenvalue corresponding to each unipotent character is known

by [12]. It is enough to locate a single non-real character to fix the planar embedding. One
can take this character to be a non-real cuspidal character occurring in the cohomology of
the Coxeter variety and proceed as before to get the trees given in [19]. Note that for these
groups the Coxeter variety is 1-dimensional, therefore its cohomology is torsion-free and
�2k is isomorphic in kG-stab to the generalized (q2)-eigenspace of F 2 in R0c(X(c), k)
(when d is not the Coxeter number).

5.3.3. 2F4(q
2). We now consider the Ree groups 2F4(q

2), whose Brauer trees have
been determined in [47] using the parametrization given in [59], but not using Lusztig’s
parametrization.

Here, there are three trees that are not lines. One of them corresponds to the case
solved in [29], and another one is similar to §5.1.1. The only block which deserves a
specific treatment is the principal `-block with ` | (q4

+
√

2q3
+ q2
+
√

2q + 1) (so, q is
a 24-th root of unity modulo `). Let η, i and θ be the roots of unity in O having the same
image as respectively q15, q6 and q16 in the residue field k.



48 David A. Craven et al.

A (Hecke) argument gives the real stem of the Brauer tree as shown in Figure 8 as
well as the two edges for the 2B2-series.

We consider the two generalized ‘mod-`-eigenspaces’ of F 2 on the cohomology of
the Coxeter variety given by

R0c(X(c),K)(q−2) = (
2B2[η

3
]ε ⊕

2F4[−θ
2
])[−2],

R0c(X(c),K)(q4) =
2B2[η

5
]ε[−2] ⊕K[−4].

Lemma 3.14 and Proposition 3.15 show that 2B2[η
3
]ε +

2F4[−θ
2
] is the character of

a projective module P2F4[−θ2], hence 2B2[η
3
]ε and 2F4[−θ

2
] are connected by an edge.

Furthermore, R0c(X(c),O)(q−2) ' P2F4[−θ2][−2].
Corollary 4.23 shows that there is no non-real vertex connected to 1 or φ2,3, there is

an edge S[η5
] connecting St and 2B2[η

5
]ε, and, in the cyclic ordering of edges containing

St, the edge S[η5
] comes after the one containing φ2,3 and before St`. Furthermore,

R0c(X(c),O)(q−2) ' 0→ PS[η5]→ P1 → Pk → 0,

where Pk is in degree 4 and P1 is projective with character φ2,3 + St.
We can now deduce the corresponding cohomology complexes for X(c). For λ ∈

{q−2, q4
} and I an F -stable proper subset of S, we have bR0c(X(cI ),O)(λ) = 0 un-

less (Li, F ) has type 2B2, in which case the complex has cohomology concentrated in
degree 1. In addition, using duality for λ ∈ {q6, 1}, we find

bR0c(X(c),O)(q−2) ' 0→ 0 → P2B2[η3]1
→ P2F4[−θ2] → 0 → 0 → 0,

bR0c(X(c),O)(q6) ' 0→ 0 → 0 → P2F4[−θ ]
→ P2B2[η5]1

→ 0 → 0,

bR0c(X(c),O)(q4) ' 0→ 0 → P2B2[η5]1
→ PS[η5] → P1 → Pk → 0,

bR0c(X(c),O)(1) ' 0→ Pk → P1 → PS[η3] → P2B2[η3]1
→ 0 → 0,

where S[η3
] is the edge connecting St and 2B2[η

3
]ε. Since R0c(X(c) ×G X(c),O) is

torsion-free (Proposition 3.7), we deduce that the differentials between non-zero terms of
the complexes above cannot be zero. This uniquely determines the four complexes above
up to isomorphism.

We have

bR0c(X(c),O)(q−2) ⊗OG bR0c(X(c),O)(q4)

' Hom•kG(0→ PS[η3]→ P2B2[η3]1
→ 0, 0→ P2B2[η3]1

→ P2F4[−θ2]→ 0)[−3].

By Proposition 3.7, this complex D has homology O concentrated in degree 2. Assume
that, in the cyclic ordering of edges containing 2B2[η

3
]ε, the edge containing 2F4[−θ

2
]

comes after the edge containing 2B2[η
3
]1 but before the edge containing St. Then a non-

zero map kPS[η3] → kPF4[−θ2] does not factor through kP2B2[η3]1
, so it gives rise to

a non-zero element of H4(kD), a contradiction. It follows that the subtree obtained by
removing 2F4[±i] is given by Figure 8.
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Let w ∈ W of length 6 be such that wF has order 8 and let C = bR0c(X(w),O)(−1).
There are 12 such elements and they are all F -conjugate. The complex C is a perfect
complex; the torsion part of its cohomology is cuspidal by Proposition 3.8 and it does not
involve St` by Proposition 3.11. In addition, there is a representative of C that involves
neither P2F IV

4 [−1] nor PSt` by Lemma 4.17. It follows that 2F IV
4 [−1] does not occur as

a composition factor of the cohomology of kC. Therefore the possible composition fac-
tors in the torsion part of H∗(C) are the cuspidal simple modules 2F4[±i], 2F4[−θ

j
]

and S[ηm].
The cohomology of KC is given by

KC ' (F4[i])[−6] ⊕ F4[−θ ]
⊕3
[−8] ⊕ 2B2[η

5
]
⊕5
1 [−9] ⊕K[−12].

Using Proposition 3.7 one can easily compute kC ⊗L
kG bR0c(X(c), k)(λ) for the various

eigenvalues λ of F 2. With the same method as in Steps 1 and 2 of §5.2.5, the cases
λ = q−2, q6, q4, 1 show that

•
2F4[−θ ] can occur as a composition factor of H∗(kC) only in degrees 8 or 9, because
HomDb(kG(P2B2[η5]1

, kC[i]) = 0 for i 6= 9;
•

2F4[−θ
2
] does not occur as a composition factor of H∗(kC) because

HomDb(kG(P2B2[η3]1
, kC[i]) = 0 for all i;

• S[η3
] does not occur as a composition factor of H∗(kC) because

HomDb(kG(P2B2[η3]1
, kC[i]) = HomDb(kG(P1, kC[i]) = 0 for all i;

• S[η5
] can occur as a composition factor of H∗(kC) only in degrees 9, 10 and 11 because

HomDb(kG(P1, kC[i]) = 0 for all i and HomDb(kG(P2B2[η5]1
, kC[i]) = 0 for i 6= 9.

There are five distinct possible planar trees other than the one in Figure 8. One checks
that for each of those five bad embeddings, one of the following holds:

• �−3(2F4[i]) and �−4(2F4[i]) do not contain 2F4[−θ ] as a submodule,
• �−4(2F4[i]) does not contain 2B2[η

5
]1 as a submodule,

• �−4(2F4[i]), �−5(2F4[i]) and �−6(2F4[i]) do not contain S[η5
] as a submodule,

• �−7(2F4[i]) does not contain k as a submodule, or
• �−j (2F4[i]) does not contain 2F4[i] or 2F4[−i] as a submodule for 1 ≤ j ≤ 6.

Since kH6(C) ' 2F4[i], it follows that Extj+1
kG (H6+j (kC), kH6(C)) = 0 for j ≥ 1

and Ext1kG(TorO1 (k,H7(C)), kH6(C)) = 0. Let D be the cone of the canonical map
kH6(C) → kC[6]. We have HomDb(kG)(D, kH6(C)[1]) = 0, hence kH6(C) is isomor-
phic to a direct summand of C. Since C is perfect and 2F4[i] is not projective, we have a
contradiction. This proves that the tree in Figure 8 is correct.
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2F4[−θ ]

1φ2,3St
2F IV

4
[−1]

2F4[−θ2]

2B2[η3]ε
2F4[−i] 2B2[η3]1

2B2[η5]ε
2F4[i] 2B2[η5]1

Fig. 8. Principal `-block of 2F4(q
2) with ` | q4

+
√

2q3
+ q2

+
√

2 q + 1.

Appendix. Brauer trees for E7(q) and E8(q)

The89-blocks ofE8(q) have isomorphic trees, with bijection of vertices given as follows.

E7(q) φ7,1 φ56,3 φ315,7 φ512,11 φ280,17 φ35,31

E8(q), (A2, φ3) φ160,7 φ1008,9 φ2800,13 φ5600,21 φ4096,27 φ560,47

E8(q), (A2, φ21) φ35,2 φ700,6 φ2240,10 φ3150,18 φ2240,28 φ700,42

E8(q), (A2, φ13) φ112,3 φ560,5 φ4096,11 φ5600,15 φ2800,25 φ1008,39

E7(q) St E6[θ
2
]ε E6[θ ]ε

E8(q), (A2, φ3) φ112,63 E6[θ
2
]φ′′1,3

E6[θ ]φ′′1,3

E8(q), (A2, φ21) φ35,74 E6[θ
2
]φ2,2 E6[θ ]φ2,2

E8(q), (A2, φ13) φ160,55 E6[θ
2
]φ′1,3

E6[θ ]φ′1,3

φ7,46 φ56,30 φ315,16

φ28,68 φ1575,34 φ4096,26
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