

Contents lists available at SciVerse ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Automizers as extended reflection groups

Raphaël Rouquier

Department of Mathematics, UCLA, Box 951555, Los Angeles, CA 90095-1555, USA

ARTICLE INFO

Article history: Received 28 February 2013 Available online 28 June 2013 Communicated by C.W. Eaton

To Geoff Robinson, on his sixtieth birthday

Keywords: Finite simple groups Complex reflection groups

ABSTRACT

Let *G* be a finite group having an abelian Sylow *p*-subgroup *P*. Broué, Malle and Michel have shown that if *G* is a simple Chevalley group, then the automizer of *P* is an irreducible complex reflection group (for *p* not too small and different from the defining characteristic).

The aim in this note is to show that a suitable version of this property holds for general finite groups.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let *G* be a finite group having an abelian Sylow *p*-subgroup *P*. Broué, Malle and Michel have shown that if *G* is a simple Chevalley group, then the automizer of *P* is an irreducible complex reflection group (for *p* not too small and different from the defining characteristic) [2,4].

The aim in this note is to show that a suitable version of this property holds for general finite groups.

We give a simple direct proof that the property above holds for simply connected simple algebraic groups *G*, provided *p* is not a torsion prime (Proposition 4.1): the automizer $E = N_G(P)/C_G(P)$ is a reflection group on $\Omega_1(P)$, the largest elementary abelian subgroup of *P*. This relies on the Lehrer-Springer theory [8], that shows that certain subquotients of reflection groups are reflection groups.

On the other hand, we show that the presence of p-torsion in the Schur multiplier of a finite group G prevents the subgroup of E generated by reflections from being irreducible (Proposition 3.5).

This suggests considering covering groups of finite simple groups or equivalently finite simple groups *G* such that $H^2(G, \mathbf{F}_p) = 0$. We also need to allow *p*'-automorphisms and we now look for a

E-mail address: rouquier@math.ucla.edu.

^{0021-8693/\$ –} see front matter @ 2013 Elsevier Inc. All rights reserved. http://dx.doi.org/10.1016/j.jalgebra.2013.06.010

description of the automizer as an extension of an irreducible reflection group *W* by a subgroup of $N_{GL(\Omega_1(P))}(W)/W$.

We actually need a slight generalization: $\Omega_1(P)$ should be viewed in some cases as a vector space over a larger finite field (for example in the case of $PSL_2(\mathbf{F}_{p^n})$) and we need to allow field automorphisms.

As an example, the automizer of an 11-Sylow subgroup in the Monster is the 2-dimensional complex reflection group ST_{16} (also denoted G_{16}).

I thank Michael Collins, Richard Lyons and Geoff Robinson for useful comments.

2. Notation and definitions

Let *p* be a prime. Given *P* an abelian group, we denote by $\Omega_1(P)$ the subgroup of *P* of elements of order 1 or *p*, *i.e.*, the largest elementary abelian *p*-subgroup of *P*.

Let *V* be a free module of finite rank over a commutative algebra *K*. A *reflection* is an element $s \in GL_K(V)$ of finite order such that $V / \ker(s - 1)$ is a free *K*-module of rank 1 (note that we do not require $s^2 = 1$). A finite subgroup of $GL_K(V)$ is a *reflection group* if it is generated by reflections.

3. Main result and remarks

Let *p* be a prime and *H* a simple group with an abelian Sylow *p*-subgroup *P*. Assume the *p*-part of the Schur multiplier of *H* is trivial, *i.e.* $H^2(H, \mathbf{F}_p) = 0$. It is known from the classification of finite simple groups that Out(H) is solvable. Let $\tilde{H} \leq Aut(H)$ be a finite group containing *H* and such that \tilde{H}/H is a Hall *p'*-subgroup of Out(H). Let $E = N_{\tilde{H}}(P)/C_{\tilde{H}}(P)$.

Theorem 3.1. There is

- a finite field K,
- an \mathbf{F}_p -subspace V of $\Omega_1(P)$ and an isomorphism of \mathbf{F}_p -vector spaces $K \otimes_{\mathbf{F}_p} V \xrightarrow{\sim} \Omega_1(P)$ endowing $\Omega_1(P)$ with a structure of K-vector space,
- a subgroup N of $GL_K(\Omega_1(P))$, and
- a subgroup Γ of Aut(K),

such that $E = N \rtimes \Gamma$, as subgroups of Aut($\Omega_1(P)$), and such that the normal subgroup W of N generated by reflections acts irreducibly on $\Omega_1(P)$.

The theorem will be proven in Section 4.

Remark 3.2. Gorenstein and Lyons have shown that $N_H(P)/C_H(P)$ acts irreducibly on $\Omega_1(P)$ viewed as a vector space over \mathbf{F}_p and, as a consequence, P is homocyclic [7, (12.1)]. Note nevertheless that the subgroup of $N_H(P)/C_H(P)$ generated by reflections might not be irreducible in its action on $\Omega_1(P)$. This happens for example in the case $H = \mathfrak{A}_{2p}$, p > 3. In that case, the automizer is a subgroup of index 2 of $(\mathbf{Z}/(p-1)) \wr \mathfrak{S}_2$ and its subgroup generated by reflections is contained in $(\mathbf{Z}/(p-1))^2$.

We can take $K = \mathbf{F}_p$ in Theorem 3.1, except for

- $PSL_2(p^n)$, n > 1: $K = \mathbf{F}_{p^n}$,
- J_1 and ${}^2G_2(q)$, p = 2: $K = \mathbf{F}_8$.

In those cases, $V = \mathbf{F}_p$ and $P = \Omega_1(P) = K$.

Note that the theorem is trivial when *P* is cyclic: one takes $K = \mathbf{F}_p$ and $N = E = W \subset \mathbf{F}_p^{\times}$.

Using the classification of finite simple groups, we deduce a statement about finite groups with abelian Sylow *p*-subgroups.

Corollary 3.3. Let G be a finite group with an abelian Sylow p-subgroup P. Let $H = O^{p'}(G/O_{n'}(G))$.

Assume the p-part of the Schur multiplier of H is trivial. Then, there is a finite group X containing H as a normal subgroup of p'-index and

- a product K of finite field extensions of \mathbf{F}_{p} ,
- an \mathbf{F}_p -subspace V of $\Omega_1(P)$ and an isomorphism of \mathbf{F}_p -vector spaces $K \otimes_{\mathbf{F}_p} V \xrightarrow{\sim} \Omega_1(P)$ endowing $\Omega_1(P)$ with a structure of a free K-module,
- a subgroup N of $GL_K(\Omega_1(P))$, and
- a subgroup Γ of Aut(K),

such that $N_X(P)/C_X(P) = N \rtimes \Gamma$, as subgroups of $Aut(\Omega_1(P))$, and such that denoting by W the normal subgroup of N generated by reflections, we have $\Omega_1(P)^W = 1$.

Proof. It follows from the classification of finite simple groups (cf e.g. [5, Section 5]) that there are finite simple groups H_1, \ldots, H_r such that $H = F^*(H) = H_1 \times \cdots \times H_r$ (there are no *p*-groups in the decomposition since $H^2(H, \mathbf{F}_p) = 0$). Now, we take $X = X_1 \times \cdots \times X_r$, where the X_i are associated with H_i as in Theorem 3.1. We put $K = K_1 \times \cdots \times K_r$, etc. \Box

Following [7, Proof of (12.1)], if H is a simple group with abelian non-cyclic Sylow p-subgroups and the p-part of the Schur multiplier of H is trivial, then

- $H = \mathfrak{A}_n$ and $2p \leq n < p^2$,
- $H = PSL_2(p^n), n > 1,$
- $H = {}^{2}G_{2}(q), p = 2,$
- *H* is one of 14 sporadic groups, with (H, p) given in Section 4.5

(and conversely all those groups have abelian non-cyclic Sylow *p*-subgroups and the *p*-part of the Schur multiplier is trivial) or there is a simply connected simple algebraic group **G** with an endomorphism *F*, a power of which is a Frobenius endomorphism defining a rational structure over a finite field with *q* elements such that $p \nmid q$ and *p* is not a torsion prime for **G**, and putting $G = \mathbf{G}^F$, we have $H \leq G/O_{p'}(G) \leq \operatorname{Aut}(H)$ and $p \nmid [G/O_{p'}(G) : H]$. Note that not all such pairs (**G**, *F*) give rise to *H*'s with abelian Sylow *p*-subgroups.

Assume $K = \mathbf{F}_p$. We have $V = \Omega_1(P)$ and $\Gamma = 1$. Furthermore, $N = E \subset N_{GL(P)}(W)$. So, in this case, the theorem is equivalent to the statement that W acts irreducibly on P. As a consequence, in order to show that the theorem holds, it is enough to prove the statement with \tilde{H} replaced by a group G as above.

Remark 3.4. The finite simple groups with an abelian Sylow *p*-subgroup such that the *p*-part of the Schur multiplier is non-trivial are the following (cf [1]):

- $H = M_{22}$, ON, \mathfrak{A}_6 , \mathfrak{A}_7 and p = 3,
- $H = PSL_2(q)$, $q \equiv 3, 5 \pmod{8}$ and p = 2,
- $H = PSL_3(q)$ and 3 | q 1 or $H = PSU_3(q)$ and 3 | q + 1 (here p = 3).

Note that the automizer of a Sylow 3-subgroup *P* in Aut(ON) = ON.2 does not contain any reflection (when *P* is viewed as a vector space over **F**₃). That automizer is not a subgroup of GL₂(9).2 (extension by the Frobenius).

Note that the presence of *p*-torsion in the Schur multiplier is an obstruction to the irreducibility of the subgroup of the automizer generated by reflections on $\Omega_1(P)$, viewed as a vector space over \mathbf{F}_p . **Proposition 3.5.** Let *G* be a finite group with an abelian Sylow *p*-subgroup *P*. Let $E = N_G(P)/C_G(P)$ and let *W* be the subgroup of *E* generated by reflections on $\Omega_1(P)$, viewed as an \mathbf{F}_p -vector space. Assume p > 2. If $H^2(G, \mathbf{F}_p) \neq 0$, then $\Omega_1(P)^W \neq 0$.

Proof. Let $V = \Omega_1(P)^*$. We have $H^2(G, \mathbf{F}_p) \simeq H^2(N_G(P), \mathbf{F}_p) \simeq H^2(P, \mathbf{F}_p)^E$. On the other hand, we have an isomorphism of $\mathbf{F}_p E$ -modules $H^2(P, \mathbf{F}_p) \xrightarrow{\sim} V \oplus \Lambda^2(V)$, so $H^2(G, \mathbf{F}_p) \simeq V^E \oplus \Lambda^2(V)^E \subset V^W \oplus \Lambda^2(V)^W$. By Solomon's Theorem [11], we have $\Lambda^2(V)^W \simeq \Lambda^2(V^W)$. The result follows when P is not cyclic. If P is cyclic, then W = E, so $H^2(G, \mathbf{F}_p) \simeq V^W$ and the result follows as well. \Box

Remark 3.6. Let *W* be a reflection group on a complex vector space *L*, with minimal field of definition *K*. The subgroup of the outer automorphism group of *W* of elements fixing the set of reflections has always a decomposition as a semi-direct product $(N_{GL(L)}(W)/W) \rtimes Gal(K/\mathbb{Q})$ as shown by Marin and Michel [9].

Remark 3.7. It would be interesting to investigate if there is a version of Theorem 3.1 for non-principal blocks with abelian defect groups.

In a work in progress, we study automizers of maximal elementary abelian *p*-subgroups in covering groups of simple groups.

4. Proof of Theorem 3.1

We run through the list of groups H (or G) as described above.

4.1. Chevalley groups

Let **G** be a connected and simply connected reductive algebraic group over an algebraic closure k of a finite field and endowed with an endomorphism F, a power of which is a Frobenius endomorphism. Let $G = \mathbf{G}^{F}$. Assume p is invertible in k and p is not a torsion prime for **G**.

4.1.1. Abelian p-subgroups

Since *p* is not a torsion prime for **G**, every abelian *p*-subgroup *Q* of *G* is contained in an *F*-stable maximal torus **T** of **G** and $\mathbf{L} = C_{\mathbf{G}}(Q)$ is a Levi subgroup ([12, Corollary 5.10 and Theorem 5.8] and [6, Proposition 2.1]). Furthermore, $N_{\mathbf{G}}(Q) = N_{G}(Q)C_{\mathbf{G}}(Q)$ [12, Corollary 5.10], hence the canonical map is an isomorphism $N_{G}(Q)/C_{G}(Q) \xrightarrow{\sim} N_{\mathbf{G}}(Q)/C_{\mathbf{G}}(Q)$.

Let $W = N_{\mathbf{G}}(\mathbf{T})/\mathbf{T}$, $X = \text{Hom}(\mathbf{T}, \mathbf{G}_m)$ and $Y = \text{Hom}(\mathbf{G}_m, \mathbf{T})$. If **G** is simple, then the action of W on $\mathbf{C} \otimes_{\mathbf{Z}} X$ is irreducible.

We have a canonical map $N_W(Q) \rightarrow N_G(Q)/T$. Since $\mathbf{L} \subset N_G(Q) \subset N_G(\mathbf{L})$, we obtain an isomorphism

$$N_W(Q)/C_W(Q) \xrightarrow{\sim} N_G(Q)/C_G(Q).$$

Given *L* an abelian group, we denote by $L_{p^{\infty}}$ the subgroup of *p*-elements of *L*. Let $\mu = k^{\times}$. We have an isomorphism

$$\mathbf{T}_{p^{\infty}} \xrightarrow{\sim} \operatorname{Hom}(X, \mu_{p^{\infty}}), \quad t \mapsto (\chi \mapsto \chi(t)).$$

This provides an isomorphism

$$\mathbf{T}_{p^{\infty}} \xrightarrow{\sim} \mathbf{Y} \otimes_{\mathbf{Z}} \mu_{p^{\infty}}.$$

These isomorphisms are equivariant for the actions of W and F.

4.1.2. Abelian Sylow p-subgroups

Assume now P = Q is an abelian Sylow *p*-subgroup of *G*. Let $V = Y \otimes_{\mathbf{Z}} \mathbf{F}_p$. We have $V^F \simeq \Omega_1(P)$.

Proposition 4.1. The group $N_W(P)/C_W(P)$ is a reflection group on $\Omega_1(P)$. If **G** is simple, then this reflection group is irreducible.

Proof. Note that $N_W(P)/C_W(P)$ is a p'-group, since P is an abelian Sylow p-subgroup of G and $N_W(P)/C_W(P) \simeq N_G(P)/C_G(P)$. So, the canonical map is an isomorphism

$$N_W(P)/C_W(P) \xrightarrow{\sim} N_W(\Omega_1(P))/C_W(\Omega_1(P)).$$

The proposition follows now from the next lemma by Lehrer–Springer theory [8] extended to positive characteristic [10]. \Box

Lemma 4.2. We have dim $V^F \ge \dim V^{wF}$ for all $w \in W$.

Proof. Let $\dot{w} \in N_{\mathbf{G}}(\mathbf{T})$. By Lang's Lemma, there is $x \in \mathbf{G}$ such that $\dot{w} = x^{-1}F(x)$. Given $t \in \mathbf{T}$, we have $F(xtx^{-1}) = x\dot{w}F(t)\dot{w}^{-1}$. So, $x\mathbf{T}x^{-1}$ is *F*-stable and the isomorphism

$$\mathbf{T} \xrightarrow{\sim} x\mathbf{T}x^{-1}, \quad t \mapsto xtx^{-1}$$

transfers the action of wF on the left to the action of F on the right. So,

$$V^{wF} \simeq (Y(x\mathbf{T}x^{-1}) \otimes \mathbf{F}_p)^F \simeq \Omega_1((x\mathbf{T}x^{-1})^F).$$

The rank of that elementary abelian *p*-subgroup of *G* is at most the rank of *P* and we are done. \Box

4.2. Alternating groups

Let $G = \mathfrak{S}_n$, n > 7. Put n = pr + s with $0 \leq s \leq p - 1$ and r < p. We have $P \simeq (\mathbb{Z}/p)^r$. We put $K = \mathbf{F}_p$, $N = W = \mathbf{F}_p^{\times} \wr \mathfrak{S}_r$.

Remark 4.3. Note that when n = 5 and p = 2 or n = 6, 7 and p = 3, the *p*-part of the Schur multiplier is not trivial but the description above is still valid. Note though that when n = 6 and p = 3, then *G* contains \mathfrak{S}_6 as a subgroup of index 2. We have $K = \mathbf{F}_3$, $P = K^2$, N = E, *W* is a Weyl group of type B_2 and [N : W] = 2.

4.3. PSL₂

Assume $H = PSL_2(K)$ for a finite field K of characteristic p. We have $W = N = K^{\times}$ and $\Gamma = Gal(K/\mathbf{F}_p)$.

4.4. ${}^{2}G_{2}(q)$

Assume $H = {}^{2}G_{2}(q)$ and p = 2. We have $K = \mathbf{F}_{8}$, $W = N = K^{\times}$ and $\Gamma = \text{Gal}(K/\mathbf{F}_{2})$.

4.5. Sporadic groups

We refer to [3] for the diagrams for complex reflection groups. For sporadic groups, we have $P = \Omega_1(P)$.

Ĥ	Κ	$\dim_K(P)$	W	N/W	Г	Diagram of W
J_1	F ₈	1	\mathbf{F}_8^{\times}	1	$\text{Gal}(\textbf{F}_8/\textbf{F}_2)$	7
M ₁₁ , M ₂₃ , HS.2	F ₃	2	<i>B</i> ₂	2	1	$\bigcirc \longrightarrow \bigcirc$
J ₂ .2, Suz.2	F ₅	2	G ₂	2	1	$\bigcirc = \bigcirc \bigcirc$
He.2, Fi ₂₂ .2, Fi ₂₃ , Fi ₂₄	F 5	2	ST ₈	1	1	4 4
Co ₁	F ₇	2	ST_5	1	1	3
Th, BM	F ₇	2	ST_5	2	1	3
М	F ₁₁	2	<i>ST</i> ₁₆	1	1	5 5

References

- [1] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of Finite Groups, Oxford University Press, 1985.
- [2] M. Broué, G. Malle, J. Michel, Generic blocks of finite reductive groups, Astérisque 212 (1993) 7-92.
- [3] M. Broué, G. Malle, R. Rouquier, Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math. 500 (1998) 127–190.
- [4] M. Broué, J. Michel, Blocs à groupes de défaut abéliens des groupes réductifs finis, Astérisque 212 (1993) 93-117.
- [5] P. Fong, M. Harris, On perfect isometries and isotypies in finite groups, Invent. Math. 114 (1993) 139–191.
- [6] M. Geck, G. Hiß, Basic sets of Brauer characters of finite groups of Lie type, J. Reine Angew. Math. 418 (1991) 173-188.
- [7] D. Gorenstein, R. Lyons, The local structure of finite groups of characteristic 2 type, Mem. Amer. Math. Soc. 276 (1983).
- [8] G.I. Lehrer, T.A. Springer, Reflection subquotients of unitary reflection groups, Canad. J. Math. 51 (1999) 1175-1193.
- [9] I. Marin, J. Michel, Automorphisms of complex reflection groups, Represent. Theory 14 (2010) 747-788.
- [10] R. Rouquier, Relative reflection groups and braid groups, in preparation.
- [11] L. Solomon, Invariants of finite reflection groups, Nagoya Math. J. 22 (1963) 57-64.
- [12] T.A. Springer, R. Steinberg, Conjugacy classes, in: Seminar on Algebraic Groups and Related Finite Groups, in: Lecture Notes in Math., vol. 131, Springer-Verlag, 1970.