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Abstract

We prove that the Deligne–Lusztig varieties associated to elements of the Weyl group which are of
minimal length in their twisted class are affine. Our proof differs from the proof of He and Orlik–Rapoport
and it is inspired by the case of regular elements, which correspond to the varieties involved in Broué’s
conjectures.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Let p be a prime number, let F denote an algebraic closure of the finite field with p elements
and let G be a connected reductive algebraic group over F. We assume that G is endowed with an
isogeny F : G → G such that Fδ is a Frobenius endomorphism with respect to some Fq -structure
on G (here, δ is a non-zero natural number, q is a power of p and Fq denotes the subfield of F

with q elements).
We denote by B the variety of Borel subgroups of G and by B × B = ∐

w∈W O(w) the
decomposition into orbits for the diagonal action of G. Here, W is the Weyl group of G, with set
of simple reflections S corresponding to the orbits of dimension 1 + dimB, and the first and last
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projections define an isomorphism O(w)×B O(w′) ∼−→ O(ww′) when �(ww′) = �(w)+�(w′),
where � : W → Z�0 is the length function on W associated to S.

Given w ∈ W , we define the Deligne–Lusztig variety [4, Definition 1.4] associated to w by

X(w) = XG(w) = {
B ∈ B

∣∣ (
B,F (B)

) ∈ O(w)
}
.

By studying a class of ample sheaves on X(w), Deligne and Lusztig proved that these varieties
are affine when q1/δ is larger than the Coxeter number of G [4, Theorem 9.7].

They proved more generally that the existence of coweights satisfying certain inequalities
ensures that X(w) is affine. Recently, Orlik–Rapoport and He studied this question. Recall that
x, y ∈ W are F -conjugate if there exists a ∈ W such that y = a−1xF(a). By a case-by-case
analysis based on Deligne–Lusztig’s criterion, they obtained the following result ([13, §5], [10,
Theorem 1.3]):

Theorem A (Orlik–Rapoport, He). If w ∈ W is an element of minimal length in its F -conjugacy
class then X(w) is affine.

When w is a Coxeter element, the result is due to Lusztig [12, Corollary 2.8]. In this note we
prove a more general affineness result and we deduce Theorem A by applying a combinatorial
result on elements of minimal length in their F -conjugacy class.

Before stating our results, we need some further notation. We denote by B+ the braid monoid
associated to (W,S). It is the monoid with presentation

B+ = 〈
(x)x∈W

∣∣ ∀x, x′ ∈ W, �(xx′) = �(x) + �(x′) ⇒ xx′ = x x′〉.

The automorphism F of W extends to an automorphism of B+ still denoted by F .
Given I ⊂ S, let WI denote the subgroup of W generated by I and let wI be the longest

element of WI (the element wS will be denoted by w0). The main result of this note is the
following:

Theorem B. Let I be an F -stable subset of S and let w ∈ WI be such that there exists a positive
integer d and a ∈ B+ with

wF(w) · · ·Fd−1(w) = wIa.

Then X(w) is affine.

The proof of Theorem B is by a general argument while our deduction of Theorem A relies
on combinatorial results on finite Coxeter groups (see [7, Theorem 1.1], [6, §6] and [9, Theo-
rem 7.5]) which are proved by a case-by-case analysis.

There is a case where our criterion can be applied easily. Indeed, if d is a regular number
for (W,F ) (in the sense of Springer) then by [2, Proposition 6.5], there exists a regular element
w ∈ W such that

wF(w) · · ·Fd−1(w) = w0w0.

Therefore, by Theorem B, the variety X(w) is affine: this variety is of fundamental interest
for the geometric version of Broué’s abelian defect group conjecture for finite reductive groups
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[2, §5.B]. In particular, if i 
= j , this conjecture predicts that, as Q�GF -modules, the cohomology
groups Hi

c (X(w),Q�) and H
j
c (X(w),Q�) have no common irreducible constituents.

Finally, note that there exist elements satisfying the criterion of Theorem B but which do
not satisfy Deligne–Lusztig’s criterion. For instance, if W is of type B5 (and F acts trivially
on W ), the element w = s1ts3s2s1ts1s4s3s2s1ts1s2s3 does not satisfy Deligne–Lusztig’s criterion
(for q = 2) but satisfies (w)5 = (w0)

3 (here, S = {t, s1, s2, s3, s4}, ts1 has order 4 and sisi+1 has
order 3 for i = 1, 2, 3). However, this element w is F -conjugate by cyclic shift (see Section 2 for
the definition) to s4ws4 = s1ts3s2s1ts1s2s3s4s3s2s1ts1 which satisfies Deligne–Lusztig’s crite-
rion, so the affineness of the variety X(w) can also be obtained from Deligne–Lusztig’s criterion
(see Proposition 2). These computations have been checked using GAP3/CHEVIE programs
written by Jean Michel.

2. Preliminaries

Levi subgroup

Let us fix an F -stable Borel subgroup B0 of G and an F -stable maximal torus T of B0. Let U
be the unipotent radical of B0. We identify NG(T)/T with W by requiring that (B0,wB0w

−1) ∈
O(w).

Let I be an F -stable subset of S, let PI = BWI P, let VI denote the unipotent radical of PI

and let LI denote the unique Levi subgroup of PI containing T. Given w ∈ WI , there is an
isomorphism [11, Lemma 3]

XG(w)
∼−→ GF /VF

I ×LF
I

XLI
(w).

In particular,

XG(w) is affine if and only if XLI
(w) is affine. (1)

Cyclic shift

If w, w′ ∈ W , we say that w and w′ are F -conjugate by cyclic shift (and we write w
F←→w′)

if there exists three sequences (xi)1�i�n, (yi)1�i�n and (wi)1�i�n+1 of elements of W such
that

(1) w1 = w and wn+1 = w′;
(2) for all i ∈ {1,2, . . . , n}, wi = xiyi , wi+1 = yiF (xi) and �(wi) = �(wi+1) = �(xi) + �(yi).

The relation
F←→ is an equivalence relation. Two elements which are F -conjugate by cyclic shift

have the same length.

Proposition 2. If w
F←→w′, then X(w) is affine if and only if X(w′) is affine.

Proof. By induction, we may assume that there exists x and y in W such that w = xy,
w′ = yF(x) and �(w) = �(w′) = �(x) + �(y). The result follows from the existence of a purely
inseparable morphism X(w) → X(w′) [4, page 108]. �
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3. Proof of Theorem B

Let I be an F -stable subset of S, let w ∈ WI and assume that there exists a ∈ B+ and a
positive integer d such that

wF(w) · · ·Fd−1(w) = wIa.

The aim of this section is to prove that X(w) is affine (Theorem B). By (1), we may (and we will)
assume that I = S.

Sequences of elements of W

Given (x1, . . . , xr ) a sequence of elements of W , we set

O(x1, . . . , xr ) = O(x1) ×B · · · ×B O(xr ).

If (y1, . . . , ys) is a sequence of elements of W such that x1 · · ·xr = y1 · · ·ys in B+, then
O(x1, . . . , xr ) � O(y1, . . . , ys) (the varieties are actually canonically isomorphic [3, Appli-
cation 2]). For a general treatment of these varieties O(x1, . . . , xr ) (and the corresponding
Deligne–Lusztig varieties), the reader may refer to [5].

Proposition 3. If there exists v ∈ B+ such that x1 · · ·xr = w0v, then the variety O(x1, . . . , xr )

is affine.

Proof. Let v1, . . . , vn ∈ W be such that v1 · · ·vn = v. We have O(x1, . . . , xr ) � O(w0, v1,

. . . , vn), so it remains to prove that O(w0, v1, . . . , vn) is affine.
For each x ∈ W , we fix a representative ẋ of x in NG(T). We set

Õ(x1, . . . , xr ) = {
(g0U, g1U, . . . , grU) ∈ (G/U)r+1

∣∣ ∀1 � i � r, g−1
i−1gi ∈ UẋiU

}
.

The group T acts on the right on Õ(x1, . . . , xr ) as follows:

(g0U, g1U, . . . , grU) ∗ t = (
g0tU, g

x−1
1

1 tU, . . . , g
x−1
r ···x−1

1
r tU

)
.

The canonical map

Õ(x1, . . . , xr ) −→ O(x1, . . . , xr ),

(g0U, g1U, . . . , grU) −→ (
g0B0g

−1
0 , g1B0g

−1
1 , . . . , grB0g

−1
r

)

identifies O(x1, . . . , xr ) with the quotient of Õ(x1, . . . , xr ) by T: indeed, both varieties are
smooth (hence normal), the above map is smooth (hence separable) and it is easily checked
that its fibres are precisely the T-orbits. Since T acts freely on Õ(x1, . . . , xr ), and since the quo-
tient of an affine variety by a free action of a torus is affine, [1, Corollary 8.21], the result will
follow if we are able to prove that Õ(w0, v1, . . . , vn) is affine. Therefore, it is sufficient to show
that the map
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ϕ : G ×
n∏

i=1

(Uv̇i ∩ v̇iU−) −→ Õ(w0, v1, . . . , vn),

(g;h1, . . . , hn) −→ (gU, gẇ0U, gẇ0h1U, gẇ0h1h2U, . . . , gẇ0h1 · · ·hnU)

is an isomorphism of varieties (here, U− = w0U).
In order to prove that ϕ is an isomorphism, we shall construct its inverse. For this, we shall

need some notation. First, the map U × U → Uẇ0U, (x, y) → xẇ0y is an isomorphism of
varieties: we shall denote by Uẇ0U → U × U, g → (η(g), η′(g)) its inverse. Also, the map
Uv̇i ∩ v̇iU− × U → Uv̇iU, (x, y) → xy is an isomorphism of varieties (i = 1, 2, . . . , n), and we
shall denote by ηi : Uv̇iU → Uv̇i ∩ v̇iU− the composition of its inverse with the first projection.
Note that, if g ∈ Uẇ0U, h ∈ Uv̇iU and u, v ∈ U, then

η(ugv) = uη(g), η(g)ẇ0U = gU, ηi(hv) = ηi(h) and ηi(h)U = hU. (∗)

Now, if x = (gU, g0U, g1U, . . . , gnU) ∈ Õ(w0, v1, . . . , vn), we set

ψ(x) = gη
(
g−1g0

)
,

ψ0(x) = ψ(x)ẇ0,

ψi(x) = ηi

((
ψ0(x)ψ1(x) · · ·ψi−1(x)

)−1
gi

)
,

for all i ∈ {1,2, . . . , n}. By (∗), the maps ψ and ψj are well-defined morphisms of varieties and
it is easily checked that the morphism of varieties

Õ(w0, v1, . . . , vn) −→ G ×
n∏

i=1

(Uv̇i ∩ v̇iU−),

x −→ (
ψ(x);ψ1(x), . . . ,ψn(x)

)

is well defined and is an inverse of ϕ. �
Introducing Frobenius

The morphism

X(w) → Bd, B → (
B,F (B), . . . ,F d−1(B)

)

indentifies X(w) with the closed subvariety Δd ∩ O(w,F (w), . . . ,F d−1(w)), where Δd =
{(B,F (B), . . . ,F d−1(B)) | B ∈ B} is a closed subvariety of Bd . By Proposition 3, the variety
O(w,F (w), . . . ,F d−1(w)) is affine, hence X(w) is affine as well. The proof of Theorem B is
complete.

4. Proof of Theorem A

Let C be an F -conjugacy class in W and Cmin its subset of elements of minimal length. Let d

be the smallest positive integer k such that wF(w) . . .F k−1(w) = 1 and Fk acts as the identity
on W for w ∈ Cmin. Following [7, Theorem 1.1] (in the split case) and [6, Definition 5.3] (in the
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general case), we say that an element w ∈ Cmin is good if there exists a sequence I1 ⊇ I2 ⊇ · · ·
⊇ Ir of subsets of S such that

wF(w) . . .F d−1(w) = w2
I1

w2
I2

· · ·w2
Ir

(∗)

in B+.

Proposition 4. If w is a good element of Cmin, then X(w) is affine.

Proof. By Theorem B, it remains to show that the subset I1 of the identity (∗) is F -stable. Let
I be the set of simple reflections occurring in a reduced expression of w (note that I does not
depend on the choice of the reduced expression [8, Corollary 1.2.3]). Then the set of s ∈ S such
that s occurs in a reduced expression of wF(w) . . .F d−1(w) is equal to I ∪F(I)∪· · ·∪Fd−1(I )

(by looking at the left-hand side of (∗)) and is also equal to I1 (by looking at the right-hand side).
Since Fd acts as the identity on W , we get that I1 is F -stable. �

Let us now come back to the proof of Theorem A. Let w ∈ Cmin. Let I be the minimal F -
stable subset of S such that w ∈ WI . By (1), we may assume that I = S. Now, if w′ ∈ Cmin, then

w
F←→w′ (see [8, Theorem 3.2.7] for the split case, [6, §6] for twisted exceptional groups and

[9, Theorem 7.5] for twisted classical groups), so X(w) is affine if and only if X(w′) is affine by
Proposition 2. Therefore, the result follows from Proposition 4 and the next theorem:

Theorem 6 (Geck–Michel, Geck–Kim–Pfeiffer, He). There exists a good element in Cmin.

Proof. By standard arguments (see [6, §5.5]), we may assume that W is irreducible. If F acts
trivially on W , the Theorem is [7, Theorem 1.1]. If F does not act trivially and W is not of
type A, this is [6, §5.5]. When W is of type A and F acts non-trivially on W , this follows from
[9, Corollary 7.25]. �
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