Cédric Bonnafé Raphaël Rouquier

CHEREDNIK ALGEBRAS AND CALOGERO-MOSER CELLS

Cédric Bonnafé

Institut de Mathématiques et de Modélisation de Montpellier (CNRS: UMR 5149), Université Montpellier 2, Case Courrier 051, Place Eugène Bataillon, 34095 MONTPELLIER Cedex, FRANCE.

E-mail:cedric.bonnafe@univ-montp2.fr

Raphaël Rouquier

UCLA Mathematics Department Los Angeles, CA 90095-1555, USA.

E-mail: rouquier@math.ucla.edu

The second author was partially supported by the NSF (grant DMS-1161999) and by a grant from the Simons Foundation (#376202). *October 26, 2016*

CHEREDNIK ALGEBRAS AND CALOGERO-MOSER CELLS

Cédric Bonnafé, Raphaël Rouquier

CONTENTS

Part I. Reflection groups	7
1. Notations 1.1. Integers 1.2. Gradings 1.3. Modules	9 9 9 10
 2. Reflection groups. 2.1. Determinant, roots, coroots. 2.2. Invariants. 2.3. Hyperplanes and parabolic subgroups. 2.4. Irreducible characters. 2.5. Hilbert series. 2.6. Coxeter groups. 	 11 12 13 14 15 17
Part II. Cherednik algebras	19
 3. Generic Cherednik algebra 3.1. Structure 3.2. Gradings 3.3. Euler element 3.4. Spherical algebra 3.5. Some automorphisms of Ĥ 3.6. Special features of Coxeter groups 	21 21 27 29 29 31 33
4. Cherednik algebras at t = 0. 4.1. Generalities. 4.2. Center. 4.3. Localization. 4.4. Complements.	35 35 37 39 41

C. Bonnafé & R. Rouquier

4.5. Special features of Coxeter groups	44
Appendices	45
A. Filtrations	47
A.1. Filtered modules	47
A.2. Filtered algebras	47
A.3. Filtered modules over filtered algebras	48
A.4. Symmetric algebras	50
A.5. Weyl algebras	51
B. Invariant rings	53
B.1. Morita equivalence	53
B.2. Geometric setting	54
Bibliography	57

PART I

REFLECTION GROUPS

CHAPTER 1

NOTATIONS

1.1. Integers

We put $\mathbb{N} = \mathbb{Z}_{\geq 0}$.

1.2. Gradings

1.2.A. Let **k** be a ring and *X* a set. We denote by $\mathbf{k}X = \mathbf{k}^{(X)}$ the free **k**-module with basis *X*. We sometimes denote elements of \mathbf{k}^X as formal sums: $\sum_{x \in X} \alpha_x x$, where $\alpha_x \in \mathbf{k}$.

1.2.B. Let Γ be a monoid. We denote by $\mathbf{k}\Gamma$ (or $\mathbf{k}[\Gamma]$) the monoid algebra of Γ over **k**. Its basis of elements of Γ is denoted by $\{t^{\gamma}\}_{\gamma \in \Gamma}$.

A Γ -graded **k**-module is a **k**-module L with a decomposition $L = \bigoplus_{\gamma \in \Gamma} L_{\gamma}$ (that is the same as a comodule over the coalgebra **k** Γ). Given $\gamma_0 \in \Gamma$, we denote by $L\langle \gamma_0 \rangle$ the Γ -graded **k**-module given by $(L\langle \gamma_0 \rangle)_{\gamma} = L_{\gamma\gamma_0}$. We denote by **k**-free^{Γ} the additive category of Γ -graded **k**-modules L such that L_{γ} is a free **k**-module of finite rank for all $\gamma \in \Gamma$. Given $L \in \mathbf{k}$ -free^{Γ}, we put

$$\dim_{\mathbf{k}}^{\Gamma}(L) = \sum_{\gamma \in \Gamma} \operatorname{rank}_{\mathbf{k}}(L_{\gamma}) t^{\gamma} \in \mathbb{Z}^{\Gamma}.$$

We have defined an isomorphism of abelian groups $\dim_{\mathbf{k}}^{\Gamma} : K_0(\mathbf{k}\text{-}\text{free}^{\Gamma}) \xrightarrow{\sim} \mathbb{Z}^{\Gamma}$. This construction provides a bijection from the set of isomorphism classes of objects of $\mathbf{k}\text{-}\text{free}^{\Gamma}$ to \mathbb{N}^{Γ} . Given $P = \sum_{\gamma \in \Gamma} p_{\gamma} t^{\gamma}$ with $p_{\gamma} \in \mathbb{N}$, we define the Γ -graded \mathbf{k} -module \mathbf{k}^{P} by $(\mathbf{k}^{P})_{\gamma} = \mathbf{k}^{p_{\gamma}}$. We have $\dim_{\mathbf{k}}^{\Gamma}(\mathbf{k}^{P}) = P$.

We say that a subset *E* of a Γ -graded module *L* is *homogeneous* if every element of *E* is a sum of elements in $E \cap L_{\gamma}$ for various elements $\gamma \in \Gamma$.

1.2.C. A graded **k**-module *L* is a \mathbb{Z} -graded **k**-module. We put $L_+ = \bigoplus_{i>0} L_i$. If $L_i = 0$ for $i \ll 0$ (for example, if *L* is \mathbb{N} -graded), then dim_k^{\mathbb{Z}}(L) is an element of the ring of

Laurent power series $\mathbb{Z}((\mathbf{t}))$: this is the Hilbert series of *L*. Similarly, if $L_i = 0$ for $i \gg 0$, then $\dim_{\mathbf{k}}^{\mathbb{Z}}(L) \in \mathbb{Z}((\mathbf{t}^{-1}))$.

When *L* has finite rank over **k**, we define the *weight sequence* of *L* as the unique sequence of integers $r_1 \leq \cdots \leq r_m$ such that $\dim_k^{\mathbb{Z}}(L) = t^{r_1} + \cdots + t^{r_m}$.

A bigraded **k**-module *L* is a $(\mathbb{Z} \times \mathbb{Z})$ -graded **k**-module. We put $\mathbf{t} = t^{(1,0)}$ and $\mathbf{u} = t^{(0,1)}$, so that $\dim_{\mathbf{k}}^{\mathbb{Z} \times \mathbb{Z}}(L) = \sum_{i,j} \dim_{\mathbf{k}}(L_{i,j}) \mathbf{t}^{i} \mathbf{u}^{j}$ for $L \in \mathbf{k}$ -free^{$\mathbb{Z} \times \mathbb{Z}$}. When *L* is $(\mathbb{N} \times \mathbb{N})$ -graded, we have $\dim_{\mathbf{k}}^{\mathbb{N} \times \mathbb{N}}(L) \in \mathbb{Z}[[\mathbf{t}, \mathbf{u}]]$.

1.2.D. Assume **k** is a commutative ring. There is a tensor product of Γ -graded **k**-modules given by $(L \otimes_{\mathbf{k}} L')_{\gamma} = \bigoplus_{\gamma' \gamma'' = \gamma} L_{\gamma'} \otimes_{\mathbf{k}} L_{\gamma''}$. When the fibers of the multiplication map $\Gamma \times \Gamma \to \Gamma$ are finite, the multiplication in Γ provides \mathbb{Z}^{Γ} with a ring structure, the tensor product preserves **k**-free^{Γ}</sup>, and dim_{\mathbf{k}}^{\Gamma}(L \otimes_{\mathbf{k}} L') = dim_{\mathbf{k}}^{\Gamma}(L) dim_{\mathbf{k}}^{\Gamma}(L').

A Γ -graded **k**-algebra is a **k**-algebra *A* with a Γ -grading such that $A_{\gamma} \cdot A_{\gamma'} \subset A_{\gamma\gamma'}$.

1.3. Modules

Let *A* be a ring. Given *L* a subset of *A*, we denote by < L > the two-sided ideal of *A* generated by *L*. Given *M* an *A*-module, we denote by Rad(*M*) the intersection of the maximal proper *A*-submodules of *M*. We denote by *A*-mod the category of finitely generated *A*-modules and we put $G_0(A) = K_0(A - \text{mod})$, where $K_0(\mathscr{C})$ denotes the Grothendieck group of an exact category \mathscr{C} .

Given $M \in A$ -mod, we denote by $[M]_A$ (or simply [M]) its class in $G_0(A)$. When A is a graded ring and M is a finitely generated graded A-module, we denote by $[M]_A^{gr}$ (or simply $[M]^{gr}$) its class in the Grothendieck group of the category A-modgr of finitely generated graded A-modules. Note that $K_0(A$ -modgr) is a $\mathbb{Z}[\mathbf{t}^{\pm 1}]$ -module, with $\mathbf{t}[M]^{gr} = [M\langle -1 \rangle]^{gr}$.

We denote by Irr(*A*) the set of isomorphism classes of simple *A*-modules. Assume *A* is a finite-dimensional algebra over the field **k**. We have an isomorphism $\mathbb{Z}\operatorname{Irr}(A) \xrightarrow{\sim} G_0(A)$, $M \mapsto [M]$. If *A* is semisimple, we have a bilinear form $\langle -, -\rangle_A$ on $G_0(A)$ given by $\langle [M], [N] \rangle = \dim_k \operatorname{Hom}_A(M, N)$. When *A* is split semisimple, Irr(*A*) provides an orthonormal basis.

Let *W* be a finite group and assume **k** is a field. We denote by $Irr_{\mathbf{k}}(W)$ (or simply by Irr(W)) the set of irreducible characters of *W* over **k**. When $|W| \in \mathbf{k}^{\times}$, there is a bijection $Irr_{\mathbf{k}}(W) \xrightarrow{\sim} Irr(\mathbf{k}W)$, $\chi \mapsto E_{\chi}$. The group $Hom(W, \mathbf{k}^{\times})$ of linear characters of *W* with values in **k** is denoted by $W^{\wedge_{\mathbf{k}}}$ (or W^{\wedge}). We have an embedding $W^{\wedge} \subset Irr(W)$, and equality holds if and only if *W* is abelian and **k** contains all *e*-th roots of unity, where *e* is the exponent of *W*.

CHAPTER 2

REFLECTION GROUPS

All along this book, we consider a fixed characteristic 0 field **k**, a finite-dimensional **k**-vector space V of dimension n and a finite subgroup W of $GL_k(V)$. We will write \otimes for \otimes_k . We denote by $Ref(W) = \{s \in W \mid \dim_k Im(s - Id_V) = 1\}$ the set of reflections of W. We assume that W is generated by Ref(W).

2.1. Determinant, roots, coroots

We denote by ε the determinant representation of *W*

$$\begin{aligned} \boldsymbol{\varepsilon} \colon & \boldsymbol{W} & \longrightarrow & \mathbf{k}^{\times} \\ & \boldsymbol{w} & \longmapsto & \det_{\boldsymbol{V}}(\boldsymbol{w}). \end{aligned}$$

We have a perfect pairing between V and its dual V^*

 $\langle,\rangle: V \times V^* \longrightarrow \mathbf{k}.$

Given $s \in \operatorname{Ref}(W)$, we choose $\alpha_s \in V^*$ and $\alpha_s^{\vee} \in V$ such that

$$\operatorname{Ker}(s - \operatorname{Id}_V) = \operatorname{Ker} \alpha_s$$
 and $\operatorname{Im}(s - \operatorname{Id}_V) = \mathbf{k} \alpha_s^{\vee}$

or equivalently

$$\operatorname{Ker}(s-\operatorname{Id}_{V^*}) = \operatorname{Ker} \alpha_s^{\vee} \quad \text{and} \quad \operatorname{Im}(s-\operatorname{Id}_{V^*}) = \mathbf{k}\alpha_s.$$

Note that, since **k** has characteristic 0, all elements of Ref(W) are diagonalizable, hence

(2.1.1)
$$\langle \alpha_s^{\vee}, \alpha_s \rangle \neq 0.$$

Given $x \in V^*$ and $y \in V$ we have

(2.1.2)
$$s(y) = y - (1 - \varepsilon(s)) \frac{\langle y, \alpha_s \rangle}{\langle \alpha_s^{\vee}, \alpha_s \rangle} \alpha_s^{\vee}$$

and

(2.1.3)
$$s(x) = x - (1 - \varepsilon(s)^{-1}) \frac{\langle \alpha_s^{\vee}, x \rangle}{\langle \alpha_s^{\vee}, \alpha_s \rangle} \alpha_s.$$

2.2. Invariants

We denote by $\mathbf{k}[V] = S(V^*)$ (respectively $\mathbf{k}[V^*] = S(V)$) the symmetric algebra of V^* (respectively V). We identify it with the algebra of polynomial functions on V (respectively V^*). The action of W on V induces an action by algebra automorphisms on $\mathbf{k}[V]$ and $\mathbf{k}[V^*]$ and we will consider the graded subalgebras of invariants $\mathbf{k}[V]^W$ and $\mathbf{k}[V^*]^W$. The *coinvariant algebras* $\mathbf{k}[V]^{co(W)}$ and $\mathbf{k}[V^*]^{co(W)}$ are the graded finite-dimensional \mathbf{k} -algebras

$$\mathbf{k}[V]^{co(W)} = \mathbf{k}[V] / \langle \mathbf{k}[V]_{+}^{W} \rangle$$
 and $\mathbf{k}[V^{*}]^{co(W)} = \mathbf{k}[V^{*}] / \langle \mathbf{k}[V^{*}]_{+}^{W} \rangle$

Shephard-Todd-Chevalley's Theorem asserts that the property of *W* to be generated by reflections is equivalent to structural properties of $\mathbf{k}[V]^W$. We provide here a version augmented with quantitative properties (see for example [**Bro2**, Theorem 4.1]). We state a version with $\mathbf{k}[V]$, while the same statements hold with *V* replaced by V^* .

Let us define the sequence $d_1 \leq \cdots \leq d_n$ of *degrees of* W as the weight sequence of $< \mathbf{k}[V]^W_+ > / < \mathbf{k}[V]^W_+ >^2$ (cf §1.2.C).

Theorem 2.2.1 (Shephard-Todd, Chevalley). (a) The algebra $k[V]^W$ is a polynomial algebra generated by homogeneous elements of degrees d_1, \ldots, d_n . We have

$$|W| = d_1 \cdots d_n$$
 and $|\text{Ref}(W)| = \sum_{i=1}^n (d_i - 1).$

(b) The $(\mathbf{k}[V]^{W}[W])$ -module $\mathbf{k}[V]$ is free of rank 1.

(c) The **k***W*-module $\mathbf{k}[V]^{\operatorname{co}(W)}$ is free of rank 1. So, $\dim_{\mathbf{k}} \mathbf{k}[V]^{\operatorname{co}(W)} = |W|$.

Remark 2.2.2. — Note that when $\mathbf{k} = \mathbb{C}$, there is a skew-linear isomorphism between the representations *V* and *V*^{*} of *W*, hence the sequence of degrees for the action of *W* on *V* is the same as the one for the action of *W* on *V*^{*}. In general, note that the representation *V* of *W* can be defined over a finite extension of \mathbb{Q} , which can be embedded in \mathbb{C} : so, the equality of degrees for the actions on *V* and *V*^{*} holds for any **k**.

This equality can also be deduced from Molien's formula [Bro2, Lemma 3.28]. ■

Let $N = |\operatorname{Ref}(W)|$. Since $\dim_{\mathbf{k}}^{\mathbb{Z}}(\mathbf{k}[V]^{\operatorname{co}(W)}) = \prod_{i=1}^{n} \frac{1-t^{d_i}}{1-t}$, we deduce that $\dim_{\mathbf{k}} \mathbf{k}[V]_N^{\operatorname{co}(W)} =$ 1. A generator is given by the image of $\prod_{s \in \operatorname{Ref}(W)} \alpha_s$: this provides an isomorphism $h : \mathbf{k}[V]_N^{\operatorname{co}(W)} \xrightarrow{\sim} \mathbf{k}$.

The composition

$$\mathbf{k}[V]_N \otimes \mathbf{k}[V]^W \xrightarrow{\text{mult}} \mathbf{k}[V] \xrightarrow{\text{can}} \mathbf{k}[V] / (\mathbf{k}[V]^W \mathbf{k}[V]_{< N})$$

factors through an isomorphism $g : \mathbf{k}[V]_N^{\operatorname{co}(W)} \otimes \mathbf{k}[V]^W \xrightarrow{\sim} \mathbf{k}[V]/(\mathbf{k}[V]^W \mathbf{k}[V]_{< N})$. We denote by p_N the composition

$$p_N: \mathbf{k}[V] \xrightarrow{\operatorname{can}} \mathbf{k}[V] / (\mathbf{k}[V]^W \mathbf{k}[V]_{< N}) \xrightarrow{g^{-1}} \mathbf{k}[V]_N^{\operatorname{co}(W)} \otimes \mathbf{k}[V]^W \xrightarrow{h \otimes \operatorname{Id}} \mathbf{k}[V]^W$$

We refer to §A.4 for basic facts on symmetric algebras.

Proposition 2.2.3. — p_N is a symmetrizing form for the $\mathbf{k}[V]^W$ -algebra $\mathbf{k}[V]$.

Proof. — We need to show that the morphism of graded $\mathbf{k}[V]^{W}$ -modules

 $\hat{p}_N : \mathbf{k}[V] \to \operatorname{Hom}_{\mathbf{k}[V]^W}(\mathbf{k}[V], \mathbf{k}[V]^W), \ a \mapsto (b \mapsto p_N(ab))$

is an isomorphism. By the graded Nakayama lemma, it is enough to do so after applying $-\otimes_{\mathbf{k}[V]^W} \mathbf{k}$. We have $\hat{p}_N \otimes_{\mathbf{k}[V]^W} \mathbf{k} = \hat{\bar{p}}_N$, where $\bar{p}_N : \mathbf{k}[V]^{\operatorname{co}(W)} \to \mathbf{k}[V]^{\operatorname{co}(W)}_N \xrightarrow{h} \mathbf{k}$ is the projection onto the homogeneous component of degree *N*. This is a symmetrizing form for $\mathbf{k}[V]^{\operatorname{co}(W)}$ [**Bro2**, Theorem 4.25], hence $\hat{\bar{p}}_N$ is an isomorphism.

Note that the same statements hold for *V* replaced by *V*^{*}.

2.3. Hyperplanes and parabolic subgroups

Notation. We fix an embedding of the group of roots of unity of **k** in \mathbb{Q}/\mathbb{Z} . When the class of $\frac{1}{e}$ is in the image of this embedding, we denote by ζ_e the corresponding element of **k**.

We denote by \mathscr{A} the set of reflecting hyperplanes of W:

$$\mathscr{A} = \{ \operatorname{Ker}(s - \operatorname{Id}_V) \mid s \in \operatorname{Ref}(W) \}.$$

There is a surjective *W*-equivariant map $\operatorname{Ref}(W) \to \mathscr{A}$, $s \mapsto \operatorname{Ker}(s - \operatorname{Id}_V)$. Given *X* a subset of *V*, we denote by W_X the pointwise stabilizer of *X*:

$$W_X = \{ w \in W \mid \forall x \in X, w(x) = x \}.$$

Given $H \in \mathcal{A}$, we denote by e_H the order of the cyclic subgroup W_H of W. We denote by s_H the generator of W_H with determinant ζ_{e_H} . This is a reflection with hyperplane H. We have

$$\operatorname{Ref}(W) = \{s_H^j \mid H \in \mathscr{A} \text{ and } 1 \leq j \leq e_H - 1\}.$$

The following lemma is clear.

Lemma 2.3.1. — s_H^j and $s_{H'}^{j'}$ are conjugate in W if and only if H and H' are in the same W-orbit and j = j'.

Given Ω a *W*-orbit of hyperplanes of \mathscr{A} , we denote by e_{Ω} the common value of the e_H for $H \in \Omega$. Lemma 2.3.1 provides a bijection from Ref(*W*)/*W* to the set Ω_W of pairs (Ω, j) where $\Omega \in \mathscr{A}/W$ and $1 \leq j \leq e_{\Omega} - 1$.

We denote by $\mathbf{\Omega}_{W}^{\circ}$ the set of pairs (Ω, j) with $\Omega \in \mathcal{A}/W$ and $0 \leq j \leq e_{\Omega} - 1$.

Let $V^{\text{reg}} = \{v \in V \mid \text{Stab}_W(v) = 1\}$. Define the discriminant $\delta = \prod_{H \in \mathcal{A}} \alpha_H^{e_H} \in \mathbf{k}[V]^W$. The following result shows that points outside reflecting hyperplanes have trivial stabilizers [**Bro2**, Theorem 4.7].

Theorem 2.3.2 (Steinberg). — Given $X \subset V$, the group W_X is generated by its reflections. As a consequence, $V^{\text{reg}} = V \setminus \bigcup_{H \in \mathcal{A}} H$ and $\mathbf{k}[V^{\text{reg}}] = k[V][\delta^{-1}]$.

2.4. Irreducible characters

The rationality property of the reflection representation of *W* is classical.

Proposition 2.4.1. — Let \mathbf{k}' be a subfield of \mathbf{k} containing the traces of the elements of W acting on V. Then there exists a $\mathbf{k}'W$ -submodule V' of V such that $V = \mathbf{k} \otimes_{\mathbf{k}'} V'$.

Proof. — Assume first *V* is irreducible. Let *V*″ be a simple $\mathbf{k}'W$ -module such that $\mathbf{k} \otimes_{\mathbf{k}'} V'' \simeq V^{\oplus m}$ for some integer $m \ge 1$. Let $s \in \operatorname{Ref}(W)$. Since *s* has only one non-trivial eigenvalue on *V*, it also has only one non-trivial eigenvalue on *V*″. Let *L* be the eigenspace of *s* acting on *V*″ for the non-trivial eigenvalue. This is an *m*-dimensional \mathbf{k}' -subspace of *V*″, stable under the action of the division algebra $\operatorname{End}_{\mathbf{k}'W}(V'')$. Since that division algebra has dimension m^2 over \mathbf{k}' and has a module *L* that has dimension *m* over \mathbf{k}' , we deduce that m = 1. The proposition follows by taking for *V*′ the image of *V*″ by an isomorphism $\mathbf{k} \otimes_{\mathbf{k}'} V'' \xrightarrow{\sim} V$.

Assume now *V* is arbitrary. Let $V = V^W \oplus \bigoplus_{i=1}^{l} V_i$ be a decomposition of the **k***W*-module *V*, where V_i is irreducible for $1 \le i \le l$. Let W_j be the subgroup of *W* of elements acting trivially on $\bigoplus_{i \ne j} V_i$. The group W_j is a reflection group on V_j . The

discussion above shows there is a $\mathbf{k}' W_j$ -submodule V'_j of V_j such that $V_j = \mathbf{k} \otimes_{\mathbf{k}'} V'_j$. Let V'' be a \mathbf{k}' -submodule of V^W such that $V^W = \mathbf{k} \otimes_{\mathbf{k}'} V''$. Let $V' = V'' \oplus \bigoplus_{j=1}^{l} V'_j$. We have $W = \prod_{i=1}^{l} W_j$ and $V = \mathbf{k} \otimes_{\mathbf{k}'} V'$: this proves the proposition.

The following rationality property of all representations of complex reflection groups is proven using the classification of those groups [**Ben**, **Bes**].

Theorem **2.4.2 (Benard, Bessis)**. — Let \mathbf{k}' be a subfield of \mathbf{k} containing the traces of the elements of W acting on V. Then the algebra $\mathbf{k}'W$ is split semisimple. In particular, $\mathbf{k}W$ is split semisimple.

2.5. Hilbert series

2.5.A. Invariants. — The algebra $\mathbf{k}[V \times V^*] = \mathbf{k}[V] \otimes \mathbf{k}[V^*]$ admits a standard bigrading, by giving to the elements of $V^* \subset \mathbf{k}[V]$ the bi-degree (0, 1) and to those of $V \subset \mathbf{k}[V^*]$ the bi-degree (1, 0). We clearly have

(2.5.1)
$$\dim_{\mathbf{k}}^{\mathbb{Z}\times\mathbb{Z}}(\mathbf{k}[V\times V^*]) = \frac{1}{(1-\mathbf{t})^n(1-\mathbf{u})^n}.$$

Using the notation of Theorem 2.2.1(a), we get also easily that

(2.5.2)
$$\dim_{\mathbf{k}}^{\mathbb{Z}\times\mathbb{Z}}(\mathbf{k}[V\times V^*]^{W\times W}) = \prod_{i=1}^n \frac{1}{(1-\mathbf{t}^{d_i})(1-\mathbf{u}^{d_i})}.$$

On the other hand, the bigraded Hilbert series of the diagonal invariant algebra $\mathbf{k}[V \times V^*]^{\Delta W}$ is given by a formula *à la Molien*

(2.5.3)
$$\dim_{\mathbf{k}}^{\mathbb{Z}\times\mathbb{Z}}(\mathbf{k}[V\times V^*]^{\Delta W}) = \frac{1}{|W|} \sum_{w\in W} \frac{1}{\det(1-w\mathbf{t}) \det(1-w^{-1}\mathbf{u})},$$

whose proof is obtained word by word from the proof of the usual Molien formula.

2.5.B. Fake degrees. — We identify $K_0(\mathbf{k}W \operatorname{-modgr})$ with $G_0(\mathbf{k}W)[\mathbf{t}, \mathbf{t}^{-1}]$: given $M = \bigoplus_{i \in \mathbb{Z}} M_i$ a finite dimensional \mathbb{Z} -graded $\mathbf{k}W$ -module, we make the identification

$$[M]_{\mathbf{k}W}^{\mathrm{gr}} = \sum_{i \in \mathbb{Z}} [M_i]_{\mathbf{k}W} \mathbf{t}^i.$$

It is clear that $[M]_{\mathbf{k}W}$ is the evaluation at 1 of $[M]_{\mathbf{k}W}^{\mathrm{gr}}$ and that $[M\langle n \rangle]_{\mathbf{k}W}^{\mathrm{gr}} = \mathbf{t}^{-n} [M]_{\mathbf{k}W}^{\mathrm{gr}}$. If *M* is a bigraded **k***W*-module, we define similarly $[M]_{\mathbf{k}W}^{\mathbb{Z}\times\mathbb{Z}}$: it is an element of $K_0(\mathbf{k}W)[\mathbf{t}, \mathbf{u}, \mathbf{t}^{-1}, \mathbf{u}^{-1}]$. Let $(f_{\chi}(\mathbf{t}))_{\chi \in Irr(W)}$ denote the unique family of elements of $\mathbb{N}[\mathbf{t}]$ such that

(2.5.4)
$$[k[V^*]^{\operatorname{co}(W)}]_{\mathbf{k}W}^{\mathbb{Z}\times\mathbb{Z}} = \sum_{\chi\in\operatorname{Irr}(W)} f_{\chi}(\mathbf{t}) \ \chi.$$

Definition 2.5.5. — The polynomial $f_{\chi}(\mathbf{t})$ is called the **fake degree** of χ . Its **t**-valuation is denoted by \mathbf{b}_{χ} and is called the **b**-invariant of χ .

The fake degree of χ satisfies

(2.5.6)
$$f_{\chi}(1) = \chi(1)$$

Note that

(2.5.7)
$$[\mathbf{k}[V]^{\operatorname{co}(W)}]_{\mathbf{k}W}^{\mathbb{Z}\times\mathbb{Z}} = \sum_{\chi\in\operatorname{Irr}(W)} f_{\chi}(\mathbf{u}) \ \chi^*,$$

(here, χ^* denotes the dual character of χ , that is, $\chi^*(w) = \chi(w^{-1})$). Note also that, if $\mathbf{1}_W$ denotes the trivial character of W, then

 $[\mathbf{k}[V^*]^{\operatorname{co}(W)}]_{\mathbf{k}W}^{\mathbb{Z}\times\mathbb{Z}} \equiv \mathbf{1}_W \mod \mathbf{t}K_0(\mathbf{k}W)[\mathbf{t}]$

and

$$[\mathbf{k}[V]^{\operatorname{co}(W)}]_{\mathbf{k}W}^{\mathbb{Z}\times\mathbb{Z}} \equiv \mathbf{1}_W \mod \mathbf{u}K_0(\mathbf{k}W)[\mathbf{u}].$$

We deduce:

Lemma 2.5.8. — *The elements* $[\mathbf{k}[V]^{co(W)}]_{\mathbf{k}W}^{\mathbb{Z}\times\mathbb{Z}}$ and $[\mathbf{k}[V^*]^{co(W)}]_{\mathbf{k}W}^{\mathbb{Z}\times\mathbb{Z}}$ are not zero divisors in $K_0(\mathbf{k}W)[\mathbf{t},\mathbf{u},\mathbf{t}^{-1},\mathbf{u}^{-1}]$.

Remark 2.5.9. — Note that

$$[\mathbf{k}[V]^{\operatorname{co}(W)}]_{\mathbf{k}W} = [\mathbf{k}[V^*]^{\operatorname{co}(W)}]_{\mathbf{k}W} = [\mathbf{k}W]_{\mathbf{k}W} = \sum_{\chi \in \operatorname{Irr}(W)} \chi(1)\chi$$

is a zero divisor in $K_0(\mathbf{k}W)$ (as soon as $W \neq 1$).

We can now give another formula for the Hilbert series $\dim_{\mathbf{k}}^{\mathbb{Z}\times\mathbb{Z}}(\mathbf{k}[V \times V^*]^{\Delta W})$:

Proposition 2.5.10. —
$$\dim_{\mathbf{k}}^{\mathbb{Z}\times\mathbb{Z}}(\mathbf{k}[V\times V^*]^W) = \frac{1}{\prod_{i=1}^n (1-\mathbf{t}^{d_i})(1-\mathbf{u}^{d_i})} \sum_{\chi \in \operatorname{Irr}(W)} f_{\chi}(\mathbf{t}) f_{\chi}(\mathbf{u})$$

 \square

Proof. — Let \mathscr{H} be a *W*-stable graded complement to $\langle \mathbf{k}[V]_+^W \rangle$ in $\mathbf{k}[V]$. Since $\mathbf{k}[V]$ is a free $\mathbf{k}[V]^W$ -module, we have isomorphisms of graded $\mathbf{k}[W]$ -modules

$$\mathbf{k}[V] \simeq \mathbf{k}[V]^W \otimes \mathcal{H}$$
 and $\mathbf{k}[V]^{\operatorname{co}(W)} \simeq \mathcal{H}$.

Similarly, if \mathscr{H}' is a *W*-stable graded complement of $\langle \mathbf{k}[V^*]^W_+ \rangle$ in $\mathbf{k}[V^*]$, then we have isomorphisms of graded $\mathbf{k}[W]$ -modules

$$\mathbf{k}[V^*] \simeq \mathbf{k}[V^*]^W \otimes \mathcal{H}'$$
 and $\mathbf{k}[V^*]^{\mathrm{co}(W)} \simeq \mathcal{H}'.$

In other words, we have isomorphisms of graded $\mathbf{k}[W]$ -modules

$$\mathbf{k}[V] \simeq \mathbf{k}[V]^W \otimes \mathbf{k}[V]^{\operatorname{co}(W)}$$
 and $\mathbf{k}[V^*] \simeq \mathbf{k}[V^*]^W \otimes \mathbf{k}[V^*]^{\operatorname{co}(W)}$

We deduce an isomorphism of bigraded k-vector spaces

$$(\mathbf{k}[V] \otimes \mathbf{k}[V^*])^{\Delta W} \simeq (\mathbf{k}[V]^W \otimes \mathbf{k}[V^*]^W) \otimes (\mathbf{k}[V]^{\operatorname{co}(W)} \otimes \mathbf{k}[V^*]^{\operatorname{co}(W)})^{\Delta W}.$$

By (2.5.4) and (2.5.7), we have

$$\dim_{\mathbf{k}}^{\mathbb{Z}\times\mathbb{Z}}(\mathbf{k}[V]^{\operatorname{co}(W)}\otimes\mathbf{k}[V^*]^{\operatorname{co}(W)})^{\Delta W}=\sum_{\chi,\psi\in\operatorname{Irr}(W)}f_{\chi}(\mathbf{t})f_{\psi}(\mathbf{u})\langle\chi\psi^*,\mathbf{1}_W\rangle_W.$$

So the formula follows from the fact that $\langle \chi \psi^*, \mathbf{1}_W \rangle = \langle \chi, \psi \rangle_W$.

To conclude this section, we gather in a same formula Molien's Formula (2.5.3) and Proposition 2.5.10:

$$\dim_{\mathbf{k}}^{\mathbb{Z}\times\mathbb{Z}}(\mathbf{k}[V\times V^*]^{\Delta W}) = \frac{1}{|W|} \sum_{w\in W} \frac{1}{\det(1-w\mathbf{t}) \det(1-w^{-1}\mathbf{u})}$$
$$= \frac{1}{\prod_{i=1}^n (1-\mathbf{t}^{d_i})(1-\mathbf{u}^{d_i})} \sum_{\chi\in \operatorname{Irr}(W)} f_{\chi}(\mathbf{t}) f_{\chi}(\mathbf{u}).$$

2.6. Coxeter groups

Let us recall the following classical equivalences:

Proposition 2.6.1. — *The following assertions are equivalent:*

- (1) There exists a subset S of Ref(W) such that (W,S) is a Coxeter system.
- (2) $V \simeq V^*$ as **k***W*-modules.
- (3) There exists a W-invariant non-degenerate symmetric bilinear form $V \times V \rightarrow \mathbf{k}$.
- (4) There exists a subfield $\mathbf{k}_{\mathbb{R}}$ of \mathbf{k} and a *W*-stable $\mathbf{k}_{\mathbb{R}}$ -vector subspace $V_{\mathbf{k}_{\mathbb{R}}}$ of *V* such that $V = \mathbf{k} \otimes_{\mathbf{k}_{\mathbb{R}}} V_{\mathbf{k}_{\mathbb{R}}}$ and $\mathbf{k}_{\mathbb{R}}$ embedds as a subfield of \mathbb{R} .

Whenever one (or all the) assertion(s) of Proposition 2.6.1 is (are) satisfied, we say that *W* is a Coxeter group. In this case, the text will be followed by a gray line on the left, as below.

Assumption, choice. From now on, and until the end of §2.6, we assume that W is a Coxeter group. We fix a subfield $\mathbf{k}_{\mathbb{R}}$ of \mathbf{k} that embedds as a subfield of \mathbb{R} and a W-stable $\mathbf{k}_{\mathbb{R}}$ -vector subspace $V_{\mathbf{k}_{\mathbb{R}}}$ of V such that $V = \mathbf{k} \otimes_{\mathbf{k}_{\mathbb{R}}} V_{\mathbf{k}_{\mathbb{R}}}$. We also fix a connected component $C_{\mathbb{R}}$ of $\{v \in \mathbb{R} \otimes_{\mathbf{k}_{\mathbb{R}}} V_{\mathbf{k}_{\mathbb{R}}} | \operatorname{Stab}_{W}(v) = 1\}$. We denote by S the set of $s \in \operatorname{Ref}(W)$ such that $\overline{C_{\mathbb{R}}} \cap \ker_{\mathbb{R} \otimes_{\mathbf{k}_{\mathbb{R}}}} V_{\mathbf{k}_{\mathbb{R}}}(s-1)$ has real codimension 1 in $\overline{C_{\mathbb{R}}}$. So, (W,S) is a Coxeter system. This notation will be used all along this book, provided that W is a Coxeter group.

The following is a particular case of Theorem 2.4.2.

Theorem 2.6.2. — The $\mathbf{k}_{\mathbb{R}}$ -algebra $\mathbf{k}_{\mathbb{R}}W$ is split. In particular, the characters of W are real valued, that is, $\chi = \chi^*$ for all character χ of W.

Recall also the following.

Lemma 2.6.3. — *If* $s \in \text{Ref}(W)$, then s has order 2 and $\varepsilon(s) = -1$.

Corollary 2.6.4. — The map $\operatorname{Ref}(W) \to \mathcal{A}$, $s \mapsto \operatorname{Ker}(s - \operatorname{Id}_V)$ is bijective and W-equivariant. In particular, $|\mathcal{A}| = |\operatorname{Ref}(W)| = \sum_{i=1}^{n} (d_i - 1)$ and $|\mathcal{A}/W| = |\operatorname{Ref}(W)/W|$.

Let $\ell : W \to \mathbb{N}$ denote the length function with respect to *S*: given $w \in W$, the integer $\ell(w)$ is minimal such that *w* is a product of $\ell(w)$ elements of *S*. When $w = s_1 s_2 \cdots s_l$ with $s_i \in S$ and $l = \ell(w)$, we say that $w = s_1 s_2 \cdots s_l$ is a *reduced decomposition* of *w*. We denote by w_0 the longest element of *W*: we have $\ell(w_0) = |\operatorname{Ref}(W)| = |\mathscr{A}|$.

Remark 2.6.5. — If $-Id_V \in W$, then $w_0 = -Id_V$. Conversely, if w_0 is central and $V^W = 0$, then $w_0 = -Id_V$.

PART II

CHEREDNIK ALGEBRAS

CHAPTER 3

GENERIC CHEREDNIK ALGEBRA

Let \mathscr{C} be the **k**-vector space of maps $c : \operatorname{Ref}(W) \to \mathbf{k}$, $s \mapsto c_s$ that are constant on conjugacy classes: this is the *space of parameters*, which we identify with the space of maps $\operatorname{Ref}(W)/W \to \mathbf{k}$.

Given $s \in \operatorname{Ref}(W)$ (or $s \in \operatorname{Ref}(W)/W$), we denote by C_s the linear form on \mathscr{C} given by evaluation at s. The algebra $\mathbf{k}[\mathscr{C}]$ of polynomial functions on \mathscr{C} is the algebra of polynomials on the set of indeterminates $(C_s)_{s \in \operatorname{Ref}(W)/W}$:

$$\mathbf{k}[\mathscr{C}] = \mathbf{k}[(C_s)_{s \in \operatorname{Ref}(W)/W}].$$

We denote by $\widetilde{\mathscr{C}}$ the **k**-vector space **k** × \mathscr{C} and we introduce $T : \widetilde{\mathscr{C}} \to \mathbf{k}, (t, c) \mapsto t$. We have $T \in \widetilde{\mathscr{C}}^*$ and

$$\mathbf{k}[\widetilde{\mathscr{C}}] = \mathbf{k}[T, (C_s)_{s \in \operatorname{Ref}(W)/W}].$$

We will use in this chapter results from Appendices A and B.

3.1. Structure

3.1.A. Symplectic action. — We consider here the action of W on $V \oplus V^*$.

Lemma B.1.1 and Proposition B.2.2 give the following result.

Proposition 3.1.1. — We have $Z(\mathbf{k}[V \oplus V^*] \rtimes W) = \mathbf{k}[V \oplus V^*]^W = \mathbf{k}[(V \oplus V^*)/W]$ and there is an isomorphism

$$Z(\mathbf{k}[V \oplus V^*] \rtimes W) \xrightarrow{\sim} e(\mathbf{k}[V \oplus V^*] \rtimes W)e, \ z \mapsto ze.$$

The action by left multiplication gives an isomorphism

 $\mathbf{k}[V \oplus V^*] \rtimes W \xrightarrow{\sim} \operatorname{End}_{\mathbf{k}[(V \oplus V^*)/W]^{\operatorname{opp}}} \left((\mathbf{k}[V \oplus V^*] \rtimes W) e \right)^{\operatorname{opp}}.$

3.1.B. Definition. — The generic rational Cherednik algebra (or simply the generic Cherednik algebra) is the $\mathbf{k}[\tilde{\mathscr{C}}]$ -algebra $\tilde{\mathbf{H}}$ defined as the quotient of $\mathbf{k}[\tilde{\mathscr{C}}] \otimes (T_{\mathbf{k}}(V \oplus V^*) \rtimes W)$ by the following relations (here, $T_{\mathbf{k}}(V \oplus V^*)$ is the tensor algebra of $V \oplus V^*$):

(3.1.2)
$$\begin{cases} [x, x'] = [y, y'] = 0, \\ [y, x] = T\langle y, x \rangle + \sum_{s \in \operatorname{Ref}(W)} (\varepsilon(s) - 1) C_s \ \frac{\langle y, \alpha_s \rangle \cdot \langle \alpha_s^{\vee}, x \rangle}{\langle \alpha_s^{\vee}, \alpha_s \rangle} s, \end{cases}$$

for $x, x' \in V^*$ and $y, y' \in V$.

Remark 3.1.3. — Thanks to (2.1.2), the second relation is equivalent to

(3.1.4)
$$[y,x] = T\langle y,x \rangle + \sum_{s \in \operatorname{Ref}(W)} C_s \langle s(y) - y,x \rangle s$$

and to

$$[y, x] = T\langle y, x \rangle + \sum_{s \in \operatorname{Ref}(W)} C_s \langle y, s^{-1}(x) - x \rangle. \ s$$

This avoids the use of α_s and α_s^{\vee} .

3.1.C. PBW Decomposition. — Given the relations (3.1.2), the following assertions are clear:

- There is a unique morphism of k-algebras k[V] → H̃ sending y ∈ V* to the class of y ∈ T_k(V ⊕ V*) ⋊ W in H̃.
- There is a unique morphism of k-algebras k[V*] → H̃ sending x ∈ V to the class of x ∈ T_k(V ⊕ V*) ⋊ W in H̃.
- There is a unique morphism of k-algebras kW → H̃ sending w ∈ W to the class of w ∈ T_k(V ⊕ V^{*}) ⋊ W in H̃.
- The k-linear map k[*̃*]⊗k[V]⊗kW⊗k[V*] → *H* induced by the three morphisms defined above and the multiplication map is surjective. Note that it is k[*̃*]-linear.

The last statement is strenghtened by the following fundamental result [EtGi, Theorem 1.3], for which we will provide a proof in Theorem 3.1.11.

Theorem 3.1.5 (Etingof-Ginzburg). — *The multiplication map* $\mathbf{k}[\tilde{\mathscr{C}}] \otimes \mathbf{k}[V] \otimes \mathbf{k}W \otimes \mathbf{k}[V^*] \longrightarrow \tilde{\mathbf{H}}$ *is an isomorphism of* $\mathbf{k}[\tilde{\mathscr{C}}]$ *-modules.*

3.1.D. Specialization. — Given $(t, c) \in \widetilde{\mathscr{C}}$, we denote by $\widetilde{\mathfrak{C}}_{t,c}$ the maximal ideal of $\mathbf{k}[\widetilde{\mathscr{C}}]$ given by $\widetilde{\mathfrak{C}}_{t,c} = \{f \in \mathbf{k}[\widetilde{\mathscr{C}}] \mid f(t,c) = 0\}$: this is the ideal generated by T - t and $(C_s - c_s)_{s \in \operatorname{Ref}(W)/W}$. We put

$$\widetilde{\mathbf{H}}_{t,c} = \mathbf{k}[\widetilde{\mathscr{C}}]/\widetilde{\mathfrak{C}}_{t,c} \otimes_{\mathbf{k}[\widetilde{\mathscr{C}}]} \widetilde{\mathbf{H}} = \widetilde{\mathbf{H}}/\widetilde{\mathfrak{C}}_{t,c} \widetilde{\mathbf{H}}.$$

The **k**-algebra $\widetilde{\mathbf{H}}_{t,c}$ is the quotient of $T_{\mathbf{k}}(V \oplus V^*) \rtimes W$ by the ideal generated by the following relations:

(3.1.6)
$$\begin{cases} [x, x'] = [y, y'] = 0, \\ [y, x] = t \langle y, x \rangle + \sum_{s \in \operatorname{Ref}(W)} (\varepsilon(s) - 1) c_s \frac{\langle y, \alpha_s \rangle \cdot \langle \alpha_s^{\vee}, x \rangle}{\langle \alpha_s^{\vee}, \alpha_s \rangle} s \end{cases}$$

for $x, x' \in V^*$ and $y, y' \in V$.

Example 3.1.7. — We have $\widetilde{\mathbf{H}}_{0,0} = \mathbf{k}[V \oplus V^*] \rtimes W$ and $\widetilde{\mathbf{H}}_{T,0} = \mathcal{D}_T(V) \rtimes W$ (see §A.5).

More generally, given $\tilde{\mathfrak{C}}$ a prime ideal of $\mathbf{k}[\tilde{\mathfrak{C}}]$, we put $\tilde{\mathbf{H}}(\tilde{\mathfrak{C}}) = \tilde{\mathbf{H}}/\tilde{\mathfrak{C}}\tilde{\mathbf{H}}$.

3.1.E. Filtration. — We endow the $\mathbf{k}[\widetilde{\mathscr{C}}]$ -algebra $\widetilde{\mathbf{H}}$ with the filtration defined as follows:

- $\widetilde{\mathbf{H}}^{\leqslant -1} = \mathbf{0}$
- $\widetilde{\mathbf{H}}^{\leq 0}$ is the $\mathbf{k}[\widetilde{\mathscr{C}}]$ -subalgebra generated by V^* and W
- $\widetilde{\mathbf{H}}^{\leqslant 1} = \widetilde{\mathbf{H}}^{\leqslant 0} V + \widetilde{\mathbf{H}}^{\leqslant 0}.$
- $\widetilde{\mathbf{H}}^{\leq i} = (\widetilde{\mathbf{H}}^{\leq 1})^i$ for $i \geq 2$.

Specializing at $(t,c) \in \widetilde{\mathscr{C}}$, we have an induced filtration of $\widetilde{\mathbf{H}}_{t,c}$.

The canonical maps $\mathbf{k}[\widetilde{\mathscr{C}}] \otimes \mathbf{k}[V] \rtimes W \to (\operatorname{gr} \widetilde{\mathbf{H}})^0$ and $V \to (\operatorname{gr} \widetilde{\mathbf{H}})^1$ induce a surjective morphism of algebras $\rho : \mathbf{k}[\widetilde{\mathscr{C}}] \otimes \mathbf{k}[V \oplus V^*] \rtimes W \twoheadrightarrow \operatorname{gr} \widetilde{\mathbf{H}}$.

3.1.F. Localization at V^{reg}. — Recall that

$$V^{\text{reg}} = V \setminus \bigcup_{H \in \mathcal{A}} H = \{ v \in V \mid \text{Stab}_G(v) = 1 \} \text{ and } \mathbf{k}[V^{\text{reg}}] = k[V][\delta^{-1}].$$

We put $\widetilde{\mathbf{H}}^{\text{reg}} = \widetilde{\mathbf{H}}[\delta^{-1}]$, the non-commutative localization of $\widetilde{\mathbf{H}}$ obtained by adding a two-sided inverse to the image of δ . Note that the filtration of $\widetilde{\mathbf{H}}$ induces a filtration of $\widetilde{\mathbf{H}}^{\text{reg}}$, with $(\widetilde{\mathbf{H}}^{\text{reg}})^{\leq i} = \widetilde{\mathbf{H}}^{\leq i}[\delta^{-1}]$.

Note that multiplication induces an isomorphism of **k**-vector spaces $\mathbf{k}[V^{\text{reg}}] \otimes \mathbf{k}[V^*] \xrightarrow{\sim} \mathcal{D}(V^{\text{reg}}) = \mathcal{D}(V)[\delta^{-1}]$ (cf Appendix §A.5).

Lemma 3.1.8. — *We have:*

- (a) There is a Morita equivalence between $\mathbf{k}[V^{\text{reg}} \times V^*] \rtimes W$ and $\mathbf{k}[V^{\text{reg}} \times V^*]^W$ given by the bimodule $\mathbf{k}[V^{\text{reg}} \times V^*]$.
- (b) There is a Morita equivalence between $\mathscr{D}(V^{\text{reg}}) \rtimes W$ and $\mathscr{D}(V^{\text{reg}})^W = \mathscr{D}(V^{\text{reg}}/W)$ given by the bimodule $\mathscr{D}(V^{\text{reg}})$.
- (c) The action of $\mathcal{D}(V^{\text{reg}}) \rtimes W$ on $\mathbf{k}[V^{\text{reg}}]$ is faithful.

Proof. — (a) follows from Corollary B.2.1.

(b) becomes (a) after taking associated graded, hence (b) follows from Lemmas A.3.4 and B.1.1.

(c) It follows from (b) that every two-sided ideal of $\mathscr{D}(V^{\text{reg}}) \rtimes W$ is generated by its intersection with $\mathscr{D}(V^{\text{reg}})^W$. Since $\mathscr{D}(V^{\text{reg}})$ acts faithfully on $\mathbf{k}[V^{\text{reg}}]$ (cf §A.5), we deduce that the kernel of the action of $\mathscr{D}(V^{\text{reg}}) \rtimes W$ vanishes.

3.1.G. Polynomial representation and Dunkl operators. — Given $y \in V$, we define D_y , a $\mathbf{k}[\tilde{\mathscr{C}}]$ -linear endomorphism of $\mathbf{k}[\tilde{\mathscr{C}}] \otimes \mathbf{k}[V^{\text{reg}}]$ by

$$D_y = T\partial_y - \sum_{s \in \operatorname{Ref}(W)} \varepsilon(s) C_s \langle y, \alpha_s \rangle \alpha_s^{-1} s.$$

Note that $D_y \in \mathbf{k}[\mathscr{C}] \otimes \mathscr{D}_T(V^{\text{reg}}) \rtimes W \subset \mathbf{k}[\widetilde{\mathscr{C}}] \otimes \mathscr{D}(V^{\text{reg}}) \rtimes W$.

Remark 3.1.9. — The Dunkl operators are traditionally defined as

$$T\partial_y - \sum_{s \in \operatorname{Ref}(W)} \varepsilon(s)C_s\langle y, \alpha_s \rangle \alpha_s^{-1}(s-1).$$

With this definition they preserve $\mathbf{k}[\widetilde{\boldsymbol{\varepsilon}}] \otimes \mathbf{k}[V]$. The results and proofs in this section apply also to those operators.

Proposition 3.1.10. — There is a unique structure of $\widetilde{\mathbf{H}}$ -module on $\mathbf{k}[\widetilde{\mathscr{C}}] \otimes \mathbf{k}[V^{\text{reg}}]$ where $\mathbf{k}[\widetilde{\mathscr{C}}] \otimes \mathbf{k}[V^{\text{reg}}]$ acts by multiplication, W acts through its natural action on V and $y \in V$ acts by D_y .

Proof. — The following argument is due to Etingof. Let $y \in V$ and $x \in V^*$. We have

$$[\alpha_s^{-1}s,x] = (\varepsilon(s)^{-1}-1)\frac{\langle \alpha_s^{\vee},x\rangle}{\langle \alpha_s^{\vee},\alpha_s\rangle}s,$$

hence

$$[D_y, x] = T\langle y, x \rangle + \sum_{s} (\varepsilon(s) - 1) C_s \frac{\langle y, \alpha_s \rangle \cdot \langle \alpha_s^{\vee}, x \rangle}{\langle \alpha_s^{\vee}, \alpha_s \rangle} s.$$

Given $w \in W$, we have $w D_y w^{-1} = D_{w(y)}$.

Consider $y' \in V$. We have

$$[[D_y, D_{y'}], x] = [[D_y, x], D_{y'}] - [[D_{y'}, x], D_y]$$

and

$$\begin{split} [[D_{y}, x], D_{y'}] &= \sum_{s} (\varepsilon(s) - 1) C_{s} \frac{\langle y, \alpha_{s} \rangle \cdot \langle \alpha_{s}^{\vee}, x \rangle}{\langle \alpha_{s}^{\vee}, \alpha_{s} \rangle} [s, D_{y'}] \\ &= \sum_{s} (\varepsilon(s) - 1)^{2} C_{s} \frac{\langle y, \alpha_{s} \rangle \cdot \langle y', \alpha_{s} \rangle \cdot \langle \alpha_{s}^{\vee}, x \rangle}{\langle \alpha_{s}^{\vee}, \alpha_{s} \rangle^{2}} D_{\alpha_{s}^{\vee}} s \\ &= [[D_{y'}, x], D_{y}]. \end{split}$$

We deduce that $[[D_y, D_{y'}], x] = 0$ for all $x \in V^*$. On the other hand, $[D_y, D_{y'}]$ acts by zero on $1 \in \mathbf{k}[\widetilde{\mathscr{C}}] \otimes \mathbf{k}[V^{\text{reg}}]$, hence $[D_{\gamma}, D_{\gamma'}]$ acts by zero on $\mathbf{k}[\widetilde{\mathscr{C}}] \otimes \mathbf{k}[V^{\text{reg}}]$. It follows from Lemma 3.1.8(c) that $[D_y, D_{y'}] = 0$. The proposition follows.

Proposition 3.1.10 provides a morphism of $\mathbf{k}[\widetilde{\mathscr{C}}]$ -algebras $\Theta: \widetilde{\mathbf{H}} \to \mathbf{k}[\mathscr{C}] \otimes \mathscr{D}_T(V^{\text{reg}})$. We denote by Θ^{reg} : $\widetilde{\mathbf{H}}^{\text{reg}} \to \mathbf{k}[\mathscr{C}] \otimes \mathscr{D}_T(V^{\text{reg}})$ its extension to $\widetilde{\mathbf{H}}^{\text{reg}}$.

Theorem 3.1.11. — We have the following statements:

- (a) The morphism Θ is injective, hence the polynomial representation of $\tilde{\mathbf{H}}$ is faithful.
- (b) The multiplication map is an isomorphism $\mathbf{k}[\widetilde{\mathscr{C}}] \otimes \mathbf{k}[V] \otimes \mathbf{k}[V^*] \otimes \mathbf{k}W \xrightarrow{\sim} \widetilde{\mathbf{H}}$.
- (c) We have an isomorphism of algebras $\rho: \mathbf{k}[\widetilde{\mathscr{C}}] \otimes \mathbf{k}[V \oplus V^*] \rtimes W \xrightarrow{\sim} \operatorname{gr} \widetilde{\mathbf{H}}$.
- (d) The morphism Θ^{reg} is an isomorphism $\widetilde{\mathbf{H}}^{\text{reg}} \xrightarrow{\sim} \mathbf{k}[\mathscr{C}] \otimes \mathscr{D}_T(V^{\text{reg}}) \rtimes W$.
- (e) Given \mathfrak{c} a prime ideal of $\mathbf{k}[\widetilde{\mathscr{C}}]$, the morphism $(\mathbf{k}[\widetilde{\mathscr{C}}]/\mathfrak{c}) \otimes_{\mathbf{k}[\widetilde{\mathscr{C}}]} \Theta$ is injective. If $T \notin \mathfrak{c}$, then the polynomial representation of $\widetilde{\mathbf{H}}(\mathfrak{c})$ is faithful and $Z(\widetilde{\mathbf{H}}(\mathfrak{c})) = \mathbf{k}[\widetilde{\mathscr{C}}]/\mathfrak{c}$.

Proof. — Let η be the composition

- - -

$$\eta: \mathbf{k}[\widetilde{\mathscr{C}}] \otimes \mathbf{k}[V^{\mathrm{reg}}] \otimes \mathbf{k}[V^*] \otimes \mathbf{k}W \xrightarrow{\mathrm{mult}} \widetilde{\mathbf{H}}^{\mathrm{reg}} \xrightarrow{\Theta^{\mathrm{reg}}} \mathscr{D}_T(V^{\mathrm{reg}}) \rtimes W.$$

Note that gr η is an isomorphism, since it is equal to the graded map associated to the multiplication isomorphism

$$\mathbf{k}[\widetilde{\mathscr{C}}] \otimes \mathbf{k}[V^{\mathrm{reg}}] \otimes \mathbf{k}[V^*] \otimes \mathbf{k}W \xrightarrow{\sim} \mathbf{k}[\widetilde{\mathscr{C}}] \otimes \mathscr{D}_T(V^{\mathrm{reg}}) \rtimes W.$$

We deduce that η is an isomorphism (Lemma A.3.1). Since the multiplication map is surjective, it follows that it is an isomorphism and Θ^{reg} is an isomorphism as well. We deduce also that ρ is injective, hence it is an isomorphism.

Since $\mathbf{k}[T] \otimes \mathbf{k}[V^{\text{reg}}]$ is a faithful representation of $\mathcal{D}_T(V^{\text{reg}}) \rtimes W$ (Lemma 3.1.8), we deduce that the polynomial representation induces an injective map

$$\mathbf{k}[\mathscr{C}] \otimes \mathscr{D}_T(V^{\mathrm{reg}}) \rtimes W \hookrightarrow \mathbf{k}[\widetilde{\mathscr{C}}] \otimes \mathrm{End}_{\mathbf{k}}(\mathbf{k}[V^{\mathrm{reg}}]).$$

There is a commutative diagram

It follows that the multiplication

 $\mathbf{k}[\widetilde{\mathscr{C}}] \otimes \mathbf{k}[V] \otimes \mathbf{k}[V^*] \otimes \mathbf{k}W \to \widetilde{\mathbf{H}}$

is an isomorphism and the polynomial representation of \tilde{H} is faithful.

Consider now \mathfrak{c} a prime ideal of $\widetilde{\mathscr{C}}$ and let $A = \mathbf{k}[\widetilde{\mathscr{C}}]/\mathfrak{c}$. There is a commutative diagram

We deduce as above that $(\mathbf{k}[\widetilde{\mathscr{C}}]/\mathfrak{c}) \otimes_{\mathbf{k}[\widetilde{\mathscr{C}}]} \Theta$ is injective. Assume now $T \notin \mathfrak{c}$. Then the polynomial representation of $A \otimes_{\mathbf{k}[\widetilde{\mathscr{C}}]} (\mathbf{k}[\mathscr{C}] \otimes \mathscr{D}_T(V^{\text{reg}})) \rtimes W$ is faithful, hence the polynomial representation of $\widetilde{\mathbf{H}}(\mathfrak{c})$ is faithful as well. Since $Z(\mathscr{D}(V^{\text{reg}})) = \mathbf{k}$, we deduce that $Z(A \otimes_{\mathbf{k}[\widetilde{\mathscr{C}}]} (\mathbf{k}[\mathscr{C}] \otimes \mathscr{D}_T(V^{\text{reg}})) \rtimes W) = A$, hence $Z(\widetilde{\mathbf{H}}(\mathfrak{c})) = \mathbf{k}[\widetilde{\mathscr{C}}]/\mathfrak{c}$.

Corollary 3.1.12. — *Given* $f \in \mathbf{k}[V]$ *, we have*

$$[y, f] = T\partial_{y}(f) - \sum_{s \in \operatorname{Ref}(W)} \varepsilon(s)C_{s}\langle y, \alpha_{s} \rangle \frac{s(f) - f}{\alpha_{s}} s.$$

Proof. — The result follows from Proposition 3.1.10 and Theorem 3.1.11. Note that the corollary can also be proven directly by induction on the degree of f.

3.1.H. Hyperplanes and parameters. — Recall that $(C_s)_{s \in \text{Ref}(W)/W}$ is a **k**-basis of \mathscr{C}^* . Let us construct a new basis of \mathscr{C}^* . We put $C_1 = 0 \in \mathscr{C}^*$.

Denote by $(K_{\Omega,j})_{(\Omega,j)\in \Omega_W^{\circ}}$ the unique family of elements of \mathscr{C}^* such that, for all $H \in \mathscr{A}$ and all $i \in \{0, 1, ..., e_H - 1\}$, we have

$$C_{s_{H}^{i}} = \sum_{j=0}^{e_{H}-1} \zeta_{e_{H}}^{i(j-1)} K_{H,j}.$$

Here, $K_{H,j} = K_{\Omega,j}$, where Ω is the *W*-orbit of *H*. The existence and unicity of the family $(K_{\Omega,j})_{(\Omega,j)\in\Omega_W}$ is a consequence of the invertibility of the Vandermonde determinant. By restricting to elements of $\Omega_W \subset \Omega_W^\circ$, we deduce that

$$(3.1.13) (K_{\Omega,j})_{(\Omega,j)\in\mathbf{\Omega}_W} \text{ is a } \mathbf{k}\text{-basis of } \mathscr{C}^*$$

Note that $K_{\Omega,0}$ is determined by the equation $K_{\Omega,0} + K_{\Omega,1} + \cdots + K_{\Omega,e_{\Omega}-1} = C_1 = 0$. Finally, note that

$$\sum_{w \in W_H} \varepsilon(w) C_w w = e_H \sum_{j=0}^{e_H - 1} \varepsilon_{H,j} K_{H,j}$$

where $\varepsilon_{H,i} = e_H^{-1} \sum_{w \in W_H} \varepsilon(w)^i w$ and

(3.1.14)
$$\sum_{s \in \operatorname{Ref}(W)} \varepsilon(s) C_s = \sum_{H \in \mathcal{A}} e_H K_{H,0} = -\sum_{H \in \mathcal{A}} \sum_{i=1}^{e_H - 1} e_H K_{H,i}$$

Given $H \in \mathcal{A}$, denote by $\alpha_H \in V^*$ a linear form such that $H = \text{Ker}(\alpha_H)$ and let $\alpha_H^{\vee} \in V$ such that $V = H \oplus \mathbf{k} \alpha_H^{\vee}$ and $\mathbf{k} \alpha_H^{\vee}$ is stable under W_H . The second relation in (3.1.2) becomes

$$(3.1.15) [y,x] = T\langle y,x\rangle + \sum_{H \in \mathscr{A}} \sum_{i=0}^{e_H-1} e_H(K_{H,i} - K_{H,i+1}) \frac{\langle y,\alpha_H \rangle \cdot \langle \alpha_H^{\vee},x \rangle}{\langle \alpha_H^{\vee},\alpha_H \rangle} \varepsilon_{H,i}$$

for $x \in V^*$ and $y \in V$, where $K_{H,e_H} = K_{H,0}$.

Given $y \in V$, we have

$$\Theta(y) = \partial_y - \sum_{H \in \mathscr{A}} \sum_{i=0}^{e_H - 1} \frac{\langle y, \alpha_H \rangle}{\alpha_H} e_H K_{H,i} \varepsilon_{H,i}.$$

COMMENT - Our convention for the definition of Cherednik algebras differs from that of [**GGOR**, §3.1]: we have added a coefficient $\varepsilon(s) - 1$ in front of the term C_s . On the other hand, our convention is the same as [**EtGi**, §1.15], with $c_s = c_{\alpha_s}$ (when W is a Coxeter group). Note that the $k_{H,i}$'s from [**GGOR**] are related to the $K_{H,i}$'s above by the relation $k_{H,i} = K_{H,0} - K_{H,i}$.

3.2. Gradings

The algebra $\tilde{\mathbf{H}}$ admits a natural ($\mathbb{N} \times \mathbb{N}$)-grading, thanks to which we can associate, to each morphism of monoids $\mathbb{N} \times \mathbb{N} \to \mathbb{Z}$ (or $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$), a \mathbb{Z} -grading (or an \mathbb{N} -grading).

We endow the extended tensor algebra $\mathbf{k}[\widetilde{\mathscr{C}}] \otimes (T_{\mathbf{k}}(V \oplus V^*) \rtimes W)$ with an $(\mathbb{N} \times \mathbb{N})$ grading by giving to the elements of V the bi-degree (1,0), to the elements of V^* the bi-degree (0,1), to the elements of $\widetilde{\mathscr{C}}^*$ the bi-degree (1,1) and to those of W the bi-degree (0,0). The relations (3.1.2) are homogeneous. Hence, $\tilde{\mathbf{H}}$ inherits an ($\mathbb{N} \times \mathbb{N}$)-grading whose homogeneous component of bi-degree (*i*, *j*) will be denoted by $\tilde{\mathbf{H}}^{\mathbb{N} \times \mathbb{N}}[i, j]$. We have

$$\widetilde{\mathbf{H}} = \bigoplus_{(i,j)\in\mathbb{N}\times\mathbb{N}} \widetilde{\mathbf{H}}^{\mathbb{N}\times\mathbb{N}}[i,j] \text{ and } \widetilde{\mathbf{H}}^{\mathbb{N}\times\mathbb{N}}[0,0] = \mathbf{k}W.$$

Note that all homogeneous components have finite dimension over **k**.

If $\varphi : \mathbb{N} \times \mathbb{N} \to \mathbb{Z}$ is a morphism of monoids, then $\tilde{\mathbf{H}}$ inherits a \mathbb{Z} -grading whose homogenous component of degree *i* will be denoted by $\tilde{\mathbf{H}}^{\varphi}[i]$:

$$\widetilde{\mathbf{H}}^{\varphi}[i] = \bigoplus_{\varphi(a,b)=i} \widetilde{\mathbf{H}}^{\mathbb{N} \times \mathbb{N}}[a,b].$$

In this grading, the elements of *V* have degree $\varphi(1,0)$, the elements of *V*^{*} have degree $\varphi(0,1)$, the elements of $\tilde{\mathscr{C}}^*$ have degree $\varphi(1,1)$ and those of *W* have degree 0.

Example 3.2.1 (\mathbb{Z} -grading). — The morphism of monoids $\mathbb{N} \times \mathbb{N} \to \mathbb{Z}$, $(i, j) \mapsto j - i$ induces a \mathbb{Z} -grading on $\widetilde{\mathbf{H}}$ for which the elements of *V* have degree -1, the elements of *V*^{*} have degree 1 and the elements of $\widetilde{\mathscr{C}}^*$ and *W* have degree 0. We denote by $\widetilde{\mathbf{H}}^{\mathbb{Z}}[i]$ the homogeneous component of degree *i*. Then

$$\widetilde{\mathbf{H}} = \bigoplus_{i \in \mathbb{Z}} \widetilde{\mathbf{H}}^{\mathbb{Z}}[i].$$

By specialization at $(t, c) \in \widetilde{\mathscr{C}}$, the algebra $\widetilde{\mathbf{H}}_{t,c}$ inherits a \mathbb{Z} -grading whose homogeneous component of degree *i* will be denoted by $\widetilde{\mathbf{H}}_{t,c}^{\mathbb{Z}}[i]$.

Example 3.2.2 (N-grading). — The morphism of monoids $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$, $(i, j) \mapsto i + j$ induces an N-grading on $\widetilde{\mathbf{H}}$ for which the elements of *V* or *V*^{*} have degree 1, the elements of $\widetilde{\mathscr{C}}^*$ have degree 2 and the elements of *W* have degree 0. We denote by $\widetilde{\mathbf{H}}^{\mathbb{N}}[i]$ the homogeneous component of degree *i*. Then

$$\widetilde{\mathbf{H}} = \bigoplus_{i \in \mathbb{N}} \widetilde{\mathbf{H}}^{\mathbb{N}}[i] \text{ and } \widetilde{\mathbf{H}}^{\mathbb{N}}[0] = \mathbf{k}W.$$

Note that dim_k $\widetilde{\mathbf{H}}^{\mathbb{N}}[i] < \infty$ for all *i*. This grading is not inherited after specialization at $(t, c) \in \widetilde{\mathscr{C}}$, except whenever (t, c) = (0, 0): we retrieve the usual \mathbb{N} -grading on $\widetilde{\mathbf{H}}_{0,0} = \mathbf{k}[V \times V^*] \rtimes W$ (see Example 3.1.7).

3.3. Euler element

Let $(x_1, ..., x_n)$ be a **k**-basis of V^* and let $(y_1, ..., y_n)$ be its dual basis. We define the *generic Euler element* of $\tilde{\mathbf{H}}$

$$\widetilde{\mathbf{eu}} = -nT + \sum_{i=1}^{n} y_i x_i + \sum_{s \in \operatorname{Ref}(W)} C_s s \in \widetilde{\mathbf{H}}.$$

Note that

$$\widetilde{\mathbf{eu}} = \sum_{i=1}^{n} x_i y_i + \sum_{s \in \operatorname{Ref}(W)} \varepsilon(s) C_s s = \sum_{i=1}^{n} x_i y_i + \sum_{H \in \mathscr{A}} \sum_{j=0}^{e_H - 1} e_H K_{H,j} \varepsilon_{H,j}$$

It is easy to check that $\tilde{\mathbf{eu}}$ does not depend on the choice of the basis $(x_1, ..., x_n)$ of V^* . Note that

$$\widetilde{\mathbf{eu}} \in \widetilde{\mathbf{H}}^{\mathbb{N} \times \mathbb{N}}[1,1]$$

We have

$$\Theta(\widetilde{\mathbf{eu}}) = T \sum_{i=1}^{n} y_i x_i$$

Thanks to Theorem 3.1.11, we deduce the following result [GGOR, §3.1(4)].

Proposition 3.3.2. If $x \in V^*$, $y \in V$ and $w \in W$, then $[\widetilde{\mathbf{eu}}, x] = Tx$, $[\widetilde{\mathbf{eu}}, y] = -Ty$ and $[\widetilde{\mathbf{eu}}, w] = 0$.

In **[GGOR]**, the Euler element plays a fundamental role in the study of the category \mathcal{O} associated with $\tilde{\mathbf{H}}_{1,c}$. We will see in this book the role it plays in the theory of Calogero-Moser cells.

Proposition 3.3.3. — If $h \in \widetilde{\mathbf{H}}^{\mathbb{Z}}[i]$, then $[\widetilde{\mathbf{eu}}, h] = iTh$.

3.4. Spherical algebra

Notation. All along this book, we denote by e the primitive central idempotent of $\mathbf{k}W$ defined by

$$e = \frac{1}{|W|} \sum_{w \in W} w.$$

The $\mathbf{k}[\widetilde{\mathbf{C}}]$ -algebra $e\widetilde{\mathbf{H}}e$ will be called the generic spherical algebra.

By specializing at (t,c), and since $e\tilde{\mathbf{H}}e$ is a direct summand of the $\mathbf{k}[\tilde{\mathscr{C}}]$ -module $\tilde{\mathbf{H}}$, we get

(3.4.1)
$$e\widetilde{\mathbf{H}}_{t,c}e = (\mathbf{k}[\widetilde{\mathscr{C}}]/\widetilde{\mathfrak{C}}_{t,c}) \otimes_{\mathbf{k}[\widetilde{\mathscr{C}}]} e\widetilde{\mathbf{H}}e$$

Since *e* has degree 0, the filtration of $\tilde{\mathbf{H}}$ induces a filtration of the generic spherical algebra given by $(e\tilde{\mathbf{H}}e)^{\leq i} = e(\tilde{\mathbf{H}}^{\leq i})e$. It follows from Theorem 3.1.11 that

(3.4.2)
$$\operatorname{gr}(e\widetilde{\mathbf{H}}e) = e\operatorname{gr}(\widetilde{\mathbf{H}})e \simeq \mathbf{k}[\widetilde{\mathscr{C}}] \otimes \mathbf{k}[V \times V^*]^{\Delta W}$$

Theorem 3.4.3 (Etingof-Ginzburg). — Let $\tilde{\mathfrak{C}}$ be a prime ideal of $\mathbf{k}[\tilde{\mathfrak{C}}]$.

- (a) The algebra $e \widetilde{H}(\widetilde{\mathfrak{C}})e$ is a finitely generated **k**-algebra without zero divisors.
- (b) $\widetilde{\mathbf{H}}(\widetilde{\mathfrak{C}})e$ is a finitely generated right $e\widetilde{\mathbf{H}}(\widetilde{\mathfrak{C}})e$ -module.
- (c) Left multiplication of $\widetilde{\mathbf{H}}(\widetilde{\mathfrak{C}})$ on the projective module $\widetilde{\mathbf{H}}(\widetilde{\mathfrak{C}})e$ induces an isomorphism $\widetilde{\mathbf{H}}(\widetilde{\mathfrak{C}}) \xrightarrow{\sim} \operatorname{End}_{(e\widetilde{\mathbf{H}}(\widetilde{\mathfrak{C}})e)^{\operatorname{opp}}}(\widetilde{\mathbf{H}}(\widetilde{\mathfrak{C}})e)^{\operatorname{opp}}$.
- (d) There is an isomorphism of algebras $Z(\widetilde{\mathbf{H}}(\widetilde{\mathfrak{C}})) \xrightarrow{\sim} Z(e\widetilde{\mathbf{H}}(\widetilde{\mathfrak{C}})e), z \mapsto ze$.

Proof. — The assertion (a) follows from Lemmas A.3.2 and A.2.1. The assertion (b) follows from Lemma A.3.2.

Let $\alpha : \widetilde{\mathbf{H}}(\widetilde{\mathfrak{C}}) \to \operatorname{End}_{(e\widetilde{\mathbf{H}}(\widetilde{\mathfrak{C}})e)^{\operatorname{opp}}}(\widetilde{\mathbf{H}}(\widetilde{\mathfrak{C}})e)^{\operatorname{opp}}$ be the morphism of the theorem. Lemma A.3.3 provides an injective morphism

$$\beta: \operatorname{gr} \operatorname{End}_{(e\widetilde{H}(\widetilde{\mathfrak{C}})e)^{\operatorname{opp}}}(\widetilde{H}(\widetilde{\mathfrak{C}})e)^{\operatorname{opp}} \hookrightarrow \operatorname{End}_{\operatorname{gr}(e\widetilde{H}(\widetilde{\mathfrak{C}})e)^{\operatorname{opp}}}(\operatorname{gr} \widetilde{H}(\widetilde{\mathfrak{C}})e)^{\operatorname{opp}})$$

The composition

$$\operatorname{gr} \widetilde{\mathbf{H}}(\widetilde{\mathfrak{C}}) \xrightarrow{\operatorname{gr} \alpha} \operatorname{gr} \operatorname{End}_{(e\widetilde{\mathbf{H}}(\widetilde{\mathfrak{C}})e)^{\operatorname{opp}}}(\widetilde{\mathbf{H}}(\widetilde{\mathfrak{C}})e)^{\operatorname{opp}} \xrightarrow{\beta} \operatorname{End}_{\operatorname{gr}(e\widetilde{\mathbf{H}}(\widetilde{\mathfrak{C}})e)^{\operatorname{opp}}}(\operatorname{gr} \widetilde{\mathbf{H}}(\widetilde{\mathfrak{C}})e)^{\operatorname{opp}})$$

is given by the left multiplication action. Via the isomorphism ρ (Theorem 3.1.11), it corresponds to the morphism given by left multiplication

 $\gamma: \mathbf{k}[\widetilde{\mathscr{C}}] \otimes \mathbf{k}[V \oplus V^*] \rtimes W \to \operatorname{End}_{\mathbf{k}[\widetilde{\mathscr{C}}] \otimes (e(\mathbf{k}[V \oplus V^*] \rtimes W)e)^{\operatorname{opp}}}(\mathbf{k}[\widetilde{\mathscr{C}}] \otimes (\mathbf{k}[V \oplus V^*] \rtimes W)e)^{\operatorname{opp}}.$

Since the codimension of $(V \times (V^* \setminus (V^*)^{reg})) \cup ((V \setminus V^{reg}) \times V^*)$ in $V \times V^*$ is ≥ 2 , it follows from Proposition B.2.2 that γ is an isomorphism. So, gr α is an isomorphism, hence α is an isomorphism by Lemma A.3.1.

The assertion (d) follows from (c) by Lemma B.1.4.

Remark 3.4.4. — It can actually be shown [EtGi, Theorem 1.5] that if $\mathbf{k}[\tilde{\mathscr{C}}]/\tilde{\mathfrak{C}}$ is Gorenstein (respectively Cohen-Macaulay), then so is the algebra $e\tilde{H}(\tilde{\mathfrak{C}})e$ as well as the right $e\tilde{H}(\tilde{\mathfrak{C}})e$ -module $\tilde{H}(\tilde{\mathfrak{C}})e$.

3.5. Some automorphisms of H

Let $\operatorname{Aut}_{\mathbf{k}-\operatorname{alg}}(\widetilde{\mathbf{H}})$ denote the group of automorphisms of the **k**-algebra $\widetilde{\mathbf{H}}$.

3.5.A. Bigrading. — The bigrading on $\tilde{\mathbf{H}}$ can be seen as an action of the algebraic group $\mathbf{k}^{\times} \times \mathbf{k}^{\times}$ on $\tilde{\mathbf{H}}$. Indeed, if $(\xi, \xi') \in \mathbf{k}^{\times} \times \mathbf{k}^{\times}$, we define the automorphism $\operatorname{bigr}_{\xi,\xi'}$ of $\tilde{\mathbf{H}}$ by the following formula:

$$\forall (i,j) \in \mathbb{N} \times \mathbb{N}, \forall h \in \widetilde{\mathbf{H}}^{\mathbb{N} \times \mathbb{N}}[i,j], \operatorname{bigr}_{\xi,\xi'}(h) = \xi^i \xi'^j h.$$

Then

$$(3.5.1) \qquad \qquad \text{bigr}: \mathbf{k}^{\times} \times \mathbf{k}^{\times} \longrightarrow \text{Aut}_{\mathbf{k}\text{-alg}}(\widetilde{\mathbf{H}})$$

is a morphism of groups. Concretely,

$$\begin{cases} \forall y \in V, \operatorname{bigr}_{\xi,\xi'}(y) = \xi y, \\ \forall x \in V^*, \operatorname{bigr}_{\xi,\xi'}(x) = \xi' x, \\ \forall C \in \widetilde{\mathscr{C}}^*, \operatorname{bigr}_{\xi,\xi'}(C) = \xi \xi' C, \\ \forall w \in W, \operatorname{bigr}_{\xi,\xi'}(w) = w. \end{cases}$$

After specialization, for all $\xi \in \mathbf{k}^{\times}$ and all $(t,c) \in \widetilde{\mathscr{C}}$, the action of $(\xi, 1)$ induces an isomorphism of **k**-algebras

$$(3.5.2) \qquad \qquad \widetilde{\mathbf{H}}_{t,c} \xrightarrow{\sim} \widetilde{\mathbf{H}}_{\xi t, \xi c}.$$

3.5.B. Linear characters. — Let $\gamma : W \longrightarrow \mathbf{k}^{\times}$ be a linear character. It provides an automorphism of \mathscr{C} by multiplication: given $c \in \mathscr{C}$, we define $\gamma \cdot c$ as the map $\operatorname{Ref}(W) \to \mathbf{k}, s \mapsto \gamma(s)c_s$. This induces an automorphism $\gamma_{\mathscr{C}} : \mathbf{k}[\mathscr{C}] \to \mathbf{k}[\mathscr{C}], f \mapsto (c \mapsto f(\gamma^{-1} \cdot c))$ sending C_s on $\gamma(s)^{-1}C_s$. It extends to an automorphism $\gamma_{\widetilde{\mathscr{C}}}$ of $\mathbf{k}[\widetilde{\mathscr{C}}]$ by setting $\gamma_{\widetilde{\mathscr{C}}}(T) = T$.

On the other hand, γ induces also an automorphism of the group algebra **k***W* given by $W \ni w \mapsto \gamma(w)w$. Hence, γ induces an automorphism of the **k**[$\tilde{\mathscr{C}}$]-algebra **k**[$\tilde{\mathscr{C}}$] \otimes (T_{**k**}($V \oplus V^*$) $\rtimes W$) acting trivially on *V* et *V**: it will be denoted by γ_T . Of course,

$$(\gamma \gamma')_{\mathrm{T}} = \gamma_{\mathrm{T}} \gamma'_{\mathrm{T}}.$$

Since the relations (3.1.2) are stable by the action of γ_T , it follows that γ_T induces an automorphism γ_* of the **k**-algebra $\tilde{\mathbf{H}}$. The map

$$(3.5.3) \qquad \begin{array}{ccc} W^{\wedge} & \longrightarrow & \operatorname{Aut}_{\mathbf{k}\text{-alg}}(\widetilde{\mathbf{H}}) \\ \gamma & \longmapsto & \gamma_{*} \end{array}$$

is an injective morphism of groups. Given $(t, c) \in \widetilde{\mathscr{C}}$ and $\gamma \in W^{\wedge}$, then γ_* induces an isomorphism of **k**-algebras

$$(3.5.4) \qquad \qquad \widetilde{\mathbf{H}}_{t,c} \xrightarrow{\sim} \widetilde{\mathbf{H}}_{t,\gamma \cdot c}.$$

3.5.C. Normalizer. — Let \mathcal{N} denote the normalizer in $GL_k(V)$ of W. Then:

- \mathcal{N} acts naturally on V and V^* ;
- *N* acts on *W* by conjugacy;
- The action of \mathcal{N} on W stabilizes $\operatorname{Ref}(W)$ and so \mathcal{N} acts on \mathscr{C} : if $g \in \mathcal{N}$ and $c \in \mathscr{C}$, then ${}^{g}c : \operatorname{Ref}(W) \to \mathbf{k}, s \mapsto c_{g^{-1}sg}$.
- The action of *N* on *C* induces an action of *N* on *C*^{*} (and so on k[*C*]) such that, if g ∈ *N* and s ∈ Ref(*W*), then ^gC_s = C_{gsg⁻¹}.
- *N* acts trivially on *T*.

Consequently, \mathscr{N} acts on the $\mathbf{k}[\widetilde{\mathscr{C}}]$ -algebra $\mathbf{k}[\widetilde{\mathscr{C}}] \otimes (T_{\mathbf{k}}(V \oplus V^*) \rtimes W)$ and it is easily checked, thanks to the relations (3.1.2), that this action induces an action on $\widetilde{\mathbf{H}}$: if $g \in \mathscr{N}$ and $h \in \widetilde{\mathbf{H}}$, we denote by ${}^{g}h$ the image of h under the action of g. By specialization at $(t, c) \in \widetilde{\mathscr{C}}$, an element $g \in \mathscr{N}$ induces an isomorphism of \mathbf{k} -algebras

$$(3.5.5) \qquad \qquad \widetilde{\mathbf{H}}_{t,c} \xrightarrow{\sim} \widetilde{\mathbf{H}}_{t,g_c}.$$

Example 3.5.6. — If $\xi \in \mathbf{k}^{\times}$, then we can see ξ as an automorphism of V (by scalar multiplication) normalizing (and even centralizing) W. We then recover the automorphism of $\widetilde{\mathbf{H}}$ inducing the \mathbb{Z} -grading (up to a sign): if $h \in \widetilde{\mathbf{H}}$, then ${}^{\xi}h = \operatorname{bigr}_{\xi,\xi^{-1}}(h)$.

3.5.D. Compatibilities. — The automorphisms induced by $\mathbf{k}^{\times} \times \mathbf{k}^{\times}$ and those induced by W^{\wedge} commute. On the other hand, the group \mathcal{N} acts on the group W^{\wedge} and on the **k**-algebra $\widetilde{\mathbf{H}}$. This induces an action of $W^{\wedge} \rtimes \mathcal{N}$ on $\widetilde{\mathbf{H}}$ preserving the bigrading, that is, commuting with the action of $\mathbf{k}^{\times} \times \mathbf{k}^{\times}$. Given $\gamma \in W^{\wedge}$ and $g \in \mathcal{N}$, we will denote by $\gamma \rtimes g$ the corresponding element of $W^{\wedge} \rtimes \mathcal{N}$. We have a morphism of groups

$$\begin{array}{ccc} \mathbf{k}^{\times} \times \mathbf{k}^{\times} \times (W^{\wedge} \rtimes \mathcal{N}) & \longrightarrow & \operatorname{Aut}_{\mathbf{k}\text{-alg}}(\widetilde{\mathbf{H}}) \\ (\xi, \xi', \gamma \rtimes g) & \longmapsto & (h \mapsto \operatorname{bigr}_{\xi, \xi'} \circ \gamma_*({}^gh)) \end{array}$$

Given $\tau = (\xi, \xi', \gamma \rtimes g) \in \mathbf{k}^{\times} \times \mathbf{k}^{\times} \times (W^{\wedge} \rtimes \mathcal{N})$ and $h \in \widetilde{\mathbf{H}}$, we set

$$^{\tau}h = \operatorname{bigr}_{\mathcal{E},\mathcal{E}'}(\gamma_*({}^{g}h)).$$

The following lemma is immediate.

Lemma 3.5.7. — *Let* $\tau = (\xi, \xi', \gamma \rtimes g) \in \mathbf{k}^{\times} \times \mathbf{k}^{\times} \times (W^{\wedge} \rtimes \mathcal{N})$. *Then:*

- (a) τ stabilizes the subalgebras $\mathbf{k}[\widetilde{\mathscr{C}}], \mathbf{k}[V], \mathbf{k}[V^*]$ and $\mathbf{k}W$.
- (b) τ preserves the bigrading.
- (c) $\tau \widetilde{\mathbf{eu}} = \xi \xi' \widetilde{\mathbf{eu}}$.
- (d) $\tau e = e$ if and only if $\gamma = 1$.

3.6. Special features of Coxeter groups

Assumption. *In this section 3.6, we assume that W is a Coxeter group, and we use the notation of* §2.6.

By Proposition 2.6.1, there exists a non-degenerate symmetric bilinear *W*-invariant form $\boldsymbol{\beta} : V \times V \to \mathbf{k}$. We denote by $\boldsymbol{\sigma} : V \xrightarrow{\sim} V^*$ the isomorphism induced by $\boldsymbol{\beta} :$ if $y, y' \in V$, then

$$\langle y, \sigma(y') \rangle = \boldsymbol{\beta}(y, y').$$

The *W*-invariance of $\boldsymbol{\beta}$ implies that σ is an isomorphism of **k***W*-modules and the symmetry of $\boldsymbol{\beta}$ implies that

(3.6.1)
$$\langle y, x \rangle = \langle \sigma^{-1}(x), \sigma(y) \rangle$$

for all $x \in V^*$ and $y \in V$. We denote by $\sigma_T : T_k(V \oplus V^*) \to T_k(V \oplus V^*)$ the automorphism of algebras induced by the automorphism of the vector space $V \oplus V^*$ defined by $(y,x) \mapsto (-\sigma^{-1}(x), \sigma(y))$. It is *W*-invariant, hence extends to an automorphism of $T_k(V \oplus V^*) \rtimes W$, with trivial action on *W*. By extension of scalars, we get another automorphism, still denoted by σ_T , of $\mathbf{k}[\widetilde{\mathscr{C}}] \otimes (T_k(V \oplus V^*) \rtimes W)$. It is easy to check that σ_T induces an automorphism $\sigma_{\widetilde{H}}$ of $\widetilde{\mathbf{H}}$. We have proven the following proposition.

Proposition 3.6.2. — There exists a unique automorphism $\sigma_{\tilde{H}}$ of \tilde{H} such that

	$\sigma_{\tilde{\mathbf{H}}}(y) = \sigma(y)$	if $y \in V$,
J	$\sigma_{\widetilde{\mathbf{H}}}(x) = -\sigma^{-1}(x)$	if $x \in V^*$,
	$\sigma_{\tilde{\mathbf{H}}}(w) = w$	if $w \in W$,
	$\sigma_{\tilde{\mathbf{H}}}(C) = C$	if $C \in \widetilde{\mathscr{C}}^*$.

Proposition 3.6.3. — The following hold:

- (a) $\sigma_{\tilde{\mathbf{H}}}$ stabilizes the subalgebras $\mathbf{k}[\tilde{\mathscr{C}}]$ and $\mathbf{k}W$ and exchanges the subalgebras $\mathbf{k}[V]$ and $\mathbf{k}[V^*]$.
- (b) If $h \in \widetilde{\mathbf{H}}^{\mathbb{N} \times \mathbb{N}}[i, j]$, then $\sigma_{\widetilde{\mathbf{H}}}(h) \in \widetilde{\mathbf{H}}^{\mathbb{N} \times \mathbb{N}}[j, i]$.
- (c) If $h \in \widetilde{\mathbf{H}}^{\mathbb{N}}[i]$ (respectively $h \in \widetilde{\mathbf{H}}^{\mathbb{Z}}[i]$), then $\sigma_{\widetilde{\mathbf{H}}}(h) \in \widetilde{\mathbf{H}}^{\mathbb{N}}[i]$ (respectively $\sigma_{\widetilde{\mathbf{H}}}(h) \in \widetilde{\mathbf{H}}^{\mathbb{Z}}[-i]$).
- (d) $\sigma_{\tilde{H}}$ commutes with the action of W^{\wedge} on \tilde{H} .
- (e) If $(t,c) \in \widetilde{\mathscr{C}}$, then $\sigma_{\widetilde{\mathbf{H}}}$ induces an automorphism of $\widetilde{\mathbf{H}}_{t,c}$, still denoted by $\sigma_{\widetilde{\mathbf{H}}}$ (or $\sigma_{\widetilde{\mathbf{H}}_{t,c}}$ if necessary).
- (f) $\sigma_{\widetilde{\mathbf{H}}}(\widetilde{\mathbf{eu}}) = -nT \widetilde{\mathbf{eu}}.$

Remark 3.6.4 (Action of $GL_2(\mathbf{k})$). — Let $\rho = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbf{k})$. The **k**-linear map $V \oplus V^* \longrightarrow V \oplus V^*$ $y \oplus x \longmapsto ay + b\sigma^{-1}(x) \oplus c\sigma(y) + dx$

is an automorphism of the **k***W*-module $V \oplus V^*$. It extends to an automorphism of the **k**-algebra $T_{\mathbf{k}}(V \oplus V^*) \rtimes W$ and to an automorphism ρ_T of $\mathbf{k}[\widetilde{\mathscr{C}}] \otimes (T_{\mathbf{k}}(V \oplus V^*) \rtimes W)$ by $\rho_T(C) = \det(\rho)C$ for $C \in \widetilde{\mathscr{C}}^*$.

It is easy to check that ρ_{T} induces an automorphism $\rho_{\tilde{\mathrm{H}}}$ of $\tilde{\mathrm{H}}$. Moreover, $(\rho \rho')_{\tilde{\mathrm{H}}} = \rho_{\tilde{\mathrm{H}}} \circ \rho'_{\tilde{\mathrm{H}}}$ for all ρ , $\rho' \in \mathrm{GL}_2(\mathbf{k})$. So, we obtain an action of $\mathrm{GL}_2(\mathbf{k})$ on $\tilde{\mathrm{H}}$. This action preserves the \mathbb{N} -grading $\tilde{\mathrm{H}}^{\mathbb{N}}$.

Finally, note that, for $\rho = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, we have $\rho_{\tilde{\mathbf{H}}} = \sigma_{\tilde{\mathbf{H}}}$ and, if $\rho = \begin{pmatrix} \xi & 0 \\ 0 & \xi' \end{pmatrix}$, then $\rho_{\tilde{\mathbf{H}}} = \text{bigr}_{\xi,\xi'}$. Hence we have extended the action of $\mathbf{k}^{\times} \times \mathbf{k}^{\times} \times (W^{\wedge} \rtimes \mathscr{N})$ to an action of $\mathbf{GL}_2(\mathbf{k}) \times (W^{\wedge} \rtimes \mathscr{N})$.

CHAPTER 4

CHEREDNIK ALGEBRAS AT t = 0

Notation. We put $\mathbf{H} = \mathbf{\tilde{H}}/T\mathbf{\tilde{H}}$. The **k**-algebra **H** is called the *Cherednik algebra at* t = 0.

4.1. Generalities

We gather here those properties that are immediate consequences of results discussed in Chapter 3. We also introduce some notations.

Let us rewrite the defining relations (3.1.2). The algebra **H** is the $\mathbf{k}[\mathscr{C}]$ -algebra quotient of $\mathbf{k}[\mathscr{C}] \otimes (T_{\mathbf{k}}(V \oplus V^*) \rtimes W)$ by the ideal generated by the following relations:

(4.1.1)
$$\begin{cases} [x, x'] = [y, y'] = 0, \\ [y, x] = \sum_{s \in \operatorname{Ref}(W)} (\varepsilon(s) - 1) C_s \frac{\langle y, \alpha_s \rangle \cdot \langle \alpha_s^{\vee}, x \rangle}{\langle \alpha_s^{\vee}, \alpha_s \rangle} s, \end{cases}$$

for $x, x' \in V^*$ and $y, y' \in V$.

The PBW-decomposition (Theorem 3.1.5) takes the following form.

Theorem **4.1.2 (Etingof-Ginzburg)**. — *The multiplication map gives an isomorphism of* $\mathbf{k}[\mathscr{C}]$ *-modules*

$$\mathbf{k}[\mathscr{C}] \otimes \mathbf{k}[V] \otimes \mathbf{k}W \otimes \mathbf{k}[V^*] \xrightarrow{\sim} \mathbf{H}.$$

Given $c \in \mathcal{C}$, we denote by \mathfrak{C}_c the maximal ideal of $\mathbf{k}[\mathcal{C}]$ defined by $\mathfrak{C}_c = \{f \in \mathbf{k}[\mathcal{C}] \mid f(c) = 0\}$: it is the ideal generated by $(C_s - c_s)_{s \in \operatorname{Ref}(W)/W}$. We set

$$\mathbf{H}_{c} = (\mathbf{k}[\mathscr{C}]/\mathfrak{C}_{c}) \otimes_{\mathbf{k}[\mathscr{C}]} \mathbf{H} = \mathbf{H}/\mathfrak{C}_{c} \mathbf{H} = \widetilde{\mathbf{H}}_{0,c}.$$

The **k**-algebra \mathbf{H}_c is the quotient of the **k**-algebra $T_{\mathbf{k}}(V \oplus V^*) \rtimes W$ by the ideal generated by the following relations:

(4.1.3)
$$\begin{cases} [x, x'] = [y, y'] = 0, \\ [y, x] = \sum_{s \in \operatorname{Ref}(W)} (\varepsilon(s) - 1) c_s \frac{\langle y, \alpha_s \rangle \cdot \langle \alpha_s^{\vee}, x \rangle}{\langle \alpha_s^{\vee}, \alpha_s \rangle} s, \end{cases}$$

for $x, x' \in V^*$ and $y, y' \in V$.

Since *T* is bi-homogeneous, the **k**-algebra **H** inherits all the gradings, filtrations of the algebra $\tilde{\mathbf{H}}$: we will use the obvious notation $\mathbf{H}^{\mathbb{N}\times\mathbb{N}}[i,j]$, $\mathbf{H}^{\mathbb{N}}[i]$, $\mathbf{H}^{\mathbb{Z}}[i]$ and $\mathbf{H}^{\leq i}$ for the constructions obtained by quotient from $\tilde{\mathbf{H}}$. We will denote by **eu** the image of **eu** in **H**. This is the *generic Euler element* of **H**. Note that

$$\mathbf{eu} \in \mathbf{H}^{\mathbb{N} \times \mathbb{N}}[1,1] \subset \mathbf{H}^{\mathbb{Z}}[0]$$

The ideal generated by *T* is also stable by the action of $\mathbf{k}^{\times} \times \mathbf{k}^{\times} \times (W^{\wedge} \rtimes \mathcal{N})$, so **H** inherits an action of $\mathbf{k}^{\times} \times \mathbf{k}^{\times} \times (W^{\wedge} \rtimes \mathcal{N})$. The action of $\tau \in \mathbf{k}^{\times} \times \mathbf{k}^{\times} \times (W^{\wedge} \rtimes \mathcal{N})$ on $h \in \mathbf{H}$ is still denoted by τh . The following lemma is immediate from Lemma 3.5.7:

Lemma 4.1.5. — Let $\tau = (\xi, \xi', \gamma \rtimes g) \in \mathbf{k}^{\times} \times \mathbf{k}^{\times} \times (W^{\wedge} \rtimes \mathcal{N})$. Then:

- (a) τ stabilizes the subalgebras $\mathbf{k}[\mathscr{C}], \mathbf{k}[V], \mathbf{k}[V^*]$ and $\mathbf{k}W$.
- (b) τ stabilizes the bigrading.
- (c) $\tau \mathbf{e}\mathbf{u} = \xi \xi' \mathbf{e}\mathbf{u}$.

Theorem 3.4.3 implies the following result on the spherical algebra.

Theorem 4.1.6 (Etingof-Ginzburg). — Let \mathfrak{C} be a prime ideal of $\mathbf{k}[\mathscr{C}]$ and let $\mathbf{H}(\mathfrak{C}) = \mathbf{H}/\mathfrak{C}\mathbf{H}$. Then:

- (a) The algebra $e \mathbf{H}(\mathfrak{C})e$ is a finitely generated **k**-algebra without zero divisors.
- (b) Left multiplication of H(𝔅) on the projective module H(𝔅)e induces an isomorphism H(𝔅) → End_{(eH(𝔅)e)^{opp}}(H(𝔅)e)^{opp}.

Let $\mathbf{H}^{\text{reg}} = \mathbf{k}[\mathscr{C}] \otimes_{\mathbf{k}[\widetilde{\mathscr{C}}]} \widetilde{\mathbf{H}}^{\text{reg}}$. Theorem 3.1.11 becomes the following result.

Theorem 4.1.7 (Etingof-Ginzburg). — There exists a unique isomorphism of $\mathbf{k}[\mathcal{C}]$ -algebras

 $\Theta: \mathbf{H}^{\mathrm{reg}} \xrightarrow{\sim} \mathbf{k}[\mathscr{C}] \otimes (\mathbf{k}[V^{\mathrm{reg}} \times V^*] \rtimes W)$

such that

$$\begin{cases} \Theta(w) = w & \text{for } w \in W, \\ \Theta(y) = y - \sum_{s \in \operatorname{Ref}(W)} \varepsilon(s) C_s \ \frac{\langle y, \alpha_s \rangle}{\alpha_s} s & \text{for } y \in V, \\ \Theta(x) = x & \text{for } x \in V^*. \end{cases}$$

Given \mathfrak{C} a prime ideal of $\mathbf{k}[\mathscr{C}]$, the restriction of $(\mathbf{k}[\mathscr{C}]/\mathfrak{C}) \otimes_{\mathbf{k}[\mathscr{C}]} \Theta$ to $(\mathbf{k}[\mathscr{C}]/\mathfrak{C}) \otimes_{\mathbf{k}[\mathscr{C}]} \mathbf{H}$ is injective.

4.2. Center

Notation. All along this book, we denote by $Z = Z(\mathbf{H})$ the center of **H**. Given $c \in \mathcal{C}$, we set $Z_c = Z/\mathfrak{C}_c Z$. Let *P* denote the $\mathbf{k}[\mathcal{C}]$ -algebra obtained by tensor product of algebras $P = \mathbf{k}[\mathcal{C}] \otimes \mathbf{k}[V]^W \otimes \mathbf{k}[V^*]^W$. We identify *P* with a $\mathbf{k}[\mathcal{C}]$ -submodule of **H** via Theorem 4.1.2.

4.2.A. A subalgebra of *Z*. — The first fundamental result about the center *Z* of **H** is the next one [EtGi, Proposition 4.15] (we follow [Gor1, Proposition 3.6] for the proof).

Lemma 4.2.1. — *P* is a subalgebra of *Z* stable under the action of $\mathbf{k}^{\times} \times \mathbf{k}^{\times} \times (W^{\wedge} \rtimes \mathcal{N})$. In *particular, it is* $(\mathbb{N} \times \mathbb{N})$ -graded.

Proof. — The subalgebra $\mathbf{k}[V]^W$ is central in **H** by Corollary 3.1.12. Dually, $\mathbf{k}[V^*]^W$ is central as well. The stability property is clear.

Corollary 4.2.2. — The PBW-decomposition is an isomorphism of P-modules. In particular, we have isomorphisms of P-modules:

(a) $\mathbf{H} \simeq \mathbf{k}[\mathscr{C}] \otimes \mathbf{k}[V] \otimes \mathbf{k}W \otimes \mathbf{k}[V^*].$

(b) $\mathbf{H}e \simeq \mathbf{k}[\mathscr{C}] \otimes \mathbf{k}[V] \otimes \mathbf{k}[V^*].$

(c) $e\mathbf{H}e \simeq \mathbf{k}[\mathscr{C}] \otimes \mathbf{k}[V \times V^*]^{\Delta W}$.

Hence, **H** (respectively **H***e*, respectively *e***H***e*) is a free *P*-module of rank $|W|^3$ (respectively $|W|^2$, respectively |W|).

The principal theme of this book is to study the algebra **H**, viewing it as a *P*-algebra: given \mathfrak{p} is a prime ideal of *P*, we will be interested in the finite dimensional $k_P(\mathfrak{p})$ -algebra $k_P(\mathfrak{p}) \otimes_P \mathbf{H}$ (splitting, simple modules, blocks, standard modules, decomposition matrix...). Here, $k_P(\mathfrak{p})$ is the fraction field of P/\mathfrak{p} , cf Appendix **??**.

Remark 4.2.3. — Let $(b_i)_{1 \le i \le |W|}$ be a $\mathbf{k}[V]^W$ -basis of $\mathbf{k}[V]$ and let $(b_i^*)_{1 \le i \le |W|}$ be a $\mathbf{k}[V^*]^W$ -basis of $\mathbf{k}[V^*]$. Corollary 4.2.2 shows that $(b_i w b_j^*)_{1 \le i,j \le |W|}$ is a *P*-basis of **H** and that $(b_i b_j^* e)_{1 \le i,j \le |W|}$ is a *P*-basis of **H** *e*.

Set

$$P_{\bullet} = \mathbf{k}[V]^{W} \otimes \mathbf{k}[V^{*}]^{W}.$$

If $c \in \mathcal{C}$, then

 $P_{\bullet} \simeq \mathbf{k}[\mathscr{C}]/\mathfrak{C}_{c} \otimes_{\mathbf{k}[\mathscr{C}]} P = P/\mathfrak{C}_{c} P.$

We deduce from Corollary 4.2.2 the next result:

Corollary **4.2.4***.* — *We have isomorphisms of P***•***-modules:*

- (a) $\mathbf{H}_c \simeq \mathbf{k}[V] \otimes \mathbf{k} W \otimes \mathbf{k}[V^*].$
- (b) $\mathbf{H}_c e \simeq \mathbf{k}[V] \otimes \mathbf{k}[V^*].$
- (c) $e\mathbf{H}_c e \simeq \mathbf{k}[V \times V^*]^{\Delta W}$.

In particular, \mathbf{H}_c (respectively $\mathbf{H}_c e$, respectively $e\mathbf{H}_c e$) is a free P_{\bullet} -module of rank $|W|^3$ (respectively $|W|^2$, respectively |W|).

4.2.B. Satake isomorphism. — It follows from Proposition 3.3.2 that

 $(4.2.5) eu \in Z.$

Given $c \in \mathscr{C}$, we denote by \mathbf{eu}_c the image of \mathbf{eu} in \mathbf{H}_c .

The next structural theorem is a cornerstone of the representation theory of H.

Theorem 4.2.6 (Etingof-Ginzburg). — The morphism of algebras $Z \longrightarrow eHe$, $z \mapsto ze$ is an isomorphism of $(\mathbb{N} \times \mathbb{N})$ -graded algebras. In particular, eHe is commutative.

Proof. — Recall (Theorem 3.4.3) that the map $\pi_e : Z(\mathbf{H}) \to Z(e\mathbf{H}e), z \mapsto ze$ is an isomorphism of algebras. Theorem 4.1.7 shows that $\Theta(e\mathbf{H}e) = \mathbf{k}[\mathscr{C}] \otimes (e\mathbf{k}[V^{\text{reg}} \times V^*]^W)$ and Θ is injective, hence $e\mathbf{H}e$ is commutative. The theorem follows.

Corollary **4.2.7**. — *Let* \mathfrak{C} *be a prime ideal of* $\mathbf{k}[\mathscr{C}]$ *. Let* $Z(\mathfrak{C}) = Z/\mathfrak{C}Z$ *and* $P(\mathfrak{C}) = P/\mathfrak{C}P$ *. We have:*

(a) $Z(\mathfrak{C}) = Z(\mathbf{H}(\mathfrak{C})).$

- (b) The map $Z(\mathfrak{C}) \rightarrow e\mathbf{H}(\mathfrak{C})e$, $z \mapsto ze$ is an isomorphism.
- (c) $\operatorname{End}_{\mathbf{H}(\mathfrak{C})}(\mathbf{H}(\mathfrak{C})e) = Z(\mathfrak{C}) and \operatorname{End}_{Z(\mathfrak{C})}(\mathbf{H}(\mathfrak{C})e) = \mathbf{H}(\mathfrak{C}).$

- (d) $\mathbf{H}(\mathfrak{C}) = Z(\mathfrak{C}) \oplus e\mathbf{H}(\mathfrak{C})(1-e) \oplus (1-e)\mathbf{H}(\mathfrak{C})e \oplus (1-e)\mathbf{H}(\mathfrak{C})(1-e)$. In particular, $Z(\mathfrak{C})$ is a *direct summand of the* $Z(\mathfrak{C})$ *-module* $\mathbf{H}(\mathfrak{C})$.
- (e) $Z(\mathfrak{C})$ is a free $P(\mathfrak{C})$ -module of rank |W|.
- (f) If $\mathbf{k}[\mathscr{C}]/\mathfrak{C}$ is integrally closed, then $Z(\mathfrak{C})$ is an integrally closed domain.

Proof. — Assertion (b) follows from Theorem 4.2.6. We deduce now (c) from Theorem 4.1.6 and (e) from Corollary 4.2.2. We deduce also that $Z(\mathfrak{C})(1-e) \cap Z(\mathfrak{C}) = 0$. It follows also that $e\mathbf{H}(\mathfrak{C})e = Z(\mathfrak{C})e$, hence $e\mathbf{H}(\mathfrak{C})e \subset Z(\mathfrak{C}) + \mathbf{H}(\mathfrak{C})(1-e)$. The decomposition $\mathbf{H}(\mathfrak{C}) = e\mathbf{H}(\mathfrak{C})e \oplus e\mathbf{H}(\mathfrak{C})(1-e) \oplus (1-e)\mathbf{H}(\mathfrak{C})e \oplus (1-e)\mathbf{H}(\mathfrak{C})(1-e)$ implies (d).

The canonical map $Z(\mathbf{H}(\mathfrak{C})) \rightarrow e\mathbf{H}(\mathfrak{C})e$, $z \mapsto ze$ is injective since $\mathbf{H}(\mathfrak{C})$ acts faithfully on $\mathbf{H}(\mathfrak{C})e$ by (c). Since $Z(\mathfrak{C})$ is a direct summand of $\mathbf{H}(\mathfrak{C})$ contained in $Z(\mathbf{H}(\mathfrak{C}))$, the assertion (a) follows from (b).

The fact that $Z(\mathfrak{C}) \simeq e\mathbf{H}(\mathfrak{C})e$ is an integrally domain closed follows from the fact that $\operatorname{gr}(e\mathbf{H}(\mathfrak{C})e) \simeq (\mathbf{k}[\mathscr{C}]/\mathfrak{C}) \otimes \mathbf{k}[V \times V^*]^{\Delta W}$ is an integrally closed domain (Lemma A.2.2).

4.3. Localization

$$V^{\operatorname{reg}} = V \setminus \bigcup_{H \in \mathscr{A}} H = \{ v \in V \mid \operatorname{Stab}_{W}(v) = 1 \}.$$

Set $P^{\text{reg}} = \mathbf{k}[\mathscr{C}] \otimes \mathbf{k}[V^{\text{reg}}]^W \times \mathbf{k}[V^*]^W$ and $Z^{\text{reg}} = P^{\text{reg}} \otimes_P Z$, so that $\mathbf{H}^{\text{reg}} = P^{\text{reg}} \otimes_P \mathbf{H} = Z^{\text{reg}} \otimes_Z \mathbf{H}$. Given $s \in \text{Ref}(W)$, let $\alpha_s^W = \prod_{w \in W} w(\alpha_s) \in P$, . The algebra P^{reg} (respectively Z^{reg}) is the localization of P (respectively Z) at the multiplicative subset $(\alpha_s^W)_{s \in \text{Ref}(W)}$. As a consequence,

(4.3.1) α_s is invertible in \mathbf{H}^{reg} .

Corollary 4.3.2. — Θ restricts to an isomorphism of $\mathbf{k}[\mathscr{C}]$ -algebras $Z^{\text{reg}} \xrightarrow{\sim} \mathbf{k}[\mathscr{C}] \otimes \mathbf{k}[V^{\text{reg}} \times V^*]^W$. In particular, Z^{reg} is regular.

Proof. — The first statement follows from the comparison between the centers of \mathbf{H}^{reg} and $\mathbf{k}[V^{\text{reg}} \times V^*] \rtimes W$ (Theorem 4.1.7). The second statement follows from the fact that *W* acts freely on $V^{\text{reg}} \times V^*$.

Given $c \in \mathscr{C}$, let Z_c^{reg} denote the localization of Z_c at $P_{\bullet}^{\text{reg}} = \mathbf{k}[V^{\text{reg}}]^W \otimes \mathbf{k}[V^*]^W$. Corollary 4.3.2 shows that

(4.3.3)
$$Z_c^{\text{reg}} \simeq \mathbf{k} [V^{\text{reg}} \times V^*]^W \text{ is a regular ring.}$$

4.3.B. Morita equivalences. — While *Z* and **H** are only related by a double endomorphism theorem, after restricting to a smooth open subset of *Z*, they become Morita equivalent.

Proposition 4.3.4. — Let U be a multiplicative subset of Z such that $Z[U^{-1}]$ is regular. Then $H[U^{-1}]e$ induces a Morita equivalence between the algebras $H[U^{-1}]$ and $Z[U^{-1}]$.

Proof. — Let \mathfrak{m} be a maximal ideal of Z such that $Z_{\mathfrak{m}}$ is regular. Let i be maximal such that $\operatorname{Tor}_{i}^{Z}(\operatorname{He}, Z/\mathfrak{m}) \neq 0$. Given any finite length Z-module L with support \mathfrak{m} , we have $\operatorname{Tor}_{i}^{Z}(\operatorname{He}, L) \neq 0$.

Let $\mathfrak{n} = P \cap \mathfrak{m}$. We have $\operatorname{Tor}_*^Z(\operatorname{H} e, Z/\mathfrak{n} Z) \simeq \operatorname{Tor}_*^Z(\operatorname{H} e, Z \otimes_P P/\mathfrak{n}) \simeq \operatorname{Tor}_*^P(\operatorname{H} e, P/\mathfrak{n})$ since *Z* is a free *P*-module (Corollary 4.2.7). Since $\operatorname{H} e$ is a free *P*-module (Corollary 4.2.2), it follows that $\operatorname{Tor}_{>0}^Z(\operatorname{H} e, Z/\mathfrak{n} Z) = 0$, hence $\operatorname{Tor}_{>0}^Z(\operatorname{H} e, (Z/\mathfrak{n} Z)_\mathfrak{m}) = 0$. We deduce that i = 0, hence $(\operatorname{H} e)_\mathfrak{m}$ is a free $Z_\mathfrak{m}$ -module.

We have shown that $H[U^{-1}]e$ is a projective $Z[U^{-1}]$ -module. The Morita equivalence follows from Corollary 4.2.7.

Corollary **4.3.5**. — *The* (\mathbf{H}^{reg} , Z^{reg})*-bimodule* $\mathbf{H}^{\text{reg}}e$ *induces a Morita equivalence between* \mathbf{H}^{reg} *and* Z^{reg} .

Proof. — This follows from Proposition 4.3.4 and Corollary 4.3.2. \Box

4.3.C. Fraction field. — Let **K** denote the fraction field of *P* and let $\mathbf{K}Z = \mathbf{K} \otimes_P Z$. Since *Z* is a domain and is integral over *P*, it follows that

(4.3.6) KZ is the fraction field of Z.

In particular, **K***Z* is a regular ring.

Theorem **4.3.7***.* — *The* **K***-algebras* **KH** *and* **K***Z are Morita equivalent, the Morita equivalence being induced by* **KH***e. More precisely,*

$$\mathbf{KH} \simeq \mathrm{Mat}_{|W|}(\mathbf{KZ}).$$

Proof. — Proposition 4.3.4 shows the Morita equivalence. Recall that **H***e* is a free *P*-module of rank $|W|^2$ and *Z* is a free *P*-module of rank |W| (Corollary 4.2.2). It follows that **KH***e* is a **K***Z*-vector space of dimension |W|, whence the result.

4.4. Complements

4.4.A. Poisson structure. — The PBW-decomposition induces an isomorphism of **k**-vector spaces $\mathbf{k}[T] \otimes \mathbf{H} \xrightarrow{\sim} \widetilde{\mathbf{H}}$. Given $h \in \mathbf{H}$, let \tilde{h} denote the image of $1 \otimes h \in \mathbf{k}[T] \otimes \mathbf{H}$ in $\widetilde{\mathbf{H}}$ through this isomorphism. If $z, z' \in Z$, then [z, z'] = 0, hence $[\tilde{z}, \tilde{z}'] \in T\widetilde{\mathbf{H}}$. We denote by $\{z, z'\}$ the image of $[\tilde{z}, \tilde{z}']/T \in \widetilde{\mathbf{H}}$ in $\mathbf{H} = \widetilde{\mathbf{H}}/T\widetilde{\mathbf{H}}$. It is easily checked that $\{z, z'\} \in Z$ and that

 $(4.4.1) \qquad \qquad \{-,-\}: Z \times Z \longrightarrow Z$

is a **k**[\mathscr{C}]-linear *Poisson bracket*. Given $c \in \mathscr{C}$, it induces a Poisson bracket

$$(4.4.2) \qquad \qquad \{-,-\}: Z_c \times Z_c \longrightarrow Z_c.$$

4.4.B. Additional filtrations. — Define a *P*-algebra filtration of **H** by

$$\mathbf{H}^{\preccurlyeq -1} = 0$$
, $\mathbf{H}^{\preccurlyeq 0} = P[W]$, $\mathbf{H}^{\preccurlyeq 1} = \mathbf{H}^{\preccurlyeq 0} + \mathbf{H}^{\preccurlyeq 0}V + \mathbf{H}^{\preccurlyeq 0}V^*$ and $\mathbf{H}^{\preccurlyeq i} = \mathbf{H}^{\preccurlyeq 1}\mathbf{H}^{\preccurlyeq i-1}$ for $i \ge 2$.

Note that $\mathbf{H}^{\leq 2N-1} \neq \mathbf{H}$ and $\mathbf{H}^{\leq 2N} = \mathbf{H}$.

Let *V'* be the **k***W*-stable complement to *V*^{*W*} in *V*. We have an injection of *P*-modules $P \otimes (V'^* \oplus V') \otimes \mathbf{k}[W] \hookrightarrow \mathbf{H}^{\preccurlyeq 1}$. It extends to a morphism of graded *P*-algebras

 $f: P \otimes (\mathbf{k}[V']^{\operatorname{co}(W)} \otimes \mathbf{k}[V'^*]^{\operatorname{co}(W)}) \rtimes W \to \operatorname{gr}^{\preccurlyeq} \mathbf{H}$

where *P* and *W* are in degree 0 and V'^* and V' are in degree 1.

Proposition 4.4.3. — The morphism f is an isomorphism of graded P-algebras.

Proof. — This follows from the PBW decomposition (Corollary 4.2.2). \Box

Let us define $\dot{\mathbf{H}} = \widetilde{\mathbf{H}} \otimes_{\mathbf{k}[T]} (\mathbf{k}[T]/(T-1))$, an algebra over $\mathbf{k}[\widetilde{\mathscr{C}}]/(T-1)$ (we identify that ring with $\mathbf{k}[\mathscr{C}]$). We define a **k**-algebra filtration of $\dot{\mathbf{H}}$

$$\dot{\mathbf{H}}^{\leq -1} = \mathbf{0}, \ \dot{\mathbf{H}}^{\leq 0} = \mathbf{k}[V] \rtimes W, \ \dot{\mathbf{H}}^{\leq 1} = \dot{\mathbf{H}}^{\leq 0}V + \dot{\mathbf{H}}^{\leq 0}\mathscr{C}^* + \dot{\mathbf{H}}^{\leq 0}$$

and $\dot{\mathbf{H}}^{\leq i} = (\dot{\mathbf{H}}^{\leq 1})^{i}$ for $i \geq 2$.

The canonical maps $\mathbf{k}[V] \rtimes W \to (\mathrm{gr}^{\triangleleft} \dot{\mathbf{H}})^0$ and $V \oplus \mathscr{C}^* \to (\mathrm{gr}^{\triangleleft} \dot{\mathbf{H}})^1$ induce a morphism of \mathbb{N} -graded algebras $g: \mathbf{H} \to \mathrm{gr}^{\triangleleft} \dot{\mathbf{H}}$

The PBW decomposition (Theorem 3.1.5) shows the following result.

Proposition 4.4.4. — The morphism g is an isomorphism.

Note that this proposition shows that $\tilde{\mathbf{H}}$ is the Rees algebra of $\dot{\mathbf{H}}$ for this filtration.

4.4.C. Symmetrizing form. — Recall (Proposition 2.2.3) that we have symmetrizing forms $p_N : \mathbf{k}[V] \rightarrow \mathbf{k}[V]^W$ and $p_N^* : \mathbf{k}[V^*] \rightarrow \mathbf{k}[V^*]^W$.

We define a *P*-linear map

$$\tau_{\mathbf{H}}: \mathbf{H} = \mathbf{k}[\mathscr{C}] \otimes \mathbf{k}[V] \otimes \mathbf{k}W \otimes \mathbf{k}[V^*] \longrightarrow P$$
$$a \otimes b \otimes w \otimes c \longmapsto a \delta_{1w} p_N(b) p_N^*(c).$$

Theorem 4.4.5 ([BrGoSt, Theorem 4.4]). — The form $\tau_{\rm H}$ is symmetrizing for the *P*-algebra **H**.

Proof. — We have an isomorphism

$$(\mathbf{gr}^{\preccurlyeq}\mathbf{H})^{2N} \xrightarrow{\sim} P$$

 $\mathbf{k}[\mathscr{C}] \otimes \mathbf{k}[V] \otimes \mathbf{k}W \otimes \mathbf{k}[V^*] \ni a \otimes b \otimes w \otimes c \longmapsto p_N(b) \otimes aw \otimes p_N^*(c)$

Via the isomorphism of Proposition 4.4.4, the *P*-linear form on $gr^{\prec}H$ induced by τ_{H} is given by

$$P \otimes (\mathbf{k}[V]_W \otimes \mathbf{k}[V^*]_W) \rtimes W \ni a \otimes (b \otimes c) \otimes w \mapsto a \delta_{1w} \langle p_N(b), p_N(c) \rangle.$$

It follows from Lemma A.4.1 that this is a symmetrizing form.

Let $L = V' \oplus V'^*$. We have $S^{N+1}(V') \subset S(V')_{>0}^{\operatorname{co}(W)} \cdot S^{\leq N-1}(V')$ (and similarly with V'^*), hence

$$L^{2N+1} \subset (S^{N+1}(V') \otimes S^{N}(V'^{*})) + (S^{N}(V') \otimes S^{N+1}(V'^{*})) + \mathbf{H}^{\leq 2N-1} \subset \mathbf{H}^{\leq 2N-1}$$

It follows from Lemma A.4.2 that τ_{H} is a trace. We deduce from Proposition A.4.3 that τ_{H} is symmetrizing.

Remark 4.4.6. — Note that while the identification $\mathbf{k}[V]_N^{\mathrm{co}(W)} \xrightarrow{\sim} \mathbf{k}$ is not canonical, there is a canonical choice of isomorphism $\mathbf{k}[V]_N^{\mathrm{co}(W)} \otimes_{\mathbf{k}} \mathbf{k}[V^*]_N^{\mathrm{co}(W)} \xrightarrow{\sim} \mathbf{k}$ obtained by requiring $\langle \alpha_s^{\vee}, \alpha_s \rangle = 1$ for all $s \in \operatorname{Ref}(W)$. This provides a canonical choice for τ_{H} .

We denote by $cas_{H} \in Z$ the central Casimir element of **H** (cf §A.4).

4.4.D. Hilbert series. — We compute here the bigraded Hilbert series of **H**, *P*, *Z* and *e***H***e*. First of all, note that

$$\dim_{\mathbf{k}}^{\mathbb{Z}\times\mathbb{Z}}(\mathbf{k}[\mathscr{C}]) = \frac{1}{(1-\mathbf{tu})^{|\operatorname{Ref}(W)/W|}},$$

so that it becomes easy to deduce the Hilbert series for **H**, using the PBW-decomposition:

(4.4.7)
$$\dim_{\mathbf{k}}^{\mathbb{Z}\times\mathbb{Z}}(\mathbf{H}) = \frac{|W|}{(1-\mathbf{t})^n \ (1-\mathbf{u})^n \ (1-\mathbf{t}\mathbf{u})^{|\operatorname{Ref}(W)/W|}}.$$

On the other hand, using the notation of Theorem 2.2.1, we get, thanks to (2.5.2),

(4.4.8)
$$\dim_{\mathbf{k}}^{\mathbb{Z}\times\mathbb{Z}}(P) = \frac{1}{(1-\mathbf{t}\mathbf{u})^{|\operatorname{Ref}(W)/W|}} \prod_{i=1}^{n} (1-\mathbf{t}^{d_i})(1-\mathbf{u}^{d_i})$$

Finally, note that the PBW-decomposition is a *W*-equivariant isomorphism of bigraded $\mathbf{k}[\mathscr{C}]$ -modules, from which we deduce that $\mathbf{H}e \simeq \mathbf{k}[\mathscr{C}] \otimes \mathbf{k}[V] \otimes \mathbf{k}[V^*]$ as bigraded $\mathbf{k}W$ -modules. So

(4.4.9) the bigraded **k**-vector spaces Z and
$$\mathbf{k}[\mathscr{C}] \otimes \mathbf{k}[V \times V^*]^{\Delta W}$$
 are isomorphic

We deduce that $\dim_{\mathbf{k}}^{\mathbb{Z}\times\mathbb{Z}}(Z) = \dim_{\mathbf{k}}^{\mathbb{Z}\times\mathbb{Z}}(\mathbf{k}[\mathscr{C}]) \cdot \dim_{\mathbf{k}}^{\mathbb{Z}\times\mathbb{Z}}(\mathbf{k}[V \times V^*]^{\Delta W})$. By (2.5.3) and Proposition 2.5.10, we get

(4.4.10)
$$\dim_{\mathbf{k}}^{\mathbb{Z}\times\mathbb{Z}}(Z) = \frac{1}{|W| (1-\mathbf{tu})^{|\operatorname{Ref}(W)/W|}} \sum_{w \in W} \frac{1}{\det(1-w\mathbf{t}) \det(1-w^{-1}\mathbf{u})}$$

and

(4.4.11)
$$\dim_{\mathbf{k}}^{\mathbb{Z}\times\mathbb{Z}}(Z) = \frac{\sum_{\chi \in \operatorname{Irr}(W)} f_{\chi}(\mathbf{t}) f_{\chi}(\mathbf{u})}{(1-\mathbf{t}\mathbf{u})^{|\operatorname{Ref}(W)/W|} \prod_{i=1}^{n} (1-\mathbf{t}^{d_{i}})(1-\mathbf{u}^{d_{i}})}$$

Example 4.4.12. — Assume here that $n = \dim_{\mathbf{k}}(V) = 1$ and let d = |W|. Let $y \in V \setminus \{0\}$ and $x \in V^*$ with $\langle y, x \rangle = 1$. Then $P_{\bullet} = \mathbf{k}[x^d, y^d]$, $\mathbf{eu}_0 = xy$ and it is easily checked that $Z_0 = \mathbf{k}[x^d, y^d, xy]$, that is, $Z_0 = P_{\bullet}[\mathbf{eu}_0]$. We will prove here that

$$Z = P[\mathbf{eu}]$$

Indeed, $Irr(W) = \{\varepsilon^i \mid 0 \le i \le d-1\}$ and $f_{\varepsilon^i}(\mathbf{t}) = \mathbf{t}^i$ for $0 \le i \le d-1$. Consequently, (4.4.11) implies that

$$\dim_{\mathbf{k}}^{\mathbb{Z}\times\mathbb{Z}}(Z) = \frac{1 + (\mathbf{tu}) + \dots + (\mathbf{tu})^{d-1}}{(1 - \mathbf{tu})^{d-1} (1 - \mathbf{t}^d) (1 - \mathbf{u}^d)}$$

whereas, since $P[\mathbf{eu}] = P \oplus P\mathbf{eu} \oplus \cdots \oplus P\mathbf{eu}^{d-1}$ by Proposition **??**, we have

$$\dim_{\mathbf{k}}^{\mathbb{Z}\times\mathbb{Z}}(P[\mathbf{eu}]) = \frac{1+(\mathbf{tu})+\cdots+(\mathbf{tu})^{d-1}}{(1-\mathbf{tu})^{d-1}(1-\mathbf{t}^d)(1-\mathbf{u}^d)}.$$

Hence, $\dim_{\mathbf{k}}^{\mathbb{Z}\times\mathbb{Z}}(P[\mathbf{eu}]) = \dim_{\mathbf{k}}^{\mathbb{Z}\times\mathbb{Z}}(Z)$, so $Z = P[\mathbf{eu}]$.

In fact, it almost never happens that $Z = P[\mathbf{eu}]$, cf Proposition ??.

4.5. Special features of Coxeter groups

Assumption. *In this section* §4.5*, we assume that W is a Coxeter group, and we use the notation of* §2.6*.*

In relation with the aspects studied in this chapter, one of the features of the situation is that the algebra **H** admits another automorphism $\sigma_{\mathbf{H}}$, induced by the isomorphism of *W*-modules $\sigma : V \xrightarrow{\sim} V^*$. It is the reduction modulo *T* of the automorphism $\sigma_{\mathbf{H}}$ de \mathbf{H} defined in §3.6. Propositions 3.6.2 and 3.6.3 now become:

Proposition 4.5.1. — There exists a unique automorphism $\sigma_{\rm H}$ of H such that

$\sigma_{\rm H}(y) = \sigma(y)$	if $y \in V$,
$\int \sigma_{\rm H}(x) = -\sigma^{-1}$	$I(x) if \ x \in V^*,$
$\sigma_{\rm H}(w) = w$	if $w \in W$,
$\sigma_{\rm H}(C) = C$	if $C \in \mathscr{C}^*$.

Proposition 4.5.2. — We have the following statements:

- (a) $\sigma_{\mathbf{H}}$ stabilizes the subalgebras $\mathbf{k}[\mathscr{C}]$ and $\mathbf{k}W$ and exchanges the subalgebras $\mathbf{k}[V]$ and $\mathbf{k}[V^*]$.
- (b) Given $h \in \mathbf{H}^{\mathbb{N} \times \mathbb{N}}[i, j]$, we have $\sigma_{\mathbf{H}}(h) \in \mathbf{H}^{\mathbb{N} \times \mathbb{N}}[j, i]$.
- (c) Given $h \in \mathbf{H}^{\mathbb{N}}[i]$ (respectively $h \in \mathbf{H}^{\mathbb{Z}}[i]$), we have $\sigma_{\mathbf{H}}(h) \in \mathbf{H}^{\mathbb{N}}[i]$ (respectively $h \in \mathbf{H}^{\mathbb{Z}}[-i]$).
- (d) $\sigma_{\mathbf{H}}$ commutes with the action of W^{\wedge} on **H**.
- (e) Given $c \in \mathscr{C}$, then $\sigma_{\mathbf{H}}$ induces an automorphism of \mathbf{H}_c , still denoted by $\sigma_{\mathbf{H}}$ (or $\sigma_{\mathbf{H}_c}$ if necessary).
- (f) $\sigma_{\rm H}(eu) = -eu$.

Similarly, there exists an action of $GL_2(\mathbf{k})$ on **H**, which is obtained by reduction modulo *T* of the action on $\tilde{\mathbf{H}}$ defined in Remark 3.6.4.

APPENDICES

APPENDIX A

FILTRATIONS

A.1. Filtered modules

Let *R* be a commutative ring. A *filtered R*-module is an *R*-module *M* together with *R*-submodules $M^{\leq i}$ for $i \in \mathbb{Z}$ such that

$$M^{\leqslant i} \subset M^{\leqslant i+1}$$
 for $i \in \mathbb{Z}$, $M^{\leqslant i} = 0$ for $i \ll 0$ and $M = \bigcup_{i \in \mathbb{Z}} M^{\leqslant i}$.

Given *M* a filtered *R*-module, the *associated* Z-graded *R*-module gr*M* is given by

$$(\operatorname{gr} M)_i = M^{\leqslant i} / M^{\leqslant i-1}.$$

The *principal symbol map* $\xi : M \to \operatorname{gr} M$ is defined by $\xi(m) = m \mod M^{\leq i-1} \in (\operatorname{gr} M)_i$, where *i* is minimal such that $m \in M^{\leq i}$. The principal symbol map is injective but not additive.

The *Rees* module associated with *M* is the *R*[*T*]-submodule $\text{Rees}(M) = \sum_{i \in \mathbb{Z}} T^i M^{\leq i}$ of $R[T, T^{-1}] \otimes_R M$. We have $R[T, T^{-1}] \otimes_{R[T]} \text{Rees}(M) = R[T, T^{-1}] \otimes_R M$. In particular, given $t \in R^{\times}$, we have an isomorphism of *R*-modules

$$R[T]/\langle T-t\rangle \otimes_{R[T]} \operatorname{Rees}(M) \xrightarrow{\sim} M, \ T^{i}m \mapsto t^{i}m.$$

There is an isomorphism of *R*-modules

$$R[T]/\langle T \rangle \otimes_{R[T]} \operatorname{Rees}(M) \xrightarrow{\sim} \operatorname{gr} M, \ T^{i} m \mapsto \begin{cases} 0 & \text{if } m \in M^{< i} \\ \xi(m) & \text{otherwise.} \end{cases}$$

A.2. Filtered algebras

Let *A* be an *R*-algebra. A (bounded below) *filtration* on *A* is the data of a filtered *Rb*-module structure on *A* such that

$$1 \in A^{\leq 0} \setminus A^{\leq -1}$$
 and $A^{\leq i} \cdot A^{\leq j} \subset A^{\leq i+j}$ for all $i, j \in \mathbb{Z}$.

The associated graded *R*-module grA is a graded *R*-algebra. The Rees module associated with *A* is a *R*[*T*]-algebra. An immediate consequence is the following lemma.

Lemma A.2.1. — If gr *A* has no 0 divisors, then the principal symbol map $\xi : A \rightarrow \text{gr } A$ is multiplicative and *A* has no 0 divisors.

Proof. — Let $a, b \in A$ be two non-zero elements and let i, j minimal such that $a \in A^{\leq i}$ and $b \in A^{\leq j}$. Since gr*A* has no 0 divisors, it follows that $\xi(a)\xi(b) \neq 0$, hence $ab\notin A^{\leq i+j}$. This shows that $\xi(ab) = \xi(a)\xi(b)$, and that $ab \neq 0$.

Let us recall some facts of commutative algebra (cf [**Mat**, Exercices 9.4-9.5]). Let R be a commutative domain with field of fractions K. An element $x \in K$ is said to be *almost integral* over R if there exists $a \in R$, $a \neq 0$, such that for all $n \ge 0$, we have $ax^n \in R$. If x is integral over R, then x is almost integral over R, and the converse holds if R is noetherian.

We say that *R* is *completely integrally closed* if the elements of *K* that are almost integral over *R* are in *R*.

Lemma A.2.2. — *Assume A is a commutative ring. If* gr *A is a completely integrally closed domain, then A is a completely integrally closed domain.*

Proof. — Lemma A.2.1 shows that *A* is a domain. Let *K* be its field of fractions. Let $x \in K$ be almost integral over *R*. Let $c, d \in A$ such that x = c/d. Let *i* (resp. *j*) be minimal such that $c \in A^{\leq i}$ (resp. $d \in A^{\leq j}$). We show by induction on *i* that $x \in A$.

Let $a \in A$, $a \neq 0$, such that $ax^n \in A$ for all $n \ge 0$. Let $\alpha_n = ax^n$. We have $d^n \alpha_n = ac^n$, hence $\xi(d)^n \xi(\alpha_n) = \xi(a)\xi(c)^n$ (cf Lemma A.2.1). It follows that $\frac{\xi(c)}{\xi(d)}$ is an element of the field of fractions of gr*A* that is almost integral over gr*A*. Consequently, it is in gr*A*. Since gr*A* has no zero divisors, it follows that it is homogeneous of degree i - j. Let $u \in A$ with $\xi(u) = \frac{\xi(c)}{\xi(d)}$. Let $x' = x - u = \frac{c - ud}{d}$. We have $c - ud \in A^{\leq i-1}$ and x' is almost integral over *A*. It follows by induction that $x' \in A$, hence $x \in A$.

A.3. Filtered modules over filtered algebras

A *filtered A-module* is an *A*-module *M* together with a structure of filtered *R*-module such that

$$A^{\leq i} \cdot M^{\leq j} \subset M^{\leq i+j}$$
 for all $i, j \in \mathbb{Z}$.

A *filtered morphism* of *A*-modules is a morphism $f : M \to N$, where *M* and *N* are filtered *A*-modules, such that $f(M^{\leq i}) \subset N^{\leq i}$ for all $i \in \mathbb{Z}$.

Lemma A.3.1. — Let $f : M \rightarrow N$ be a filtered morphism of A-modules. If gr f is surjective (resp. injective), then f is surjective (resp. injective).

Proof. — Assume gr *f* is surjective. We have $N^{\leq i} = f(M^{\leq i}) + N^{\leq i-1}$. Since $N^{\leq i} = 0$ for $i \ll 0$, it follows by induction that $N^{\leq i} = f(M^{\leq i})$, hence *f* is surjective.

Assume gr *f* is injective. Let $m \in M - \{0\}$ and let *i* be minimal such $m \in M^{\leq i}$. We have $f(m) \notin N^{\leq i-1}$, hence $f(m) \neq 0$.

Lemma A.3.2. — Let M be a filtered A-module and E a subset of M. If $\xi(E)$ generates gr M as an A-module, then E generates M as an A-module.

Let F be a subset of A. If $\xi(F)$ generates grA as an R-algebra, then F generates A as an R-algebra.

Proof. — We have a canonical morphism of filtered *A*-modules $f : A^{(E)} \rightarrow M$. By assumption, gr *f* is surjective, hence *f* is surjective by lemma A.3.1.

The second assertion follows from the first one by taking A = R, M = A and E the set of elements of A that are products of elements of F.

Let *M* and *N* be two finitely generated filtered *A*-modules. We endow the *R*-module Hom_{*A*}(*M*, *N*) with the filtration given by

$$\operatorname{Hom}_{A}(M,N)^{\leqslant i} = \{ f \in \operatorname{End}_{A}(M) | f(M^{\leqslant j}) \subset N^{\leqslant i+j} \ \forall j \in \mathbb{Z} \}.$$

A map $f \in \text{Hom}_A(M, N)^{\leq i}$ induces a morphism of gr*A*-modules gr $M \to \text{gr}N$, homogeneous of degree *i*, that vanishes if $f \in \text{Hom}_A(M, N)^{\leq i-1}$.

Lemma A.3.3. — The construction above provides an injective morphism of graded *R*-modules

 $\operatorname{gr}\operatorname{Hom}_A(M, N) \to \operatorname{Hom}_{\operatorname{gr} A}(\operatorname{gr} M, \operatorname{gr} N).$

Lemma A.3.4. — Let *e* be an idempotent of $A^{\leq 0} \setminus A^{\leq -1}$ Then $\operatorname{gr} A \cdot \xi(e)$ is a progenerator for $\operatorname{gr} A$ if and only if Ae is a progenerator for A.

Proof. — Note that $\xi(e)$ is an idempotent of gr*A*. The *A*-module *Ae* is a progenerator if and only if *e* generates *A* as an (*A*,*A*)-bimodule. The lemma follows from Lemma A.3.2.

A.4. Symmetric algebras

Let us recall some basic facts about symmetric algebras (cf for example [**Bro1**, §2, 3]). A *symmetric R-algebra* is an *R*-algebra *A*, finitely generated and projective as an *R*-module, and endowed with an *R*-linear map $\tau_A : A \to R$ such that

- $\tau_A(ab) = \tau_A(ba)$ for all $a, b \in A$ (i.e., τ_A is a trace) and

- the morphism of (A, A)-bimodules

$$\hat{\tau}_A : A \to \operatorname{Hom}_R(A, R), \ a \mapsto (b \mapsto \tau(ab))$$

is an isomorphism.

Such a form τ_A is called a *symmetrizing form* for *A*.

Consider the sequence of isomorphisms

$$A \otimes_R A \xrightarrow[\sim]{\hat{\tau} \otimes \mathrm{id}}_{\sim} \operatorname{Hom}_R(A, R) \otimes_R A \xrightarrow[\sim]{f \otimes a \to (b \to f(b)a)}_{\sim} \operatorname{End}_R(A).$$

The *Casimir element* is the inverse image of id_A through the composition of maps above. The *central Casimir element* cas_A is its image in A by the multiplication map $A \otimes_R A \rightarrow A$. It is an element of Z(A).

Assume *A* is free over *R*, with *R*-basis \mathscr{B} and dual basis $(b^{\vee})_{b \in \mathscr{B}}$ for the bilinear form $A \otimes_R A \to R$, $a \otimes a' \mapsto \tau(aa')$. We have $\operatorname{cas}_A = \sum_{b \in \mathscr{B}} bb^{\vee}$.

Lemma A.4.1. — Let (A, τ_A) be a symmetric *R*-algebra and *G* a finite group acting on the *R*-algebra *A* and such that $\tau_A(g(a)) = \tau_A(a)$ for all $g \in G$ and $a \in A$.

Let $B = A \rtimes G$ and define an R-linear form $\tau_B : B \to R$ by $\tau_B(a \otimes g) = \tau_A(a)\delta_{1,g}$ for $a \in A$ and $g \in G$.

The form τ_B is symmetrizing for B.

Proof. — We have

 $\tau_B((a \otimes g)(a' \otimes g')) = \tau_A(a g(a'))\delta_{g^{-1},g'} = \tau_A(a'g^{-1}(a))\delta_{g^{-1},g'} = \tau_B((a' \otimes g')(a \otimes g)).$

Given $g \in G$, let $B_g = A \otimes g$ and $C_g = \text{Hom}_R(B_g, R)$. We have $B = \bigoplus_{g \in G} B_g$ and Hom_{*R*}(*B*, *R*) = $\bigoplus_g C_g$. Given $g \in G$ we have $\hat{\tau}_B(B_g) \subset C_{g^{-1}}$ and $\hat{\tau}_B(a \otimes g)(a' \otimes g^{-1}) = \tau_A(ag(a'))$. It follows that the restriction of τ_B to B_g is an isomorphism $B_g \xrightarrow{\sim} C_{g^{-1}}$.

Let now *A* be a filtered *R*-algebra, with $A^{\leq -1} = 0$, $A^{\leq d-1} \neq A$ and $A^{\leq d} = A$ for some $d \geq 0$. Let $\overline{\tau} : (\text{gr} A)^d \to R$ be an *R*-linear form. We extend it to an *R*-linear form on gr A by setting it to 0 on $(\text{gr} A)^i$ for i < d. We define an *R*-linear form τ on *A* as the composition

$$\tau: A \xrightarrow{\operatorname{can}} (\operatorname{gr} A)^d \xrightarrow{\bar{\tau}} R.$$

Denote by $p_i : A^{\leq i} \to (\text{gr} A)^i$ the canonical projection. Let $x \in A^{\leq i}$ and $y \in A^{\leq j}$. We have $\tau(xy) = \overline{\tau}(p_d(xy))$. We have $p_d(xy) = 0$ if i + j < d. If i + j = d, we have $p_d(xy) = p_i(x)p_j(y)$, hence $\tau(xy) = \overline{\tau}(p_i(x)p_j(y))$. The *R*-module Hom_{*R*}(*A*, *R*) is filtered with Hom_{*R*}(*A*, *R*)^{$\leq i$} = Hom_{*R*}(*A*/*A*^{$\leq d-i-1$}, *R*) and $\hat{\tau}$ is a morphism of filtered *R*-modules with gr($\hat{\tau}$) = $\hat{\tau}$.

Lemma A.4.2. — Let *L* be an *R*-submodule of $A^{\leq 1}$ such that $A = A^{\leq 0}(R+L)^d$, $L^{d+1} \subset A^{< d}$ and $A^{\leq 0}L = LA^{\leq 0}$.

If $\bar{\tau}$ *is a trace, then* τ *is a trace.*

Proof. — Note that $A = A^{\leq 0}L^d + A^{<d}$. We have $p_d(A^{\leq 0}L^dL) \subset p_d(A^{<d}) = 0$ and $p_d(LA^{\leq 0}L^d) = p_d(A^{\leq 0}LL^d) = 0$. It follows that $\tau(al) = \tau(la)$ for $a \in A^{\leq 0}L^d$ and $l \in L$. The considerations above show that $\tau(al) = \tau(la)$ for $a \in A^{<d}$ and $l \in L$ and $\tau(ba) = \tau(ab)$ for $b \in A$ and $a \in A^{\leq 0}$.

The next proposition is inspired by a result of Brundan and Kleshchev on degenerate cyclotomic Hecke algebras [**BrK1**, Theorem A.2].

Proposition A.4.3. — Assume grA is projective and finitely generated as an R-module and assume τ and $\overline{\tau}$ are traces.

If $\bar{\tau}$ is a symmetrizing form for grA, then τ is a symmetrizing form for A.

Proof. — Note that *A* is a finitely generated projective *R*-module. Since $\hat{\tau}$ is an isomorphism, it follows that $\hat{\tau}$ is an isomorphism (Lemma A.3.1).

A.5. Weyl algebras

Let *V* be a finite dimensional vector space over a field **k** of characteristic 0. Let $\mathscr{D}(V) = \widetilde{\mathbf{H}}_{1,0}$ be the Weyl algebra of *V*. This is the quotient of the tensor algebra $T_{\mathbf{k}}(V \oplus V^*)$ by the relations

$$[x, x'] = [y, y'] = 0$$
, $[y, x] = \langle y, x \rangle$ for $x, x' \in V^*$ and $y, y' \in V$.

There is an isomorphism of **k**-modules given by multiplication: $\mathbf{k}[V] \otimes \mathbf{k}[V^*] \xrightarrow{\sim} \mathscr{D}(V)$.

The **k**-algebra $\mathscr{D}(V)$ is filtered, with $\mathscr{D}(V)^{\leq -1} = 0$, $\mathscr{D}(V)^{\leq 0} = \mathbf{k}[V]$, $\mathscr{D}(V)^{\leq 1} = \mathbf{k}[V] \oplus \mathbf{k}[V] \otimes V$ and $\mathscr{D}^{\leq i} = (\mathscr{D}^{\leq 1})^i$ for $i \geq 2$. The associated graded algebra $\operatorname{gr} \mathscr{D}(V)$ is $\mathbf{k}[V \oplus V^*]$. The associated Rees algebra $\mathscr{D}_T(V)$ is the quotient of $\mathbf{k}[T] \otimes T_{\mathbf{k}}(V \oplus V^*)$ by the relations

$$[x, x'] = [y, y'] = 0$$
, $[y, x] = T\langle y, x \rangle$ for $x, x' \in V^*$ and $y, y' \in V$.

Consider the induced $\mathscr{D}(V)$ -module $\mathscr{D}(V) \otimes_{\mathbf{k}[V^*]} \mathbf{k}$, where $\mathbf{k}[V^*]$ acts on \mathbf{k} by evaluation at 0. Via the canonical isomorphism $\mathbf{k}[V] \xrightarrow{\sim} \mathscr{D}(V) \otimes_{\mathbf{k}[V^*]} \mathbf{k}$, $a \mapsto a \otimes 1$, we obtain the faithful action of $\mathscr{D}(V)$ by polynomial differential operators on $\mathbf{k}[V]$: an element $x \in V^*$ acts by multiplication, while $y \in V$ acts by $\partial_y = \frac{\partial}{\partial y}$. As a consequence of the faithfulness of the action, the centralizer of $\mathbf{k}[V]$ in $\mathscr{D}(V)$ is $\mathbf{k}[V]$.

Note that there is an injective morphism of $\mathbf{k}[T]$ -algebras

$$\mathscr{D}_T(V) \hookrightarrow \mathbf{k}[T] \otimes \mathscr{D}(V), \ V^* \ni x \mapsto x, \ V \in y \mapsto Ty.$$

This provides by restriction $\mathbf{k}[T] \otimes \mathbf{k}[V]$ with the structure of a faithful representation of $\mathcal{D}_T(V)$.

APPENDIX B

INVARIANT RINGS

Let **k** be a field. Let *A* be a **k**-algebra acted on by a finite group *G* whose order is invertible in **k**. Let $e = \frac{1}{|G|} \sum_{g \in G} g$, a central idempotent of **k**[*G*]. Let $R = A \rtimes G$. The aim of this appendix is to relate the representation theory of *R* and that of A^G . We are mainly interested in the case where *A* is the algebra of regular functions on an affine scheme.

B.1. Morita equivalence

The following lemma is clear.

Lemma B.1.1. — There is an isomorphism of *R*-modules $A \xrightarrow{\sim} Re$, $a \mapsto ae$ that restricts to an isomorphism of **k**-algebras $A^G \xrightarrow{\sim} eRe$.

Let *M* be an *A*-module whose isomorphism class is stable under the action of a subgroup *H* of *G*. There are isomorphisms of *A*-modules $\phi_h : h^*(M) \xrightarrow{\sim} M$ for $h \in H$, unique up to left multiplication by $\operatorname{Aut}_A(M)$. Consequently, the elements $\phi_h \in N_{\operatorname{Aut}_{AG}(M)}(\operatorname{Aut}_A(M))$ define a morphism of groups $H \to \operatorname{Aut}_{A^G}(M)/\operatorname{Aut}_A(M)$.

Proposition B.1.2. — The following assertions are equivalent:

- (1) Re is a progenerator for R
- (2) Re induces a Morita equivalence between R and A^G
- (3) R = ReR
- (4) for every simple *R*-module *S*, we have $S^G \neq 0$.
- (5) for every simple A-module T whose isomorphism class is stable under the action of a subgroup H of G and for every non-zero direct summand U of $\operatorname{Ind}_{A}^{A \rtimes H} T$, we have $U^{H} \neq 0$.

Proof. — Note that *Re* is a direct summand of *R*, as a left *R*-module, hence *Re* is a finitely generated projective *R*-module. The equivalence between (1) and (2) follows from Lemma B.1.1. If *Re* is a progenerator, then *R* is isomorphic to a quotient of a multiple of *Re*. Since the image of a morphism $Re \rightarrow R$ is contained in *ReR*, we deduce that if (1) holds, then (3) holds. Conversely, assume (3). There are $r_1, \ldots, r_n \in R$ such that $1 \in Rer_1 + \cdots + Rer_n$, hence the morphism $(Re)^n \rightarrow R$, $(a_1, \ldots, a_n) \rightarrow a_1r_1 + \cdots + a_nr_n$ is surjective and (1) follows.

We have R/ReR = 0 if and only if R/ReR has no simple module, hence if and only if *e* does not act by 0 on any simple *R*-module. This shows the equivalence of (3) and (4).

Let *S* be a simple *R*-module. There is a simple *A*-module *T* such that *S* is a direct summand of $\operatorname{Ind}_{A}^{R}(T)$. Let *H* be the stabilizer of the isomorphism class of *T*. There is a simple $(A \rtimes H)$ -module *U* such that *S* is a direct summand of $\operatorname{Ind}_{A \rtimes H}^{R}(U)$. We have $S^{G} \neq 0$ if and only if $U^{H} \neq 0$. This shows the equivalence of (4) and (5).

Corollary B.1.3. — If ReR = R, then $Z(R) = Z(A^G)$.

Proof. — By Proposition B.1.2, the rings *R* and $eRe \simeq A^G$ are Morita equivalent thanks to the bimodule Re, so $Z(R) \simeq Z(A^G)$, the isomorphism being determined by the action on the bimodule Re (Lemma B.1.4 below). The result follows.

Lemma B.1.4. — Let *A* and *B* be two rings and *M* an (*A*, *B*)-bimodule such that the canonical maps give isomorphisms $B \xrightarrow{\sim} End_A(M)$ and $A \xrightarrow{\sim} End_{B^{opp}}(M)^{opp}$. Then we have an isomorphism $Z(A) \xrightarrow{\sim} Z(B)$.

In particular, if *e* is an idempotent of *a* ring *A* and if left multiplication gives an isomorphism $A \xrightarrow{\sim} End_{(eAe)^{opp}}(Ae)^{opp}$, then there is an isomorphism $Z(A) \xrightarrow{\sim} Z(eAe)$, $a \mapsto ae$.

Proof. — The left multiplication on *M* induces induces a ring morphism $\alpha : Z(A) \rightarrow Z(B)$ such that $zm = m\alpha(z)$ for all $z \in Z(A)$ and $m \in M$. Similarly, the right multiplication induces a ring morphism $\beta : Z(B) \rightarrow Z(A)$ such that $mz = \beta(z)m$ for all $z \in Z(B)$ and $m \in M$. Hence, if $z \in Z(A)$ and $m \in M$, then $zm = \beta(\alpha(z))m$, and so $\beta \circ \alpha = \text{Id}_{Z(A)}$ since the action of *A* on *M* is faithful by assumption. Similarly $\alpha \circ \beta = \text{Id}_{Z(B)}$.

B.2. Geometric setting

We assume now that $A = \mathbf{k}[X]$, where *X* is an affine scheme of finite type over \mathbf{k} , i.e., *A* is a finitely generated commutative \mathbf{k} -algebra. Then Proposition B.1.2 has the following consequence.

Corollary B.2.1. — If G acts freely on X, then Re induces a Morita equivalence between R and A^G .

Let $X^{\text{reg}} = \{x \in X | \text{Stab}_G(x) = 1\}$ and let $R^{\text{reg}} = \mathbf{k}[X^{\text{reg}}] \rtimes G$. We assume X^{reg} is dense in X, i.e., the pointwise stabilizer of an irreducible component of X is trivial. The following proposition gives a sufficient condition for a double centralizer theorem.

Proposition B.2.2. — Assume that X is a normal variety, i.e., all localizations of A at prime ideals are integral and integrally closed.

- (1) The canonical morphism of algebras $R \to \operatorname{End}_{(A^G)^{\operatorname{opp}}}(A)^{\operatorname{opp}}$ is injective.
- (2) If the codimension of $X \setminus X^{\text{reg}}$ is ≥ 2 in each connected component of X, then the morphism above is an isomorphism and $Z(R) = Z(A^G)$.

Proof. — It follows from Corollary B.2.1 that given $f \in A^G$ such that $D(f) \subset X^{\text{reg}}$, then the canonical morphism $A[f^{-1}] \rtimes G \to \text{End}_{A^G[f^{-1}]}(A[f^{-1}])^{\text{opp}}$ is an isomorphism. In particular, the morphism of the proposition $R \to \text{End}_{(A^G)^{\text{opp}}}(A)^{\text{opp}}$ is an injective morphism of *A*-modules, since X^{reg} is dense in *X*.

Let *K* be the cokernel of the canonical morphism $R \to \text{End}_{(A^G)^{\text{opp}}}(A)^{\text{opp}}$. We have $K \otimes_A Ak[X^{\text{reg}}] = 0$, hence the support of *K* has codimension ≥ 2 . Since *A* is normal, it has depth ≥ 2 , hence $\text{Ext}_A^1(K, A) = 0$. We deduce that *K* is a direct summand of the torsion free *A*-module $\text{End}_{(A^G)^{\text{opp}}}(A)^{\text{opp}}$, hence K = 0. The last statement follows from Lemma B.1.4.

We conclude by a description of the simple *R*-modules whenever R = ReR. In this case, using the Morita equivalence between *R* and A^G induced by the bimodule *Re*, we obtain a bijective map

$$(B.2.3) \qquad \qquad \begin{array}{ccc} \operatorname{Irr}(R) & \xrightarrow{\sim} & \operatorname{Irr}(A^G) \\ S & \longmapsto & eS. \end{array}$$

Since *A* is commutative, Irr(A) (respectively $Irr(A^G)$) is in one-to-one correspondence with the maximal ideals of *A* (respectively of A^G), so we obtain a bijective map

(B.2.4)
$$\operatorname{Irr}(A)/G \xleftarrow{\sim} \operatorname{Irr}(A^G)$$

(see Propositions ?? and ??). By composing the two previous bijective maps, we obtain a third bijective map

$$(B.2.5) Irr(A)/G \xleftarrow{} Irr(R)$$

We will describe more concretely this last map. In order to do that, let Ω be a *G*-orbit of (isomorphism classes of) simple *A*-modules. The *A*-module $S_{\Omega} = A / \bigcap_{T \in \Omega} Ann_A(T)$ inherits an action of *G*, hence it becomes an *R*-module.

Proposition B.2.6. — Assume that R = ReR and that A is commutative and finitely generated. Then:

- (a) If $\Omega \in Irr(A)/G$, then S_{Ω} is a simple *R*-module.
- (b) The map $Irr(A)/G \longrightarrow Irr(R)$, $\Omega \mapsto S_{\Omega}$ is bijective (and coincides with the bijective map B.2.4).
- (c) If *S* is a simple *A*-module, then $\operatorname{Res}_{A}^{R}(S)$ is semisimple and multiplicity-free, and two simple *A*-modules occuring in $\operatorname{Res}_{A}^{R}(S)$ are in the same *G*-orbit.
- (d) If *S* and *S'* are two simple *R*-modules, then $S \simeq S'$ if and only if $\text{Res}_A^R(S)$ and $\text{Res}_A^R(S')$ have a common irreducible submodule.

Proof. — (a) By construction, we have a well-defined injective morphism of *A*-modules $S_{\Omega} \hookrightarrow \bigoplus_{T \in \Omega} T$ (here, we identify *T* and *A*/Ann_{*A*}(*T*). So, if *S* is a non-zero *R*-submodule of S_{Ω} , then it is a non-zero *A*-submodule of S_{Ω} . Therefore, *S* contains some submodule isomorphic to $T \in \Omega$. Since the action of *G* stabilizes *S*, it follows that $S = S_{\Omega}$ and that

(*)
$$\operatorname{Res}_{A}^{R}(S_{\Omega}) = \bigoplus_{T \in \Omega} T.$$

This proves (a).

(b) It follows from (*) that the map $\operatorname{Irr}(A)/G \longrightarrow \operatorname{Irr}(R)$, $\Omega \mapsto S_{\Omega}$ is injective. Now, let $\Omega \in \operatorname{Irr}(A)/G$, let $T \in \Omega$ and let $\mathfrak{m} = \operatorname{Ann}_A(T)$. We denote by H the stabilizer of \mathfrak{m} in G (that is, the decomposition group of \mathfrak{m}). Then $eS = S_{\Omega}^G \simeq T^H = (A/\mathfrak{m})^H$. But, by Theorem ??, $(A/\mathfrak{m})^H = A^G/(\mathfrak{m} \cap A^G)$. This proves that eS_{Ω} is the simple A^G -module associated with the maximal ideal $\mathfrak{m} \cap A^G$ of A^G or, in other words, is the simple A^G module associated with Ω through the bijective map B.2.4. This completes the proof of (b).

(c) and (d) now follow from (a), (b) and (*).

BIBLIOGRAPHY

[AlFo]	J. ALEV & L. FOISSY, Le groupe des traces de Poisson de certaines al- gèbres d'invariants, <i>Comm. Algebra</i> 37 (2009), 368-388.
[Bel1]	G. BELLAMY, <i>Generalized Calogero-Moser spaces and rational Cherednik al-</i> <i>gebras</i> , PhD thesis, University of Edinburgh, 2010.
[Bel2]	G. BELLAMY, On singular Calogero-Moser spaces, <i>Bull. of the London Math. Soc.</i> 41 (2009), 315-326.
[Bel3]	G. BELLAMY, Factorisation in generalized Calogero-Moser spaces, <i>J. Algebra</i> 321 (2009), 338-344.
[Bel4]	G. BELLAMY, Cuspidal representations of rational Cherednik algebras at $t = 0$, <i>Math. Z.</i> (2011) 269 , 609-627.
[Bel5]	G. BELLAMY, The Calogero-Moser partition for $G(m, d, n)$, Nagoya Math. J. 207 (2012), 47-77.
[Ben]	M. BENARD, Schur indices and splitting fields of the unitary reflection groups, <i>J. Algebra</i> 38 (1976), 318-342.
[Bes]	D. BESSIS, Sur le corps de définition d'un groupe de réflexions complexe, <i>Comm. Algebra</i> 25 (1997), 2703-2716.
[Bes2]	D. BESSIS, Zariski theorems and diagrams for braid groups, <i>Invent. Math.</i> 145 (2001), 487-507.
[BeBoRo]	D. BESSIS, C. BONNAFÉ & R. ROUQUIER, Quotients et extensions de groupes de réflexion complexes, <i>Math. Ann.</i> 323 (2002), 405-436.
[Bia]	A. BIALYNICKI-BIRULA, Some theorems on actions of algebraic groups, <i>Ann. of Math.</i> 98 (1973), 480-497.

[Bon1]	C. BONNAFÉ, Two-sided cells in type <i>B</i> (asymptotic case), <i>J. Algebra</i> 304 (2006), 216-236.
[Bon2]	C. BONNAFÉ, Semicontinuity properties of Kazhdan-Lusztig cells, <i>New-Zealand J. Math.</i> 39 (2009), 171-192.
[Bon3]	C. BONNAFÉ, On Kazhdan-Lusztig cells in type <i>B</i> , <i>J. Algebraic Combin.</i> 31 (2010), 53-82. Erratum to: On Kazhdan-Lusztig cells in type <i>B</i> , <i>J. Algebraic Combin.</i> 35 (2012), 515-517.
[Bon4]	C. BONNAFÉ, Constructible characters and b -invariant, preprint (2013), disponible sur arxiv.
[BoDy]	C. BONNAFÉ & M. DYER, Semidirect product decomposition of Cox- eter groups, <i>Comm. in Algebra</i> 38 (2010), 1549-1574.
[BoGe]	C. BONNAFÉ & M. GECK, Conjugacy classes of involutions and Kazhdan-Lusztig cells, <i>Represent. Theory</i> 18 (2014), 155-182.
[BGIL]	C. BONNAFÉ, M. GECK, L. IANCU & T. LAM, On domino insertion and Kazhdan-Lusztig cells in type B_n , <i>Representation theory of alge-</i> <i>braic groups and quantum groups</i> , 33-54, Progress in Mathematics 284 , Birkhäuser/Springer, New York, 2010.
[BoIa]	C. BONNAFÉ & L. IANCU, Left cells in type B_n with unequal parameters, <i>Representation Theory</i> 7 (2003), 587-609.
[Bou]	N. BOURBAKI, Algèbre commutative, chapitres 5, 6, 7.
[Bri]	E. BRIESKORN, Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe, <i>Invent. Math.</i> 12 (1971), 57-61.
[Bro1]	M. BROUÉ, Higman criterion revisited, <i>Michigan Journal of Mathematics</i> 58 (2009), 125-179.
[Bro2]	M. BROUÉ, <i>Introduction to complex reflection groups and their braid groups</i> , Lecture Notes in Mathematics 1988 , 2010, Springer.
[BrKi]	M. BROUÉ & S. KIM, Familles de caractères des algèbres de Hecke cy- clotomiques, <i>Adv. Math.</i> 172 (2002), 53-136.
[BrMaMi1]	M. BROUÉ, G. MALLE & J. MICHEL, Towards Spetses I, <i>Transformation Groups</i> 4 (1999) 157-218.

- [BrMaMi2] M. BROUÉ, G. MALLE & J. MICHEL, Split Spetses for primitive reflection groups, preprint (2012), arXiv:1204.5846.
- [BrMaRo] M. BROUÉ, G. MALLE & R. ROUQUIER, Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math. 500 (1998), 127-190.
- [BrMi] M. BROUÉ & J. MICHEL, Sur certains éléments réguliers des groupes de Weyl et les variétés de Deligne-Lusztig associées, *Finite reductive groups* (Luminy, 1994), 73-139, Progr. Math. 141, Birkhäuser, Boston, MA, 1997.
- [BrGo] K. A. BROWN & I. G. GORDON, The ramification of centres: Lie algebras in positive characteristic and quantised enveloping algebras, *Math. Z.* 238 (2001), 733-779.
- [BrGoSt] K. A. BROWN, I. G. GORDON & C. H. STROPPEL, Cherednik, Hecke and quantum algebras as free Frobenius and Calabi-Yau extensions, *J. Algebra* **319** (2008), 1007-1034.
- [BrKI] J. BRUNDAN, JONATHAN & A. KLESHCHEV, Schur-Weyl duality for higher levels, *Selecta Math.* (*N.S.*) **14** (2008), 1-57.
- [Chl2] M. CHLOUVERAKI, Rouquier blocks of the cyclotomic Hecke algebras, *C. R. Math. Acad. Sci. Paris* **344** (2007), 615-620.
- [Chl3] M. CHLOUVERAKI, Rouquier blocks of the cyclotomic Ariki-Koike algebras, *Algebra Number Theory* **2** (2008), 689-720.
- [Chl4] M. CHLOUVERAKI, *Blocks and families for cyclotomic Hecke algebras*, Lecture Notes in Mathematics **1981**, 2009, Springer.
- [Chl5] M. CHLOUVERAKI, Rouquier blocks of the cyclotomic Hecke algebras of *G*(*de*,*e*,*r*), *Nagoya Math. J.* **197** (2010), 175-212.
- [CPS1] E. CLINE, B. PARSHALL AND L. SCOTT, *Finite-dimensional algebras and highest weight categories*, J. Reine Angew. Math. **391** (1988), 85–99.
- [CPS2] E. CLINE, B. PARSHALL AND L. SCOTT, Integral and graded quasihereditary algebras, I, J. of Alg. 131 (1990), 126–160.
- [EtGi] P. ETINGOF & V. GINZBURG, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, *Invent. Math.* 147 (2002), 243-348.
- [Ge1] M. GECK, On the induction of Kazhdan-Lusztig cells, *Bull. London Math. Soc.* **35** (2003), 608-614.

[Ge2]	M. GECK, Computing Kazhdan–Lusztig cells for unequal parameters <i>J. Algebra</i> 281 (2004) 342-365.
[Ge3]	M. GECK, Left cells and constructible representations, <i>Represent. Theory</i> 9 (2005), 385-416; Erratum to: "Left cells and constructible representations", <i>Represent. Theory</i> 11 (2007), 172-173.
[GeIa]	M. GECK & L. IANCU, Lusztig's a -function in type B_n in the asymptotic case, <i>Nagoya Math. J.</i> 182 (2006), 199-240.
[GePf]	M. GECK & G. PFEIFFER, <i>Characters of finite Coxeter groups and Iwahori-</i> <i>Hecke algebras</i> , London Mathematical Society Monographs, New Series 21 , The Clarendon Press, Oxford University Press, New York, 2000, xvi+446 pp.
[GeRo]	M. GECK & R. ROUQUIER, Centers and simple modules for Iwahori- Hecke algebras, in <i>Finite reductive groups</i> (Luminy, 1994), 251-272, Progr. in Math. 141 , Birkhäuser Boston, Boston, MA, 1997.
[GGOR]	V. GINZBURG, N. GUAY, E. OPDAM & R. ROUQUIER, On the category <i>O</i> for rational Cherednik algebras, <i>Invent. Math.</i> 154 (2003), 617-651.
[GiKa]	V. GINZBURG & D. KALEDIN, Poisson deformations of symplectic quo- tient singularities, <i>Adv. in Math.</i> 186 (2004), 1-57.
[Gor1]	I. GORDON, Baby Verma modules for rational Cherednik algebras, <i>Bull. London Math. Soc.</i> 35 (2003), 321-336.
[Gor2]	I. GORDON, Quiver varieties, category \mathcal{O} for rational Cherednik algebras, and Hecke algebras, <i>Int. Math. Res. Pap. IMRP</i> (2008), no. 3, Art. ID rpn006, 69 pp.
[GoMa]	I. G. GORDON & M. MARTINO, Calogero-Moser space, restricted ratio- nal Cherednik algebras and two-sided cells, <i>Math. Res. Lett.</i> 16 (2009), 255-262.
[HoNa]	R. R. HOLMES & D. K. NAKANO, Brauer-type reciprocity for a class of graded associative algebras, <i>J. of Algebra</i> 144 (1991), 117-126.
[KS]	M. KASHIWARA AND P. SCHAPIRA, Categories and sheaves, Springer, 2006.
[KaLu]	D. KAZHDAN & G. LUSZTIG, Representations of Coxeter groups and Hecke algebras, <i>Invent. Math.</i> 53 (1979), 165-184.

[LeMi]	B. LECLERC AND H. MIYACHI, Constructible characters and canonical bases, J. of Alg. 277 (2004), 298–317.
[Lus1]	G. LUSZTIG, Left cells in Weyl groups, in <i>Lie group representations</i> , <i>I</i> , 99-111, Lecture Notes in Math. 1024 , Springer, Berlin, 1983.
[Lus2]	G. LUSZTIG, <i>Characters of reductive groups over finite fields</i> , Ann. Math. Studies 107 , Princeton UP (1984), 384 pp.
[Lus3]	G. LUSZTIG, <i>Hecke algebras with unequal parameters</i> , CRM Monograph Series 18 , American Mathematical Society, Providence, RI (2003), 136 pp.
[Magma]	W. BOSMA, J. CANNON & C. PLAYOUST, The Magma algebra system. I. The user language, <i>J. Symbolic Comput.</i> 24 (1997), 235-265.
[Mal]	G. MALLE, On the rationality and fake degrees of characters of cyclo- tomic algebras, <i>J. Math. Sci. Univ. Tokyo</i> 6 (1999), 647-677.
[MalMat]	G. MALLE & B. H. MATZAT, <i>Inverse Galois theory</i> , Springer Mono- graphs in Mathematics, Springer-Verlag, Berlin (1999), xvi+436 pp.
[Marin]	I. MARIN, Report on the Broué-Malle-Rouquier conjectures, preprint, 2015.
[Mart1]	M. MARTINO, The Calogero-Moser partition and Rouquier families for complex reflection groups, <i>J. of Algebra</i> 323 (2010), 193-205.
[Mart2]	M. MARTINO, Blocks of restricted rational Cherednik algebras for $G(m, d, n)$, J. Algebra 397 (2014), 209-224.
[Mat]	H. MATSUMURA, <i>Commutative ring theory</i> , Cambridge Studies in Advanced Mathematics 8 , Cambridge University Press, Cambridge, 1986, xiv+320 pp.
[Mül]	B. J. MÜLLER, Localisation in non-commutative Noetherian rings, <i>Canad. J. Math.</i> 28 (1976), 600-610.
[Ray]	M. RAYNAUD, <i>Anneaux locaux henséliens</i> , Lecture Notes in Mathematics 169, Springer-Verlag, Berlin-New York (1970), v+129 pp.
[Row]	L. ROWEN, Ring Theory, Volume I, Academic Press, 1988.
[Rou]	R. ROUQUIER, <i>q</i> -Schur algebras and complex reflection groups, <i>Mosc. Math. J.</i> 8 (2008), 119-158.

[Ser]	JP. SERRE, <i>Algèbre locale. Multiplicités</i> , Cours au Collège de France, 1957–1958, rédigé par P. Gabriel, Lecture Notes in Mathematics 11 , Springer-Verlag, Berlin-New York (1965), vii+188 pp.
[SGA1]	A. GROTHENDIECK, <i>Revêtements étales et groupe fondamental</i> , Séminaire de Géométrie algébrique du Bois Marie 1960-1961, Documents Mathématiques 3 , Société Mathématique de France, Paris, 2003, 327+xviii pages.
[ShTo]	G. C. SHEPHARD & J. A. TODD, Finite unitary reflection groups, <i>Canad. J. Math.</i> 6 (1954), 274-304.
[Spr]	T.A. SPRINGER, Regular elements of finite reflection groups, <i>Invent. Math.</i> 25 (1974), 159-198.
[Thi1]	U. THIEL, A counter-example to Martino's conjecture about generic Calogero-Moser families, <i>Algebr. Represent. Theory</i> 17 (2014), 1323-1348.
[Thi2]	U. THIEL, <i>On restricted rational Cherednik algebras</i> , Ph.D. Thesis, Kaiserslautern (2014).
[Thi3]	U. THIEL, CHAMP: a Cherednik algebra package, preprint (2014), arXiv:1403.6686. Available at http://thielul.github.io/CHAMP/

Questions.

- je comprends pas le definition de $Hom_A(M, n)^{\leq i}$.
- notations homogenes pour ideaux engendres, pour ker (ou Ker)
- commentaires sur le calcul de B2 et la verification d'Ulrich
- Magma pour calcul de polynome