
How can the appropriate objective and
predictive probabilities get into non-collapse
quantum mechanics?

Roberto H. Schonmann

Abstract It is proved that in non-collapse quantum mechanics the state of a closed
system can always be expressed as a superposition of states all of which describe
histories that conform to Born’s probability rule. This theorem allows one to see
Born probabilities in non-collapse quantum mechanics as an appropriate predictive
tool, implied by the theory, provided an appropriate version of the superposition
principle is included in its axioms
Key words and phrases: Non-collapse quantum mechanics, Everett, Born’s rule,
origin of probability in quantum mechanics.

1 Introduction

This is a shorter version of the paper [17], where the reader will find a much more
detailed and thorough discussion of the relevance of the theorem introduced here, as
well as further comparison of the role of probabilities in collapse and non-collapse
quantum mechanics. This version is being written in memory of Vladas Sidoravi-
cius, whose premature death shocked and saddened his friends and colleagues, and
whose interests focused on probability theory not only in the abstract, but especially
as it relates to physics. Vladas’ passing happened close in time to that of Harry
Kesten, good friend and mentor to both of us and to so many others. This paper is
also dedicated to his memory.

For mathematicians who may need an introduction to quantum mechanics, I rec-
ommend the text [11]. (Chapters 1 and 3 suffice for the purposes of this paper.)

This paper deals with an important aspect of what is known as the “measurement
problem in quantum mechanics”. In standard quantum mechanics the state of a sys-
tem (which is a vector in a Hilbert space) evolves in two distinct and incompatible
fashions, and it is unclear when each one applies. When it is not being observed it
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evolves in a deterministic, continuous way, according to certain unitary transforma-
tions. But when observed, the system evolves in a probabilistic, discontinuous way
(called a collapse, or reduction of the state), jumping to a new state according to
a probabilistic prescription called Born’s rule (we will refer to this as the collapse
axiom, or the probability axiom). But what constitutes an “observation”? After all
the “observers” (whether we are able to include in this class humans, other animals,
robots, photographic plates, ...) should be considered as part of the system, so that
“observations” should not have distinct physics. Non-collapse quantum mechanics
(first introduced in [9]) proposes that the collapse axiom be eliminated from quan-
tum mechanics, and claims that we would still have the same experiences that we
predict from standard quantum mechanics. Instead of collapses happening, the sys-
tem always evolves in the deterministic unitary fashion, and this implies that at the
end of each experiment all the possible outcomes materialize, including one version
of the “observers” (possibly humans) associated to each outcome, perceiving and
recording that outcome and no other. This accounts for our observation of collapses
as illusions, so to speak. But then, what accounts for them following Born’s prob-
ability rule, rather than some other probability rule, or no probability rule at all?
This is the focus of this paper (see below for references and some comments on the
extensive work already available on this fundamental issue).

Before we proceed, a few words about terminology. We will use the expression
“Born-rule collapse quantum mechanics” for the standard quantum mechanics the-
ory, as presented in our textbooks, including the assumption that measurements lead
to collapses of the state of the system according to Born’s rule. “Collapse quantum
mechanics” will be used for a broader set of theories, in which the collapses fol-
low some probability distribution that may or not be the one given by Born’s rule.
And by “non-collapse quantum mechanics” we simply mean that we eliminate the
assumption of collapse when measurements are performed. In non-collapse quan-
tum mechanics, we do not include the words “measurement” or “observation” in
the axioms of the theory, and use them only informally when applying the theory to
explain and predict our experiences.

Readers who want an introduction to non-collapse quantum mechanics will ben-
efit from the classic [8], where papers by those who first proposed and advertised it
as a (better) alternative to collapse quantum mechanics are collected. The subject is
not standard in textbooks geared to physicists, or mathematicians, but is standard in
texts concerned with the philosophy of quantum mechanics; see, e.g., [2], [3], [21],
[4] and [12]. For a positive appraisal of the theory, written for the general scientific
public, see, e.g., [19]. For expositions for the general public, see, e.g., [5], [20] and
[6]. For a recent collection of mostly philosophical discussions see [16]. And for
some among the many research papers on the subject, see, e.g., [7], [1], [18] and
[13], which also provide extensive additional references.

Our concern here is with the origin of our perception of Born-rule probabilities
in a theory, non-collapse quantum mechanics, in which everything is deterministic
and, in particular, no probabilities are introduced in its axioms. A great deal has been
written about this problem, e.g., in the references cited in the last paragraph and
references therein, with opinions ranging from “the problem is solved” (sometimes
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by the authors themselves), to “the problem is hopeless and the proposed solutions
all flawed”. This project was motivated by my dissatisfaction with the previously
proposed solutions, especially with the current trend of treating the probabilities
in non-collapse quantum mechanics as subjective ones ([7], [21], [18], [13]; see
for instance Chapter 6 of [12] for a criticism). I hope nevertheless to convince the
reader that the theorem stated and proved here provides a solution to this puzzle and
explains how our perception of probabilities, as given by Born’s rule, emerges in
non-collapse quantum mechanics, if we include in its axioms an appropriate version
of the superposition principle. I propose even that the puzzle be turned around: If
collapses do happen, why do they happen precisely with the same rule that comes
out of quantum mechanics without collapse?

In Section 2 we will state the theorem alluded to in the abstract, in a mathemat-
ically self-contained fashion, but without emphasizing the corresponding physics,
which will then be briefly discussed in Section 3. (For a longer discussion the reader
is referred to [17].) To help the reader keep in mind what is planned, we include next
a few words of introduction on how the mathematical setting in Section 2 is moti-
vated by collapse quantum mechanics.

We will be working in the Heisenberg picture (operators evolve in time, rather
than states), as applied to a closed system (possibly the whole universe). Associated
to the system there is a Hilbert space H (not assumed in this paper to be neces-
sarily separable). The state of the system is given at any time by a non-null vector
in H (with non-null scalar multiples of a vector corresponding to the same state).
This state does not change with time except when there is a collapse. Collapses are
associated with measurements and with their corresponding self-adjoint operators
(which in the Heisenberg picture are time dependent). In each collapse, the state
immediately after the collapse is a projection of the state immediately before the
collapse on a subspace (a subset of H closed linearly and topologically) chosen at
random, according to a specified probability law (in the standard case, Born’s rule),
from among the eigenspaces of that operator, one eigenspace for each possible out-
come of the experiment. (To avoid unnecessary mathematical complications, and on
physical grounds, we are assuming that every experiment can only have a finite num-
ber of possible outcomes.) To each subspace of H there is associated a projection
operator (self-adjoint idempotent operator on H ) that projects on that subspace. If
initially the state was a vector ψ ∈H , then immediately after a collapse the state
can be expressed as Projψ , where Proj is the composition of the projections that
took place after each collapse, up to and including this last one.

It is natural to represent all the possible ways in which the system can evolve
using a rooted (oriented) tree. The root vertex of the tree will correspond to the
beginning of times for the system under study, and the other vertices will either cor-
respond to collapse events, or be terminal vertices (vertices of degree 1) that signal
that no further experiment is performed along a branch of the tree. (In the interesting
cases the tree will be infinite. One can think of terminal vertices as uncommon in
the tree, possibly even absent.) The projections associated to the possible outcomes
in the collapses, as described at the end of the last paragraph, will then be indexed
by the edges of the tree. The tree does not have to be homogeneous, as, e.g., de-
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cisions on what experiments to perform in a lab may depend on the outcomes of
previous experiments. More interesting and dramatic examples of non-homogeneity
of the tree occur if one thinks of some major human decisions being made by use
of “quantum coins”, i.e., outcomes of experiments performed for this purpose (de-
pending on these decisions the future of humanity may take quite different turns).

After stating the theorem in Section 2 and then briefly discussing its relevance in
Section 3, we will prove it in Section 4.

2 The theorem

Let (V,E) be a tree with vertex set V, including a singled out vertex called the root
vertex, and edge set E. We assume that the root vertex has a single edge incident to it
and call it the root edge. Such a tree will be called an edge-rooted tree. We orient the
root edge from the root vertex to its other end, and we give an orientation to every
edge in the tree, so that each vertex other than the root vertex has exactly one edge
oriented towards it. If e is the edge oriented towards vertex v and e1, ...,en are the
edges incident to v and oriented away from it, we call e1, ...,en the children of e, and
we refer to {e1, ...en} as a set of siblings and to e as their parent. (The advantage of
using such “family” language, even if a bit funny, is that the terminology becomes
easy to remember and easy to extend.) Childless edges will be called terminal edges,
and the vertices to which terminal edges point will be called terminal vertices. Each
edge belongs to a generation defined inductively by declaring the generation of the
root edge as 1, and the generation of the children of the edges of generation i to be
i+1. It will be convenient to declare that childless edges that belong to generation
i also belong to generations i+ 1, i+ 2, ... A partial history is a finite sequence of
edges (e1,e2, ...,en), where each ei is a child of ei−1, i = 2, ...,n. A complete history
(or just a history) is either a partial history in which e1 is the root edge and the last
edge is a terminal edge, or an infinite sequence of edges (e1,e2, ...), where e1 is the
root edge and each ei is a child of ei−1, i = 2, ....

Definition 1. A tree-structured set of projections on a Hilbert space H is a collec-
tion of such projections, P = {Proje : e ∈ E}, where the index set E is the set of
edges of an edge-rooted tree, and the following conditions are satisfied:

1. If e is the root edge, then Proje is the identity operator.
2. If e1, ...,en are the children of e, then ∑

n
i=1 Projei

= Proje.

We write He = ProjeH for the subspace associated to Proje. The first condition
means that He = H when e is the root edge, while the second one means that the
subspaces Hei associated to a set of siblings {e1, ...,en} are orthogonal to each other
and their linear span is the subspace He associated to the parent e.

Implicit in the definition of a tree-structured set of projections P is the asso-
ciated edge-rooted tree (V,E). The set of histories on this tree, denoted Ω , is the
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sample space on which one defines Born’s probabilities (and alternative ones) asso-
ciated to P . Recall that, informally speaking, an element ω ∈ Ω is a sequence of
edges starting from the root and having each of its elements succeeded by one of
its children, either with no end, or ending at a terminal edge. Abusing notation, we
will write e ∈ ω for the statement that the edge e is an element of the sequence ω .
For each e ∈ E, we define Ωe = {ω : e ∈ ω}, the set of histories that go through
e. Unions of finitely many sets Ωe define an algebra of sets (a class of sets that is
closed with respect to complements, finite unions and finite intersections) that we
denote by A . (This statement requires a proof, which is easily obtained by noting
that every set A ∈ A can be written as a union over sets Ωe with all e in the same
generation, and that Ac is then the union of the sets Ωe over the other e belonging to
this same generation. This shows closure under complements. Closure under unions
is immediate and De Morgan’s law then provides closure under intersections.) The
smallest σ -algebra that contains A will be denoted by B.

Born’s probabilities are defined on the measure space (Ω ,B) and, in addition
to P , depend on a vector ψ ∈H \{0}. (In the theorem below, ψ is arbitrary, but
in all our applications it will be the initial state of our system. In collapse quantum
mechanics, ψ will be chosen as the state, in the Heisenberg picture, before collapses.
In non-collapse quantum mechanics, ψ will be chosen as the unchanging state, in the
Heisenberg picture.) Born’s probability corresponding to ψ will be denoted by IPψ .
It is described informally by imagining a walker that moves on the edges of the tree.
The walker starts at the root vertex of the tree and then moves in the direction of the
orientation, deciding at each vertex where to go in a probabilistic fashion, with edges
chosen with probability proportional to norm-squared, i.e., when at a vertex that
separates a parent e from its children, the walker chooses child e′ with probability
||Proje′ψ||2/||Projeψ||2, independently of past choices. If ever at a terminal vertex,
the walker stops. A simple inductive computation shows that this is equivalent to
the statement

IPψ(Ωe) =
||Projeψ||2

||ψ||2
, for each e ∈ E. (1)

It is standard to show that (1) extends in a unique fashion to A and then to B, defin-
ing in this way a unique probability measure on (Ω ,B). Actually, for our purposes
it will be important to observe that this standard procedure yields even more. For
each ψ ∈H , the extension of the probability measure is to a larger measure space,
(Ω ,Mψ), where Mψ ⊃B, completes B with respect to the measure IPψ , meaning
in particular that if A∈B, IPψ(A) = 0 and B⊂ A, then also B∈Mψ and IPψ(B) = 0.
We should note that all that is needed to implement this extension is contained in
two facts about the non-negative numbers pe = IPψ(Ωe), which are similar to condi-
tions 1 and 2 in Definition 1: pe = 1, when e is the root edge, and ∑i=1,...,n pei = pe,
when e1, ...,en are the children of e. (In obtaining the extension of IPψ to the alge-
bra A as a premeasure, the only non-trivial claim that has to be checked is that if
A ∈ A is described in two distinct ways as finite disjoint unions of sets Ωe, then
the sum of the pe over these sets is the same for both descriptions. And this is not
difficult, if one realizes that it is possible to compare both representations to a third
one, in which all the sets Ωe have all e in the same sufficiently large generation.
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The extension from a premeasure on A to a measure on Mψ is an application of
Carathéodory’s Extension Theorem; see Sections 1 and 2 of Chapter 12 in [15], or
Section 4 of Chapter 1 in [10].)

Before stating our theorem, we need to introduce a few more definitions, which
will play a fundamental role in this paper. Given φ ∈H and ω ∈Ω , we say that φ

persists on ω if for each e ∈ ω , Projeφ 6= 0. Otherwise we say that φ terminates on
ω . We set now

Ω(φ) = {ω ∈Ω : φ persists on ω}, (2)

and
Ω

c(φ) = Ω\Ω(φ) = {ω ∈Ω : φ terminates on ω}. (3)

Keep in mind that the choice of P is implicit in the definitions in the last two
paragraphs. We omitted it from the notation, but should not forget that Ω , IPψ , Ω(φ),
etc, depend on this choice.

Theorem 1. Let H be a Hilbert space and P be a tree-structured set of projections
on H . For any ψ ∈H \{0} and A⊂Ω , the following are equivalent.

(1) IPψ(A) = 0.
(2.i) There exist φ1,φ2, ... orthogonal to each other, such that ψ = ∑φi and

Ω(φi)⊂ Ac, for each i.
(2.ii) There exist ζ1,ζ2, ... such that ζn→ ψ and Ω(ζn)⊂ Ac, for each n.

Note that we are not, a priori, making any assumption of measurability on A. But if
we assume that one of (2.i), (2.ii) is true, then we learn from the theorem that A ∈
Mψ (and IPψ(A) = 0). On the other hand, assuming that (1) holds means assuming
that A ∈Mψ (and IPψ(A) = 0).

The first two propositions stated and proved in Section 4 will add mathematical
structure to the content of Theorem 1, and allow it to be restated in a very compact
form in display (9).

3 Relevance of the theorem

The theorem stated in the previous section holds for any Hilbert space H and any
choice of tree-structured set of projections P on it. The arbitrariness of P should
be kept in mind as our discussion returns to Physics. When we consider collapse
quantum mechanics, there is a special choice of P , namely the one described in
the introduction: vertices (other than the root vertex and terminal ones) correspond
to experiments and edges (other than the root edge) correspond to the possible out-
comes in each experiment. In the case of collapse quantum mechanics, and with this
choice of P , Ω is the set of possible histories that could materialize from the col-
lapses. And in the special case of Born-rule collapse quantum mechanics, statement



Origin of probabilities in non-collapse quantum mechanics 7

(1) in Theorem 1 means that event A is (probabilistically) precluded from happen-
ing. In the case of non-collapse quantum mechanics there is in principle no special
choice of P . But, as the reader may have anticipated, for the purpose of comparing
non-collapse to collapse quantum mechanics, via Theorem 1, it is natural to choose
precisely the same P . We will observe below, as the reader may have also antici-
pated, that with this choice, the equivalence between statements (1) and (2.i) in the
theorem implies (modulo plausible postulates on how the theories provide predic-
tions) that quantum mechanics without collapse gives raise to the same predictions
as Born-rule collapse quantum mechanics.

In collapse quantum mechanics only one history ω = (e1,e2,e3, ...) material-
izes. In the Heisenberg picture that we are considering, the state of our system
is initially some ψ ∈ H , but it changes at each collapse, following the path
(Proje1

ψ,Proje2
ψ,Proje3

ψ, ...) = (ψ,Proje2
ψ,Proje3

ψ, ...). In non-collapse quan-
tum mechanics in the Heisenberg picture, ψ never changes. Everett [9] was the first
to make the observation that this would still be compatible with our perception that
collapses happen. As observers who are part of the system (otherwise we would not
be able to interact with the experimental arrangement and observe it), the particles
that form our bodies and in particular our brains must follow the same quantum
mechanics that describes the rest of the system that we are observing. So that at
the end of an experiment we can be described as being in a superposition of states,
each one with a brain that encodes a different outcome for this experiment. All the
possible outcomes materialize, and versions of the human observers, entangled to
each possible experimental outcome, are included in this superposition.

The non-collapse view of quantum mechanics has the significant advantage of
eliminating the mystery of collapse: How can systems behave differently when they
are being “measured”? It yields a much simpler and consistent theory. One of the
main hurdles that prevents its acceptance is probably psychological, as it affects
substantially our sense of identity and of our reality. But other than this, probably
the greatest obstacle to its acceptance is the issue addressed (once more) in this
paper: even accepting Everett’s observation that we will see collapses even if they
do not happen, the question remains of why it is that we perceive them happening
as if they were produced according to Born’s probability rule. I will not discuss here
the various previous approaches to this problem, and rather refer the reader to the
recent papers [1], [18], [13], references therein and papers in the collection [16] for
background and recent ideas. In [17] I argue at some length why Theorem 1 presents
an answer. Here I will summarize the idea.

Stating that collapses do happen according to Born’s probabilities can only have
meaning if we add some postulate telling us how this leads to predictions. I assume
that in collapse quantum mechanics, the predictive power derived from the collapse
axiom is fully contained in the following postulate.

Prediction Postulate of Collapse Quantum Mechanics (PPCQM): In making
predictions in collapse quantum mechanics, events of probability 0 can be deemed
as sure not to happen.
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If it is accepted that this postulate covers the full predictive power of the prob-
ability axiom in collapse quantum mechanics, and in particular of Born’s rule in
Born-rule collapse quantum mechanics, then Theorem 1 tells us that non-collapse
quantum mechanics will yield the same predictions as Born-rule collapse quantum
mechanics, provided we accept the following postulate for non-collapse quantum
mechanics.

Prediction Postulate of Non-Collapse Quantum mechanics (PPNCQM): In mak-
ing predictions in non-collapse quantum mechanics, if the state of our system is a
superposition of states all of which exclude a certain event (i.e., if (2.i) of Theorem
1 holds for this event A), then this event can be deemed as sure not to happen.

This postulate can be seen as a version of the superposition principle of quantum
mechanics, and does not include probabilities in its statement. Theorem 1 there-
fore provides an explanation of how probabilities emerge in non-collapse quantum
mechanics, and why they are given by Born’s rule.

The observation above provides an answer to the question in the title of this paper,
but it also raises a fundamental question. Can one formulate non-collapse quantum
mechanics in a precise and consistent fashion that provides a clear notion for what
is reality in the theory (provides a precise ontology for the theory) and is compatible
with the PPNCQM? In current work in progress I hope to provide an affirmative
answer.

One important consequence of the observations above is that not only objec-
tive predictive probabilities emerge in non-collapse quantum mechanics (from the
non-probabilistic PPNCQM), but that they are precisely the ones supported by ex-
perimental observation, namely, Born’s rule probabilities. This point is discussed at
some length in Section 4 of [17]. It implies that non-collapse quantum mechanics
with the PPNCQM included would be falsified by data that indicated collapses with
a (significantly) different probability law.

Theorem 1 and the discussion in this section help dismiss an old and important
misconception associated to non-collapse quantum mechanics. That the “natural”
probability distribution that it entails is some sort of “branch counting” or “uni-
form” one. (The quotation marks are used because in the case of non-homogeneous
trees, there is ambiguity in such wording. In the case of a homogeneous tree in
which each edge has b children, this probability distribution is well defined by set-
ting IP(Ωe) = b−n+1, when e is an edge in the n-th generation.) Typically this prob-
ability distribution will produce predictions at odds with those produced by using
Born’s rule. And this has been used as an argument against non-collapse quantum
mechanics. But while the use of Born’s rule to make predictions in non-collapse
quantum mechanics is shown here to be equivalent to the PPNCQM, one cannot
find any good reason why a “branch counting rule” would be the appropriate tool
for this purpose. There is a tradition of saying something like: “since all branches
are equally real, a branch counting probability distribution is implied”. But this is
a meaningless sentence. What would “real, but not equally real” mean? “Equally
real” (whatever it may mean) does not imply equally likely in any predictive sense.
For instance all the teams competing for a soccer World Cup are “equally real”, but
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if we want to predict who will win the cup, there is no reason for using a uniform
distribution.

4 Proof of the theorem

The orientation that was introduced on the tree (V,E) induces a partial order on the
set of edges: for any two edges we write e′ ≤ e′′ if there is a partial history that starts
with e′ and ends with e′′. We write e′ < e′′ if e′ ≤ e′′ and e′ 6= e′′. If neither e′ ≤ e′′,
nor e′′ ≤ e′, then we say that e′ and e′′ are not comparable.

Definition 1 has some simple consequences. If e′′ is a child of e′, then He′′ ⊂He′ .
By induction along a partial history line, this extends to:

If e′ ≤ e′′, then He′′ ⊂He′ . (4)

In contrast, if e′ and e′′ are siblings, then He′ ⊥He′′ . By induction along partial
history lines, this extends to:

If e′ and e′′ are not comparable, then He′ ⊥He′′ . (5)

Proposition 1. For every φ1,φ2 ∈H , Ω(φ1+φ2)⊂Ω(φ1)∪Ω(φ2), or equivalently
Ω c(φ1)∩Ω c(φ2)⊂Ω c(φ1 +φ2).

Proof. Suppose ω ∈Ω c(φ1)∩Ω c(φ2). Then there are e1,e2 ∈ω such that Proje1
φ1 =

Proje2
φ2 = 0. As ω is a history, e1 and e2 are comparable. Let e be the larger be-

tween e1 and e2. Also because ω is a history, for i = 1,2 we have now, from (4),
He ⊂Hei and hence Projeφi = 0. Therefore Proje(φ1+φ2) = Projeφ1+Projeφ2 = 0,
which means that ω ∈Ω c(φ1 +φ2). ut

For each A⊂Ω we define the following two sets (T stands for “truth” and F for
“falsehood”):

T (A) = {φ ∈H : Ω(φ)⊂ A}, (6)

and

F(A) = T (Ac) = {φ ∈H : Ω(φ)⊂ Ac}= {φ ∈H : A⊂Ω
c(φ)}. (7)

Proposition 2. For every A⊂Ω , T (A) and F(A) are vector spaces.

Proof. Since F(A) = T (Ac), it suffices to prove the statement for T (A). Suppose
φ1,φ2 ∈ T (A), a1,a2 scalars. Then, for i = 1,2, Ω(aiφi) = Ω(φi), if ai 6= 0, and
Ω(aiφi) = /0, if ai = 0. In any case Ω(aiφi)⊂Ω(φi)⊂ A. From Proposition 1 we ob-
tain Ω(a1φ1 +a2φ2)⊂Ω(a1φ1)∪Ω(a2φ2)⊂ A, which means a1φ1 +a2φ2 ∈ T (A).
ut
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We can rephrase Statement (2.ii) in Theorem 1 as

ψ ∈ F(A), (8)

where the bar denotes topological closure in the Hilbert space H .
The equivalence of (2.ii) and the apparently stronger statement (2.i) in Theo-

rem 1, can be obtained, in a standard fashion, by applying the Gram-Schmidt or-
thonormalization procedure (see p.46 of [14], or p.167 of [10]) to the vectors ζ1,
ζ2−ζ1, ζ3−ζ2, ... to produce an orthonormal system with the same span. Proposi-
tion 2 assures us that this orthonormal system will be contained in F(A), since the ζi
are. The vectors φ1, φ2, φ3, ..., are then obtained by expanding ψ in this orthonormal
system.

The proof of Theorem 1 is now reduced to showing that for any ψ ∈H \{0} and
A⊂Ω ,

IPψ(A) = 0 ⇐⇒ ψ ∈ F(A). (9)

The class Aσ of subsets of Ω obtained by countable unions of elements of A
will play a major role in the proof of (9). Every A ∈ Aσ is a union of sets in the
countable class {Ωe: e ∈ E}. But since Ωe′′ ⊂Ωe′ , whenever e′ ≤ e′′, we will avoid
redundancies in this union by writing it as

A =
⋃

e∈E(A)

Ωe, (10)

where

E(A) = {e∈E : Ωe ⊂ A and there is no e′ ∈ E such that e′ < e and Ωe′ ⊂ A}. (11)

Any two distinct elements of E(A) are not comparable. And since Ωe′ ∩Ωe′′ = /0,
whenever e′ and e′′ are not comparable, (10) is a disjoint union. Moreover, using
(5) we see that {He : e ∈ E(A)} is a countable collection of orthogonal subspaces
of H . We will associate to A their direct sum (the topological closure of the linear
span of vectors in these He), which we denote by

H (A) =
⊕

e∈E(A)

He. (12)

If S is a subspace of H and φ ∈H , we will use the notation Proj(φ |S ) to
denote the projection of φ on S . For instance Proj(φ |He) = Projeφ .

Lemma 1. For any φ ∈H and A ∈Aσ ,

(i) For any e ∈ E, Projeφ = 0 ⇐⇒ Ωe ⊂Ω c(φ).
(ii) H ⊥(A) = F(A).
(iii) Ω c(φ) ∈Aσ .
(iv) φ ∈H ⊥(Ω c(φ)).
(v) ||Proj(φ |H (A))||2 = ||φ ||2 IPφ (A), if φ 6= 0.
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Proof. (i) The implication (=⇒) is clear. To prove (⇐=) suppose that Projeφ 6= 0.
Then either e is a terminal edge, or it has a child e′ with Proje′φ 6= 0. Repeating
inductively this reasoning, we produce a history ω such that e ∈ω and φ persists on
ω . Hence Ωe 6⊂Ω c(φ).

(ii)

H ⊥(A) =
⋂

e∈E(A)

H ⊥
e =

⋂
e∈E(A)

{φ ∈H : Ωe ⊂Ω
c(φ)}

= {φ ∈H : A⊂Ω
c(φ)}= F(A),

where in the first equality we used the definition (12) of H (A), in the second equal-
ity we used part (i) of the lemma, in the third equality we used (10), and in the fourth
equality we used (7)

(iii) Ω c(φ) = ∪{Ωe : e ∈ E, Projeφ = 0}. And this set belongs to Aσ , since this
union is countable.

(iv) Thanks to part (iii) of the lemma, we can take A = Ω c(φ) in part (ii) of the
lemma. Using then (7), we obtain

H ⊥(Ω c(φ)) = F(Ω c(φ)) = {φ ′ ∈H : Ω
c(φ)⊂Ω

c(φ ′)} 3 φ .

(v)

||Proj(φ |H (A))||2 = ∑
e∈E(A)

||Proje(φ)||2 = ∑
e∈E(A)

||φ ||2IPφ (Ωe)

= ||φ ||2IPφ (∪e∈E(A)Ωe) = ||φ ||2IPφ (A),

where in the first equality we used the definition (12) of H (A), in the second equal-
ity we used (1), in the third equality we used the disjointness of the sets involved,
and in the fourth equality we used (10). ut

We will use some consequences of Carathéodory’s theorem that extends the mea-
sure IPψ from A to Mψ (see Sections 1 and 2 of Chapter 12 in [15], or Section 4 of
Chapter 1 in [10]). Given ψ ∈H , define the outer measure of any set A⊂Ω by

IP∗ψ(A) = inf{IPψ(A′) : A′ ∈Aσ , A⊂ A′}, (13)

and define also

Mψ = {A⊂Ω : for all S⊂Ω , IP∗ψ(A∩S)+ IP∗ψ(A
c∩S) = IP∗ψ(S)}. (14)

Then it follows from Carathéodory’s Extension Theorem that Mψ is a σ -algebra
that extends B and IP∗ψ(A) = IPψ(A) for every A∈Mψ , in particular for every A∈B
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and therefore for every A ∈Aσ . It also follows that IP∗ψ(A) = 0 implies A ∈Mψ and
is necessary and sufficient for IPψ(A) = 0.

The next two lemmas prove each one of the directions of the equivalence (9),
completing the proof of Theorem 1.

Lemma 2. For any ψ ∈H \{0} and A⊂Ω ,

ψ ∈ F(A) =⇒ IPψ(A) = 0.

Proof. If ψ ∈ F(A), there are ζn ∈ F(A) such that ζn→ ψ . Set Bn = Ω c(ζn). From
(7) and Lemma 1(iii) we have A⊂ Bn ∈Aσ . Using (13) and Lemma 1(v), we obtain

0 ≤ IP∗ψ(A) ≤ IPψ(Bn) =
||Proj(ψ|H (Bn))||2

||ψ||2
.

But since Lemma 1(iv) tells us that ζn ∈H ⊥(Bn), we can write

||Proj(ψ|H (Bn))||2 = ||Proj(ψ−ζn|H (Bn)) + Proj(ζn|H (Bn))||2

= ||Proj(ψ−ζn|H (Bn))||2 ≤ ||ψ−ζn||2.

Since n is arbitrary, the two displays combined give

0 ≤ IP∗ψ(A) ≤ lim
n→∞

||ψ−ζn||2

||ψ||2
= 0,

proving that IP∗ψ(A) = 0 and hence A ∈Mψ and IPψ(A) = 0. ut

Lemma 3. For any ψ ∈H \{0} and A⊂Ω ,

IPψ(A) = 0 =⇒ ψ ∈ F(A).

Proof. If IPψ(A) = 0, (13) tells us that there are An ∈ Aσ such that A ⊂ An and
IPψ(An)→ 0. Set ξn = Proj(ψ|H ⊥(An)). Then ξn ∈ H ⊥(An) = F(An) ⊂ F(A),
where the equality is Lemma 1(ii), and in the last step we are using (7). Therefore,
using Lemma 1(v), we obtain

||ξn−ψ||2 = ||Proj(ψ|H (An))||2 = ||ψ||2 IPψ(An) → 0,

as n→ ∞. This shows that (ξn) is a sequence in F(A) that converges to ψ and
therefore ψ ∈ F(A). ut
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