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Abstract
A quandle is a set with two operations that satisfy three conditions. For example,

there is a quandle naturally associated to any group. It turns out that one can associate a
quandle to any knot. The knot quandle is invariant under Reidemeister moves (and is thus an invariant
of ambient isotopy). However, if fails to distinguish some non-isotopic knots,
and is therefore not a complete invariant. The knot quandle allows to distinguish some knots
that we could not distinguish using the 3-coloring invariant.

1. Introduction

The quandle is an algebraic object which was first introduced by Joyce in [1]. To each
knot or link Joyce associated a quandle in such a way that it is an invariant of ambient
isotopy.  We will discuss the original presentation in section 2, and relations of the
quandle to the knot group in section 3.

2. The Knot Quandle

Def. A quandle is a set Q with two binary operations, called conjugations and denoted
by   

††

> :

††

Q ¥†Q Æ†Q  and   

††

< :

††

Q ¥†Q Æ†Q . These two operations satisfy the following three
conditions.
Q1   

††

x > x =†x .
Q2   

††

( x > y ) < y =†x =†( x < y ) > y .
Q3   

††

( x > y ) > z =†( x > z ) > ( y > z ) .

Equivalently, a quandle can be defined as a set Q with an operation   

††

> :

††

Q ¥†Q Æ†Q 

satisfying the following conditions.
Q1   

††

x > x =†x .
Q2’ for every 

††

x , y †ŒQ  there exists a unique 

††

z †ŒQ  with   

††

x =†z > y .
Q3   

††

( x > y ) > z =†( x > z ) > ( y > z ) .

The existence and uniqueness requirements of Q2’ imply that each quandle comes with
a second operation   

††

<  satisfying   

††

( x < y ) > y =†x . Specifically, Q2’ is equivalent to the

statement that for all y, the map 

††

f 
y 
: Q Æ†Q 

 given by   

††

f 
y 
( x ) =†x > y 

 is a bijection. We may

define the second quandle operation by   

††

x < y =†f 
y 

-†1 ( x ) 
. Then we have

  

††

( x > y ) < y =†f 
y 

-†1 ( f 
y 
( x ))=†x 

 and   

††

( x < y ) > y =†f 
y 
( f 

y 

-†1 ( x ))=†x 
.



Ex. The easiest example of a quandle is the quandle associated to a group. Let G be a
group. The underlying set of the associated quandle Q(G) is the same as the underlying
set of the group. The quandle operations are defined by:

                  

††

x > y =†y -†1 xy,           

††

x < y =†yxy -†1 

. 

To show that this indeed defines a quandle, we must check that the two conjugation
operations satisfy the three axioms of a quandle.
For Q1 we have:

    

††

x > x =†x -†1 xx=†x .

Q2:   

††

( x > y ) < y =†( y -†1 xy) < y =†yy-†1 xyy -†1 =†x .

Q3:   

††

( x > y ) > z =†( y -†1 xy) > z =†z -†1 y -†1 xyz .

      

††

( x > z ) > ( y > z ) =†( z -†1 xz) > ( z -†1 yz) =†z -†1 y -†1 zz-†1 xzz -†1 yz=†z -†1 y -†1 xyz .

Note that the quandle operations of Q(G) satisfy   

††

x > y =†x < y -†1 

 for all x,y.

It turns out that to each quandle Q one can associate a group G(Q) in the following
way. Elements of the group are equivalence classes of the elements of the quandle. Let

††

x †ŒG ( Q )  be the equivalence class of an element 

††

x †ŒQ . The multiplication of
equivalence classes satisfies the relation

  

††

x > y =†y 
-†1 
xy.

Explicitly the group defined in this way will be:

       G(Q)={ 

††

x  , for 

††

x †ŒQ  |   

††

x > y =†y 
-†1 

xy for 

††

x , y †ŒQ }

Thus quandles and groups are closely related:

Theorem. Let G be a group and 

††

Q =†Q ( G )  be the associated quandle. Let

††

G ( Q ) =†G ( Q ( G )) be the group associated to Q. Then 

††

G ( Q ) @†G . Similarly, Let Q be a
quandle and G(Q) be the associated group. If Q(G(Q)) is the quandle associated to G
(Q), then 

††

Q ( G ) @†Q .

The proof follows from the definitions.

To an oriented knot diagram one can associate a quandle in the following way. Label
the arcs, and let the elements of the quandle be the labels of the arcs. Then relate the
elements of the quandle using the crossings in the knot diagram and the following
definition of the quandle operations.



       

††

c > b =†a 

a < b =†c 

 
Now, to show that the knot quandle we have defined is a knot invariant, we must show
that it is an invariant under Reidemeister moves.
For the first Reidemeister move we get:

For R2 we have:

And for R3:

Notice that the conditions initially set on the quandle make it an invariant under the
three Reidemeister moves. 
So if two knot quandles are isomorphic then the unoriented knots are equivalent.
However, as the following example shows, the quandle is not a complete invariant of
knot type.

Ex. Consider the left and the right trefoil:

             
This gives an example of two knots which are not equivalent, but which have
isomorphic quandles. This example is an illustration of the fact that for two knots which
are mirror images of each other, their quandles will be isomorphic. This stems from the

equivalence of the operations   

††

x > y =†z  and   

††

z < y =†x , and their association to mirror
image crossing diagrams.

From here we can compute some simple knot quandles. We have already done the
trefoil, but we can do 4-1.

Ex.
 {a,b,c,d |   

††

a < c =†b ,   

††

b > d =†c ,   

††

c < a =†d , 
  

††

d > c =†a }



Knots that the quandle does allow us to distinguish are, for example 5-1 and the
unknot, and 6-3 and 5-1. We couldn’t distinguish these knots using the 3-coloring
invariant.

Def. The 3-coloring invariant is the number of ways to color a knot diagram with three
colors. To three color a diagram, each arc must be assigned a color, and the colors
must satisfy the rule that at each crossing, either only one color occurs on all arcs, or all
three colors occur on the intersecting arcs.

The knot quandle is a generalization of the 3-coloring invariant. 
From the 3-coloring invariant, replace the colors by arbitrary labels for each of the arcs
in the diagram. Replace the coloring rule by a method for combining these new labels.

Ex.
     
From 5-1 we get the quandle {a,b,c,d,e |   

††

a > b =†c ,   

††

b > c =†d ,   

††

c > d =†e ,   

††

d > e =†a ,
  

††

e > a =†b } which differs from the quandle of the unknot {a}  which has only one element.

  
{a,b,c,d,e,f |   

††

a < c =†b ,  

††

b < f =†c         {a,b,c,d,e |   

††

a > b =†c ,   

††

b > c =†d ,

   

††

c > e =†d ,   

††

d > a =†e ,   

††

e < b =†f ,   

††

f > d =†a }      

††

c > d =†e ,   

††

d > e =†a ,   

††

e > a =†b }

The quandles for 6-3 and 5-1 have different numbers of elements, and different explicit
relations, thus they cannot correspond to equivalent knots.

3. The Knot Group and Knot Quandle

The knot group of a knot has many different presentations. The presentation most
closely associated with quandles is called the Wirtinger presentation.

Def. To each arc of the knot diagram, assign a distinct generator. To each crossing of
arcs associate the relation CB=BA, where B is the generator for the overcrossing arc,
and C and A are the generators for the undercrossing arcs. 

Ex. For the trefoil:
  we have three distinct generators, a, b, and c. From the diagram, we can relate them
in the following way:

††

G =†{ a , b , c | ca=†ab, ab=†bc, bc=†ca} .



Since G is a group,

i)   For 

††

g , h †ŒG , 

††

gh †ŒG .
ii)  

††

( gh) k =†g ( hk)  for 

††

g , h , k †ŒG .
iii) The is an identity element, 

††

e †ŒG  such that 

††

ge=†eg=†g  for all      

††

g †ŒG .

iv)  Every element in G has an inverse, such that 

††

gg-†1 =†e =†g -†1 g  for all 

††

g †ŒG .
For G we know that it cannot be abelian. If G were abelian, then 

††

ab=†ba. Then the
relation 

††

ca=†ab implies 

††

ca=†ba. By multiplying by 

††

a -†1 
 on the right on both sides, we get

††

b =†c , which contradicts the fact that b and c are distinct generators.
Also, we know that there must be a distinct identity element e. If a,b, or c were the
identity, then the rules for G would yield equality between two of the elements that are
distinct.
Since we know that groups with four and five elements are abelian, then we know that
G must have at least six elements. The only nonabelian group with six elements is 

††

S 
3 ,

the symmetric group on three letters. The multiplication table in 

††

S 
3  can be written as:

Thus we know for the knot quandle, each relation   

††

a > b =†c  tells us that b is the
overcrossing arc, and a and c are the undercrossing arcs. So we can relate a quandle
operation   

††

a > b =†c  to a relation of group elements 

††

ab=†bc.

For the quandle for the trefoil we have
  

††

Q =†{ a , b , c | a > b =†c , b > c =†a , c > a =†b } .
The associated group is:

††

G =†{ a , b , c | ca=†ab, ab=†bc, bc=†ca} .
This is the same as the knot group of the trefoil in Wirtinger presentation. We can see
from the multiplication table for G that 

††

ca=†ab and 

††

bc=†ab. Also, if we use the original
construction of a group from a quandle presented earlier, we get:

††

G ' =†{ a , b , c | c =†b 
-†1 

ab, a =†c 
-†1 

b c , b =†a 
-†1 

c a } 

If we multiply by the appropriate element on the right side of each of these equations
we can get the same relations in G’ as we did for G.

Proposition. The knot quandle isomorphic to the obtained from the knot group in
Wirtinger presentation. The opposite is also true, the Wirtinger presentation of the knot
group can be obtained as the group associated to the knot quandle.

4. Conclusion

The knot quandle is a useful invariant of knots, and is closely tied to the knot group.
The main weakness of both of these invariants is their inability to distinguish knots that
are mirror images of each other. The knot quandle is also closely tied to coloring
invariants, and can be used to compute the Alexander Matrix of a knot, which can then
be used to compute the Alexander polynomial of a knot.
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