USING BRAIDS TO UNRAVEL KNOTS

SEAN ROSTAMI

Abstract

The central goal of this paper is to discuss how braid groups and representations of these braid groups can be used to describe and implement an algorithm to search relatively efficiently for nontrivial knots with trivial Jones polynomial. The question of whether such a knot exists is still open. The point of view of the braid group taken here is topological rather than combinatorial. After suitable topological preliminaries, we define the main items used in all of our constructions and outline our basic strategy. As a complete and illustrative example, we prove that the Burau representation of the braid group B_{3} is faithful (injective). Finally, we describe how the statements of the lemmas used to prove this faithfulness carry over to dealing with the braid group B_{4}.

Topological Definitions

For the purposes of what follows, we'll need a more topological definition of a braid. Then we can use topological ideas to prove theorems.
Definition. A topological space is a set X together with a collection S of subsets of X such that
(1) For any subsets $U, V \in A, U \cap V \in A$.
(2) For any collection $\left\{U_{i}\right\}_{i \in I}$ of subsets $U_{i} \in A$, the union of the U_{i} is also in A.
(3) $\emptyset, X \in A$.

The elements of X are called points and the elements of A are called open sets.
Basically, a topological space is a set where we can define all the usual notions of continuity, convergence etc.

Definition. Let X, Y be topological spaces. A function $f: X \rightarrow Y$ is called a homeomorphism if it is invertible and both f and f^{-1} are continuous. In this case, X is said to be "homeomorphic to Y via f ".
Definition. Let D be the unit disk in \mathbb{R}^{2} centered at the origin. Choose n puncture points $P=\left\{p_{1}, \ldots, p_{n}\right\}$ along the diameter such that $-1<x_{1}<\cdots<x_{n}<1$ where x_{i} is the x-coordinate of p_{i}, and define $D_{n}=D-P$. The braid group B_{n} is the set of equivalence classes of homeomorphisms $h: D \rightarrow D$ such that $h(P)=P$ where two homeomorphisms h_{1}, h_{2} are equivalent if there is a homeomorphism $\alpha: D \rightarrow D$ isotopic (relative to the boundary $\partial D_{n}=\mathbb{S}^{1} \cup P$) to the identity such that $h_{1}=h_{2} \circ \alpha$.

One can think of this in terms of the old definition by considering that the strands start at the points p_{i} and twist around each other before connecting again, possibly in a different order to an identical disk above it. A single braid is really just a fixed twisting of the strands, which can be achieved by deforming one of the disks to mix the strands up, for instance, by twisting a small part of the disk so that two of the points are switched:
(SEE strandtwistdiagram.bmp)
In fact, the $n-1$ maps σ_{i} that accomplish this (σ_{i} switches p_{i} with p_{i+1} and leaves the rest alone) generate the whole set of homeomorphisms. Here is an explicit definition of one such σ_{i}

Example. Let $R(\theta)$ be the 2×2 rotation matrix about the origin by θ radians. Let $r=r(x, y)$ be the distance from the origin and fix two points p_{i}, p_{j} in the disk on the x-axis, both distance $d>0$ from the endpoints of the diameter going through them. Define $\sigma: D \rightarrow D$ by

$$
\sigma(x, y)= \begin{cases}R\left(\left(\frac{r+d-1}{d}\right) \pi\right) \cdot(x, y) & \text { if } r \geq d \\ R(\pi) \cdot(x, y) & \text { if } r<d\end{cases}
$$

This function σ rotates the disk so that there is no rotation on the boundary, full rotation by π of the disk whose boundary contains p_{i}, p_{j} and a smooth transition of rotation from 0 to π as the points move closer to
the center. This map is clearly continuous and invertible with a continuous inverse, i.e. a homeomorphism. Note that we allow homeomorphisms $h \in B_{n}$ to move the puncture points around, while the isotopy we use to determine whether h is to be ignored cannot do this, so this really is just like the ambient isotopy we have already seen.

This is actually a special case of what is called a Dehn twist, which we will use later. A Dehn twist about a simple closed curve is accomplished as follows. A simple closed curve C is homeomorphic to the unit circle \mathbb{S} via some $h: C \rightarrow \mathbb{S}$. We apply this homeomorphism so that we may work with the unit circle \mathbb{S}. We then apply a twisting map similar to the above map σ except that this map rotates every point in the annulus $D_{2}^{2}-D_{1}^{2}\left(D_{k}^{n}\right.$ is the n-dimensional disk of radius k) by some angle $\theta(r)$ which is a smooth function of r. The initial angle is fixed at $\theta(1)=0$ and the terminal angle $\theta(2)$ is usually chosen to be π or 2π but can be anything.

We will also be using the notion of a covering space:
Definition. Let X, Y be a topological spaces and $f: X \rightarrow Y$ a continuous map. A point $a \in Y$ is evenly covered (by f) if there is some neighborhood U containing a such that every connected component C of $f^{-1}(U)$ is homeomorphic to U via f.
Accordingly,
Definition. Let X be a topological space. A covering space is a topological space \tilde{X} and a continuous function $\pi: \tilde{X} \rightarrow X$ such that every point is evenly covered by π. We will sometimes refer to such a covering space as the pair (X, π) or simply as \tilde{X} when the map π is clear.
The canonical example of a covering space is the following: Let X be the unit circle $\mathbb{S} \subset \mathbb{R}^{2} \subset \mathbb{R}^{3}, \tilde{X}$ be the helix in \mathbb{R}^{3} whose axis goes through the center of the circle and is orthogonal to the plane of the circle and π be the projection onto the $x y$-plane. The covering space here is the space (\tilde{X}, π). We have actually already seen an example of a covering space in class: in the proof that any knot can be unknotted by performing one or more crossing changes, we started at a point and constructed an unknot in \mathbb{R}^{3} by tracing out the knot as we simultaneously moved upwards in the z-axis. We arrived at an unknot whose projection had the same universe as our original knot.

The main facts about covering spaces (for our uses) that we will use are
Theorem. Let X be a topological space and (\tilde{X}, π) its covering space. For any path $f:[0,1] \rightarrow X$ and any $\tilde{x}_{0} \in \tilde{X}$ where $\pi\left(\tilde{x}_{0}\right)=x_{0}=f(0)$, there is a path $\tilde{f}:[0,1] \rightarrow \tilde{X}$ such that $\pi \circ \tilde{f}=f$. In this case, \tilde{f} is called a "lift" of f (to \tilde{X} via π).
One can show that this lifting construction descends to the homotopy equivalence classes. Moreover,
Theorem. For any subgroup H of the fundamental group (explained on the board), there is a covering space \tilde{X}_{H} such that the image of the fundamental group under π is isomorphic to H.

The Main Algorithm

Definition. A representation of a group G on a vector space V is a group homomorphism $F: G \rightarrow$ GL (V). The representation is faithful if F is injective, i.e. if the only element $g \in G$ such that $F(g)=\mathrm{id}_{V}$ is $g=1$.

A representation of a group G, in our case the braid groups B_{n}, allows us to use the extremely regular structure of linear spaces in working with our group. In particular, we can take all the usual invariants, such as determinant, trace, characteristic polynomial, etc., and attach them to elements in our group in some fashion.

In a recent paper ("The Burau representation is not faithful for $\mathrm{n}=5$ ", Stephen Bigelow, 1999), an algorithm was presented to possibly locate a non-trivial knot K having trivial Jones polynomial (i.e. $\left.V_{K}(t)=1\right)$. The algorithm rests upon the fact that the Burau representation is not faithful for B_{4}.

Many others had collectively proven that the same representation is faithful for B_{n} where $n \leq 3$ and
unfaithful for $n \geq 6$. The author used a similar algorithm to successfully prove this fact for B_{5}.
One may ask what is special about B_{4} and why the algorithm could not already be used for any of the B_{n} where $n \geq 5$. The reason is the following. There are three representations in action here: the Burau representation, the Jones representation and the Temperley-Lieb representation and different representations give different invariant polynomials, for instance the Jones versus the Alexander. But some representations are easier to work with than others. In the special case of B_{4}, we have the following:
Proposition 1. The following are equivalent:
(1) The Burau representation of B_{4} is faithful.
(2) The Temperley-Lieb representation of B_{4} is faithful.
(3) The Jones representation of B_{4} is faithful.

Thus once we prove that the Burau representation B_{4} is not faithful, we have access to a whole collection of braids B such that the knot $K=\bar{B}$ obtained via braid closure has Jones polynomial $V_{K}(t)=1$. It is hoped that at least one of these braids will give a non-trivial knot K.

What is promising about this method is that while it is in fact just a "search engine" for knots, the algorithm will actually search through knot diagrams with a number of crossings far beyond anything that has been systematically done before. For instance, a computer search for two curves (these are the cornerstone of the idea; explained below) showed that any these curves must intersect each other at least 500 times, which is directly related to the writhe of the closed knot $K=\bar{B}$. The reason it is able to search this far is because the ideas used below allow for a much much much more efficient search than simply taking knots and doing special knot moves to them.

Results Used to Develop the Algorithm

As an illustrative example, we prove that the Burau representation of B_{3} is faithful.
There are two objects that we will use in this proof.
Definition. Fix $d_{0}=(0,-1)$ on D_{n}. A fork F is a union of three curve segments e_{1}, e_{2}, e_{3} and four vertices d_{0}, p_{i}, p_{j}, z with $z \in D_{n}$ such that
(1) F intersects only the puncture points p_{i}, p_{j}.
(2) F intersects the boundary of the disk only at d_{0}.
(3) e_{1}, e_{2}, e_{3} all have z as a vertex.

The union of the segments e_{2}, e_{3} not having d_{0} as a vertex is called the prong $P(F)$ of F.
A chord is a curve segment having vertices d_{0}, w such that
(1) C does not intersect the boundary of the disk except at d_{0}, w.
(2) One of the two pieces of D_{n} separated by C contains exactly one puncture point.

Depiction:
(SEE fork.bmp and chord.bmp)
One object that is going to be used in this paper is a certain formal sum (i.e. a sum which does not necessarily make sense in the context of usual arithmetic). These formal sums properly belong to an area of topology called homology. To go into this area would take us too far outside the subject of this paper so I will not be covering it. Suffice to say it is closely related to the set of paths in the covering space \tilde{D}_{n} of D_{n}. For a fork F and a chord C, we define a formal sum $\langle F, C\rangle$ by defining

$$
\langle F, C\rangle=\sum_{i=1}^{k} \epsilon_{i} q^{a_{i}}
$$

where z_{1}, \ldots, z_{k} are the points of intersection between F and C, ϵ_{i} is the sign of the intersection at z_{i}, and a_{i} is the winding number of the curve γ_{i} that starts at d_{0}, goes to z_{i} along F then travels back to d_{0} along C. The winding number is simply the number of revolutions the curve makes around each of the puncture points.

(SEE gammawinding.bmp)

Lemma 2. Let $h: D_{n} \rightarrow D_{n}$ be a homeomorphism (i.e. representative of a braid by our above definition) in the kernel of the Burau representation. Then $\langle F, C\rangle=\langle h(F), C\rangle$ for any fork F and chord C.

Proof. First, we construct a covering space (mentioned above) $\tilde{D_{n}}$ for D_{n}.
First, take a copy D_{n}^{k} of D_{n} for each $k \in \mathbb{Z}$. Then on each copy, mark the vertical line segments going from the puncture points p_{i} to the top of the disk. Finally, for each k identify the corresponding line segments so that curves coming from the left of the segment on D_{n}^{k+1} end up on the right side of the segment on D_{n}^{k} :
(SEE coveringspace.bmp)
We project onto D_{n} using $\pi: \tilde{D_{n}} \rightarrow D_{n}$ which takes each point $x \in D_{n}^{k}$ to the corresponding point in D_{n}. Using the first theorem above, we have lifts \tilde{C} and \tilde{F} of C and F respectively. The symbol q^{a} for $a \in \mathbb{Z}$ is the homeomorphism obtained by composing q (or q^{-1} if $a<0$) with itself $|a|$ times.

Using the covering space, we can find an alternate expression for $\langle F, C\rangle$. Let $\operatorname{Int}(\alpha, \beta)$ be the intersection number (the crossing number of α and β at an intersection where α is considered to be "over" β and the direction is the direction induced by the curve parameter $t \in[0,1]$) between two curves α, β and consider the sum

$$
\sum_{a \in \mathbb{Z}} \operatorname{Int}\left(q^{a}(\tilde{C}), \tilde{F}\right) q^{a}
$$

Here, we are taking the homeomorphism q^{a}, applying it to the lifted curve \tilde{C}, taking the intersection number of it with the lift \tilde{F} and using this number as the coefficient of q^{a} in the formal sum. Suppose that γ_{i} has winding number a_{i} around p_{1} in the original sum. In the covering space, $\tilde{\gamma}_{i}$ ascends or descends by a_{i} sheets (depending on sign) by the geometry of the covering space. Then for $a=a_{i}$ in the new sum, we have translated the chord C by $a=a_{i}$ sheets to $q^{a}(C)$ so the intersection point is preserved. To generalize this, if γ_{i} winds around multiple points p_{1}, \ldots, p_{m} then in the covering space, $\tilde{\gamma}_{i}$ ascends or descends by m sheets, so preservation of the intersection number is achieved by translating the chord C an equal number of times. To further generalize, if there are multiple a_{i} taking on the same value, then this will be accounted for since the translated chord $q^{a}(C)$ will intersect all of the appropriate $\tilde{\gamma}_{i}$, i.e. we will have a coefficient of some k instead of a sum of $1 k$-times. Thus the two expressions are equal.
(did this in class; alternatively, see figure8.bmp)

There are a lot of things we have to name so I've left these in a separate diagram:
(SEE figure8.bmp)

Finally, we can define the "figure- 8 " $L(t)=\gamma\left(\delta_{j}\left(\gamma^{-1}\left(\delta_{i}^{-1}(t)\right)\right)\right)$. When we lift this to $\tilde{D_{n}}$, it becomes a loop $\tilde{L}(t)$, and outside of some neighborhoods around p_{i} and p_{j} it is simply the union of \tilde{P} and $q(\tilde{p})$ with the orientation reversed:
(SEE figure8.bmp)
Algebraically, outside of these neighborhoods, $\tilde{L}=(1-q) \tilde{P}$ so

$$
\langle F, C\rangle=\frac{1}{1-q} \sum_{a \in \mathbb{Z}} \operatorname{Int}\left(q^{a} \tilde{C}, \tilde{L}\right) q^{a}
$$

But \tilde{D}_{n} was taken to be the covering space where the loops project onto the kernel of the Burau representation, so the loops $h(\tilde{L})$ and \tilde{L} are equivalent in $H_{1}\left(\tilde{D_{n}}\right.$. Therefore,

$$
\langle F, C\rangle=\frac{1}{1-q} \sum_{a \in \mathbb{Z}} \operatorname{Int}\left(q^{a} \tilde{C}, \tilde{L}\right) q^{a}=\frac{1}{1-q} \sum_{a \in \mathbb{Z}} \operatorname{Int}\left(q^{a} \tilde{C}, h \tilde{L}()\right) q^{a}=\langle h(F), C\rangle
$$

The preceding lemma will be used with the next lemma to prove the main result.
Lemma 3. For $n=3,\langle F, C\rangle=0$ if and only if $P(F)$ is isotopic to an arc disjoint from C.

The lemmas will be used together as follows. We take any homeomorphism (read: braid) h in the kernel of the representation and construct an F and C such that $\langle F, C\rangle=0$, note by the first lemma that $\langle h(F), C\rangle=0$, and use the second lemma that is disjoint from C.

Proof. Let k be the number of intersection points of F and C and apply an isotopy so that k is minimal. Let these points be z_{1}, \ldots, z_{k}. The direct statement is obvious: when $k=0$, the sum is empty.

Suppose $k>0$. Apply a homeomorphism (in this problem we are only interested in crossing numbers and winding numbers so a homeomorphism that straightens out the chord will have no effect) so that the chord is a straight line from $(-1,0)$ to $(1,0)$ as in the diagram and apply a planar isotopy to the fork (note that the placement of the points is guaranteed by the definition of a chord). Denote the upper half disk by D_{n}^{+} and the lower half disk by D_{n}^{-}:

(SEE n3diskdiagram.bmp)

By minimality of k, any arc of F that begins and ends on C lies entirely in D_{n}^{-}. This arc together with the segment of C must encircle p_{3} (otherwise, we could reduce the number of intersection points with an isotopy that looks like the second Reidemeister move). Similarly, each arc of F which begins and ends on C must contain either p_{1} or p_{2} (or start at one of them) but not both since then we would have a closed loop around all the points.

Then if a_{i} and a_{j} are the winding numbers in the definition of $\langle h(F), C\rangle, a_{j}=a_{i} \pm 1$. Also, the crossing signs ϵ_{i} and ϵ_{j} are opposite signs:

> (SEE windingnumbers.bmp)

Together, $e_{j}(-1)^{a_{j}}=e_{i}(-1)^{a_{i}}$. Since the set of all covering spaces is just the group generated by q which shifts the covering space up by one sheet, it is isomorphic to \mathbb{Z} so using q^{-1} which maps to -1

$$
\sum_{i=1}^{k} e_{i}(-1)^{a_{i}}= \pm k \neq 0
$$

Finally,
Theorem. The Burau representation of B_{3} is not faithful.
Proof. Let h be a homeomorphism in the kernel of the Burau representation. We will show that it is isotopic to the trivial homeomorphism.

Choose as a prong $P(F)$ a horizontal line segment from p_{1} to p_{2}, a chord that does not intersect this prong, and the rest of the fork so that it does not intersect the chord. Then since $P(F)$ is disjoint from C, by Lemma $3,\langle F, C\rangle=0$. By Lemma $2,\langle h(F), C\rangle=0$ as well, and by Lemma 3 again, $P(h(F))$ is isotopic to a segment disjoint from C. By applying an isotopy, we can assume that $P(h(F))=P(F)$.

If we do the same thing all over again, but on a permutation of p_{1}, p_{2}, p_{3} then we can assume that h fixes all three of the segments that connect pairs of these three points. Applying an isotopy, h fixes the circle that contains all three points. But we know that h must be some kind of combination of rotations of puncture points into each other so this must mean it is some power of Dehn twist (i.e. it smoothly twists an annulus centered at the circle), as mentioned above. It can be shown that such a twist has representation $q^{3} I$ where I is the identity matrix. The only possibility is that the representation of h is the 0 th power, i.e. h is the non-twisting identity homeomorphism.

Extending this to $n=4$

It can be shown that Lemma 3 somewhat characterizes the n for which the Burau representation is unfaithful:

Proposition 4. The following are equivalent:
(1) The Burau representation of B_{n} is faithful.
(2) The direct statement of Lemma 3 holds: if F and C are any fork and chord such that $\langle F, C\rangle=0$ then $P(F)$ is isotopic to an arc disjoint to C.

The author defines a standard form of the placement of F and C within D_{n} that is very similar to that used above. Ultimately, one can think of this standard form as encoding, not twisting operations directly, but a structure which exposes properties of homeomorphisms when acted upon by them.

Using this standard form, the algorithm's goal is to search for curves F and C in the disc which intersect, but which satisfy $\langle F, C\rangle=0$ which is the violation to the above equivalence. Again, this method was applied in the $n=5$ case to find explicit non-trivial braid in the kernel of the Burau representation of B_{5}.

BIBLIOGRAPHY

"Study of Braids", Kunio Murasugi and Bohdan I. Kurpita, 1999
"Mathematical Theory of Knots and Braids : An Introduction", Siegfried Moran, 1983
"Does the Jones polynomial detect the unknot?", Stephen Bigelow, 2002

