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Abstract. The central goal of this paper is to discuss how braid groups and representations of these braid

groups can be used to describe and implement an algorithm to search relatively efficiently for nontrivial
knots with trivial Jones polynomial. The question of whether such a knot exists is still open. The point
of view of the braid group taken here is topological rather than combinatorial. After suitable topological

preliminaries, we define the main items used in all of our constructions and outline our basic strategy. As a
complete and illustrative example, we prove that the Burau representation of the braid group B3 is faithful
(injective). Finally, we describe how the statements of the lemmas used to prove this faithfulness carry over
to dealing with the braid group B4.

Topological Definitions
For the purposes of what follows, we’ll need a more topological definition of a braid. Then we can use
topological ideas to prove theorems.

Definition. A topological space is a set X together with a collection S of subsets of X such that
(1) For any subsets U, V ∈ A, U ∩ V ∈ A.
(2) For any collection {Ui}i∈I of subsets Ui ∈ A, the union of the Ui is also in A.
(3) ∅, X ∈ A.

The elements of X are called points and the elements of A are called open sets.

Basically, a topological space is a set where we can define all the usual notions of continuity, convergence
etc.

Definition. Let X, Y be topological spaces. A function f : X → Y is called a homeomorphism if it is
invertible and both f and f−1 are continuous. In this case, X is said to be “homeomorphic to Y via f”.

Definition. Let D be the unit disk in R2 centered at the origin. Choose n puncture points
P = {p1, . . . , pn} along the diameter such that −1 < x1 < · · · < xn < 1 where xi is the x-coordinate of pi,
and define Dn = D − P . The braid group Bn is the set of equivalence classes of homeomorphisms
h : D → D such that h(P ) = P where two homeomorphisms h1, h2 are equivalent if there is a
homeomorphism α : D → D isotopic (relative to the boundary ∂Dn = S1 ∪ P ) to the identity such that
h1 = h2 ◦ α.

One can think of this in terms of the old definition by considering that the strands start at the points pi

and twist around each other before connecting again, possibly in a different order to an identical disk above
it. A single braid is really just a fixed twisting of the strands, which can be achieved by deforming one of
the disks to mix the strands up, for instance, by twisting a small part of the disk so that two of the points
are switched:

(SEE strandtwistdiagram.bmp)
In fact, the n− 1 maps σi that accomplish this (σi switches pi with pi+1 and leaves the rest alone) generate
the whole set of homeomorphisms. Here is an explicit definition of one such σi

Example. Let R(θ) be the 2× 2 rotation matrix about the origin by θ radians. Let r = r(x, y) be the
distance from the origin and fix two points pi, pj in the disk on the x-axis, both distance d > 0 from the
endpoints of the diameter going through them. Define σ : D → D by

σ(x, y) =

{
R(

(
r+d−1

d

)
π) · (x, y) if r ≥ d;

R(π) · (x, y) if r < d

This function σ rotates the disk so that there is no rotation on the boundary, full rotation by π of the disk
whose boundary contains pi, pj and a smooth transition of rotation from 0 to π as the points move closer to
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the center. This map is clearly continuous and invertible with a continuous inverse, i.e. a homeomorphism.
Note that we allow homeomorphisms h ∈ Bn to move the puncture points around, while the isotopy we use
to determine whether h is to be ignored cannot do this, so this really is just like the ambient isotopy we
have already seen.

This is actually a special case of what is called a Dehn twist, which we will use later. A Dehn twist about a
simple closed curve is accomplished as follows. A simple closed curve C is homeomorphic to the unit circle
S via some h : C → S. We apply this homeomorphism so that we may work with the unit circle S. We
then apply a twisting map similar to the above map σ except that this map rotates every point in the
annulus D2

2 −D2
1 (Dn

k is the n-dimensional disk of radius k) by some angle θ(r) which is a smooth function
of r. The initial angle is fixed at θ(1) = 0 and the terminal angle θ(2) is usually chosen to be π or 2π but
can be anything.

We will also be using the notion of a covering space:

Definition. Let X, Y be a topological spaces and f : X → Y a continuous map. A point a ∈ Y is evenly
covered (by f) if there is some neighborhood U containing a such that every connected component C of
f−1(U) is homeomorphic to U via f .

Accordingly,

Definition. Let X be a topological space. A covering space is a topological space X̃ and a continuous
function π : X̃ → X such that every point is evenly covered by π. We will sometimes refer to such a
covering space as the pair (X, π) or simply as X̃ when the map π is clear.

The canonical example of a covering space is the following: Let X be the unit circle S ⊂ R2 ⊂ R3, X̃ be the
helix in R3 whose axis goes through the center of the circle and is orthogonal to the plane of the circle and
π be the projection onto the xy-plane. The covering space here is the space (X̃, π). We have actually
already seen an example of a covering space in class: in the proof that any knot can be unknotted by
performing one or more crossing changes, we started at a point and constructed an unknot in R3 by tracing
out the knot as we simultaneously moved upwards in the z-axis. We arrived at an unknot whose projection
had the same universe as our original knot.

The main facts about covering spaces (for our uses) that we will use are

Theorem. Let X be a topological space and (X̃, π) its covering space. For any path f : [0, 1] → X and
any x̃0 ∈ X̃ where π(x̃0) = x0 = f(0), there is a path f̃ : [0, 1] → X̃ such that π ◦ f̃ = f . In this case, f̃ is
called a “lift” of f (to X̃ via π).

One can show that this lifting construction descends to the homotopy equivalence classes. Moreover,

Theorem. For any subgroup H of the fundamental group (explained on the board), there is a covering
space X̃H such that the image of the fundamental group under π is isomorphic to H.

The Main Algorithm

Definition. A representation of a group G on a vector space V is a group homomorphism
F : G → GL (V ). The representation is faithful if F is injective, i.e. if the only element g ∈ G such that
F (g) = idV is g = 1.

A representation of a group G, in our case the braid groups Bn, allows us to use the extremely regular
structure of linear spaces in working with our group. In particular, we can take all the usual invariants,
such as determinant, trace, characteristic polynomial, etc., and attach them to elements in our group in
some fashion.

In a recent paper (“The Burau representation is not faithful for n=5”, Stephen Bigelow, 1999), an
algorithm was presented to possibly locate a non-trivial knot K having trivial Jones polynomial (i.e.
VK(t) = 1). The algorithm rests upon the fact that the Burau representation is not faithful for B4.

Many others had collectively proven that the same representation is faithful for Bn where n ≤ 3 and
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unfaithful for n ≥ 6. The author used a similar algorithm to successfully prove this fact for B5.

One may ask what is special about B4 and why the algorithm could not already be used for any of the Bn

where n ≥ 5. The reason is the following. There are three representations in action here: the Burau
representation, the Jones representation and the Temperley-Lieb representation and different
representations give different invariant polynomials, for instance the Jones versus the Alexander. But some
representations are easier to work with than others. In the special case of B4, we have the following:

Proposition 1. The following are equivalent:
(1) The Burau representation of B4 is faithful.
(2) The Temperley-Lieb representation of B4 is faithful.
(3) The Jones representation of B4 is faithful.

Thus once we prove that the Burau representation B4 is not faithful, we have access to a whole collection
of braids B such that the knot K = B obtained via braid closure has Jones polynomial VK(t) = 1. It is
hoped that at least one of these braids will give a non-trivial knot K.

What is promising about this method is that while it is in fact just a “search engine” for knots, the
algorithm will actually search through knot diagrams with a number of crossings far beyond anything that
has been systematically done before. For instance, a computer search for two curves (these are the
cornerstone of the idea; explained below) showed that any these curves must intersect each other at least
500 times, which is directly related to the writhe of the closed knot K = B. The reason it is able to search
this far is because the ideas used below allow for a much much much more efficient search than simply
taking knots and doing special knot moves to them.

Results Used to Develop the Algorithm
As an illustrative example, we prove that the Burau representation of B3 is faithful.

There are two objects that we will use in this proof.

Definition. Fix d0 = (0,−1) on Dn. A fork F is a union of three curve segments e1, e2, e3 and four
vertices d0, pi, pj , z with z ∈ Dn such that

(1) F intersects only the puncture points pi, pj .
(2) F intersects the boundary of the disk only at d0.
(3) e1, e2, e3 all have z as a vertex.

The union of the segments e2, e3 not having d0 as a vertex is called the prong P (F ) of F .

A chord is a curve segment having vertices d0, w such that
(1) C does not intersect the boundary of the disk except at d0, w.
(2) One of the two pieces of Dn separated by C contains exactly one puncture point.

Depiction:
(SEE fork.bmp and chord.bmp)

One object that is going to be used in this paper is a certain formal sum (i.e. a sum which does not
necessarily make sense in the context of usual arithmetic). These formal sums properly belong to an area
of topology called homology. To go into this area would take us too far outside the subject of this paper so
I will not be covering it. Suffice to say it is closely related to the set of paths in the covering space D̃n of
Dn. For a fork F and a chord C, we define a formal sum 〈F,C〉 by defining

〈F,C〉 =
k∑

i=1

εiq
ai

where z1, . . . , zk are the points of intersection between F and C, εi is the sign of the intersection at zi, and
ai is the winding number of the curve γi that starts at d0, goes to zi along F then travels back to d0 along
C. The winding number is simply the number of revolutions the curve makes around each of the puncture
points.
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(SEE gammawinding.bmp)

Lemma 2. Let h : Dn → Dn be a homeomorphism (i.e. representative of a braid by our above definition)
in the kernel of the Burau representation. Then 〈F,C〉 = 〈h(F ), C〉 for any fork F and chord C.

Proof. First, we construct a covering space (mentioned above) D̃n for Dn.

First, take a copy Dk
n of Dn for each k ∈ Z. Then on each copy, mark the vertical line segments going from

the puncture points pi to the top of the disk. Finally, for each k identify the corresponding line segments so
that curves coming from the left of the segment on Dk+1

n end up on the right side of the segment on Dk
n:

(SEE coveringspace.bmp)

We project onto Dn using π : D̃n → Dn which takes each point x ∈ Dk
n to the corresponding point in Dn.

Using the first theorem above, we have lifts C̃ and F̃ of C and F respectively. The symbol qa for a ∈ Z is
the homeomorphism obtained by composing q (or q−1 if a < 0) with itself | a | times.

Using the covering space, we can find an alternate expression for 〈F,C〉. Let Int(α, β) be the intersection
number (the crossing number of α and β at an intersection where α is considered to be “over” β and the
direction is the direction induced by the curve parameter t ∈ [0, 1]) between two curves α, β and consider
the sum ∑

a∈Z
Int(qa(C̃), F̃ )qa

Here, we are taking the homeomorphism qa, applying it to the lifted curve C̃, taking the intersection
number of it with the lift F̃ and using this number as the coefficient of qa in the formal sum. Suppose that
γi has winding number ai around p1 in the original sum. In the covering space, γ̃i ascends or descends by
ai sheets (depending on sign) by the geometry of the covering space. Then for a = ai in the new sum, we
have translated the chord C by a = ai sheets to qa(C) so the intersection point is preserved. To generalize
this, if γi winds around multiple points p1, . . . , pm then in the covering space, γ̃i ascends or descends by m
sheets, so preservation of the intersection number is achieved by translating the chord C an equal number
of times. To further generalize, if there are multiple ai taking on the same value, then this will be
accounted for since the translated chord qa(C) will intersect all of the appropriate γ̃i, i.e. we will have a
coefficient of some k instead of a sum of 1 k-times. Thus the two expressions are equal.

(did this in class; alternatively, see figure8.bmp)

There are a lot of things we have to name so I’ve left these in a separate diagram:

(SEE figure8.bmp)

Finally, we can define the “figure-8” L(t) = γ(δj(γ−1(δi
−1(t)))). When we lift this to D̃n, it becomes a loop

L̃(t), and outside of some neighborhoods around pi and pj it is simply the union of P̃ and q(p̃) with the
orientation reversed:

(SEE figure8.bmp)

Algebraically, outside of these neighborhoods, L̃ = (1− q)P̃ so

〈F,C〉 =
1

1− q

∑
a∈Z

Int(qaC̃, L̃)qa

But D̃n was taken to be the covering space where the loops project onto the kernel of the Burau
representation, so the loops h(L̃) and L̃ are equivalent in H1(D̃n. Therefore,

〈F,C〉 =
1

1− q

∑
a∈Z

Int(qaC̃, L̃)qa =
1

1− q

∑
a∈Z

Int(qaC̃, ˜h(L))qa = 〈h(F ), C〉

�

The preceding lemma will be used with the next lemma to prove the main result.

Lemma 3. For n = 3, 〈F,C〉 = 0 if and only if P (F ) is isotopic to an arc disjoint from C.
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The lemmas will be used together as follows. We take any homeomorphism (read: braid) h in the kernel of
the representation and construct an F and C such that 〈F,C〉 = 0, note by the first lemma that
〈h(F ), C〉 = 0, and use the second lemma that is disjoint from C.

Proof. Let k be the number of intersection points of F and C and apply an isotopy so that k is minimal.
Let these points be z1, . . . , zk. The direct statement is obvious: when k = 0, the sum is empty.

Suppose k > 0. Apply a homeomorphism (in this problem we are only interested in crossing numbers and
winding numbers so a homeomorphism that straightens out the chord will have no effect) so that the chord
is a straight line from (−1, 0) to (1, 0) as in the diagram and apply a planar isotopy to the fork (note that
the placement of the points is guaranteed by the definition of a chord). Denote the upper half disk by D+

n

and the lower half disk by D−
n :

(SEE n3diskdiagram.bmp)

By minimality of k, any arc of F that begins and ends on C lies entirely in D−
n . This arc together with the

segment of C must encircle p3 (otherwise, we could reduce the number of intersection points with an
isotopy that looks like the second Reidemeister move). Similarly, each arc of F which begins and ends on C
must contain either p1 or p2 (or start at one of them) but not both since then we would have a closed loop
around all the points.

Then if ai and aj are the winding numbers in the definition of 〈h(F ), C〉, aj = ai ± 1. Also, the crossing
signs εi and εj are opposite signs:

(SEE windingnumbers.bmp)

Together, ej(−1)aj = ei(−1)ai . Since the set of all covering spaces is just the group generated by q which
shifts the covering space up by one sheet, it is isomorphic to Z so using q−1 which maps to −1

k∑
i=1

ei(−1)ai = ±k 6= 0

�

Finally,

Theorem. The Burau representation of B3 is not faithful.

Proof. Let h be a homeomorphism in the kernel of the Burau representation. We will show that it is
isotopic to the trivial homeomorphism.

Choose as a prong P (F ) a horizontal line segment from p1 to p2, a chord that does not intersect this prong,
and the rest of the fork so that it does not intersect the chord. Then since P (F ) is disjoint from C, by
Lemma 3, 〈F,C〉 = 0. By Lemma 2, 〈h(F ), C〉 = 0 as well, and by Lemma 3 again, P (h(F )) is isotopic to a
segment disjoint from C. By applying an isotopy, we can assume that P (h(F )) = P (F ).

If we do the same thing all over again, but on a permutation of p1, p2, p3 then we can assume that h fixes
all three of the segments that connect pairs of these three points. Applying an isotopy, h fixes the circle
that contains all three points. But we know that h must be some kind of combination of rotations of
puncture points into each other so this must mean it is some power of Dehn twist (i.e. it smoothly twists
an annulus centered at the circle), as mentioned above. It can be shown that such a twist has
representation q3I where I is the identity matrix. The only possibility is that the representation of h is the
0th power, i.e. h is the non-twisting identity homeomorphism. �

Extending this to n = 4
It can be shown that Lemma 3 somewhat characterizes the n for which the Burau representation is
unfaithful:

Proposition 4. The following are equivalent:
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(1) The Burau representation of Bn is faithful.
(2) The direct statement of Lemma 3 holds: if F and C are any fork and chord such that 〈F,C〉 = 0

then P (F ) is isotopic to an arc disjoint to C.

The author defines a standard form of the placement of F and C within Dn that is very similar to that
used above. Ultimately, one can think of this standard form as encoding, not twisting operations directly,
but a structure which exposes properties of homeomorphisms when acted upon by them.

Using this standard form, the algorithm’s goal is to search for curves F and C in the disc which intersect,
but which satisfy 〈F,C〉 = 0 which is the violation to the above equivalence. Again, this method was
applied in the n = 5 case to find explicit non-trivial braid in the kernel of the Burau representation of B5.
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