PRACTICE PROBLEMS FOR MIDTERM 1 **MATH 120A**

1. Local Theorem

In all the problems below, a curve $\alpha(t)$ is called regular if $\alpha'(t) \neq 0$ and $\alpha''(t) \neq 0$.

Problem 1. a) Let I and J be two intervals on the real line \mathbb{R} . What is a reparametrization of a regular parametrized curve defined on I to a curve defined on J?

- b) Prove that $f:(-1,1)\to(-\infty,\infty)$ is a reparametrization;
- c) Prove that the arc length of a regular parametrized curve is independent of reparametrization;

Problem 2. Let $\alpha(t): I \to \mathbb{R}^2$ be a regular plane curve, such that there exists a vector $v \in \mathbb{R}^2$ with the property that $(\alpha(t) - v)$ is orthogonal to the tangent vector T(t) for all t. Prove that $\alpha(t)$ lies on a circle.

Problem 3. Give an example of a curve $\alpha: I \to \mathbb{R}^3$ which is not regular and explain why it is not regular.

Problem 4. Reparametrize the curve $\alpha(t) = (e^t \cos t, e^t \sin t, e^t)$ by arc length.

Problem 5. Show that for the curve

$$\alpha(s) = (5/13\cos(s), 8/13 - \sin(s), -12/13\cos(s))$$

the parametrization by s is a parametrization by arc length. For this curve, compute the Frenet trihedron at each point, and the curvature and torsion at each point.

Problem 6. Let $\alpha(s) = (x(s), y(s)) : I \to \mathbb{R}^2$ be a regular plane curve parametrized by the arc lengths. Prove that the curvature of α is given by

$$k(s) = |x'y'' - x''y'|;$$

Problem 7. Prove that if $\alpha(s):[a,b]\to\mathbb{R}^3$ is a curve parametrized by the arc length such that $k(s) \equiv 0$ on [a, b], then α is the interval on a straight line.

Problem 8. Prove that $k(s)\tau(s) = -\langle t'(s), b'(s) \rangle$.

Problem 9. Find a curve $\alpha(s)$ parametrized by the arc length such that $k(s) = 1/(1+s^2)$ and $\tau \equiv 0$.

Problem 10. Let $\beta(t)$ be a curve not necessarily parametrized by the arc length. Prove that $k(t) = |\beta' \times \beta''|/|\beta'|^3$, where prime denotes the derivative with respect to t.

2. Global Theory

Problem 11. Look through the problems in section 1.7 which are related to the isoperimetric inequality, four vertex theorem, and Cauchy-Crofton formula.

Here are some other problems.

Problem 12. Compute the rotation index of a given curve (draw a curve, with some self-intersections, and compute its rotation index).

Problem 13. a) What is a convex curve? (Give a definition).

b) Let $\alpha(s)$: [0, l] be a convex simple closed curve. Can it happen that there are three points, $0 < s_1 < s_2 < s_3 < l$ such that the tangent lines at these points are parallel?

Problem 14. Let A = (-1,1) and B(1,-1) be two points on the plane. Let $l \geq 2$. Find the curve $\alpha(s) : [0,l] \to \mathbb{R}^2$ such that $\alpha(0) = A$, $\alpha(l) = B$ and the area of the region bounded by the segments \overline{OA} , \overline{OB} and the curve α is maximal.