up previous


Homework 4

(ADDITIONAL PROBLEMS)

Problem 1   Let $ T:V\to W $ be a linear transformation.

a) Let $ U\subseteq V $ be a subspace of $ V $. Show that $ T(U)\doteq \{w\in W\, :\, w=T(u)\, \textrm{for some }\, \, u\in U\} $ is a subspace of $ W $. If $ U=V $, then $ T(V) $ is the subspace called the range of the linear transformation $ T $.

b) Let $ X\subseteq W $ be a subspace of $ W $. Show that $ T^{-1}(X)\doteq \{v\in V\, :\, T(v)\in X\} $ is a subspace of $ V $. If $ X=\{0\} $, then $ T^{-1}(\{0\}) $ is the subspace called the null space of $ T $.

Problem 2   Let $ T:\mathbb{R}^{2}\to \mathbb{R}^{2} $ be the reflection through the line $ y=\alpha x $ on the plane. Find the matrix of this transformation with respect to the standard basis.

Problem 3   Recall the following facts:

Using these facts, solve the following problem: Let $ v=(1,1,1) $, $ w=(3,2,1) $ and $ x=(-1,0,1) $ be vectors in $ \mathbb{R}^{3} $. Let $ T:\mathbb{R}^{3}\to \mathbb{R}^{3} $ be the linear transformation defined as the composition of the following:
1) first, perform rotation in the plane perpendicular to $ v $ by angle $ \theta $;
2) then, do a flip in the plane perpendicular to $ w $;
3) finally, do a (counterclockwise) rotation in the plane perpendicular to $ x $ by angle $ \varphi $;
Determine the matrix of this linear transformation in the standard basis in $ \mathbb{R}^{3} $. (Do not multiply the three matrices you will have).

Problem 4   Let $ D:P_{n}(\mathbb{R})\to P_{n-1}(\mathbb{R}) $ be the differentiation transformation defined by $ (Df)(x)=f'(x) $ and $ I:P_{n}(\mathbb{R})\to P_{n+1}(\mathbb{R}) $ be the integration transformation defined by $ (If)(x)=\int _{0}^{x}f(t)dt $. Find the matrices of these transformations with respect to the standard bases in $ P_{n-1}(\mathbb{R}),\, P_{n}(\mathbb{R}),\, P_{n+1}(\mathbb{R}) $.

Problem 5   Let $ V,U,W $ be vector spaces such that $ V=U\oplus W $. Let $ T:V\to V $ be a linear transformation such that $ U $ is invariant under $ T $. Is it true that $ W $ is also invariant under $ T $? Prove or give a counterexample.

About this document ...

Homework 4

This document was generated using the LaTeX2HTML translator Version 99.2beta6 (1.42)

Copyright © 1993, 1994, 1995, 1996, Nikos Drakos, Computer Based Learning Unit, University of Leeds.
Copyright © 1997, 1998, 1999, Ross Moore, Mathematics Department, Macquarie University, Sydney.

The command line arguments were:
latex2html -no_subdir -split 0 -show_section_numbers /u/sonia/h3/guest/radko/Teaching/math115ah/homework/hw4.tex

The translation was initiated by Olga Radko on 2003-08-04


up previous
Olga Radko 2003-08-04