up previous


Math 115AH Homework # 2

(additional problems)

Problem 1   Let $ V $ be a vector space which is spanned by a finite set $ S $ consisting of $ n $ elements. Show that $ V $ is finite-dimensional with dimension less then or equal to $ n $. (You should not assume from the beginning that $ V $ is finite-dimensional!)

Problem 2   a) Let $ f_{1}(x)=1,\, f_{2}(x)=e^{ix},\, f_{3}(x)=e^{-ix} $. Prove that these functions are linearly independent in the space $ \mathcal{F}(\mathbb{R},\mathbb{C}) $ of all complex-valued functions on the real line.
b) Let $ g_{1}(x)=1, $   $ g_{2}(x)=\textrm{cos}(x), $   $ g_{3}(x)=\textrm{sin}(x) $. Find an invertible $ 3\times 3 $ matrix such that $ g_{i}(x)=\sum _{j=1}^{3}P_{ij}(x)f_{j}(x) $ for all $ 1\leq i\leq 3 $.

Problem 3   Let $ V $ be a $ 4 $-dimensional vector space, and $ W $ be its $ 2 $-dimensional subspace. Show that there is a $ 3 $-dimensional subspace $ U $ of $ V $ such that $ W\subset U\subset V $.

Problem 4   Let $ V=P_{3}(\mathbb{R}) $, $ W=M_{2\times 2}(\mathbb{R}) $ be two vector spaces, both of dimension $ 4 $. Construct an explicit isomorphism from $ V $ to $ W $.

Problem 5   a) Prove that a linear map $ T:V\to W $ is an isomorphism iff it sends a basis of $ V $ to a basis of $ W $.

b) Let $ V $ and $ W $ be vector spaces, and let $ \textrm{dim}(V)=n $. Let $ \{e_{1},\dots ,e_{n}\} $ be a basis in $ V $ and $ \{y_{1},\dots ,y_{n}\} $ be an arbitrary set of vectors in $ W $. Prove (by giving an explicit construction) that there exists a linear transformation $ T:V\to W $ such that $ T(e_{i})=y_{i} $ for all $ i=1,\dots ,n $. Is such a transformation unique?

Problem 6   (Annihilators) Let $ S $ be a subset of a vector space $ V $.

  1. Prove that its annihilator $ S^{0}=\{h\in V^{*}:\, \langle h,x\rangle =0\, \forall x\in S\} $ is a subspace of $ V^{*} $.
  2. Prove that if $ S\subset V $ is a subspace and $ v\notin S $, then there exists $ h\in S^{0} $ such that $ h(v)\neq 0 $.
  3. Let $ V $ be finite-dimensional and $ \psi :V\to V^{**} $ be the isomorphism defined by $ x\mapsto \hat{x} $, where $ \hat{x}(h)=h(x) $ for all $ h\in V^{*} $. Prove that $ (S^{0})^{0}=\textrm{span}(\psi (S)) $. In particular, if $ S $ is a subspace, conclude that $ S^{00}=\psi (S) $ (i.e., $ S^{00} $ and $ S $ can be identified by the natural isomorphism between $ V $ and $ V^{**} $).
  4. Let $ W_{1} $ and $ W_{2} $ be subspaces. Show that $ (W_{1}+W_{2})^{0}=W_{1}^{0}\cap W_{2}^{0} $ and $ (W_{1}\cap W_{2})^{0}=W_{1}^{0}+W_{2}^{0} $. (Hint: first prove that $ U\subset W $ implies that $ W^{0}\subset U^{0} $).

About this document ...

Math 115AH Homework # 2

This document was generated using the LaTeX2HTML translator Version 99.2beta6 (1.42)

Copyright © 1993, 1994, 1995, 1996, Nikos Drakos, Computer Based Learning Unit, University of Leeds.
Copyright © 1997, 1998, 1999, Ross Moore, Mathematics Department, Macquarie University, Sydney.

The command line arguments were:
latex2html -no_subdir -split 0 -show_section_numbers /u/sonia/h3/guest/radko/Teaching/math115ah/homework/hw2.tex

The translation was initiated by Olga Radko on 2003-08-04


up previous
Olga Radko 2003-08-04