Notation 1. For a positive integer n > 1, let Z, denote the set {0,1,...,n — 1} and let Z
denote the set of all integers. We will denote integers by the letters x,y, z and elements of
Zy, by a,b,c. The number n will be fixed throughout.

Remark 1. Z, can be identified with the set of remainders of integer division by n. For an
integer z, denote by [z] its remainder after division by n. Then [z] € Z,, for any z € Z.

Example 1. Let n = 3. Then [5] = [2] = [-1] = 2. Indeed, 5=1-3+2,2=0-3+ 2 and
—1=(-1)-3+2.

Definition 1. (Addition on Z,). Let a,b € Z,,. Choose z,y € Z so that [z] = a and [y] = b.
Then define a + b = [z + y|.

Theorem 1. Addition is well-defined.

Proof. We need to show that: (i) the choice of z and y is always possible and (ii) that the
result [z + y] does not depend on the choices of x and y, as long as [z] = a and [y] = b.
Let us first prove (i). This is obvious, since we could, for example, choose z = a and y = b.
Let us now prove (ii). If 2’ and y' are two other integers, so that [z] = [2/] = a and
ly] = [¢'] = b, then we must have

z ™M+ a
y = sn—+b
¥ = r'n+b
y = sn+b

for some integers r, 7', s, s'. But then
(z+y)— (@' +y)=0—-r"+s—35)n,

so that the remainder of x + y after dividing by n is the same as the remainder of x’' 4 ¢/
after dividing by n. Thus [z +y] = [z’ +¢'], so that the choices of z and y are irrelevant. [J

Definition 2. (Negation) For a € Z,,, define —a = [—a].
Example 2. Let n =3, a=1. Then —a = [-1] = 2.

Exercise 1. Prove that for any a € Z,, a + (—a) = 0. Prove that for any a,b € Z,,
a+ b= b+ a. Prove that for any a,b,c € Z,, a+ (b+c) = (a+b) + ¢. Prove that a+0 =0
for all a € Z,,. Finally, prove that if « = 1, then —a =n — 1.

Definition 3. (Multiplication on Z,,) For a,b € Z,, let x and y be integers such that [z] = a
and [y] = b. The product a - b is then defined to be [zy].

Exercise 2. State and prove a theorem, showing that multiplication is well-defined. Prove
that for any a,b € Zy,, a-b = b-a. Prove that for any a,b,¢ € Zy, a-(b-¢c) = (a-b) - c. Prove
that a - 1 = a. Finally, prove that a- (b+c¢) =a-b+a-c, for all a,b,c € Z,.

Definition 4. (Multiplicative inverse). Let a € Z,. An element b € Z, is called a multi-
plicative inverse of a, if a - b = 1.

Proposition 1. If a multiplicative inverse of a € Z,, exists, it is unique.
1



Proof. Let b,b' € Z,, be such that a-b=a-b = 1. But then
vV = 1-0'=(a-b)-V

= a-(b-b)=a- (V-0

= (a-b)-b=1-b=b
so that b =0'. O
Fact 1. Let r and s be integers. Then there exist integers k and | so that

k-r+1-s=g.cd(rs),

where g.c.d(r, s) stands for the Greatest Common Divisor.

Example 3. Let = 4 and s = 6. Then g.c.d(4,6) = 2, and (—1)-4+1-6 = 2, so that
k=-1,1l=1. Letr =4, s=7. Then g.c.d(4,7) =1, and indeed 1 =2 -4+ (—1) -7, so
that k =2 and [ = —1.

Exercise 3. Show that b-0 = 0 for all b € Z,. Prove that if a = 0, then a cannot have a
multiplicative inverse.

Definition 5. A nonzero element a of Z,, so that a-b = 0 for some non-zero b € Z,, is called
a zero divisor.

Lemma 1. Ifa € Z, is a zero divisor, then a cannot have a multiplicative inverse.

Proof. Assume that a is a zero divisor, so that a - b = 0 for some b # 0. Let ¢ be a
multiplicative inverse of a. Then 0 =¢-0=c¢-(a-b) = (¢-a)-b=1-b = b, which contradicts
the assumption that b # 0. O
Theorem 2. (i) If n is a prime number, then every non-zero element a € Z,, has an inverse.
(ii) Conversely, if every nonzero element of Z,, has an inverse, then n is a prime number.

Proof. Let us first prove (i). Assume that a # 0 is in Z,. Since n is prime, a (which satisfies
0 < a <n-—1) and n are relatively prime, i.e., g.c.d(a,n) = 1. Thus for some integers k and
[, we have

k-a+1-n=g.cd(a,n)=1,
so that

k-a=1-1-n.

Let b = [k]. Then

a-b=1[k-af=[1-1-n]=1,

since [ - n is obviously divisible by n. Thus b is a multiplicative inverse of a.

We assume now that (ii) fails. Thus we assume that for some non-prime n, every nonzero
element has a multiplicative inverse. We’ll show this cannot happen, so that (ii) cannot fail.
Since n is not prime, n = k - [ with k,l < n. Let a = k, b =1. Then a-b = [kl] = [n] = 0.
On the other hand, neither a nor b is zero. Thus a is a zero divisor. But then a cannot have
a multiplicative inverse, by Lemma 1. O

Remark 2. The preceeding theorem shows that Z, is a field if and only if n is a prime
number.



