Notation 1. For a positive integer n > 1, let \mathbb{Z}_n denote the set $\{0, 1, \ldots, n-1\}$ and let \mathbb{Z} denote the set of all integers. We will denote integers by the letters x, y, z and elements of \mathbb{Z}_n by a, b, c. The number n will be fixed throughout.

Remark 1. \mathbb{Z}_n can be identified with the set of remainders of integer division by n. For an integer x, denote by [x] its remainder after division by n. Then $[x] \in \mathbb{Z}_n$ for any $x \in \mathbb{Z}$.

Example 1. Let n = 3. Then [5] = [2] = [-1] = 2. Indeed, $5 = 1 \cdot 3 + 2$, $2 = 0 \cdot 3 + 2$ and $-1 = (-1) \cdot 3 + 2$.

Definition 1. (Addition on \mathbb{Z}_n). Let $a, b \in \mathbb{Z}_n$. Choose $x, y \in \mathbb{Z}$ so that [x] = a and [y] = b. Then define a + b = [x + y].

Theorem 1. Addition is well-defined.

Proof. We need to show that: (i) the choice of x and y is always possible and (ii) that the result [x + y] does not depend on the choices of x and y, as long as [x] = a and [y] = b.

Let us first prove (i). This is obvious, since we could, for example, choose x = a and y = b. Let us now prove (ii). If x' and y' are two other integers, so that [x] = [x'] = a and [y] = [y'] = b, then we must have

$$x = rn + a$$

$$y = sn + b$$

$$x' = r'n + b$$

$$y' = s'n + b$$

for some integers r, r', s, s'. But then

$$(x+y) - (x'+y') = (r-r'+s-s')n,$$

so that the remainder of x + y after dividing by n is the same as the remainder of x' + y' after dividing by n. Thus [x + y] = [x' + y'], so that the choices of x and y are irrelevant. \square

Definition 2. (Negation) For $a \in \mathbb{Z}_n$, define -a = [-a].

Example 2. Let n = 3, a = 1. Then -a = [-1] = 2.

Exercise 1. Prove that for any $a \in \mathbb{Z}_n$, a + (-a) = 0. Prove that for any $a, b \in \mathbb{Z}_n$, a + b = b + a. Prove that for any $a, b, c \in \mathbb{Z}_n$, a + (b + c) = (a + b) + c. Prove that a + 0 = 0 for all $a \in \mathbb{Z}_n$. Finally, prove that if a = 1, then -a = n - 1.

Definition 3. (Multiplication on \mathbb{Z}_n) For $a, b \in \mathbb{Z}_n$, let x and y be integers such that [x] = a and [y] = b. The product $a \cdot b$ is then defined to be [xy].

Exercise 2. State and prove a theorem, showing that multiplication is well-defined. Prove that for any $a, b \in \mathbb{Z}_n$, $a \cdot b = b \cdot a$. Prove that for any $a, b, c \in \mathbb{Z}_n$, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$. Prove that $a \cdot 1 = a$. Finally, prove that $a \cdot (b + c) = a \cdot b + a \cdot c$, for all $a, b, c \in \mathbb{Z}_n$.

Definition 4. (Multiplicative inverse). Let $a \in \mathbb{Z}_n$. An element $b \in \mathbb{Z}_n$ is called a *multiplicative inverse of* a, if $a \cdot b = 1$.

Proposition 1. If a multiplicative inverse of $a \in \mathbb{Z}_n$ exists, it is unique.

Proof. Let $b, b' \in \mathbb{Z}_n$ be such that $a \cdot b = a \cdot b' = 1$. But then

$$b' = 1 \cdot b' = (a \cdot b) \cdot b'$$
$$= a \cdot (b \cdot b') = a \cdot (b' \cdot b)$$
$$= (a \cdot b') \cdot b = 1 \cdot b = b$$

so that b = b'.

Fact 1. Let r and s be integers. Then there exist integers k and l so that

$$k \cdot r + l \cdot s = g.c.d(r, s),$$

where g.c.d(r, s) stands for the Greatest Common Divisor.

Example 3. Let r = 4 and s = 6. Then g.c.d(4,6) = 2, and $(-1) \cdot 4 + 1 \cdot 6 = 2$, so that k = -1, l = 1. Let r = 4, s = 7. Then g.c.d(4,7) = 1, and indeed $1 = 2 \cdot 4 + (-1) \cdot 7$, so that k = 2 and l = -1.

Exercise 3. Show that $b \cdot 0 = 0$ for all $b \in \mathbb{Z}_n$. Prove that if a = 0, then a cannot have a multiplicative inverse.

Definition 5. A nonzero element a of \mathbb{Z}_n so that $a \cdot b = 0$ for some non-zero $b \in \mathbb{Z}_n$ is called a zero divisor.

Lemma 1. If $a \in \mathbb{Z}_n$ is a zero divisor, then a cannot have a multiplicative inverse.

Proof. Assume that a is a zero divisor, so that $a \cdot b = 0$ for some $b \neq 0$. Let c be a multiplicative inverse of a. Then $0 = c \cdot 0 = c \cdot (a \cdot b) = (c \cdot a) \cdot b = 1 \cdot b = b$, which contradicts the assumption that $b \neq 0$.

Theorem 2. (i) If n is a prime number, then every non-zero element $a \in \mathbb{Z}_n$ has an inverse. (ii) Conversely, if every nonzero element of \mathbb{Z}_n has an inverse, then n is a prime number.

Proof. Let us first prove (i). Assume that $a \neq 0$ is in \mathbb{Z}_n . Since n is prime, a (which satisfies $0 \leq a \leq n-1$) and n are relatively prime, i.e., g.c.d(a,n)=1. Thus for some integers k and l, we have

$$k \cdot a + l \cdot n = q.c.d(a, n) = 1,$$

so that

$$k \cdot a = 1 - l \cdot n$$
.

Let b = [k]. Then

$$a \cdot b = [k \cdot a] = [1 - l \cdot n] = 1,$$

since $l \cdot n$ is obviously divisible by n. Thus b is a multiplicative inverse of a.

We assume now that (ii) fails. Thus we assume that for some non-prime n, every nonzero element has a multiplicative inverse. We'll show this cannot happen, so that (ii) cannot fail. Since n is not prime, $n = k \cdot l$ with k, l < n. Let a = k, b = l. Then $a \cdot b = [kl] = [n] = 0$. On the other hand, neither a nor b is zero. Thus a is a zero divisor. But then a cannot have a multiplicative inverse, by Lemma 1.

Remark 2. The preceding theorem shows that \mathbb{Z}_n is a field if and only if n is a prime number.