SOME REMARKS ON STATEMENTS AND THEIR **PROOFS** In this course, it will be very important to learn, understand, and remember definitions, theorems and their proofs. For a definition, you need to - Know the definition as it is given, in particular, know and understand the meaning of all the terminology and symbols used; - be able to give an example of the object in the definition; - be able to test whether a given object satisfies the definition; Caution: this is sometimes very difficult (for technical or other reasons) and not always practical. That's part of the reason we need theorems, propositions, etc. For a statement (theorem, lemma, proposition, corollary) you need to - Know the statement as it is given, in particular, know and understand all the symbols and objects used in the statement; - Know the hypothesis of the statement and why you need them in the proof: In particular, you should think of counterexamples when the hypothesis are not satisfied; - Know the idea of the proof and the key steps; In particular, the method of proof (direct verification, contradiction, explicit construction, etc.); What definitions and previous statements are used in the proof; - Know the complete proof; Check what goes wrong if some of the hypothesis of the theorem are dropped; - Know the consequence of the statement; - Know a specific example of the statement; - be able to use statement in constructing your own proofs and in doing computations; In this course, we will learn proofs of several different types. In general, most of the theorems will be of the following type: Given that a Statement A is true, proof that a Statement B is true. Some of the methods to proof such theorems are the following: 1. Direct verification: Check the statement. For example, let the theorem be the following: THEOREM. Let $\mathbb{N}_0 = 0, 1, 2, 3, \cdots$ be the set of all non-negative integers and \mathbb{Z} be the set of all integers. The map $f:\mathbb{N}_0\to\mathbb{Z}$ given by f(0) = 0, f(2k + 1) = k + 1 and f(2k) = -k is an isomorphism. The proof of this statement by direct verification consists of checking that the map f satisfies both conditions of being an isomorphism (that is, it is onto and one-to-one). As an exercise, complete this proof. 2. By contradiction: Suppose you need to prove that a set of conditions A (the hypothesis) implies that some statement B (the conclusion) is true. A proof by contradiction involves assuming that B is false (in other words, assuming that not-B is true), and by doing logical arguments, showing that this would imply that A is false. This proves that, if A is true then B is true, which is the original statement. For example, suppose that the theorem you want to prove by contradiction is the following: THEOREM. Let X and Y be finite sets, and suppose that there exists a map $f: X \to Y$ which is onto. Then the number of elements in the set X is smaller or equal than the number of elements in the set Y, i.e., $\#(X) \leq \#(Y)$. Here the hypothesis is that there is a map from a finite set X to a finite set Y which is onto. The conclusion is that the number of elements in X can not be smaller then the number of elements in Y. A proof of this statement by contradiction goes as follows. Assume that the conclusion is wrong. That is, the number of elements in X is smaller then the number of elements in Y, (1) $$\#(X) < \#(Y)$$. Let f be a map from X to Y. The image of this map inside of Y contains no more then #(X) points, that is $$\#(\operatorname{Im}(f)) \le \#(X)$$ (If for every pair $x_1 \neq x_2 \in X$ we have $f(x_1) \neq f(x_2) \in \text{Im}(f)$, i.e., if f is one-to-one, then #(Im(f)) = #(X). Otherwise, #(Im(f)) < #(X)). Since $\text{Im}(f) \subseteq Y$, we obtain that $\#(\text{Im}(f)) \leq \#(Y)$. Let f be a map which is onto (it exists by assumption.) Then #(Im(f)) = #(Y). Substituting this into (1), we obtain a contradiction with 2. - 3. Induction is used to proof some statements which are claimed to be true for all non-negative integers. Let P(n) be a statement depending on n for any $n \in \mathbb{Z}^+ = \mathbb{N} = \{1, 2, 3, \dots\}$. To show that P(n) is true for all n using the method of induction, one must do the following: - 1) First, check that the statement P(1) for n=1 is true. (This is usually not very hard to do). 2). Assume that P(n) is true for some n (induction hypothesis!) and show that P(n) implies P(n+1). The principle of induction then says that the P(n) is true for all n. THEOREM. For all $n \in \mathbb{Z}^+$ we have $\sum_{i=1}^n i = \frac{n(n+1)}{2}$. This is a statement which can be proven by induction as follows: - 1). Check that the statement is true for n=1: Indeed, $\sum_{i=1}^{1} i = 1 = \frac{1 \cdot 2}{2}$; - 2). Assume that $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ (that is, the statement is true for some number n) and conclude that the same formula is true for n+1: $$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1) = \frac{n(n+1)}{2} + (n+1) = \frac{(n+1)(n+2)}{2}.$$ 4. Explicit construction is often used in proving the statements about the existence of objects with certain properties. For example, suppose that you need to prove the following Theorem. The sets \mathbb{Z} and \mathbb{N}_0 are isomorphic. A proof by explicit construction would consist in exhibiting a map from \mathbb{Z} to \mathbb{N}_0 which is an isomorphism, and proving that it is indeed an isomorphism. (Such a map was explicitly given in part 1, direct verification). As an exercise, try to think whether the sets \mathbb{R} and \mathbb{C} are isomorphic.