PRACTICE PROBLEMS FOR MIDTERM 1 (MATH 115AH)

Problem 1. Prove that if m is not a prime number, then \mathbb{Z}_m is not a field.

Problem 2. Let p be a prime number. Computer the multiplicative inverse of (p+1)/2 in the field \mathbb{Z}_p .

Problem 3. Let p be a prime. What is the number of elements in the field \mathbb{Z}_p ? What is the number of elements in the vector space $(\mathbb{Z}_p)^n$? What is the dimension of \mathbb{Z}_p^n over \mathbb{Z}_p .

Problem 4. Let $P_3(\mathbb{R})$ be the vector space of polynomials of degree at most 3 with real coefficients. Let

$$W = \{ f \in P_3(\mathbb{R}) : f(0) = 2f'(0) \}.$$

(a) Show that W is a subspace of $P_3(\mathbb{R})$.

(b) Find a basis of W.

(c) Find the dimension of W.

Problem 5. Let $\{v_1, \ldots, v_n\}$ be a linearly independent set of vectors in V. Let $\{u_1, \ldots, u_m\}$ be another linearly independent set of vectors in V. Suppose that n < m. Show that the vectors $\{v_1, \ldots, v_n\}$ can not form a basis of V.

Problem 6. Let $T: P_2(\mathbb{R}) \to \mathbb{R}^2$ be given by

$$T(f(x)) = (f(0), f'(0))$$

and $U: \mathbb{R}^2 \to \mathbb{R}^2$ be given by

$$U(a,b) = (a+b, a-b)$$

Let $\alpha = \{1, x, x^2\}$ be a basis of $P_2(\mathbb{R})$ and $\beta = \{(1, 0), (0, 1)\}$ be a basis of \mathbb{R}^2 . Compute the matrix $[U \circ T]^{\beta}_{\alpha}$ of the composition of T and U.

Problem 7. True or False. For each of the following statements, indicate if it is true or false. This problem will be graded as follows: you will receive n points for a correct answer, 0 points if there is no answer, and -n points if the answer is wrong.

1. The set of polynomials of degree exactly 3 is not a vector space.

- 2. The set $W = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 + a_2 + a_3 = 1\}$ is a subspace of \mathbb{R}^3 .
- 3. A subset of a linearly dependent set is linearly dependent.
- 4. If $\dim(V) = n$, any generating set of V contains at least n vectors.
- 5. If a set of vectors S generates vectors space V, any vector in V can be written as a linear combination of vectors in S in a unique way.
- 6. A linear transformation $T: V \to V$ carries linearly independent subsets of V into linearly independent subsets of V.
- 7. In a vector space V the equality av = aw for $a \in F, v, w \in V$ implies that v = w.
- 8. If W_1 and W_2 are subspaces of a vector space V, then the intersection $W_1 \cap W_2$ is a subspace iff $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.
- 9. If $S_1 \subset S_2$ are subsets of a vector space V and S_1 is linearly independent, then S_2 is also linearly independent.
- 10. For any $a \in \mathbb{R}$, the set of real-values functions $W = \{f \in \mathcal{F}(\mathbb{R},\mathbb{R}) : f(a) = 0\}$ is a subspace of the vector space $\mathcal{F}(\mathbb{R},\mathbb{R})$ of all real-values functions on the line.
- 11. If S is a subset of a vector space V, then $\operatorname{span}(S)$ is the intersection of all subspaces of V that contain S.
- 12. If a vector space V is generated by a finite set S, then some subset of S is a basis of V.
- 13. The dimension of the space $M_{2\times 3}(F)$ over F is 5.

Problem 8. Let V be the set of all pairs (x, y), where x is a real number and y is a positive real number. Define addition on V by

$$(x, y) + (x, x') = (x + x', y \cdot y')$$

and scalar multiplication by

$$c(x,y) = (cx, y^c)$$
 for $c \in \mathbb{R}$

Let $\overrightarrow{0} = (0, 1)$.

- 1. Show that V is a vector space with these operations.
- 2. Find the dimension of V.
- 3. Let n be the dimension of V which you found in part 2 of this problem. Construct an explicit isomorphism from V to \mathbb{R}^n .

Problem 9. Let W_1 and W_2 be subspaces of a vector space V. Prove that the following conditions are equivalent:

(1) each vector x in V can be uniquely written in the form $x = x_1 + x_2$, where $x_1 \in W_1$ and $x_2 \in W_2$;

(2) $W_1 \cap W_2 = \{ \overrightarrow{0} \}$ and $V = W_1 + W_2$, where $W_1 + W_2 = \{ w_1 + w_2, w_1 \in W_1, w_2 \in W_2 \}$).

(If either of this conditions is satisfied, $V = W_1 \oplus W_2$).

Problem 10. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be given by $T(a_1, a_2, a_3) = (3a_1 - 2a_3, a_2, 3a_1 + 4a_2)$. Prove that T is an isomorphism and find T^{-1} .

Problem 11. Let $T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ be a linear transformation given by $T(A) = A^t$, the transpose of A. Let $U: M_{2\times 2}(\mathbb{R}) \to P_2(\mathbb{R})$ be a linear transformation given by

$$U\left(\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\right) = a + 2bx + 3cx^2$$

Let $\alpha = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ be a basis of $M_{2 \times 2}(\mathbb{R})$ and $\beta = \{1, x, x^2\}$ be a basis of $P_2(\mathbb{R}^2)$. Find the matrix $[U \circ T]^{\beta}_{\alpha}$ of the composition of linear transformations T and U.

Problem 12. Prove that vectors (a, b) and (c, d) in \mathbb{C}^2 are linearly dependent iff ad = bc.

Problem 13. Let V be a vector space, $\dim(V) = 4$. Show that if W_1 , W_2 are both subspaces of dimension 3, then there is a non-trivial intersection of W_1 and W_2 .

Problem 14. Find a linear functional f on the vector space $P_3(\mathbb{R}) = \{p(t) = \sum_{i=0}^{3} a_i \cdot t^i \mid a_i \in \mathbb{R}\}$ such that

$$f(1) = 1$$

$$f(x^{3} + 2x) = 1$$

$$f(x^{3} + 3x^{2}) = 2$$

$$f(x^{2} + 5x) = 6$$

How many linearly independent linear functionals with this property can you find?

Problem 15. Let v and u be vectors in V such that $\{v\}^0 = \{u\}^0 \in V'$, where S^0 denotes the annihilator of a set $S \subset V$. Prove that v = ku for some $k \in F$.

Problem 16. Prove that for any $v \in V$, $\dim(V) = n$, there exists a linear functional f such that $f(v) = \alpha$ for a given $\alpha \in F$. How many linearly independent linear functionals with this property can you find?

Problem 17. Is there a finite-dimensional vector space V with a subspace W such that W has a unique complement in V? If yes, give an example. If not, explain why it can not exist.

Problem 18. a) For a finite-dimensional vector space V, is it true that a linear transformation is onto iff it is one-to-one? Prove that it is true, or give a counterexample.

b) For a vector space of sequences \mathbb{R}^{∞} with entries in \mathbb{R} , give an example of a linear transformation on \mathbb{R}^{∞} which is onto, but not one-to-one, and another linear transformation which is one-to-one but not onto.

In addition, please review also the problems related to invariant subspaces and projections, rank and null space, similar to the last homework assignment.