PRACTICE PROBLEMS FOR MIDTERM 1 (MATH 115AH)

Problem 1. Prove that if m is not a prime number, then \mathbb{Z}_{m} is not a field.

Problem 2. Let p be a prime number. Computer the multiplicative inverse of $(p+1) / 2$ in the field \mathbb{Z}_{p}.

Problem 3. Let p be a prime. What is the number of elements in the field \mathbb{Z}_{p} ? What is the number of elements in the vector space $\left(\mathbb{Z}_{p}\right)^{n}$? What is the dimension of \mathbb{Z}_{p}^{n} over \mathbb{Z}_{p}.

Problem 4. Let $P_{3}(\mathbb{R})$ be the vector space of polynomials of degree at most 3 with real coefficients. Let

$$
W=\left\{f \in P_{3}(\mathbb{R}): f(0)=2 f^{\prime}(0)\right\} .
$$

(a) Show that W is a subspace of $P_{3}(\mathbb{R})$.
(b) Find a basis of W.
(c) Find the dimension of W.

Problem 5. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a linearly independent set of vectors in V. Let $\left\{u_{1}, \ldots, u_{m}\right\}$ be another linearly independent set of vectors in V. Suppose that $n<m$. Show that the vectors $\left\{v_{1}, \ldots, v_{n}\right\}$ can not form a basis of V.

Problem 6. Let $T: P_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{2}$ be given by

$$
T(f(x))=\left(f(0), f^{\prime}(0)\right)
$$

and $U: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by

$$
U(a, b)=(a+b, a-b)
$$

Let $\alpha=\left\{1, x, x^{2}\right\}$ be a basis of $P_{2}(\mathbb{R})$ and $\beta=\{(1,0),(0,1)\}$ be a basis of \mathbb{R}^{2}. Compute the matrix $[U \circ T]_{\alpha}^{\beta}$ of the composition of T and U.

Problem 7. True or False. For each of the following statements, indicate if it is true or false. This problem will be graded as follows: you will receive n points for a correct answer, 0 points if there is no answer, and $-n$ points if the answer is wrong.

1. The set of polynomials of degree exactly 3 is not a vector space.
2. The set $W=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: a_{1}+a_{2}+a_{3}=1\right\}$ is a subspace of \mathbb{R}^{3}.
3. A subset of a linearly dependent set is linearly dependent.
4. If $\operatorname{dim}(V)=n$, any generating set of V contains at least n vectors.
5. If a set of vectors S generates vectors space V, any vector in V can be written as a linear combination of vectors in S in a unique way.
6. A linear transformation $T: V \rightarrow V$ carries linearly independent subsets of V into linearly independent subsets of V.
7. In a vector space V the equality $a v=a w$ for $a \in F, v, w \in V$ implies that $v=w$.
8. If W_{1} and W_{2} are subspaces of a vector space V, then the intersection $W_{1} \cap W_{2}$ is a subspace iff $W_{1} \subseteq W_{2}$ or $W_{2} \subseteq W_{1}$.
9. If $S_{1} \subset S_{2}$ are subsets of a vector space V and S_{1} is linearly independent, then S_{2} is also linearly independent.
10. For any $a \in \mathbb{R}$, the set of real-values functions $W=\{f \in$ $\mathcal{F}(\mathbb{R}, \mathbb{R}): f(a)=0\}$ is a subspace of the vector space $\mathcal{F}(\mathbb{R}, \mathbb{R})$ of all real-values functions on the line.
11. If S is a subset of a vector space V, then $\operatorname{span}(S)$ is the intersection of all subspaces of V that contain S.
12. If a vector space V is generated by a finite set S, then some subset of S is a basis of V.
13. The dimension of the space $M_{2 \times 3}(F)$ over F is 5 .

Problem 8. Let V be the set of all pairs (x, y), where x is a real number and y is a positive real number. Define addition on V by

$$
(x, y)+\left(x, x^{\prime}\right)=\left(x+x^{\prime}, y \cdot y^{\prime}\right)
$$

and scalar multiplication by

$$
c(x, y)=\left(c x, y^{c}\right) \quad \text { for } c \in \mathbb{R}
$$

Let $\overrightarrow{0}=(0,1)$.

1. Show that V is a vector space with these operations.
2. Find the dimension of V.
3. Let n be the dimension of V which you found in part 2 of this problem. Construct an explicit isomorphism from V to \mathbb{R}^{n}.

Problem 9. Let W_{1} and W_{2} be subspaces of a vector space V. Prove that the following conditions are equivalent:
(1) each vector x in V can be uniquely written in the form $x=x_{1}+x_{2}$, where $x_{1} \in W_{1}$ and $x_{2} \in W_{2}$;
(2) $W_{1} \cap W_{2}=\{\overrightarrow{0}\}$ and $V=W_{1}+W_{2}$, where $W_{1}+W_{2}=\left\{w_{1}+\right.$ $\left.\left.w_{2}, w_{1} \in W_{1}, w_{2} \in W_{2}\right\}\right)$.
(If either of this condtions is satisfied, $V=W_{1} \oplus W_{2}$).
Problem 10. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be given by $T\left(a_{1}, a_{2}, a_{3}\right)=\left(3 a_{1}-\right.$ $\left.2 a_{3}, a_{2}, 3 a_{1}+4 a_{2}\right)$. Prove that T is an isomorphism and find T^{-1}.
Problem 11. Let $T: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ be a linear transformation given by $T(A)=A^{t}$, the transpose of A. Let $U: M_{2 \times 2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be a linear transformation given by

$$
U\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=a+2 b x+3 c x^{2}
$$

Let $\alpha=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$ be a basis of $M_{2 \times 2}(\mathbb{R})$ and $\beta=\left\{1, x, x^{2}\right\}$ be a basis of $P_{2}\left(\mathbb{R}^{2}\right)$. Find the matrix $[U \circ T]_{\alpha}^{\beta}$ of the composition of linear transformations T and U.
Problem 12. Prove that vectors (a, b) and (c, d) in \mathbb{C}^{2} are linearly dependent iff $a d=b c$.
Problem 13. Let V be a vector space, $\operatorname{dim}(V)=4$. Show that if W_{1}, W_{2} are both subspaces of dimension 3 , then there is a non-trivial intersection of W_{1} and W_{2}.
Problem 14. Find a linear functional f on the vector space $P_{3}(\mathbb{R})=$ $\left\{p(t)=\sum_{i=0}^{3} a_{i} \cdot t^{i} \mid a_{i} \in \mathbb{R}\right\}$ such that

$$
\begin{aligned}
& f(1)=1 \\
& f\left(x^{3}+2 x\right)=1 \\
& f\left(x^{3}+3 x^{2}\right)=2 \\
& f\left(x^{2}+5 x\right)=6
\end{aligned}
$$

How many linearly independent linear functionals with this property can you find?
Problem 15. Let v and u be vectors in V such that $\{v\}^{0}=\{u\}^{0} \in V^{\prime}$, where S^{0} denotes the annihilator of a set $S \subset V$. Prove that $v=k u$ for some $k \in F$.
Problem 16. Prove that for any $v \in V, \operatorname{dim}(V)=n$, there exists a linear functional f such that $f(v)=\alpha$ for a given $\alpha \in F$. How many linearly independent linear functionals with this property can you find?

Problem 17. Is there a finite-dimensional vector space V with a subspace W such that W has a unique complement in V ? If yes, give an example. If not, explain why it can not exist.
Problem 18. a) For a finite-dimensional vector space V, is it true that a linear transformation is onto iff it is one-to-one? Prove that it is true, or give a counterexample.
b) For a vector space of sequences \mathbb{R}^{∞} with entries in \mathbb{R}, give an example of a linear transformation on \mathbb{R}^{∞} which is onto, but not one-to-one, and another linear transformation which is one-to-one but not onto.

In addition, please review also the problems related to invariant subspaces and projections, rank and null space, similar to the last homework assignment.

