Some Consequences of Martin's Conjecture

Simon Thomas

Rutgers University

March 17th 2009

うく(? * @ * * 三 *

H.W. Fowler (1858-1933), The King's English, 2nd ed. 1908.

Naïveté is a word for which there is a clear use; and though the Englishman can pronounce it without difficulty if he chooses, he generally prefers doing without it altogether to attempting a precision that strikes him as either undignified or pretentious.

The Borel equivalence relation *E* on the standard Borel space *X* is said to be countable iff every *E*-class is countable.

Standard Example

Let *G* be a countable (discrete) group and let *X* be a standard Borel *G*-space. Then the corresponding orbit equivalence relation E_G^X is a countable Borel equivalence relation.

Theorem (Feldman-Moore)

If E is a countable Borel equivalence relation on the standard Borel space X, then there exists a countable group G and a Borel action of G on X such that $E = E_G^X$.

Let E, F be Borel equivalence relations on the standard Borel spaces X, Y respectively.

• $E \leq_B F$ iff there exists a Borel map $f : X \to Y$ such that

$$x E y \iff f(x) F f(y).$$

In this case, f is called a Borel reduction from E to F.

- $E \sim_B F$ iff both $E \leq_B F$ and $F \leq_B E$.
- $E <_B F$ iff both $E \leq_B F$ and $E \nsim_B F$.

Definition

More generally, $f: X \rightarrow Y$ is a Borel homomorphism from E to F iff

$$x E y \Longrightarrow f(x) F f(y).$$

Simon Thomas (Rutgers University)

UCLA Workshop

Theorem

If E, F are countable Borel equivalence relations on the standard Borel spaces X, Y, then the following are equivalent:

- $E \sim_B F$.
- There exist complete Borel sections $A \subseteq X$ and $B \subseteq Y$ such that

$$(A, E \upharpoonright A) \cong (B, F \upharpoonright B)$$

via a Borel isomorphism.

Definition

A Borel subset $A \subseteq X$ is a complete section iff A intersects every *E*-class.

Simon Thomas (Rutgers University)

• ○ < ○ < □ → < ≥ →</p>
March 17th 2009

����∂▶▲≧▶

Simon Thomas (Rutgers University)

UCLA Workshop

March 17th 2009

Definition

The Borel equivalence relation E is smooth iff $E \leq_B id_{2^N}$, where 2^N is the space of infinite binary sequences.

Simon Thomas (Rutgers University)

UCLA Workshop

March 17th 2009

Definition

The Borel equivalence relation E is smooth iff $E \leq_B id_{2^N}$, where 2^N is the space of infinite binary sequences.

Definition

 E_0 is the equivalence relation of eventual equality on the space $2^{\mathbb{N}}$ of infinite binary sequences.

Simon Thomas (Rutgers University)

• ○ < ○ < □ → < ≥ →</p>
March 17th 2009

Theorem (Adams-Kechris 2000)

There exist 2^{\aleph_0} many countable Borel equivalence relations up to Borel bireducibility.

うく(? * @ * * 三 *

Simon Thomas (Rutgers University)

UCLA Workshop

March 17th 2009

Definition

A countable Borel equivalence relation E is universal iff $F \leq_B E$ for every countable Borel equivalence relation F.

Theorem (JKL)

The orbit equivalence relation E_{∞} of the shift action of the free group \mathbb{F}_2 on $2^{\mathbb{F}_2}$ is universal.

Let G be a countable group and let X be a standard Borel G-space.

The Fundamental Question in the Borel setting

To what extent does the data (X, E_G^X) "remember" the group G and its action on X?

Dirty Little Secret

We cannot possibly recover the group *G* from the data (X, E_G^X) unless we add the hypotheses that:

- G acts freely on X; and
- there exists a *G*-invariant probability measure μ on *X*.

- The countable Borel equivalence relation E on X is free iff there exists a countable group G with a free Borel action on X such that $E_G^X = E$.
- The countable Borel equivalence relation E is essentially free iff there exists a free countable Borel equivalence relation F such that E ∼_B F.

Theorem (Easy Consequence of Popa Superrigidity)

The universal countable Borel equivalence relation E_{∞} is not essentially free.

Simon Thomas (Rutgers University)

UCLA Workshop

Question (Thomas 2006)

Does there exist a countable Borel equivalence relation E on a standard Borel space X such that:

- there exists an ergodic E-invariant probability measure μ on X;
- whenever Y ⊆ X is a Borel subset with µ(Y) = 1, then E ↾ Y is countable universal?

Main Theorem (MC)

- Let E be a countable Borel equivalence relation on the standard Borel space X and let μ be a (not necessarily E-invariant) Borel probability measure on X.
- Then there exists a Borel subset $Y \subseteq X$ with $\mu(Y) = 1$ such that $E \upharpoonright Y$ is not universal.

Conjecture

There does not exist a f.g. group G such that for every f.g. group H, there exists a f.g. group K such that:

- K is quasi-isometric to G, and
- $H \hookrightarrow K$.

Corollary (MC)

The quasi-isometry relation on the space of f.g. groups is not essentially hyperfinite, essentially treeable, ...

Simon Thomas (Rutgers University)

• ○ < ○ < □ → < ≥ →</p>
March 17th 2009

Convention

Throughout the powerset $\mathcal{P}(\mathbb{N})$ will be identified with $2^{\mathbb{N}}$ by identifying subsets of \mathbb{N} with their characteristic functions.

Definition

If $x, y \in 2^{\mathbb{N}}$, then x is Turing reducible to y, written $x \leq_T y$, iff there exists a y-oracle Turing machine which computes x.

Remark

In other words, there is an algorithm which computes *x* modulo an oracle correctly answer questions of the form "Is $n \in y$?"

For each $z \in 2^{\mathbb{N}}$, the corresponding cone is $C_z = \{ x \in 2^{\mathbb{N}} \mid z \leq_T x \}.$

• Suppose $z_n = \{ a_{n,\ell} \mid \ell \in \mathbb{N} \} \in 2^{\mathbb{N}}$ for each $n \in \mathbb{N}$ and define

$$\oplus z_n = \{ p_n^{a_{n,\ell}} \mid n, \ell \in \mathbb{N} \} \in 2^{\mathbb{N}},$$

where p_n is the *n*th prime.

• Then $z_m \leq_T \oplus z_n$ for each $m \in \mathbb{N}$ and so $C_{\oplus z_n} \subseteq \bigcap_n C_{z_n}$.

Remark

It is well-known that if $C \subsetneq 2^{\mathbb{N}}$ is a proper cone, then *C* is both null and meager.

*)९(**⊟ ►*≡

Simon Thomas (Rutgers University)

UCLA Workshop

March 17th 2009

The Turing equivalence relation \equiv_T on $2^{\mathbb{N}}$ is defined by

$$x \equiv T y$$
 iff $x \leq T y \& y \leq T x$,

where \leq_T denotes Turing reducibility.

Remark

- Clearly $\equiv_{\mathcal{T}}$ is a countable Borel equivalence relation on $2^{\mathbb{N}}$.
- However, ≡ T is not essentially free and is not induced by the action of any countable subgroup of Sym(N).

Theorem (Martin)

If $X \subseteq 2^{\mathbb{N}}$ is a \equiv_T -invariant Borel subset, then either X or $2^{\mathbb{N}} \smallsetminus X$ contains a cone.

Remark

For later use, notice that if $X \subseteq 2^{\mathbb{N}}$ is a \equiv_{T} -invariant Borel subset, then the following are equivalent:

- (i) X contains a cone.
- (ii) For all $z \in 2^{\mathbb{N}}$, there exists $x \in X$ with $z \leq T x$.

Theorem (Folklore)

If $\varphi : 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is a \equiv_{T} -invariant Borel map, then there exists a cone C such that $\varphi \upharpoonright C$ is a constant map.

Proof.

- For each $n \in \mathbb{N}$, there exists $\varepsilon_n \in \{0, 1\}$ such that $X_n = \{x \in 2^{\mathbb{N}} \mid \varphi(x)(n) = \varepsilon_n\}$ contains a cone.
- Hence there exists a cone C ⊆ ∩ X_n and clearly φ ↾ C is a constant map.

Proof of Martin's Theorem

• Suppose that $X \subseteq 2^{\mathbb{N}}$ is a \equiv_{T} -invariant Borel subset.

Consider the two player Borel game G(X)

$$s(0)$$
 $s(1)$ $s(2)$ $s(3)$ \cdots

where *I* wins iff $s = (s(0) s(1) s(2) \cdots) \in X$.

- Then the Borel game G(X) is determined. Suppose, for example, that σ : 2^{<ℕ} → 2 is a winning strategy for *I*.
- Let $\sigma \leq_T t \in 2^{\mathbb{N}}$ and consider the run of G(X) where
 - *II* plays $t = (s(1) s(3) s(5) \cdots)$
 - *I* responds with σ and plays ($s(0) s(2) s(4) \cdots$).
- Then $s \in X$ and $s \equiv_T t$. Hence $t \in X$ and so $C_{\sigma} \subseteq X$.

- Suppose that E, F are countable Borel equivalence relations on the standard Borel spaces X, Y and that μ is an E-invariant Borel probability measure on X.
- Then E is said to be *F*-ergodic iff for every Borel homomorphism $\varphi : X \to Y$ from E to F, there exists a Borel subset $Z \subseteq X$ with $\mu(Z) = 1$ such that φ maps Z into a single *F*-class.

Example (Jones-Schmidt)

 E_{∞} is E_0 -ergodic.

Let *E* be a countable Borel equivalence relation on the standard Borel space *X*. Then \equiv_T is said to be *E*-*m*-ergodic iff for every Borel homomorphism $\varphi : 2^{\mathbb{N}} \to X$ from \equiv_T to *E*, there exists a cone $C \subseteq 2^{\mathbb{N}}$ such that φ maps *C* into a single *E*-class.

Target

Classify the countable Borel equivalence relations *E* such that \equiv_T is *E*-*m*-ergodic.

Question

When is it "obvious" that \equiv_T is not *E*-m-ergodic?

うく(?・(理)・・(目))

Weakly universal countable Borel equivalence relation

Definition

- The Borel homomorphism φ : X' → X from E' to E is said to be a weak Borel reduction iff φ is countable-to-one. In this case, we write E' ≤^w_B E.
- A countable Borel equivalence relation E is said to be weakly universal iff F ≤^w_B E for every countable Borel equivalence relation F.

Some Examples

- If E is universal, then E is weakly universal.
- The Turing equivalence relation \equiv_T is weakly universal.

Observation

If *E* is weakly universal, then \equiv_T is not *E*-m-ergodic.

୬ < ୯ ଶ 🖥 । । ଏ 🖹

Strong Ergodicity Theorem (MC)

If *E* is any countable Borel equivalence relation, then exactly one of the following conditions holds:

- (a) E is weakly universal.
- (b) \equiv_T is E-m-ergodic.

Remark

- There are currently no nonsmooth countable Borel equivalence relations *E* for which it has been proved that \equiv_T is *E*-*m*-ergodic.
- In particular, it is not known whether \equiv_T is E_0 -*m*-ergodic, where E_0 denotes the eventual equality equivalence relation on $2^{\mathbb{N}}$.

Observation

Let E, F be countable Borel equivalence relations.

• If
$$E \leq_B F$$
, then $E \leq_B^w F$.

• If $E \subseteq F$, then $E \leq_B^w F$.

Theorem (Kechris-Miller)

If E, F are countable Borel equivalence relations on the uncountable standard Borel spaces X, Y respectively, then the following conditions are equivalent:

- (i) $E \leq_B^w F$.
- (ii) There exists a countable Borel equivalence relation S ⊆ F on Y such that S ~_B E.

The weak universality of Turing equivalence

Proposition (Kechris)

 \equiv_T is weakly universal.

Proof.

Identifying the free group \mathbb{F}_2 with a suitably chosen group of recursive permutations of \mathbb{N} , we have that $E_{\infty} \subseteq \equiv_{\mathcal{T}}$.

Remark

If $C = \{x \in 2^{\mathbb{N}} \mid z \leq_T x\}$ is a cone, then the map $y \mapsto y \oplus z$ is a weak Borel reduction from \equiv_T to $\equiv_T \upharpoonright C$ and hence $\equiv_T \upharpoonright C$ is also weakly universal.

Simon Thomas (Rutgers University)

UCLA Workshop

The Martin Conjecture (MC)

If $\varphi : 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is a Borel homomorphism from \equiv_{T} to \equiv_{T} , then exactly one of the following conditions holds:

- (i) There exists a cone $C \subseteq 2^{\mathbb{N}}$ such that φ maps C into a single \equiv_{T} -class.
- (ii) There exists a cone $C \subseteq 2^{\mathbb{N}}$ such that $x \leq_T \varphi(x)$ for all $x \in C$.

Theorem (Slaman-Steel)

Suppose that $\varphi : 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is a Borel homomorphism from $\equiv_{\mathcal{T}}$ to $\equiv_{\mathcal{T}}$. If $\varphi(x) <_{\mathcal{T}} x$ on a cone, then there exists a cone $C \subseteq 2^{\mathbb{N}}$ such that φ maps C into a single $\equiv_{\mathcal{T}}$ -class.

Theorem (*MC*)

If $\varphi : 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is a Borel homomorphism from \equiv_{T} to \equiv_{T} , then exactly one of the following conditions holds:

- (i) There exists a cone $C \subseteq 2^{\mathbb{N}}$ such that φ maps C into a single $\equiv_{\mathcal{T}}$ -class.
- (ii) There exists a cone $C \subseteq 2^{\mathbb{N}}$ such that $\varphi \upharpoonright C$ is a weak Borel reduction from $\equiv_{\mathcal{T}} \upharpoonright C$ to $\equiv_{\mathcal{T}}$.

Furthermore, in case (ii), if $D \subseteq 2^{\mathbb{N}}$ is any cone, then $[\varphi(D)]_{\equiv \tau}$ contains a cone.

Corollary (MC)

•
$$\equiv_T <_B (\equiv_T \sqcup \equiv_T).$$

• In particular, \equiv_T is not countable universal.

Corollary (MC)

If $A \subseteq 2^{\mathbb{N}}$ is $a \equiv_{T}$ -invariant Borel subset, then $\equiv_{T} \upharpoonright A$ is weakly universal iff A contains a cone.

Remark

There are currently no naturally occurring classes $D \subseteq 2^{\mathbb{N}}$ for which it is known that $\equiv_{\mathcal{T}} \upharpoonright D$ is not weakly universal.

Proof of the Strong Ergodicity Theorem (MC)

- Let *E* be any countable Borel equivalence relation.
- Since $E \leq_B^w \equiv_T$, we can suppose that $E \subseteq \equiv_T$.
- Suppose that φ : 2^N → 2^N is a Borel homomorphism from ≡ τ to *E* and that φ does not map any cone to a single *E*-class.
- Then φ is also a Borel homomorphism from ≡ τ to ≡ τ and clearly φ does not map any cone to a single ≡ τ-class.
- Hence there exists a cone *C* such that $\varphi \upharpoonright C$ is countable-to-one.
- Since ≡ *T* ↾ *C* is weakly universal and (≡ *T* ↾ *C*) ≤^{*w*}_{*B*} *E*, it follows that *E* is weakly universal.

Question (Thomas 2006)

Does there exist a countable Borel equivalence relation E on a standard Borel space X such that:

- there exists an ergodic E-invariant probability measure µ on X;
- whenever Y ⊆ X is a Borel subset with µ(Y) = 1, then E ↾ Y is countable universal?

Main Theorem (MC)

- Let E be a countable Borel equivalence relation on the standard Borel space X and let μ be a (not necessarily E-invariant) Borel probability measure on X.
- Then there exists a Borel subset $Y \subseteq X$ with $\mu(Y) = 1$ such that $E \upharpoonright Y$ is not weakly universal.

Main Lemma

- Let E be a countable Borel equivalence relation on the standard Borel space X and let μ be a (not necessarily E-invariant) Borel probability measure on X.
- Let $\varphi : X \to 2^{\mathbb{N}}$ be a weak Borel reduction from E to \equiv_T .
- Then there exists a Borel subset $Y \subseteq X$ with $\mu(Y) = 1$ such that $\varphi[Y]$ is disjoint from a cone.

Proof of Main Theorem (MC).

(*MC*) implies that if *C* is any cone, then $\equiv \tau \upharpoonright (2^{\mathbb{N}} \smallsetminus C)$ is not weakly universal.

Identifying each $r \in 2^{\mathbb{N}}$ with the corresponding subset of \mathbb{N} , define the Borel map $\theta : 2^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ by:

- θ(r) is the increasing enumeration of r ∩ 2N, if r ∩ 2N is infinite;
- $\theta(r)$ is the zero function, otherwise.

Observation

For each $h \in \mathbb{N}^{\mathbb{N}}$, the \equiv_T -invariant Borel set

$$\mathcal{D}_h = \{ \ r \in 2^{\mathbb{N}} \mid (\ \exists s \in 2^{\mathbb{N}} \) \ s \equiv_T r \ and \ h < heta(s) \}$$

contains a cone.

Growth Rates

Definition

If $g, h \in \mathbb{N}^{\mathbb{N}}$, then $g \leq^* h$ iff $g(n) \leq h(n)$ for all but finitely many $n \in \mathbb{N}$.

Observation (Folklore)

If (X, μ) is a standard Borel probability space and $\pi : X \to \mathbb{N}^{\mathbb{N}}$ is a Borel map, then there exists a function $h \in \mathbb{N}^{\mathbb{N}}$ such that

$$\mu(\{x \in X \mid \pi(x) \leq^* h\}) = 1.$$

• For each $n \in \mathbb{N}$, there exists $h(n) \in \mathbb{N}$ such that

$$\mu(\{x \in X \mid \pi(x)(n) > h(n)\}) \le (1/2)^{n+1}$$

By the Borel-Cantelli Lemma, we have that

 $\mu(\{x \in X \mid \pi(x)(n) > h(n) \text{ for infinitely many } n\}) = 0.$

Lemma

Suppose that $\sigma : 2^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ is a Borel map. Then there exists a Borel map $\psi : 2^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ such that for all $r \in 2^{\mathbb{N}}$,

 $\sigma(s) \leq^* \psi(r)$ for all $s \equiv_T r$

Proof.

By Feldman-Moore, we can realize ≡ *τ* by a Borel action of a countable group *G* = { *γ_m* | *m* ∈ ℕ }.

• Define
$$\psi(r)(n) = \max\{\sigma(\gamma_m \cdot r)(n) \mid m \le n\}.$$

Proof of Main Lemma

- Let *E* be a countable Borel equivalence relation on the standard Borel space *X* and let μ be a Borel probability measure on *X*.
- Let $\varphi : X \to 2^{\mathbb{N}}$ be a weak Borel reduction from *E* to \equiv_T .
- Let $\theta : 2^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ be the Borel map defined earlier.
- By Feldman-Moore, there exists a Borel map ψ : 2^N → N^N such that if r ≡ r s, then θ(s) ≤^{*} ψ(r).
- Let $\pi : X \to \mathbb{N}^{\mathbb{N}}$ be the Borel map defined by $\pi = \psi \circ \varphi$.
- Then there exists a function $h \in \mathbb{N}^{\mathbb{N}}$ such that the Borel set $Y = \{ x \in X \mid \pi(x) \leq^* h \}$ satisfies $\mu(Y) = 1$.
- Clearly $\varphi[Y] \cap D_h = \emptyset$.

Problem

Prove that \equiv_T is E_0 -m-ergodic.

Problem

- Find a naturally occurring class of Turing degrees D ⊆ 2^N such that ≡ T ↾ D is not weakly universal.
- For example, how about the classes of minimal degrees, hyperimmune-free degrees, ... ?