Borel reducibility and classifying factors

R. Sasyk (Bs. As.) joint work with A. Törnquist (Vienna)
Univ. Nac. General Sarmiento
Buenos Aires, Argentina rsasyk@ungs.edu.ar

UCLA, March 15, 2009

Borel reducibility

Definition. Let E and F be equivalence relations on standard Borel spaces X and Y respectively.

Borel reducibility

Definition. Let E and F be equivalence relations on standard Borel spaces X and Y respectively.
E is Borel reducible to F, written $E \leq_{B} F$, if there is a Borel $f: X \rightarrow Y$ such that

$$
x E y \Longleftrightarrow f(x) F f(y)
$$

Borel reducibility

Definition. Let E and F be equivalence relations on standard Borel spaces X and Y respectively.
E is Borel reducible to F, written $E \leq_{B} F$, if there is a Borel $f: X \rightarrow Y$ such that

$$
x E y \Longleftrightarrow f(x) F f(y)
$$

This means that the points of X can be classified up to E-equivalence by a Borel assignment of invariants that are F-equivalence classes.

Borel reducibility

Definition. Let E and F be equivalence relations on standard Borel spaces X and Y respectively.
E is Borel reducible to F, written $E \leq_{B} F$, if there is a Borel $f: X \rightarrow Y$ such that

$$
x E y \Longleftrightarrow f(x) F f(y)
$$

This means that the points of X can be classified up to E-equivalence by a Borel assignment of invariants that are F-equivalence classes.
f is required to be Borel to make sure that the invariant $f(x)$ has a reasonable computation from x.

Borel reducibility

Definition. Let E and F be equivalence relations on standard Borel spaces X and Y respectively.
E is Borel reducible to F, written $E \leq_{B} F$, if there is a Borel $f: X \rightarrow Y$ such that

$$
x E y \Longleftrightarrow f(x) F f(y)
$$

This means that the points of X can be classified up to E-equivalence by a Borel assignment of invariants that are F-equivalence classes.
f is required to be Borel to make sure that the invariant $f(x)$ has a reasonable computation from x.

Without a requirement on f, the definition would only amount to studying the cardinality of X / E vs. Y / F.

Smooth equivalence relations

Let X be a standard Borel space and E an equiv. rel. on X.

Smooth equivalence relations

Let X be a standard Borel space and E an equiv. rel. on X.
Definition. E is smooth or countably separated or concretely classifiable if $\exists\left\{A_{n}\right\}_{n \in \mathbb{N}}$ Borel subsets of X such that

$$
x E y \Longleftrightarrow(\forall n \in \mathbb{N}) x \in A_{n} \Longleftrightarrow y \in A_{n}
$$

Smooth equivalence relations

Let X be a standard Borel space and E an equiv. rel. on X.
Definition. E is smooth or countably separated or concretely classifiable if $\exists\left\{A_{n}\right\}_{n \in \mathbb{N}}$ Borel subsets of X such that

$$
x E y \Longleftrightarrow(\forall n \in \mathbb{N}) x \in A_{n} \Longleftrightarrow y \in A_{n}
$$

Same as $E \leq_{B}=_{\mathbb{R}}$, where $=_{\mathbb{R}}$ denotes the equality relation in \mathbb{R}.

Smooth equivalence relations

Let X be a standard Borel space and E an equiv. rel. on X.
Definition. E is smooth or countably separated or concretely classifiable if $\exists\left\{A_{n}\right\}_{n \in \mathbb{N}}$ Borel subsets of X such that

$$
x E y \Longleftrightarrow(\forall n \in \mathbb{N}) x \in A_{n} \Longleftrightarrow y \in A_{n}
$$

Same as $E \leq_{B}=_{\mathbb{R}}$, where $=_{\mathbb{R}}$ denotes the equality relation in \mathbb{R}.
Example 1: X the set of $n \times n$ matrices, $E=$ similarity. $f(A)=$ Jordan form of A.

Smooth equivalence relations

Let X be a standard Borel space and E an equiv. rel. on X.
Definition. E is smooth or countably separated or concretely classifiable if $\exists\left\{A_{n}\right\}_{n \in \mathbb{N}}$ Borel subsets of X such that

$$
x E y \Longleftrightarrow(\forall n \in \mathbb{N}) x \in A_{n} \Longleftrightarrow y \in A_{n}
$$

Same as $E \leq_{B}=_{\mathbb{R}}$, where $=_{\mathbb{R}}$ denotes the equality relation in \mathbb{R}.
Example 1: X the set of $n \times n$ matrices, $E=$ similarity. $f(A)=$ Jordan form of A.

Example 2 (Ornstein-Bowen): X Classical Bernoulli shifts, E conjugacy. $f(T)=$ the entropy of T.

The equivalence relation E_{0}

The simplest example of a non-smooth equivalence relation is E_{0}, defined on $2^{\mathbb{N}}$, by

$$
x E y \Longleftrightarrow(\exists N)(\forall n \geq N) x(n)=y(n)
$$

The equivalence relation E_{0}

The simplest example of a non-smooth equivalence relation is E_{0}, defined on $2^{\mathbb{N}}$, by

$$
x E y \Longleftrightarrow(\exists N)(\forall n \geq N) x(n)=y(n)
$$

Remark: If $E_{0} \leq_{B} E$ then E has uncountable many equivalence classes.

The equivalence relation E_{0}

The simplest example of a non-smooth equivalence relation is E_{0}, defined on $2^{\mathbb{N}}$, by

$$
x E y \Longleftrightarrow(\exists N)(\forall n \geq N) x(n)=y(n)
$$

Remark: If $E_{0} \leq_{B} E$ then E has uncountable many equivalence classes.

Theorem (Baer)

The isomorphism relation for countable rank 1 torsion free abelian groups is Borel bireducible to E_{0}.

The Effros Borel space

Let \mathcal{H} be a separable Hilbert space and $\mathrm{vN}(\mathcal{H})$ the set of von Neumann algebras on \mathcal{H}.

The Effros Borel space

Let \mathcal{H} be a separable Hilbert space and $\mathrm{v}(\mathcal{H})$ the set of von Neumann algebras on \mathcal{H}. vN (\mathcal{H}) can be given a standard Borel structure called the Effros Borel structure.

The Effros Borel space

Let \mathcal{H} be a separable Hilbert space and $\mathrm{v}(\mathcal{H})$ the set of von Neumann algebras on \mathcal{H}. vN (\mathcal{H}) can be given a standard Borel structure called the Effros Borel structure.

This Borel structure is generated by the sets

$$
\{M \in \mathrm{vN}(\mathcal{H}): M \cap U \neq \emptyset\}
$$

where U is a weakly open subset of $\mathcal{B}(\mathcal{H})$

The Effros Borel space

Let \mathcal{H} be a separable Hilbert space and $\mathrm{v}(\mathcal{H})$ the set of von Neumann algebras on \mathcal{H}. vN (\mathcal{H}) can be given a standard Borel structure called the Effros Borel structure.

This Borel structure is generated by the sets

$$
\{M \in \mathrm{vN}(\mathcal{H}): M \cap U \neq \emptyset\}
$$

where U is a weakly open subset of $\mathcal{B}(\mathcal{H})$
Theorem (Effros '64): Sets of factors of types $\mathrm{I}, \mathrm{II}_{1}, \mathrm{II}_{\infty}, \mathrm{II}_{\lambda}$, $0 \leq \lambda \leq 1$ are Borel sets.

The Effros Borel space

Let \mathcal{H} be a separable Hilbert space and $\mathrm{vN}(\mathcal{H})$ the set of von Neumann algebras on \mathcal{H}. vN($\mathcal{H})$ can be given a standard Borel structure called the Effros Borel structure.

This Borel structure is generated by the sets

$$
\{M \in \mathrm{vN}(\mathcal{H}): M \cap U \neq \emptyset\}
$$

where U is a weakly open subset of $\mathcal{B}(\mathcal{H})$
Theorem (Effros '64): Sets of factors of types $\mathrm{I}, \mathrm{II}_{1}, \mathrm{II}_{\infty}, \mathrm{II}_{\lambda}$, $0 \leq \lambda \leq 1$ are Borel sets.

Hope: The equivalence relation $E=$ isomorphism of factors is not smooth.

The Effros Borel space

Let \mathcal{H} be a separable Hilbert space and $\mathrm{vN}(\mathcal{H})$ the set of von Neumann algebras on \mathcal{H}. vN($\mathcal{H})$ can be given a standard Borel structure called the Effros Borel structure.

This Borel structure is generated by the sets

$$
\{M \in \mathrm{vN}(\mathcal{H}): M \cap U \neq \emptyset\}
$$

where U is a weakly open subset of $\mathcal{B}(\mathcal{H})$
Theorem (Effros '64): Sets of factors of types $\mathrm{I}, \mathrm{II}_{1}, \mathrm{II}_{\infty}, \mathrm{II}_{\lambda}$, $0 \leq \lambda \leq 1$ are Borel sets.

Hope: The equivalence relation $E=$ isomorphism of factors is not smooth. This would show there are uncountably many factors.

The Effros Borel space

Let \mathcal{H} be a separable Hilbert space and $\mathrm{vN}(\mathcal{H})$ the set of von Neumann algebras on \mathcal{H}. vN($\mathcal{H})$ can be given a standard Borel structure called the Effros Borel structure.

This Borel structure is generated by the sets

$$
\{M \in \mathrm{vN}(\mathcal{H}): M \cap U \neq \emptyset\}
$$

where U is a weakly open subset of $\mathcal{B}(\mathcal{H})$
Theorem (Effros '64): Sets of factors of types $\mathrm{I}, \mathrm{II}_{1}, \mathrm{II}_{\infty}, \mathrm{II}_{\lambda}$, $0 \leq \lambda \leq 1$ are Borel sets.

Hope: The equivalence relation $E=$ isomorphism of factors is not smooth. This would show there are uncountably many factors.

Theorem (Woods '71): $E_{0} \leq_{B}$ ITPFI $_{\sim}$.

Borel-reducibility hierarchy

Theorem (Effros-Glimm dichotomy, (Harrington-K.-L. 90)) E is a Borel equivalence relation. Either E is smooth or $E_{0} \leq E$.

Borel-reducibility hierarchy

Theorem (Effros-Glimm dichotomy, (Harrington-K.-L. 90))
E is a Borel equivalence relation. Either E is smooth or $E_{0} \leq E$.
Facts:

1. $\ln \mathbb{R}^{\mathbb{N}}$,

$$
x E_{1} y \Longleftrightarrow(\exists N)(\forall n>N) x(n)=y(n)
$$

Borel-reducibility hierarchy

Theorem (Effros-Glimm dichotomy, (Harrington-K.-L. 90))
E is a Borel equivalence relation. Either E is smooth or $E_{0} \leq E$.
Facts:

1. $\ln \mathbb{R}^{\mathbb{N}}$,

$$
x E_{1} y \Longleftrightarrow(\exists N)(\forall n>N) x(n)=y(n)
$$ and

Borel-reducibility hierarchy

Theorem (Effros-Glimm dichotomy, (Harrington-K.-L. 90))
E is a Borel equivalence relation. Either E is smooth or $E_{0} \leq E$.
Facts:

1. In $\mathbb{R}^{\mathbb{N}}$,

$$
x E_{1} y \Longleftrightarrow(\exists N)(\forall n>N) x(n)=y(n)
$$

and

$$
x E_{2} y \Longleftrightarrow \lim _{n \rightarrow \infty}(x(n)-y(n))=0
$$

are incomparable. (Kechris-Louveau)

Borel-reducibility hierarchy

Theorem (Effros-Glimm dichotomy, (Harrington-K.-L. 90))
E is a Borel equivalence relation. Either E is smooth or $E_{0} \leq E$.

Facts:

1. $\ln \mathbb{R}^{\mathbb{N}}$,

$$
x E_{1} y \Longleftrightarrow(\exists N)(\forall n>N) x(n)=y(n)
$$

and

$$
x E_{2} y \Longleftrightarrow \lim _{n \rightarrow \infty}(x(n)-y(n))=0
$$

are incomparable. (Kechris-Louveau)
2. There exists a universal countable equivalence relation E_{∞}
(i. e. $E \leq_{B} E_{\infty}, E$ has countable orbits)

Borel-reducibility hierarchy

Theorem (Effros-Glimm dichotomy, (Harrington-K.-L. 90))
E is a Borel equivalence relation. Either E is smooth or $E_{0} \leq E$.

Facts:

1. $\ln \mathbb{R}^{\mathbb{N}}$,

$$
x E_{1} y \Longleftrightarrow(\exists N)(\forall n>N) x(n)=y(n) .
$$

and

$$
x E_{2} y \Longleftrightarrow \lim _{n \rightarrow \infty}(x(n)-y(n))=0
$$

are incomparable. (Kechris-Louveau)
2. There exists a universal countable equivalence relation E_{∞}
(i. e. $E \leq_{B} E_{\infty}, E$ has countable orbits)
3. $E_{0}<_{B} E<_{B} E_{\infty}$ (Jackson, K, L)

Classification by countable structures

Definition. Let E be an equivalence relation on a Polish space X. E is classifiable by countable structures if

$$
E \leq_{B} E_{S_{\infty}}^{Y}
$$

Where S_{∞} is the infinite symmetric group and $E_{S_{\infty}}^{Y}$ denotes a Borel equivalence relation induced by a continuous S_{∞}-action on Y.

Classification by countable structures

Definition. Let E be an equivalence relation on a Polish space X. E is classifiable by countable structures if

$$
E \leq_{B} E_{S_{\infty}}^{Y}
$$

Where S_{∞} is the infinite symmetric group and $E_{S_{\infty}}^{Y}$ denotes a Borel equivalence relation induced by a continuous S_{∞}-action on Y.

More standard definition (For logicians):

Classification by countable structures

Definition. Let E be an equivalence relation on a Polish space X. E is classifiable by countable structures if

$$
E \leq_{B} E_{S_{\infty}}^{Y}
$$

Where S_{∞} is the infinite symmetric group and $E_{S_{\infty}}^{Y}$ denotes a Borel equivalence relation induced by a continuous S_{∞}-action on Y.

More standard definition (For logicians):
Let \mathcal{L} be a countable language. $\operatorname{Mod}(\mathcal{L})$ denotes the natural Polish space of countable models of \mathcal{L} with underlying set \mathbb{N}. $\simeq \operatorname{Mod}(\mathcal{L})$ denotes the isomorphism relation in $\operatorname{Mod}(\mathcal{L})$.

Classification by countable structures

Definition. Let E be an equivalence relation on a Polish space X. E is classifiable by countable structures if

$$
E \leq_{B} E_{S_{\infty}}^{Y}
$$

Where S_{∞} is the infinite symmetric group and $E_{S_{\infty}}^{Y}$ denotes a Borel equivalence relation induced by a continuous S_{∞}-action on Y.

More standard definition (For logicians):
Let \mathcal{L} be a countable language. $\operatorname{Mod}(\mathcal{L})$ denotes the natural Polish space of countable models of \mathcal{L} with underlying set \mathbb{N}. $\simeq \operatorname{Mod}(\mathcal{L})$ denotes the isomorphism relation in $\operatorname{Mod}(\mathcal{L})$.
Definition. E is classifiable by countable structures if there is a countable language \mathcal{L} such that $E \leq_{B} \simeq \operatorname{Mod}(\mathcal{L})$.

Classification by countable structures II

Example: Graphs as a countable structure.

Classification by countable structures II

Example: Graphs as a countable structure.
GRAPHS $=\{f: \mathbb{N} \times \mathbb{N} \rightarrow\{0,1\} f(x, x)=0 ; f(x, y)=f(y, x))\}$

Classification by countable structures II

Example: Graphs as a countable structure.
GRAPHS $=\{f: \mathbb{N} \times \mathbb{N} \rightarrow\{0,1\} f(x, x)=0 ; f(x, y)=f(y, x))\}$
$f_{1} \sim f_{2} \Longleftrightarrow \exists \phi: \mathbb{N} \rightarrow \mathbb{N}$ bijection s.t. $f_{1}(x, y)=f_{2}(\phi(x), \phi(y))$.

Classification by countable structures II

Example: Graphs as a countable structure.
GRAPHS $=\{f: \mathbb{N} \times \mathbb{N} \rightarrow\{0,1\} f(x, x)=0 ; f(x, y)=f(y, x))\}$
$f_{1} \sim f_{2} \Longleftrightarrow \exists \phi: \mathbb{N} \rightarrow \mathbb{N}$ bijection s.t. $f_{1}(x, y)=f_{2}(\phi(x), \phi(y))$.
S_{∞} acts on GRAPHS as $\Theta \in S_{\infty}, \Theta f(x, y)=f\left(\Theta^{-1}(x), \Theta^{-1}(y)\right)$

Classification by countable structures II

Example: Graphs as a countable structure.
GRAPHS $=\{f: \mathbb{N} \times \mathbb{N} \rightarrow\{0,1\} f(x, x)=0 ; f(x, y)=f(y, x))\}$
$f_{1} \sim f_{2} \Longleftrightarrow \exists \phi: \mathbb{N} \rightarrow \mathbb{N}$ bijection s.t. $f_{1}(x, y)=f_{2}(\phi(x), \phi(y))$.
S_{∞} acts on GRAPHS as $\Theta \in S_{\infty}, \Theta f(x, y)=f\left(\Theta^{-1}(x), \Theta^{-1}(y)\right)$
The equivalence relations that are classifiable by countable structures include all equivalence relations that can be classified (reasonably) using countable groups, graphs, fields, etc., as complete invariants.

Classification by countable structures II

Example: Graphs as a countable structure.
GRAPHS $=\{f: \mathbb{N} \times \mathbb{N} \rightarrow\{0,1\} f(x, x)=0 ; f(x, y)=f(y, x))\}$
$f_{1} \sim f_{2} \Longleftrightarrow \exists \phi: \mathbb{N} \rightarrow \mathbb{N}$ bijection s.t. $f_{1}(x, y)=f_{2}(\phi(x), \phi(y))$.
S_{∞} acts on GRAPHS as $\Theta \in S_{\infty}, \Theta f(x, y)=f\left(\Theta^{-1}(x), \Theta^{-1}(y)\right)$
The equivalence relations that are classifiable by countable structures include all equivalence relations that can be classified (reasonably) using countable groups, graphs, fields, etc., as complete invariants.

Example I: $E_{\infty} \leq_{B} E_{S_{\infty}}^{Y}$

Classification by countable structures II

Example: Graphs as a countable structure.
GRAPHS $=\{f: \mathbb{N} \times \mathbb{N} \rightarrow\{0,1\} f(x, x)=0 ; f(x, y)=f(y, x))\}$
$f_{1} \sim f_{2} \Longleftrightarrow \exists \phi: \mathbb{N} \rightarrow \mathbb{N}$ bijection s.t. $f_{1}(x, y)=f_{2}(\phi(x), \phi(y))$.
S_{∞} acts on GRAPHS as $\Theta \in S_{\infty}, \Theta f(x, y)=f\left(\Theta^{-1}(x), \Theta^{-1}(y)\right)$
The equivalence relations that are classifiable by countable structures include all equivalence relations that can be classified (reasonably) using countable groups, graphs, fields, etc., as complete invariants.

Example I: $E_{\infty} \leq_{B} E_{S_{\infty}}^{Y}$
Example II: (Halmos-vN) $E=$ conjugacy of ergodic m.p. transformations with discrete spectrum. $\sigma_{P}(T)$ is a complete invariant. $E \leq_{B} E_{S \infty}^{Y}$

Classification by countable structures III

TURBULENCE (Hjorth '97 ~' 00)

Classification by countable structures III

TURBULENCE (Hjorth '97 ~' 00)
A theory to show that an equivalence relation E is NOTclassifiable by countable structures.

Classification by countable structures III

TURBULENCE (Hjorth '97 ~' 00)

A theory to show that an equivalence relation E is NOTclassifiable by countable structures.

Example III: (Hjorth '02?,Foreman-Weiss, '04) Conjugacy of MPET on $([0,1], \mu)$ is not classifiable by countable structures.

Classification by countable structures III

TURBULENCE (Hjorth '97 ~' 00)

A theory to show that an equivalence relation E is NOTclassifiable by countable structures.

Example III: (Hjorth '02?,Foreman-Weiss, '04) Conjugacy of MPET on $([0,1], \mu)$ is not classifiable by countable structures.

Example IV: (Kechris,Törnquist, '04 ~ '06) OE of free, ergodic, measure preserving \mathbb{F}_{n} actions is not classifiable by countable structures.

Classification by countable structures III

TURBULENCE (Hjorth '97 ~' 00)

A theory to show that an equivalence relation E is NOTclassifiable by countable structures.

Example III: (Hjorth '02?,Foreman-Weiss, '04) Conjugacy of MPET on $([0,1], \mu)$ is not classifiable by countable structures.

Example IV: (Kechris,Törnquist, '04 ~ '06) OE of free, ergodic, measure preserving \mathbb{F}_{n} actions is not classifiable by countable structures.

Example V: (Epstein-Ioana-Kechris-Tsankov, '08) OE of G actions for G non amenable is not classifiable by countable structures.

Results: Theorem 1

Theorem (S.-Törnquist, '08)
The isomorphism relation for separable von Neumann factors of type $\mathrm{I}_{1}, \mathrm{II}_{\infty}$ and $\mathrm{II}_{\lambda}, \lambda \in[0,1]$, are not classifiable by countable structures.

Results: Theorem 1

Theorem (S.-Törnquist, '08)
The isomorphism relation for separable von Neumann factors of type $\mathrm{I}_{1}, \mathrm{II}_{\infty}$ and $\mathrm{II}_{\lambda}, \lambda \in[0,1]$, are not classifiable by countable structures.

Corollary
The classification problem of II_{1} factors is not smooth.

Results: Theorem 2

A factor $M \in \mathrm{vN}(H)$ is injective (or amenable or hyperfinite) if it contains an increasing sequence of finite dimensional von Neumann algebras, with dense union in M. For each of the types $\mathrm{II}_{1}, \mathrm{I}_{\infty}$ and $\mathrm{III}_{\lambda}, \lambda \in(0,1]$, there is a unique injective factor of that type. However, for type II_{0} we have:

Results: Theorem 2

A factor $M \in \mathrm{vN}(H)$ is injective (or amenable or hyperfinite) if it contains an increasing sequence of finite dimensional von Neumann algebras, with dense union in M. For each of the types $\mathrm{II}_{1}, \mathrm{II}_{\infty}$ and $\mathrm{III}_{\lambda}, \lambda \in(0,1]$, there is a unique injective factor of that type. However, for type III_{0} we have:

Theorem (S.-Törnquist, '08)
The isomorphism relation for injective factors of type III_{0} is not classifiable by countable structures.

Results: Theorem 2

A factor $M \in \mathrm{vN}(H)$ is injective (or amenable or hyperfinite) if it contains an increasing sequence of finite dimensional von Neumann algebras, with dense union in M. For each of the types $\mathrm{II}_{1}, \mathrm{II}_{\infty}$ and $\mathrm{III}_{\lambda}, \lambda \in(0,1]$, there is a unique injective factor of that type. However, for type III_{0} we have:

Theorem (S.-Törnquist, '08)
The isomorphism relation for injective factors of type II_{0} is not classifiable by countable structures.
(Compare with Woods' Theorem: $E_{0} \leq_{B}$ ITPFI $_{2 \sim}$.)

Results: Theorem 3

Denote by $\mathcal{F}_{\mathrm{II}_{1}}(\mathcal{H})$ the (standard) space of II_{1} factors on \mathcal{H}, and by $\simeq{ }^{\mathcal{F}_{1_{1}}}(\mathcal{H})$ the isomorphism relation for factors of type II_{1} on \mathcal{H}.

Results: Theorem 3

Denote by $\mathcal{F}_{\mathrm{II}_{1}}(\mathcal{H})$ the (standard) space of II_{1} factors on \mathcal{H}, and by $\simeq \mathcal{F}_{\mathrm{I}_{1}}(\mathcal{H})$ the isomorphism relation for factors of type II_{1} on \mathcal{H}.

Theorem (S.-Törnquist, '08)
If \mathcal{L} is a countable language then $\simeq \operatorname{Mod}(\mathcal{L})<_{B} \simeq \mathcal{F}_{\Pi_{1}}(\mathcal{H})$.

Results: Theorem 3

Denote by $\mathcal{F}_{\mathrm{II}_{1}}(\mathcal{H})$ the (standard) space of II_{1} factors on \mathcal{H}, and by $\simeq \mathcal{F}_{\Pi_{1}}(\mathcal{H})$ the isomorphism relation for factors of type II_{1} on \mathcal{H}.

Theorem (S.-Törnquist, '08)
If \mathcal{L} is a countable language then $\simeq \operatorname{Mod}(\mathcal{L})<_{B} \simeq \mathcal{F}_{H_{1}}(\mathcal{H})$.
As an immediate corollary, we have:

Corollary

The isomorphism relation for factors of type II_{1} is complete analytic as a subset of $\mathcal{F}_{\mathrm{II}_{1}}(\mathcal{H}) \times \mathcal{F}_{\mathrm{II}_{1}}(\mathcal{H})$. In particular it is not a Borel subset.

Outline of the proof of Theorem 1

The ingredients of the proof are:

Outline of the proof of Theorem 1

The ingredients of the proof are:

- Construct a suitably large family of measure preserving ergodic actions of \mathbb{F}_{3}, the free group on 3 generators,

Outline of the proof of Theorem 1

The ingredients of the proof are:

- Construct a suitably large family of measure preserving ergodic actions of \mathbb{F}_{3}, the free group on 3 generators,
- Use these actions to construct a corresponding family of II_{1} factors, using the group-measure space construction,

Outline of the proof of Theorem 1

The ingredients of the proof are:

- Construct a suitably large family of measure preserving ergodic actions of \mathbb{F}_{3}, the free group on 3 generators,
- Use these actions to construct a corresponding family of II_{1} factors, using the group-measure space construction,
- Apply Popa's deformation-rigidity techniques ($\mathcal{H} \mathcal{T}$ factors) to argue that the properties of the \mathbb{F}_{3}-actions carry over to properties of the corresponding factors,

Outline of the proof of Theorem 1

The ingredients of the proof are:

- Construct a suitably large family of measure preserving ergodic actions of \mathbb{F}_{3}, the free group on 3 generators,
- Use these actions to construct a corresponding family of II_{1} factors, using the group-measure space construction,
- Apply Popa's deformation-rigidity techniques ($\mathcal{H} \mathcal{T}$ factors) to argue that the properties of the \mathbb{F}_{3}-actions carry over to properties of the corresponding factors,
- Argue that the family of \mathbb{F}_{3}-actions is too big to be classified by countable structures.

A class of \mathbb{F}_{3}-actions

The \mathbb{F}_{2} action σ obtained by restricting the $S L_{2}(\mathbb{Z})$ action on \mathbb{T}^{2} is free, ergodic, and $L^{\infty}\left(\mathbb{T}^{2}\right) \subset L^{\infty}\left(\mathbb{T}^{2}\right) \rtimes_{\sigma} \mathbb{F}_{2}$ has the relative property (T).

A class of \mathbb{F}_{3}-actions

The \mathbb{F}_{2} action σ obtained by restricting the $S L_{2}(\mathbb{Z})$ action on \mathbb{T}^{2} is free, ergodic, and $L^{\infty}\left(\mathbb{T}^{2}\right) \subset L^{\infty}\left(\mathbb{T}^{2}\right) \rtimes_{\sigma} \mathbb{F}_{2}$ has the relative property (T). Let T_{a} and T_{b} be the transformations corresponding to the generators a, b of \mathbb{F}_{2}.

A class of \mathbb{F}_{3}-actions

The \mathbb{F}_{2} action σ obtained by restricting the $S L_{2}(\mathbb{Z})$ action on \mathbb{T}^{2} is free, ergodic, and $L^{\infty}\left(\mathbb{T}^{2}\right) \subset L^{\infty}\left(\mathbb{T}^{2}\right) \rtimes_{\sigma} \mathbb{F}_{2}$ has the relative property (T). Let T_{a} and T_{b} be the transformations corresponding to the generators a, b of \mathbb{F}_{2}. Let

$$
\operatorname{Ext}(\sigma)=\left\{S \in \operatorname{Aut}\left(\mathbb{T}^{2}\right): S, T_{a}, T_{b} \text { generate a free } F_{3} \text {-action }\right\}
$$

Then this set is a dense G_{δ}.

A class of \mathbb{F}_{3}-actions

The \mathbb{F}_{2} action σ obtained by restricting the $S L_{2}(\mathbb{Z})$ action on \mathbb{T}^{2} is free, ergodic, and $L^{\infty}\left(\mathbb{T}^{2}\right) \subset L^{\infty}\left(\mathbb{T}^{2}\right) \rtimes_{\sigma} \mathbb{F}_{2}$ has the relative property (T). Let T_{a} and T_{b} be the transformations corresponding to the generators a, b of \mathbb{F}_{2}. Let

$$
\operatorname{Ext}(\sigma)=\left\{S \in \operatorname{Aut}\left(\mathbb{T}^{2}\right): S, T_{a}, T_{b} \text { generate a free } F_{3} \text {-action }\right\}
$$

Then this set is a dense G_{δ}. For each $S \in \operatorname{Ext}(\sigma)$, let σ_{S} be the corresponding a.e. free ergodic \mathbb{F}_{3}-action. Define in $\operatorname{Ext}(\sigma)$ the equivalence relation $S \sim_{o e} S^{\prime}$ if and only if σ_{S} is orbit equivalent to $\sigma_{S^{\prime}}$.

A class of \mathbb{F}_{3}-actions

The \mathbb{F}_{2} action σ obtained by restricting the $S L_{2}(\mathbb{Z})$ action on \mathbb{T}^{2} is free, ergodic, and $L^{\infty}\left(\mathbb{T}^{2}\right) \subset L^{\infty}\left(\mathbb{T}^{2}\right) \rtimes_{\sigma} \mathbb{F}_{2}$ has the relative property (T). Let T_{a} and T_{b} be the transformations corresponding to the generators a, b of \mathbb{F}_{2}. Let

$$
\operatorname{Ext}(\sigma)=\left\{S \in \operatorname{Aut}\left(\mathbb{T}^{2}\right): S, T_{a}, T_{b} \text { generate a free } F_{3} \text {-action }\right\}
$$

Then this set is a dense G_{δ}. For each $S \in \operatorname{Ext}(\sigma)$, let σ_{S} be the corresponding a.e. free ergodic \mathbb{F}_{3}-action. Define in $\operatorname{Ext}(\sigma)$ the equivalence relation $S \sim_{o e} S^{\prime}$ if and only if σ_{S} is orbit equivalent to $\sigma_{S^{\prime}}$. We then have:

Theorem

1. (Törnquist) The relation $\sim_{o e}$ has meagre classes and all classes are dense.

A class of \mathbb{F}_{3}-actions

The \mathbb{F}_{2} action σ obtained by restricting the $S L_{2}(\mathbb{Z})$ action on \mathbb{T}^{2} is free, ergodic, and $L^{\infty}\left(\mathbb{T}^{2}\right) \subset L^{\infty}\left(\mathbb{T}^{2}\right) \rtimes_{\sigma} \mathbb{F}_{2}$ has the relative property (T). Let T_{a} and T_{b} be the transformations corresponding to the generators a, b of \mathbb{F}_{2}. Let
$\operatorname{Ext}(\sigma)=\left\{S \in \operatorname{Aut}\left(\mathbb{T}^{2}\right): S, T_{a}, T_{b}\right.$ generate a free F_{3}-action $\}$.
Then this set is a dense G_{δ}. For each $S \in \operatorname{Ext}(\sigma)$, let σ_{S} be the corresponding a.e. free ergodic \mathbb{F}_{3}-action. Define in $\operatorname{Ext}(\sigma)$ the equivalence relation $S \sim_{o e} S^{\prime}$ if and only if σ_{S} is orbit equivalent to $\sigma_{S^{\prime}}$. We then have:

Theorem

1. (Törnquist) The relation $\sim_{o e}$ has meagre classes and all classes are dense.
2. (Kechris-Törnquist) The relation $\sim_{o e}$ is generically turbulent, so in particular, it is not classifiable by countable structures.

Proof of Theorem 1

We can now finish the proof of Theorem 1. For each $S \in \operatorname{Ext}(\sigma)$, let

$$
M_{S}=L^{\infty}\left(\mathbb{T}^{2}\right) \rtimes_{\sigma_{S}} \mathbb{F}_{3}
$$

Proof of Theorem 1

We can now finish the proof of Theorem 1. For each $S \in \operatorname{Ext}(\sigma)$, let

$$
M_{S}=L^{\infty}\left(\mathbb{T}^{2}\right) \rtimes_{\sigma_{S}} \mathbb{F}_{3}
$$

The map $S \mapsto M_{S}$ may be seen to be Borel. We claim it is a Borel reduction of $\sim_{o e}$ to isomorphism of von Neumann factors on $L^{2}\left(\mathbb{T}^{2} \times \mathbb{F}_{3}\right)$. It is clear by Feldman-Moore's Theorem that if $S \sim_{o e} S^{\prime}$ then $M_{S} \simeq M_{S^{\prime}}$. For the converse, we invoke a deformation-rigidity result of Popa:

Proof of Theorem 1

We can now finish the proof of Theorem 1. For each $S \in \operatorname{Ext}(\sigma)$, let

$$
M_{S}=L^{\infty}\left(\mathbb{T}^{2}\right) \rtimes_{\sigma_{S}} \mathbb{F}_{3}
$$

The map $S \mapsto M_{S}$ may be seen to be Borel. We claim it is a Borel reduction of $\sim_{o e}$ to isomorphism of von Neumann factors on $L^{2}\left(\mathbb{T}^{2} \times \mathbb{F}_{3}\right)$. It is clear by Feldman-Moore's Theorem that if $S \sim_{o e} S^{\prime}$ then $M_{S} \simeq M_{S^{\prime}}$. For the converse, we invoke a deformation-rigidity result of Popa:
Theorem (Popa, '01)
Suppose G is a countable group acting in a measure preserving a.e. free ergodic way on (X, μ) Then if $L^{\infty}(X)$ has both the relative property (T) and the relative Haagerup property as a subalgebra of $L^{\infty}(X) \rtimes G$, then $L^{\infty}(X)$ is, up to conjugation with a unitary, the only Cartan subalgebra of $L^{\infty}(X) \rtimes G$ with both the relative property (T) and the relative Haagerup property.

Proof of Theorem 1

Suppose then that $M_{S} \simeq M_{S^{\prime}}$. Since \mathbb{F}_{3} has the Haagerup property as a group, this carries over to the inclusions $L^{\infty}\left(\mathbb{T}^{2}\right) \subset M_{S}$ and $L^{\infty}\left(\mathbb{T}^{2}\right) \subset M_{S^{\prime}}$.

Proof of Theorem 1

Suppose then that $M_{S} \simeq M_{S^{\prime}}$. Since \mathbb{F}_{3} has the Haagerup property as a group, this carries over to the inclusions $L^{\infty}\left(\mathbb{T}^{2}\right) \subset M_{S}$ and $L^{\infty}\left(\mathbb{T}^{2}\right) \subset M_{S^{\prime}}$. Since

$$
L^{\infty}\left(\mathbb{T}^{2}\right) \subset L^{\infty}\left(\mathbb{T}^{2}\right) \rtimes_{\sigma} \mathbb{F}_{2} \subset M_{S}
$$

it follows that the inclusion $L^{\infty}\left(\mathbb{T}^{2}\right) \subset M_{S}$ has the relative property (T$)$. The same holds for $L^{\infty}\left(\mathbb{T}^{2}\right) \subset M_{S^{\prime}}$.

Proof of Theorem 1

Suppose then that $M_{S} \simeq M_{S^{\prime}}$. Since \mathbb{F}_{3} has the Haagerup property as a group, this carries over to the inclusions $L^{\infty}\left(\mathbb{T}^{2}\right) \subset M_{S}$ and $L^{\infty}\left(\mathbb{T}^{2}\right) \subset M_{S^{\prime}}$. Since

$$
L^{\infty}\left(\mathbb{T}^{2}\right) \subset L^{\infty}\left(\mathbb{T}^{2}\right) \rtimes_{\sigma} \mathbb{F}_{2} \subset M_{S}
$$

it follows that the inclusion $L^{\infty}\left(\mathbb{T}^{2}\right) \subset M_{S}$ has the relative property (T$)$. The same holds for $L^{\infty}\left(\mathbb{T}^{2}\right) \subset M_{S^{\prime}}$.

Thus by Popa's Theorem, any isomorphism between M_{S} and $M_{S^{\prime}}$ must carry $L^{\infty}\left(\mathbb{T}^{2}\right)$ to itself, after possibly conjugating with a unitary.

Proof of Theorem 1

Suppose then that $M_{S} \simeq M_{S^{\prime}}$. Since \mathbb{F}_{3} has the Haagerup property as a group, this carries over to the inclusions $L^{\infty}\left(\mathbb{T}^{2}\right) \subset M_{S}$ and $L^{\infty}\left(\mathbb{T}^{2}\right) \subset M_{S^{\prime}}$. Since

$$
L^{\infty}\left(\mathbb{T}^{2}\right) \subset L^{\infty}\left(\mathbb{T}^{2}\right) \rtimes_{\sigma} \mathbb{F}_{2} \subset M_{S}
$$

it follows that the inclusion $L^{\infty}\left(\mathbb{T}^{2}\right) \subset M_{S}$ has the relative property (T). The same holds for $L^{\infty}\left(\mathbb{T}^{2}\right) \subset M_{S^{\prime}}$.

Thus by Popa's Theorem, any isomorphism between M_{S} and $M_{S^{\prime}}$ must carry $L^{\infty}\left(\mathbb{T}^{2}\right)$ to itself, after possibly conjugating with a unitary.But this shows that the inclusions

$$
L^{\infty}\left(\mathbb{T}^{2}\right) \subset M_{S} \simeq L^{\infty}\left(\mathbb{T}^{2}\right) \subset M_{S^{\prime}}
$$

are isomorphic,

Proof of Theorem 1

Suppose then that $M_{S} \simeq M_{S^{\prime}}$. Since \mathbb{F}_{3} has the Haagerup property as a group, this carries over to the inclusions $L^{\infty}\left(\mathbb{T}^{2}\right) \subset M_{S}$ and $L^{\infty}\left(\mathbb{T}^{2}\right) \subset M_{S^{\prime}}$. Since

$$
L^{\infty}\left(\mathbb{T}^{2}\right) \subset L^{\infty}\left(\mathbb{T}^{2}\right) \rtimes_{\sigma} \mathbb{F}_{2} \subset M_{S}
$$

it follows that the inclusion $L^{\infty}\left(\mathbb{T}^{2}\right) \subset M_{S}$ has the relative property (T). The same holds for $L^{\infty}\left(\mathbb{T}^{2}\right) \subset M_{S^{\prime}}$.

Thus by Popa's Theorem, any isomorphism between M_{S} and $M_{S^{\prime}}$ must carry $L^{\infty}\left(\mathbb{T}^{2}\right)$ to itself, after possibly conjugating with a unitary.But this shows that the inclusions

$$
L^{\infty}\left(\mathbb{T}^{2}\right) \subset M_{S} \simeq L^{\infty}\left(\mathbb{T}^{2}\right) \subset M_{S^{\prime}}
$$

are isomorphic, so by Feldman-Moore, the actions σ_{S} and $\sigma_{S^{\prime}}$ are orbit equivalent.

Proof of Theorem 1

Suppose then that $M_{S} \simeq M_{S^{\prime}}$. Since \mathbb{F}_{3} has the Haagerup property as a group, this carries over to the inclusions $L^{\infty}\left(\mathbb{T}^{2}\right) \subset M_{S}$ and $L^{\infty}\left(\mathbb{T}^{2}\right) \subset M_{S^{\prime}}$. Since

$$
L^{\infty}\left(\mathbb{T}^{2}\right) \subset L^{\infty}\left(\mathbb{T}^{2}\right) \rtimes_{\sigma} \mathbb{F}_{2} \subset M_{S}
$$

it follows that the inclusion $L^{\infty}\left(\mathbb{T}^{2}\right) \subset M_{S}$ has the relative property (T). The same holds for $L^{\infty}\left(\mathbb{T}^{2}\right) \subset M_{S^{\prime}}$.

Thus by Popa's Theorem, any isomorphism between M_{S} and $M_{S^{\prime}}$ must carry $L^{\infty}\left(\mathbb{T}^{2}\right)$ to itself, after possibly conjugating with a unitary.But this shows that the inclusions

$$
L^{\infty}\left(\mathbb{T}^{2}\right) \subset M_{S} \simeq L^{\infty}\left(\mathbb{T}^{2}\right) \subset M_{S^{\prime}}
$$

are isomorphic, so by Feldman-Moore, the actions σ_{S} and $\sigma_{S^{\prime}}$ are orbit equivalent. Thus $\sim_{o e}$ is Borel reducible to isomorphism of factors, and so the isomorphism relation for factors is not classifiable by countable structures.

Proof of Theorem 1

The factors M_{S} are all of type II_{1}. One may now proceed to deduce the result for type I_{∞} factors by showing that

$$
S \mapsto M_{S} \otimes \mathcal{B}\left(\ell^{2}(\mathbb{N})\right)
$$

where $\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)$ denotes the bounded operators on $\ell^{2}(\mathbb{N})$, is a Borel reduction of $\sim_{o e}$ to $\simeq^{I_{\infty}}$.

Proof of Theorem 1

The factors M_{S} are all of type II_{1}. One may now proceed to deduce the result for type I_{∞} factors by showing that

$$
S \mapsto M_{S} \otimes \mathcal{B}\left(\ell^{2}(\mathbb{N})\right)
$$

where $\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)$ denotes the bounded operators on $\ell^{2}(\mathbb{N})$, is a Borel reduction of $\sim_{o e}$ to $\simeq^{\mathrm{I}_{\infty}}$. For this we use the $\ell_{H T}^{2}$-betti numbers of Popa, (based on Gaboriau's ℓ^{2}-betti numbers for equiv. rel.).

Proof of Theorem 1

The factors M_{S} are all of type II_{1}. One may now proceed to deduce the result for type I_{∞} factors by showing that

$$
S \mapsto M_{S} \otimes \mathcal{B}\left(\ell^{2}(\mathbb{N})\right)
$$

where $\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)$ denotes the bounded operators on $\ell^{2}(\mathbb{N})$, is a Borel reduction of $\sim_{o e}$ to $\simeq^{I_{\infty}}$. For this we use the $\ell_{H T}^{2}$-betti numbers of Popa, (based on Gaboriau's ℓ^{2}-betti numbers for equiv. rel.).

For the III_{λ} case, the map

$$
S \mapsto M_{S} \otimes R_{\lambda}
$$

provides a Borel reduction of $\sim_{o e}$ to $\simeq^{I I I}{ }_{\lambda}$, where R_{λ} is a (fixed) injective factor of type III_{λ}.

Proof of Theorem 1

The factors M_{S} are all of type II_{1}. One may now proceed to deduce the result for type I_{∞} factors by showing that

$$
S \mapsto M_{S} \otimes \mathcal{B}\left(\ell^{2}(\mathbb{N})\right)
$$

where $\mathcal{B}\left(\ell^{2}(\mathbb{N})\right)$ denotes the bounded operators on $\ell^{2}(\mathbb{N})$, is a Borel reduction of $\sim_{o e}$ to $\simeq{ }^{I_{\infty}}$. For this we use the $\ell_{H T}^{2}$-betti numbers of Popa, (based on Gaboriau's ℓ^{2}-betti numbers for equiv. rel.).

For the III_{λ} case, the map

$$
S \mapsto M_{S} \otimes R_{\lambda}
$$

provides a Borel reduction of $\sim_{o e}$ to $\simeq^{I I I}{ }_{\lambda}$, where R_{λ} is a (fixed) injective factor of type III_{λ}. For this we use Connes-Takesaki cross product decomposition to isolate the cores and then the unique tensor product decomposition of Mc Duff factors of Popa.

Theorem 3

Recall that if \mathcal{L} is a countable language, $\operatorname{Mod}(\mathcal{L})$ denotes the Polish space of models of \mathcal{L} with universe \mathbb{N}. $\simeq \operatorname{Mod}(\mathcal{L})$ denotes the isomorphism relation in $\operatorname{Mod}(\mathcal{L})$

Theorem 3

Recall that if \mathcal{L} is a countable language, $\operatorname{Mod}(\mathcal{L})$ denotes the Polish space of models of \mathcal{L} with universe $\mathbb{N} . \simeq \operatorname{Mod}(\mathcal{L})$ denotes the isomorphism relation in $\operatorname{Mod}(\mathcal{L})$

I will now sketch the proof of:
Theorem (S.-T ornquist, '08)
If \mathcal{L} is a countable language then $\simeq \operatorname{Mod}(\mathcal{L}) \leq_{B} \simeq \mathcal{F}_{\Pi_{1}}(\mathcal{H})$.

A strong rigidity theorem for Bernoulli shifts

The proof is based on the following rigidity theorem of Popa, which shows that for a Bernoulli shift β coming from certain kind of group, the group can be recovered from the isomorphism type of the group measure space factor $L^{\infty}\left(X^{G}\right) \rtimes_{\beta} G$:

A strong rigidity theorem for Bernoulli shifts

The proof is based on the following rigidity theorem of Popa, which shows that for a Bernoulli shift β coming from certain kind of group, the group can be recovered from the isomorphism type of the group measure space factor $L^{\infty}\left(X^{G}\right) \rtimes_{\beta} G$:

Theorem (Popa, '06)

Suppose G_{1} and G_{2} are countably infinite discrete groups, β_{1} and β_{2} are the corresponding Bernoulli shifts on $X_{1}=[0,1]^{G_{1}}$ and $X_{2}=[0,1]^{G_{2}}$, respectively, and $M_{1}=L^{2}\left(X_{1}\right) \rtimes_{\beta_{1}} G_{1}$ and $M_{2}=L^{2}\left(X_{2}\right) \rtimes_{\beta_{2}} G_{2}$ are the corresponding group-measure space II_{1} factors. Suppose further that G_{1} and G_{2} are ICC (infinite conjugacy class) groups having the relative property (T) over an infinite normal subgroup. Then $M_{1} \simeq M_{2}$ iff $G_{1} \simeq G_{2}$.

Isomorphism of relative property (T) groups

An example of an ICC group with property (T) is $S L(3, \mathbb{Z})$. Any group of the form $H \times S L(3, \mathbb{Z})$ has the relative property (T) (over $S L(3, \mathbb{Z})$). If H is ICC, then $H \times S L(3, \mathbb{Z})$ is ICC.

Isomorphism of relative property (T) groups

An example of an ICC group with property (T) is $S L(3, \mathbb{Z})$. Any group of the form $H \times S L(3, \mathbb{Z})$ has the relative property (T) (over $S L(3, \mathbb{Z})$). If H is ICC, then $H \times S L(3, \mathbb{Z})$ is ICC.

Denote by $\mathbf{w} \mathbf{T}_{\text {ICC }}$ the class of countable groups, having the relative property (T) over some infinite normal subgroup, and $\simeq{ }^{\mathbf{w}} \mathbf{T}_{\text {Icc }}$ the isomorphism relation in that class.

Isomorphism of relative property (T) groups

An example of an ICC group with property (T) is $S L(3, \mathbb{Z})$. Any group of the form $H \times S L(3, \mathbb{Z})$ has the relative property (T) (over $S L(3, \mathbb{Z})$). If H is ICC, then $H \times S L(3, \mathbb{Z})$ is ICC.

Denote by $\mathbf{w} \mathbf{T}_{\text {ICC }}$ the class of countable groups, having the relative property (T) over some infinite normal subgroup, and $\simeq{ }^{\mathbf{w}} \mathbf{T}_{\text {Icc }}$ the isomorphism relation in that class.

Popa's Theorem reduces the problem of proving Theorem 3 to proving:

Isomorphism of relative property (T) groups

An example of an ICC group with property (T) is $S L(3, \mathbb{Z})$. Any group of the form $H \times S L(3, \mathbb{Z})$ has the relative property (T) (over $S L(3, \mathbb{Z})$). If H is ICC, then $H \times S L(3, \mathbb{Z})$ is ICC.

Denote by $\mathbf{w} \mathbf{T}_{\text {ICC }}$ the class of countable groups, having the relative property (T) over some infinite normal subgroup, and $\simeq{ }^{\mathbf{w}} \mathbf{T}_{\text {Icc }}$ the isomorphism relation in that class.

Popa's Theorem reduces the problem of proving Theorem 3 to proving:

Theorem (Sasyk-T., '08)
For any countable language \mathcal{L}, the isomorphism relation for countable models of $\mathcal{L}, \simeq \operatorname{Mod}(\mathcal{L})$, is Borel reducible to $\simeq \mathbf{w} \mathbf{T}_{\mathbf{I c c}}$.

Isomorphism of relative property (T) groups

An example of an ICC group with property (T) is $S L(3, \mathbb{Z})$. Any group of the form $H \times S L(3, \mathbb{Z})$ has the relative property (T) (over $S L(3, \mathbb{Z})$). If H is ICC, then $H \times S L(3, \mathbb{Z})$ is ICC.

Denote by $\mathbf{w} \mathbf{T}_{\text {ICC }}$ the class of countable groups, having the relative property (T) over some infinite normal subgroup, and $\simeq{ }^{\mathbf{w}} \mathbf{T}_{\text {Icc }}$ the isomorphism relation in that class.

Popa's Theorem reduces the problem of proving Theorem 3 to proving:

Theorem (Sasyk-T., '08)

For any countable language \mathcal{L}, the isomorphism relation for countable models of $\mathcal{L}, \simeq \operatorname{Mod}(\mathcal{L})$, is Borel reducible to $\simeq \mathbf{w} \mathbf{T}_{\mathrm{Icc}}$. In other words: $\simeq \mathbf{w} \mathbf{T}_{\text {ICC }}$ is Borel complete for countable structures, in the sense of Friedman and Stanley.

Mekler groups

Mekler groups

Mekler defined a notion of 'nice graph', and proved (in effect) that the isomorphism relation of countable connected nice graphs is Borel complete for countable structures.

Mekler groups

Mekler defined a notion of 'nice graph', and proved (in effect) that the isomorphism relation of countable connected nice graphs is Borel complete for countable structures.

Mekler then defines from a given countable nice graph Γ (and a prime p, which we shall keep fixed here) a countable group $G(\Gamma)$, which we will call the Mekler group of Γ, and shows that for nice graphs, $\Gamma_{1} \simeq \Gamma_{2}$ iff $G\left(\Gamma_{1}\right) \simeq G\left(\Gamma_{2}\right)$. The association $\Gamma \mapsto G(\Gamma)$ is Borel, and moreover, for every graph automorphism of Γ there is a corresponding group automorphism of $G(\Gamma)$. However these groups are not ICC.

Definition of Mekler groups

Fix a prime p and a countable graph Γ.

Definition of Mekler groups

Fix a prime p and a countable graph Γ.
The Mekler group of Γ, denoted $G(\Gamma)$, is defined as

$$
(\underset{v \in \Gamma}{2} \mathbb{Z} / p \mathbb{Z}) / N
$$

where

$$
N=\left\langle\left[v_{1}, v_{2}\right]: v_{1} \Gamma v_{2}\right\rangle
$$

and 2 denotes the free product in the category of nil-2 exponent p groups.

Definition of Mekler groups

Fix a prime p and a countable graph Γ.
The Mekler group of Γ, denoted $G(\Gamma)$, is defined as

$$
(\underset{v \in \Gamma}{2} \mathbb{Z} / p \mathbb{Z}) / N
$$

where

$$
N=\left\langle\left[v_{1}, v_{2}\right]: v_{1} \Gamma v_{2}\right\rangle
$$

and $\mathbf{2}$ denotes the free product in the category of nil- 2 exponent p groups.

The Mekler groups are exponent p-groups (for the given p).

Definition of Mekler groups

Fix a prime p and a countable graph Γ.
The Mekler group of Γ, denoted $G(\Gamma)$, is defined as

$$
(\underset{v \in \Gamma}{2} \mathbb{Z} / p \mathbb{Z}) / N
$$

where

$$
N=\left\langle\left[v_{1}, v_{2}\right]: v_{1} \Gamma v_{2}\right\rangle
$$

and 2 denotes the free product in the category of nil-2 exponent p groups.

The Mekler groups are exponent p-groups (for the given p).
However, the groups $G(\Gamma)$ are not ICC.

A variant of Mekler's construction

To remedy this, we consider for each connected nice graph Γ with vertex set \mathbb{N} the nice graph $\Gamma_{\mathbb{F}_{2}}$ with vertex set $\mathbb{N} \times \mathbb{F}_{2}$ defined by

$$
(m, g) \Gamma_{\mathbb{F}_{2}}(n, h) \Longleftrightarrow m\lceil n \wedge g=h,
$$

consisting of \mathbb{F}_{2} copies of Γ.

A variant of Mekler's construction

To remedy this, we consider for each connected nice graph Γ with vertex set \mathbb{N} the nice graph $\Gamma_{\mathbb{F}_{2}}$ with vertex set $\mathbb{N} \times \mathbb{F}_{2}$ defined by

$$
(m, g) \Gamma_{\mathbb{F}_{2}}(n, h) \Longleftrightarrow m \Gamma n \wedge g=h,
$$

consisting of \mathbb{F}_{2} copies of Γ.
$\Gamma_{\mathbb{F}_{2}}$ is clearly not connected, but still " nice", in the sense of Mekler.

A variant of Mekler's construction

To remedy this, we consider for each connected nice graph Γ with vertex set \mathbb{N} the nice graph $\Gamma_{\mathbb{F}_{2}}$ with vertex set $\mathbb{N} \times \mathbb{F}_{2}$ defined by

$$
(m, g) \Gamma_{\mathbb{F}_{2}}(n, h) \Longleftrightarrow m\lceil n \wedge g=h,
$$

consisting of \mathbb{F}_{2} copies of Γ.
$\Gamma_{\mathbb{F}_{2}}$ is clearly not connected, but still " nice", in the sense of Mekler.
Clearly, \mathbb{F}_{2} acts by graph automorphisms on $\Gamma_{\mathbb{F}_{2}}$. Going to the corresponding Mekler group $G\left(\Gamma_{\mathbb{F}_{2}}\right)$, we have a corresponding action of \mathbb{F}_{2} by group automorphisms on $G\left(\Gamma_{\mathbb{F}_{2}}\right)$. Thus we may form the semi-direct product $G\left(\Gamma_{\mathbb{F}_{2}}\right) \rtimes \mathbb{F}_{2}$. This group is easily seen to be ICC.

\simeq wT cc is Borel complete

We now consider the group

$$
G_{\Gamma}=\operatorname{SL}(3, \mathbb{Z}) \times G\left(\Gamma_{\mathbb{F}_{2}}\right) \rtimes \mathbb{F}_{2} .
$$

$\simeq w \mathrm{~T}_{\text {cc }}$ is Borel complete

We now consider the group

$$
G_{\Gamma}=\operatorname{SL}(3, \mathbb{Z}) \times G\left(\Gamma_{\mathbb{F}_{2}}\right) \rtimes \mathbb{F}_{2} .
$$

This is an ICC group with the relative property (T) over $\operatorname{SL}(3, \mathbb{Z})$.

$\simeq w \mathrm{~T}_{\text {cc }}$ is Borel complete

We now consider the group

$$
G_{\Gamma}=\operatorname{SL}(3, \mathbb{Z}) \times G\left(\Gamma_{\mathbb{F}_{2}}\right) \rtimes \mathbb{F}_{2} .
$$

This is an ICC group with the relative property (T) over $\operatorname{SL}(3, \mathbb{Z})$.
Claim: The map $\Gamma \mapsto G_{\Gamma}$ is a Borel reduction of isomorphism of nice connected graphs to $\simeq{ }^{\mathbf{w}} \mathbf{T}_{\text {ICc }}$.

\simeq wTicc is Borel complete

We now consider the group

$$
G_{\Gamma}=\operatorname{SL}(3, \mathbb{Z}) \times G\left(\Gamma_{\mathbb{F}_{2}}\right) \rtimes \mathbb{F}_{2} .
$$

This is an ICC group with the relative property (T) over $\operatorname{SL}(3, \mathbb{Z})$.
Claim: The map $\Gamma \mapsto G_{\Gamma}$ is a Borel reduction of isomorphism of nice connected graphs to $\simeq{ }^{\mathbf{w}} \mathbf{T}_{\text {ICc }}$.

Thus we showed:

$\simeq w \mathrm{~T}_{\text {cc }}$ is Borel complete

We now consider the group

$$
G_{\Gamma}=\operatorname{SL}(3, \mathbb{Z}) \times G\left(\Gamma_{\mathbb{F}_{2}}\right) \rtimes \mathbb{F}_{2} .
$$

This is an ICC group with the relative property (T) over $\operatorname{SL}(3, \mathbb{Z})$.
Claim: The map $\Gamma \mapsto G_{\Gamma}$ is a Borel reduction of isomorphism of nice connected graphs to $\simeq{ }^{\mathbf{w}} \mathbf{T}_{\text {ICc }}$.

Thus we showed:

$$
\simeq^{\operatorname{Mod}(\mathcal{L})} \leq_{B} \text { iso of connected nice graphs } \leq_{B} \simeq \mathbf{w} \mathbf{T}_{\mathrm{ICC}} \leq_{B} \simeq^{\mathscr{F}_{\|_{1}}}
$$

Isomorphism of II_{1} factors is complete analytic

We denote by $\mathscr{F}_{I_{1}}$ the standard Borel space of type II_{1} factors.

Isomorphism of II_{1} factors is complete analytic

We denote by $\mathscr{F}_{I_{1}}$ the standard Borel space of type II_{1} factors. Corollary (S.-Törnquist, '08)
The isomorphism relation for separable von Neumann factors of type $\|_{1}$ is complete analytic as a subset of $\mathscr{F} \|_{1} \times \mathscr{F}_{\|_{1}}$.

Isomorphism of II_{1} factors is complete analytic

We denote by $\mathscr{F}_{I_{1}}$ the standard Borel space of type $\|_{1}$ factors.
Corollary (S.-Törnquist, '08)
The isomorphism relation for separable von Neumann factors of type $\|_{1}$ is complete analytic as a subset of $\mathscr{F} \|_{1} \times \mathscr{F}_{\|_{1}}$.

Proof.
Since the isomorphism relation $\simeq^{\mathscr{G}}$ of countable graphs, say, is complete analytic and by the previous Theorem $\simeq{ }^{\mathscr{G}} \leq_{B} \simeq^{\mathscr{F}} \|_{1}$.

The big picture

We now get the following picture of the complexity of the isomorphism relation of separable von Neumann factors:

The big picture

We now get the following picture of the complexity of the isomorphism relation of separable von Neumann factors:

- Isomorphism of factors is not classifiable by countable structures: In particular, there is no reasonably definable function which can classify separable factors by an assignment of countable groups, graphs, fields, as complete invariants.

The big picture

We now get the following picture of the complexity of the isomorphism relation of separable von Neumann factors:

- Isomorphism of factors is not classifiable by countable structures: In particular, there is no reasonably definable function which can classify separable factors by an assignment of countable groups, graphs, fields, as complete invariants.
- The isomorphism relation for factors "interprets" the isomorphism relation of all countable structures.

The big picture

We now get the following picture of the complexity of the isomorphism relation of separable von Neumann factors:

- Isomorphism of factors is not classifiable by countable structures: In particular, there is no reasonably definable function which can classify separable factors by an assignment of countable groups, graphs, fields, as complete invariants.
- The isomorphism relation for factors "interprets" the isomorphism relation of all countable structures.
- On the other hand, it can be shown (S-Törnquist, '08) that isomorphism of factors is Borel reducible to an equivalence relation arising from a continuous action of the unitary group of $\ell_{2}(\mathbb{N})$ on a Polish space.

The big picture

We now get the following picture of the complexity of the isomorphism relation of separable von Neumann factors:

- Isomorphism of factors is not classifiable by countable structures: In particular, there is no reasonably definable function which can classify separable factors by an assignment of countable groups, graphs, fields, as complete invariants.
- The isomorphism relation for factors "interprets" the isomorphism relation of all countable structures.
- On the other hand, it can be shown (S-Törnquist, '08) that isomorphism of factors is Borel reducible to an equivalence relation arising from a continuous action of the unitary group of $\ell_{2}(\mathbb{N})$ on a Polish space.

This in turn implies that isomorphism of factors is not a universal analytic equivalence relations, i.e. it is not of maximal complexity in the \leq_{B} hierarchy of analytic equivalence relations.

References:

[1] The classification problem for von Neumann factors, R. Sasyk and A. Törnquist, to appear in the Journal of Functional Analysis.

References:

[1] The classification problem for von Neumann factors, R. Sasyk and A. Törnquist, to appear in the Journal of Functional Analysis.
[2] Borel reducibility and classification of von Neumann algebras, R. Sasyk and A. Törnquist, to appear in the Bulletin of Symbolic Logic.

