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Introduction

In this talk, I will discuss some aspects of recent work concerning
the global structure of the space of measure preserving actions and
their associated cohomology. This is part of a forthcoming book,
the current version of which is in my web page at Caltech. (It will
appear this year in the Math. Surveys and Monographs series of
the AMS.)
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Introduction

Study of measure preserving actions of a countable discrete
group Γ on a standard measure space (X, µ). Denote by
A(Γ, X, µ) the space of such actions. This can be also viewed
as the space of homomorphisms of Γ into the group of
automorphisms Aut(X, µ) of the measure space.

One part of this work is concerned with the global structure of
this space including, in particular, problems related to the
classification of measure preserving actions under various
notions of equivalence (unitary equivalence, conjugacy, orbit
equivalence, etc.). Another part deals with the study of the
cohomology of such actions and I will discuss this aspect in
this talk.
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Cocycles

Definition

Let a ∈ A(Γ, X, µ) be a given action and G another countable
group. A cocycle of a with values in G (or with target G) is a
Borel map α : Γ×X → G, so that writing a(γ, x) = γ · x, we have
the cocycle identity: α(γδ, x) = α(γ, δ · x)α(δ, x), µ-a.e.(x). We
denote by Z1(a,G) the set of cocycles.

Example

The trivial cocycle: α(γ, x) = 1.

Example

A “homomorphism”: α(γ, x) = ϕ(γ), where ϕ : Γ → G is a
homomorphism.
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Cocycles

Example

Cocycles induced by homomorphisms of equivalence relations.
Denote by Ea the equivalence relation induced by a and let
b ∈ A(G, Y, ν) be a free action of G with associated equivalence
relation Eb. Let f : X → Y be a homomorphism of Ea into Eb.
Then f gives rise to the cocycle αf given by αf (γ, x) = g, where
f(γ · x) = g · f(x).

This last example provides the link for applications of the theory of
cocycles to ergodic theory (orbit equivalence) and to descriptive
set theory (reducibility hierarchy of Borel equivalence relations). It
is crucial in proving rigidity results, which is one of the motivations
for studying the structure of cocycles.
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Cohomology

Definition

Two cocycles α, β ∈ Z1(a,G) are cohomologous or equivalent, in
symbols, α ∼ β, if there is a Borel map p : X → G such that

β(γ, x) = p(γ · x)α(γ, x)p(x)−1.

Example

If α = αf is induced by a homomorphism f of the equivalence
relation Ea into Eb and β ∼ α, then β = αg for another
homomorphism g, so that g(x)Ebf(x).
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Cohomology

Example

If α = αf is induced by a homomorphism and β ∼ α, then β = αg

for another homomorphism g, so that g(x)Ebf(x).

If for instance af is cohomologous to a “simple” kind of cocycle
(e.g., a homomorphism of the acting groups or a cocycle taking
values in a “small” subgroup of G), one can use this information
to rule out the existence of such a homomorphism of the
equivalence relations or establish connections between the groups
and the actions. Such “cocycle reduction” results are crucial in the
work of Zimmer, Furman, Popa, ..., in ergodic theory and
Adams-K, Thomas, Hjorth-K, ... in descriptive set theory.
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Cohomology

Definition

The quotient space H1(a,G) = Z1(a,G)/ ∼ is called the
(1st)-cohomology space of the action a (relative to G.)

Definition

A cocycle is a coboundary if it is cohomologous to the trivial
cocycle. The set of coboundaries is denoted by B1(a,G).

When G is abelian, Z1(a,G) is an abelian group, B1(a,G) a
subgroup and H1(a,G) = Z1(a,G)/B1(a,G) is the
(1st)-cohomology group. We will however be interested here in the
non-abelian case.
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Cohomology

The cohomology classes are the orbits of a canonical action.
Denote by L(X, µ, G) the group of G-valued random variables
(under pointwise multiplication). This acts on Z1(a,G) by

f · α(γ, x) = f(γ · x)α(γ, x)f(x)−1

and the orbits are the cohomology classes.

The group L(X, µ, G) is a Polish group under the topology of
convergence in measure. Similarly the space Z1(a,G) is a Polish
space under the topology of convergence in measure (for each fixed
element of Γ). The above action is then continuous, so
cohomology is an equivalence relation induced by a continuous
action of a Polish group on a Polish space. It can then be analyzed
by using methods from topological dynamics and descriptive set
theory.
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Smooth versus rough classification

Theorem (Hjorth)

The cohomology equivalence relation is Borel.

Proposition

The closures of the cohomology classes form a partition of the
space Z1(a,G).

We now divide Z1(a,G) into two disjoint sets, each invariant
under the above partition: SMOOTH(a,G) and ROUGH(a,G),
where SMOOTH(a,G) consists of all closed cohomology classes.

Theorem

SMOOTH(a,G), ROUGH(a,G) are Borel sets and the
cohomology relation is smooth on SMOOTH(a,G) and
non-smooth on ROUGH(a,G).
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Amenable group actions

For actions of amenable groups, there is an extensive literature
concerning the structure of their cocycles (Bezuglyi, Danilenko,
Fedorov, Golodets, Schmidt, Sinelshchikov, Zimmer). In particular
we have the following result that is essentially due to
Parthasarathy-Schmidt:

Theorem (Parthasarathy-Schmidt)

When Γ is amenable and the action a is ergodic, SMOOTH(a,G)
is empty and every cohomology class is dense and meager in
Z1(a,G)
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Amenable group actions

We also have a converse.

Proposition

If the action of Γ is free and ergodic, then the following are
equivalent:
i) Γ is amenable,
ii) For any G, every cohomology class in Z1(a,G) is dense.
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Strongly ergodic actions

Definition

An action a ∈ A(Γ, X, µ) is strongly ergodic if it does not admit
non-trivial almost invariant sets, i.e., there is no sequence of Borel
sets An, whose measures stay away from 0,1, such that
µ(γ ·An4An) → 0,∀γ ∈ Γ.

Example

If Γ is amenable, no action of Γ is strongly ergodic.

Example

(Schmidt, Connes-Weiss) Γ has Kazhdan’s property (T) iff every
ergodic action of Γ is strongly ergodic.

As it turns out the dichotomy strongly/non-strongly ergodic is
crucial for the behavior of the cohomology relation. This was first
pointed out by Schmidt in the case of abelian target groups G.
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The non-strongly ergodic case

Theorem

If the action a is ergodic but non-strongly ergodic, then B1(a,G)
is contained in the rough part of Z1(a,G), for every non-trivial G.
Moreover, the action of L(X, µ, G) on each cohomology class
closure contained in the rough part is turbulent and thus
cohomology cannot be classified by countable structures.

Remark: Special cases of this non-classification result for amenable
group actions were earlier proved by Hjorth.

Remark: As opposed to the case where the acting group is
amenable or where the target group is abelian, where (for such
actions) every cocycle is in the rough part, there are examples of
such actions with nonabelian target groups in which both the
rough and the smooth part are nonempty and in fact each contains
continuum many cohomology class closures.
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The non-strongly ergodic case

Definition

A group G is rough if for every ergodic but not strongly ergodic
action a every cocycle in Z1(a,G) is in the rough part.

Thus every abelian group is rough. What are the rough groups? I
do not know the complete answer but here is a partial result:

Theorem

Every weakly commutative group is rough and every rough group is
inner amenable. Moreover in the case G is not inner amenable,
every orbit equivalence cocycle of a free ergodic action is in the
smooth part.
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The non-strongly ergodic case

Popa has recently shown that Bernoulli actions of property (T) and
many other groups have the very strong property that every
cocycle to any countable group G is cohomologous to a
homomorphism. This has many applications in ergodic theory,
operator algebras as well as descriptive set theory. Popa calls this
property cocycle superrigidity. (It implies, for example, that, in
many situations, the equivalence relation induced by the Bernoulli
action completely determines the group and the action.)
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The non-strongly ergodic case

Definition

An action a is G-superrigid if every cocycle into G is
cohomologous to a homomorphism.

Corollary

If the action a is weakly mixing but non-strongly ergodic, then
within each cohomology class closure contained in the rough part,
the generic cocycle is not cohomologous to a homomorphism, i.e.,
in a sense, a is “generically not G-superrigid”, for any G.
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The non-strongly ergodic case

There are also implications concerning global properties of actions
of groups. Recall that every ergodic action of a property (T) group
is G-cocycle superrigid for certain G, for example, torsion-free
HAP groups. Also many non-property (T) groups have some
actions, e.g., Bernoulli actions, that are G-cocycle superrigid for
every G. However this happens, in some sense, very rarely.

Corollary

If Γ does not have property (T), then the generic action of Γ is not
G-cocycle superrigid for any non-trivial G, in fact it is even
“generically not G-superrigid”.
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The non-strongly ergodic case

Next we have the following connectedness result.

Theorem

If the action a is non-strongly ergodic, then each cohomology class
closure is path connected.

So, for example, for any action a of an amenable group Z1(a,G) is
path connected. I do not know if Z1(a,G) is path connected for
any non-strongly ergodic a. Also I do not know if the rough part of
any such a is path connected. This will not be the case, for
example, if there are actions which have only countably many orbit
closures in the rough part.
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The strongly ergodic case

We have seen that for non-strongly ergodic actions the
cohomology relation is quite complicated. One might expect that
the opposite happens for strongly ergodic actions. This is indeed
the case but with an interesting twist: It depends on the structure
of the target group, so we have an additional dichotomy here.

Definition

A group G satisfies the minimal condition on centralizers if there is
no strict infinite descending sequence C0 > C1 > . . . of
centralizers (under inclusion).

This class of groups is quite extensive. It includes the abelian
groups and the linear groups and is closed under subgroups, finite
products and finite extensions. In particular, it contains the free
groups.
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The strongly ergodic case

Theorem

Let G satisfy the minimal condition on centralizers. Then for any
ergodic action a, the following are equivalent:
i) The action a is strongly ergodic.
ii)The cohomology equivalence relation is smooth, i.e.,
SMOOTH(a,G) = Z1(a,G).

Thus strong ergodicity implies that the cohomology relation is
simple, if the target group satisfies the minimal condition on
centralizers. In particular, it is somewhat surprising that cocycles
taking values in free groups can in principle be classified up to
cohomology, if the action is strongly ergodic.
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centralizers. In particular, it is somewhat surprising that cocycles
taking values in free groups can in principle be classified up to
cohomology, if the action is strongly ergodic.
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The strongly ergodic case

The role of the minimal condition on centralizers is not accidental,
as the following result indicates.

Theorem

Let a be a strongly ergodic, weakly mixing action of the free group
F∞. Then for any group G the following are equivalent:
i) The cohomology relation in Z1(a,G) is smooth, i.e.,
SMOOTH(a,G) = Z1(a,G).
ii) G satisfies the minimal condition on centralizers.

To summarize: Cohomology is complicated for non-strongly
ergodic actions. For strongly ergodic actions, it is simple if the
target group satisfies the minimal condition on centralizers but
may be complicated if this condition fails.
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The property (T) case

When the acting group has property (T), the structure of cocycles
is very simple in view of the following result.

Theorem (Popa)

If Γ has property (T), then for any ergodic action a of Γ, every
cohomology class in Z1(a,G), for any G, is clopen, thus there are
only countably many cohomology classes.

Remark: The property (T) groups are the only groups for which
there are countably many cohomology classes.
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Another application

Let a ∈ A(Γ, X, µ) be a given action. The full group of Ea, [Ea],
is the group of all T ∈ Aut(X, µ) with T (x)Eax, a.e. The
normalizer of Ea, N [Ea], is the group of automorphisms of Ea,
i.e., the group of all T ∈ Aut(X, µ) with xEay ⇔ T (x)EaT (y),
a.e. The quotient group Out(Ea) = N [Ea]/[Ea] is called the outer
automorphism group of Ea. Jones-Schmidt considered the problem
of understanding the dynamical properties of the action that would
guarantee that the outer automorphism is Polish (under a natural
quotient topology). It is natural to consider here the role of strong
ergodicity. However they have shown that, in general, strong
ergodicity does not imply that the outer automorphism group is
Polish. In their counterexample the acting group Γ does not satisfy
the minimal condition on centralizers. We in fact have the
following positive answer to this question.
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Another application

Theorem

Assume that the group Γ satisfies the minimal condition on
centralizers and is ICC. Then for any free, strongly ergodic action
of Γ, the outer automorphism group is Polish.
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