SOME PROBLEMS ON OE and vNE of GROUP ACTIONS

Sorin Popa

UCLA, March 2007

The von Neumann algebra $L^{\infty}(X) \rtimes \Gamma$ (the Group Measure Space Construction) of a group action $\Gamma \curvearrowright (X, \mu)$

- $\mathcal{H} = \bigoplus_g L^2(X) u_g$ Hilbert space
- $\mathcal{H} \ni \Sigma_h \xi_h u_h$ "Fourier-like" series
- $L^2(X) \ni \xi_h$ "coefficients"
- $u_h, h \in \Gamma$, copy of Γ
- Multiplication: $(x_g u_g)(\xi_h u_h) = x_g g(\xi_h) u_{gh}$

$$L^{\infty}(X) \rtimes \Gamma \stackrel{\mathsf{def}}{=} \{ x \in \mathcal{H} \mid x\xi \in \mathcal{H}, \forall \xi \in \mathcal{H} \}$$

Case $\Gamma \curvearrowright \{\cdot\}$ gives the **Group vN algebra** $\mathcal{L}(\Gamma) \stackrel{\text{def}}{=} \mathbb{C} \rtimes \Gamma$

As algebras of left mult. operators on \mathcal{H} , they are *von Neumann algebras*, i.e. closed in topology given by seminorms $|\langle \cdot \xi, \eta \rangle|$ on $\mathcal{B}(\mathcal{H})$.

L[∞](X) as subalgebra of M = L[∞](X) × Γ by
a → au_e = a1
∫ du extends to positive linear functional σ

• $\int \cdot d\mu$ extends to positive linear functional τ on M by $\tau(\sum_g x_g u_g) = \int x_e d\mu$. Satisfies $\tau(xy) = \tau(yx)$, $\forall x, y$, i.e. τ trace on M. [Obs $\tau(y^*x) = \langle x, y \rangle_{\mathcal{H}}$]

• $\Gamma \curvearrowright (X,\mu)$ free ergodic, $|\Gamma| = \infty$, then MII₁ factor, i.e. $\mathcal{Z}(M) = \mathbb{C}$, M has unique trace, $\tau(\mathcal{P}(M)) = [0,1]$ (*"continuous dimension"*), with $L^{\infty}(X) \subset M$ maximal abelian, called *Car*tan subalgebra

• $\mathcal{L}(\Gamma)$ is II₁ factor iff Γ *infinite conjugacy class* (*ICC*). E.g.: $\Gamma = S_{\infty}, \mathbb{F}_n, PSL(n, \mathbb{Z}), n \geq 2$. • Continuous dimension allows *t*-amplification of II₁ factor M, $\forall t > 0$, by $M^t = pM_{n \times n}(M)p$, $n \ge t$, $p \in \mathcal{P}(M_{n \times n}(M))$, $\tau(p) = t/n$. Notice: $(M^t)^s = M^{ts}$.

• Fundamental group of M: $\mathcal{F}(M) \stackrel{\text{def}}{=} \{t > 0 \mid M^t \simeq M\}.$ Conjugacy of $\Gamma \curvearrowright X$, $\Lambda \curvearrowright Y$ means $\Delta : (X, \mu) \simeq (Y, \nu)$ and $\delta : \Gamma \simeq \Lambda$ with $\Delta(gt) = \delta(g)\Delta(t)$, $\forall g \in \Gamma, t \in X$.

Note: Conjugacy implements isomorphism $L^{\infty}(X) \rtimes \Gamma \simeq L^{\infty}Y \rtimes \Lambda$ by $\Sigma a_g u_g \mapsto \Sigma \Delta(a_g) v_{\delta(g)}$

Singer '55: $L^{\infty}(X) \rtimes \Gamma$ can only "remember" the equivalence relation given by orbits of $\Gamma \curvearrowright X$: $\mathcal{R}_{\Gamma} \stackrel{\text{def}}{=} \{(t, gt) \mid t \in X, g \in \Gamma\}$

Feldman-Moore '77: An iso $\Delta : (X, \mu) \simeq (Y, \nu)$ extends to $L^{\infty}(X) \rtimes \Gamma \simeq L^{\infty}(Y) \rtimes \Lambda$ iff Δ is an orbit equivalence (OE), i.e. $\Delta(\mathcal{R}_{\Gamma}) = \mathcal{R}_{\Lambda}$, or $\Delta(\Gamma t) = \Lambda \Delta(t)$, $\forall t$.

Construction of von Neumann algebra $\mathcal{L}(\mathcal{R}_{\Gamma})$ of *equivalence relation* \mathcal{R}_{Γ} associated with an action $\Gamma \curvearrowright X$. It is II₁ factor if $\Gamma \curvearrowright X$ ergodic. $L^{\infty}(X) \subset \mathcal{L}(\mathcal{R}_{\Gamma})$ is maximal abelian. $\mathcal{L}(\mathcal{R}_{\Gamma})$, $L^{\infty}(X) \rtimes \Gamma$ coincide when action is free.

Obs: Conjugacy $\Rightarrow OE \Rightarrow iso of vN algebras$ (or vNE) A deformation of II₁ factor $M = L^{\infty}(X) \rtimes \Gamma$, $\mathcal{L}(\Gamma)$ is a sequence of *completely positive definite* (c.p.) maps $\phi_n : M \to M$ which are unital, trace preserving and satisfy $\lim_n \|\phi_n(x) - x\|_2 =$ $0, \forall x \in M$.

Examples of c.p. maps:

• Automorphisms of M;

• Maps of the form $\phi(\sum_g a_g u_g) = \sum_g \varphi(g) a_g u_g$, where $\varphi : \Gamma \to \mathbb{C}$ is positive definite.

• Problems on relative property (T)

A subalgebra $B \subset M$ has relative property (T) if any deformation ϕ_n of M is uniform on B: $\lim_n(\sup\{\|\phi_n(b) - b\|_2 \mid b \in (B)_1\}) = 0.$

An action $\Gamma \curvearrowright (X,\mu)$ (resp. its eq. rel. \mathcal{R}_{Γ}) has relative property (T) if $L^{\infty}(X) \subset \mathcal{L}(\mathcal{R}_{\Gamma})$ has relative property (T).

Obs: If H discrete abelian group and $\Gamma \curvearrowright H$ then $H \subset H \rtimes \Gamma$ has rel. prop. (T) iff $\Gamma \curvearrowright \hat{H}$ has rel. prop. (T);

Examples $SL(n,\mathbb{Z}) \curvearrowright \mathbb{Z}^n$, $n \ge 2$ (Kazhdan); $\Gamma \curvearrowright \mathbb{Z}^2$ for $\Gamma \subset SL(2,\mathbb{Z})$ non-amenable (Burger); Shalom, Fernos, Valette.

Problem 1 Give a "non-vN Alagebra" def. of relative property (T) for actions.

Problem 2 What are the groups Γ for which $\exists \Gamma \curvearrowright (X, \mu)$ free ergodic with rel. prop. (T)

• Related Questions:

Fact ([P01]) If $\Gamma \curvearrowright X$ ergodic has rel prop (T) then $Out(\mathcal{R}_{\Gamma})$, $\mathcal{F}(\mathcal{R}_{\Gamma})$ are countable and \mathcal{R}_{Γ} has only countably many quotients (...).

Problem 3 Calculate $Out(\mathcal{R}_{\Gamma \curvearrowright \mathbb{Z}^2})$ for $\Gamma = SL(2,\mathbb{Z})$ and $\Gamma = \mathbb{F}_n \subset SL(2,\mathbb{Z})$.

Problem 4 Show $\exists \mathbb{F}_n \curvearrowright X$ free ergodic with $Out(\mathcal{R}_{\mathbb{F}_n}) = 1$.

Problem 5 $\exists \mathbb{F}_{\infty} \curvearrowright X$ free ergodic with $\mathcal{F}(\mathcal{R}_{\mathbb{F}_{\infty}}) =$ 1, resp. $\mathcal{F}(\mathcal{R}_{\mathbb{F}_{\infty}}) = \mathbb{R}^{*}_{+}$? (By Gaboriau, $\mathcal{F}(\mathcal{R}_{\mathbb{F}_{n}}) =$ 1 for any free ergodic action of \mathbb{F}_{n} , $n < \infty$).

Problem 6 Construct $\Gamma \curvearrowright X$ with \mathcal{R}_{Γ} having no (finite index) quotients $\theta : X \to Y$ with θ iso (1 to 1) on each orbit of \mathcal{R}_{Γ} (Vaes).

Problem 7 Show that any $\mathcal{F}(\mathcal{R}_{\Gamma})$ (resp. $\mathcal{F}(\mathcal{L}(\mathcal{R}_{\Gamma}))$) is either countable or \mathbb{R}^*_+ .

• Some OE "superrigidity" problems

Fact ([P05, P06]) If Γ ICC Kazhdan then Bernoulli actions $\Gamma \curvearrowright (X_0, \mu_0)^{\Gamma}$ are \mathcal{U}_{fin} -Cocycle Superrigid, in particular OE Superrigid, i.e. any OE with another free action $\Lambda \curvearrowright Y$ comes from a conjugacy. Also true for *sub-malleable mixing actions* (e.g. Gaussians and their quotients) $\Gamma \curvearrowright X$ with:

- Γ having infinite w-normal subgroup with rel prop (T)

- Γ having a non-amenable subgroup with infinite centralizer.

Problem 1 Find the class CS (resp. OES) of groups Γ such that any Bernoulli Γ -action is U_{fin} -Cocycle (resp OE) Superrigid.

Problem 2 Find larger classes \mathcal{U} of "target" groups with the property that any Bernoulli action of a Kazhdan (or other) group is \mathcal{U} -Cocycle Superrigid.

Problem 3 Calculate $H^2(\mathcal{R}_{\Gamma})$ for some actions $\Gamma \curvearrowright X$, more generally $H^n(\mathcal{R}_{\Gamma})$ (no such calculations exist for $n \ge 2!$).

Problem 4 Is it true that $\forall \Gamma, \Lambda$ non-amenable, any OE of Bernoulli actions $\Gamma \curvearrowright X$, $\Lambda \curvearrowright Y$ comes from a conjugacy ? For free groups ?

Problem 5 Let Γ be an ICC Kazhdan group (or other "special" non-amenable). Is any automorphism of the probability space $(X, \mu) =$ $(X_0, \mu_0)^{\Gamma}$ that commutes with the Bernoulli action $\Gamma \curvearrowright X$ the product of a diagonal automorphism and a "right" Bernoulli shift by an element of the group?

Some vNE "superrigidity" problems

Fact ([P05, P06]) If Γ, Λ ICC groups, with Γ either Kazhdan, or having w-normal subgroup with rel prop (T), or having a non-amenable subgroup with infinite centralizer, and $\Gamma \curvearrowright X$ is free mixing while $\Lambda \curvearrowright Y$ is Bernoulli, then any isomorphism $\theta : L^{\infty}(X) \rtimes \Gamma \simeq L^{\infty}(Y) \rtimes \Lambda$ comes from a conjugacy (Strong vNE Rigidity).

Problem 1 Find classes of group actions $\Gamma \curvearrowright X$ that are vNE Superrigid, i.e. given any other free ergodic action $\Lambda \curvearrowright Y$, any isomorphism $\theta : L^{\infty}(X) \rtimes \Gamma \simeq L^{\infty}(Y) \rtimes \Lambda$ comes from a conjugacy.

Problem 2 Find classes of factors $L^{\infty}(X) \rtimes \Gamma$ with unique Cartan subalgebras (...).

Obs If in the results in ([P05,06]) one could prove that any two Cartan subalgebras of $L^{\infty}(X) \rtimes$ Γ are conjugate, for Γ Kazhdan (or other class of groups) and $\Gamma \curvearrowright X$ Bernoulli, then $\Gamma \curvearrowright X$ follows vNE Superrigid.

Problem 3 Show that if $L^{\infty}(X) \rtimes \Gamma \simeq L^{\infty}(Y) \rtimes \Lambda$ with Γ Kazhdan and $\Gamma \curvearrowright X$ Bernoulli, then Λ follows Kazhdan. (OBS: If so, then Bernoulli actions of Kazhdan groups follow vNE Superrigid).

Problem 4 Show that the factor M associated with $PSL(n, \mathbb{Z}) \curvearrowright \mathbb{Z}^n$ has unique Cartan. (Obs: By Furman, the action would then follow vNE Superrigid).

• Connes' Rigidity Conjecture '80: If Γ, Λ ICC groups with property $(\top), \mathcal{L}(\Gamma) \simeq \mathcal{L}(\Lambda) \Rightarrow$ $\Gamma \simeq \Lambda$? At least for $PSL(n, \mathbb{Z}), n \geq 3$? Even: If $\theta : L(\Gamma) \simeq \mathcal{L}(\Lambda)$ then $\exists \delta : \Gamma \to \Lambda$ and $\gamma \in$ $Hom(\Gamma, \mathbb{T})$ such that $\theta(\Sigma_g c_g u_g) = \Sigma_g \gamma(g) c_g u_{\delta(g)}$?

• The Free Group Factor Problem:

If $2 \le n, m \le \infty$, does $\mathcal{L}(\mathbb{F}_n) \simeq \mathcal{L}(\mathbb{F}_m)$ imply n = m? Sufficient to prove: $\mathcal{L}(\mathbb{F}_\infty) \neq \mathcal{L}(\mathbb{F}_n)$ for some n (cf. Voiculescu, Radulescu, Dykema). Related to this:

• Finite Generation Problem Can $\mathcal{L}(\mathbb{F}_{\infty})$ be finitely generated as vN Alg ? Do there exist $\mathcal{L}(\Gamma)$ which cannot be finitely generated as vN alg ? (Obs: Any factor $\mathcal{L}(\mathcal{R}_{\Gamma})$ can be generated by two unitaries)