Popa's rigidity theorems and I_{1} factors without non-trivial finite index subfactors

Stefaan Vaes

 LEUVEN

March 19, 2007

Talk in two parts

1 Sorin Popa's cocycle superrigidity theorems.
\leadsto Sketch of proof.

Talk in two parts

1 Sorin Popa's cocycle superrigidity theorems.
\leadsto Sketch of proof.
\leadsto Needing von Neumann algebras.

Talk in two parts

1 Sorin Popa's cocycle superrigidity theorems.
\leadsto Sketch of proof.
\leadsto Needing von Neumann algebras.

2 Application: bimodules of certain II_{1} factors.
\leadsto Kind of representation theory.

Group actions and 1-cocycles

Let $\Gamma \curvearrowright(X, \mu)$ be a probability measure preserving action.
Standing assumptions : essentially free and ergodic.

Definition

A 1 -cocycle for $\Gamma \curvearrowright X$ with values in a Polish group \mathcal{V}, is a measurable map

$$
\omega: X \times \Gamma \rightarrow \mathcal{V}
$$

satisfying $\omega(x, g h)=\omega(x, g) \omega(x \cdot g, h)$

Group actions and 1-cocycles

Let $\Gamma \curvearrowright(X, \mu)$ be a probability measure preserving action.
Standing assumptions : essentially free and ergodic.

Definition

A 1 -cocycle for $\Gamma \curvearrowright X$ with values in a Polish group \mathcal{V}, is a measurable map

$$
\omega: X \times \Gamma \rightarrow \mathcal{V}
$$

satisfying $\omega(x, g h)=\omega(x, g) \omega(x \cdot g, h)$

- $\omega_{1} \sim \omega_{2}$ if $\exists \varphi$ with $\omega_{1}(x, g)=\varphi(x) \omega_{2}(x, g) \varphi(x \cdot g)^{-1}$
- Homomorphisms $\Gamma \rightarrow \mathcal{V}$: 1-cocycles not depending on $x \in X$.
- (Zimmer) Orbit equivalence ~ 1-cocycle.

Group actions and 1-cocycles

Let $\Gamma \curvearrowright(X, \mu)$ be a probability measure preserving action.
Standing assumptions : essentially free and ergodic.

Definition

A 1 -cocycle for $\Gamma \curvearrowright X$ with values in a Polish group \mathcal{V}, is a measurable map

$$
\omega: X \times \Gamma \rightarrow \mathcal{V}
$$

satisfying $\omega(x, g h)=\omega(x, g) \omega(x \cdot g, h)$

Let \mathcal{U} be a class of Polish groups.

Definition

$\Gamma \curvearrowright(X, \mu)$ is U-cocycle superrigid if every 1 -cocycle for $\Gamma \curvearrowright X$ with values in a group $\mathcal{V} \in \mathcal{U}$, is cohomologous to a homomorphism.

Statement of Popa's cocycle superrigidity

Generalized Bernoulli action : let $\Gamma \curvearrowright I$ with I a countable set and set

$$
\Gamma \curvearrowright(X, \mu):=\prod_{l}\left(X_{0}, \mu_{0}\right)
$$

\mathcal{U} : class containing all compact and all discrete groups.

Statement of Popa's cocycle superrigidity

Generalized Bernoulli action : let $\Gamma \curvearrowright I$ with I a countable set and set

$$
\Gamma \curvearrowright(X, \mu):=\prod_{I}\left(X_{0}, \mu_{0}\right)
$$

\mathcal{U} : class containing all compact and all discrete groups.

Theorem (Popa, 2005-2006)

Let $\Gamma \curvearrowright(X, \mu)$ be a generalized Bernoulli action and $H \triangleleft \Gamma$ a normal subgroup with $H \cdot i$ infinite for all $i \in I$.

In both of the following cases, $\Gamma \curvearrowright X$ is \mathcal{U}-cocycle superrigid.
$1 H \subset \Gamma$ has the relative property (T).

Statement of Popa's cocycle superrigidity

Generalized Bernoulli action : let $\Gamma \curvearrowright I$ with I a countable set and set

$$
\Gamma \curvearrowright(X, \mu):=\prod_{l}\left(X_{0}, \mu_{0}\right) .
$$

\mathcal{U} : class containing all compact and all discrete groups.

Theorem (Popa, 2005-2006)

Let $\Gamma \curvearrowright(X, \mu)$ be a generalized Bernoulli action and $H \triangleleft \Gamma$ a normal subgroup with $H \cdot i$ infinite for all $i \in I$.

In both of the following cases, $\Gamma \curvearrowright X$ is \mathcal{U}-cocycle superrigid.
$1 H \subset \Gamma$ has the relative property (T).
2 There exists a non-amenable $H^{\prime}<\Gamma$, centralizing H and with $H^{\prime} \curvearrowright I$ having amenable stabilizers.

Statement of Popa's cocycle superrigidity

Generalized Bernoulli action : let $\Gamma \curvearrowright I$ with I a countable set and set

$$
\Gamma \curvearrowright(X, \mu):=\prod_{I}\left(X_{0}, \mu_{0}\right) .
$$

\mathcal{U} : class containing all compact and all discrete groups.

Theorem (Popa, 2005-2006)

Let $\Gamma \curvearrowright(X, \mu)$ be a generalized Bernoulli action and $H \triangleleft \Gamma$ a normal subgroup with $H \cdot i$ infinite for all $i \in I$.

In both of the following cases, $\Gamma \curvearrowright X$ is \mathcal{U}-cocycle superrigid.
$1 H \subset \Gamma$ has the relative property (T).
2 There exists a non-amenable $H^{\prime}<\Gamma$, centralizing H and with $H^{\prime} \curvearrowright L^{2}(X)$ having stable spectral gap.

Background : von Neumann algebras

Definition

A von Neumann algebra is a weakly closed unital *-subalgebra of $\mathrm{B}(H)$.

Background : von Neumann algebras

Examples of von Neumann algebras

- $B(H)$ itself.
- $L^{\infty}(X, \mu) \quad$ (as acting on $\left.L^{2}(X, \mu)\right)$.
- The group von Neumann algebra $\mathcal{L}(\Gamma)$ generated by unitaries λ_{g} on $\ell^{2}(\Gamma): \lambda_{g} \delta_{h}=\delta_{g h}$.

Background : von Neumann algebras

Examples of von Neumann algebras

- $B(H)$ itself.
- $L^{\infty}(X, \mu) \quad$ (as acting on $\left.L^{2}(X, \mu)\right)$.
- The group von Neumann algebra $\mathcal{L}(\Gamma)$ generated by unitaries λ_{g} on $\ell^{2}(\Gamma): \lambda_{g} \delta_{h}=\delta_{g h}$.

Finite von Neumann algebras: admitting tracial state $\boldsymbol{\tau}$.
Finite von Neumann alg. $(M, \tau) \stackrel{\text { GNS }}{\sim}$ Hilbert space $L^{2}(M, \tau)$ which is an M - M-bimodule.

Example

- $\ell^{2}(\Gamma)$ is an $\mathcal{L}(\Gamma)-\mathcal{L}(\Gamma)$-bimodule : $\lambda_{g} \delta_{h} \lambda_{k}=\delta_{g h k}$.
- $\mathcal{L}(\Gamma) \leftrightarrow \ell^{2}(\Gamma)$ densely : $x \mapsto x \delta_{e}$.

Special case of Popa's theorem : sketch of proof

Theorem

Let Γ be a property (T) group and $\Gamma \curvearrowright I$ with infinite orbits.
Take $\Gamma \curvearrowright(X, \mu):=\prod_{l}[0,1]$.
Every 1-cocycle $\omega: X \times \Gamma \rightarrow \Lambda$ with values in the countable group Λ is cohomologous to a homomorphism.

Special case of Popa's theorem : sketch of proof

Theorem

Let Γ be a property (T) group and $\Gamma \curvearrowright I$ with infinite orbits.
Take $\Gamma \curvearrowright(X, \mu):=\prod_{I}[0,1]$.
Every 1-cocycle $\omega: X \times \Gamma \rightarrow \Lambda$ with values in the countable group Λ is cohomologous to a homomorphism.

First ingredient : property (T).
Second ingredient : Popa's malleability.

Special case of Popa's theorem : sketch of proof

Theorem

Let Γ be a property (T) group and $\Gamma \curvearrowright /$ with infinite orbits.
Take $\Gamma \curvearrowright(X, \mu):=\prod_{l}[0,1]$.
Every 1-cocycle $\omega: X \times \Gamma \rightarrow \Lambda$ with values in the countable group Λ is cohomologous to a homomorphism.

First ingredient : property (T).
Second ingredient : Popa's malleability.
\leadsto There exist a flow $\left(\alpha_{t}\right)_{t \in \mathbb{R}}$ and an involutive β on $X \times X$:

- α_{t} and β commute with the diagonal Γ-action,
- $\alpha_{1}(x, y)=(y, \ldots)$
- $\beta \alpha_{t} \beta=\alpha_{-t}$ and $\beta(x, y)=(x, \ldots)$

Special case of Popa's theorem : sketch of proof

Theorem

Let Γ be a property (T) group and $\Gamma \curvearrowright /$ with infinite orbits.
Take $\Gamma \curvearrowright(X, \mu):=\prod_{l}[0,1]$.
Every 1-cocycle $\omega: X \times \Gamma \rightarrow \Lambda$ with values in the countable group Λ is cohomologous to a homomorphism.

First ingredient : property (T).
Second ingredient : Popa's malleability.
\leadsto There exist a flow $\left(\alpha_{t}\right)_{t \in \mathbb{R}}$ and an involutive β on $X \times X$:

- α_{t} and β commute with the diagonal Γ-action,
- $\alpha_{1}(x, y)=(y, \ldots)$
- $\beta \alpha_{t} \beta=\alpha_{-t}$ and $\beta(x, y)=(x, \ldots)$

Also : $\Gamma \curvearrowright(X, \mu)$ is weakly mixing.

Sketch of the proof

Take $\omega: X \times \Gamma \rightarrow \Lambda$ and define

$$
\begin{aligned}
& \omega_{0}: X \times X \times \Gamma \rightarrow \Lambda: \omega_{0}(x, y, g)=\omega(x, g) \\
& \omega_{t}: X \times X \times \Gamma \rightarrow \Lambda: \omega_{t}(x, y, g)=\omega_{0}\left(\alpha_{t}(x, y), g\right) .
\end{aligned}
$$

Sketch of the proof

Take $\omega: X \times \Gamma \rightarrow \Lambda$ and define

$$
\begin{aligned}
& \omega_{0}: X \times X \times \Gamma \rightarrow \Lambda: \omega_{0}(x, y, g)=\omega(x, g) \\
& \omega_{t}: X \times X \times \Gamma \rightarrow \Lambda: \omega_{t}(x, y, g)=\omega_{0}\left(\alpha_{t}(x, y), g\right) .
\end{aligned}
$$

\leadsto New actions: $\Gamma \curvearrowright X \times X \times \Lambda$:
$(x, y, s) \cdot g=\left(x \cdot g, y \cdot g, \omega_{t}(x, y, g)^{-1} s \omega_{0}(x, y, g)\right)$
\leadsto Unitary representations : $\pi_{t}: \Gamma \rightarrow \mathcal{U}\left(L^{2}(X \times X \times \Lambda)\right)$.

Sketch of the proof

Take $\omega: X \times \Gamma \rightarrow \Lambda$ and define

$$
\begin{aligned}
& \omega_{0}: X \times X \times \Gamma \rightarrow \Lambda: \omega_{0}(x, y, g)=\omega(x, g) \\
& \omega_{t}: X \times X \times \Gamma \rightarrow \Lambda: \omega_{t}(x, y, g)=\omega_{0}\left(\alpha_{t}(x, y), g\right) .
\end{aligned}
$$

\leadsto New actions: $\Gamma \curvearrowright X \times X \times \Lambda$:

$$
(x, y, s) \cdot g=\left(x \cdot g, y \cdot g, \omega_{t}(x, y, g)^{-1} s \omega_{0}(x, y, g)\right)
$$

\leadsto Unitary representations : $\pi_{t}: \Gamma \rightarrow \mathcal{U}\left(L^{2}(X \times X \times \Lambda)\right)$.
Property (T) yields $t=1 / n$ and $\varphi \in L^{2}\left(X \times X, \ell^{2}(\Lambda)\right)$ with

$$
\omega_{1 / n}(x, y, g) \varphi(x \cdot g, y \cdot g)=\varphi(x, y) \omega_{0}(x, y, g) .
$$

Sketch of the proof

Take $\omega: X \times \Gamma \rightarrow \Lambda$ and define

$$
\begin{aligned}
& \omega_{0}: X \times X \times \Gamma \rightarrow \Lambda: \omega_{0}(x, y, g)=\omega(x, g) \\
& \omega_{t}: X \times X \times \Gamma \rightarrow \Lambda: \omega_{t}(x, y, g)=\omega_{0}\left(\alpha_{t}(x, y), g\right) .
\end{aligned}
$$

\leadsto New actions : $\Gamma \curvearrowright X \times X \times \Lambda$:

$$
(x, y, s) \cdot g=\left(x \cdot g, y \cdot g, \omega_{t}(x, y, g)^{-1} s \omega_{0}(x, y, g)\right)
$$

\leadsto Unitary representations : $\pi_{t}: \Gamma \rightarrow \mathcal{U}\left(L^{2}(X \times X \times \Lambda)\right)$.
Property (T) yields $t=1 / n$ and $\varphi \in L^{2}\left(X \times X, \ell^{2}(\Lambda)\right)$ with

$$
\omega_{1 / n}(x, y, g) \varphi(x \cdot g, y \cdot g)=\varphi(x, y) \omega_{0}(x, y, g) .
$$

\leadsto Polar decomposition of φ allows to assume $\varphi: X \times X \rightarrow$ partial isometries in $\mathcal{L}(\Lambda)$.
\leadsto Let's cheat and assume $\varphi: X \times X \rightarrow \mathcal{U}(\mathcal{L}(\Lambda))$.

Sketch of the proof

So, we started with $\omega: X \times \Gamma \rightarrow \Lambda$. We defined

$$
\begin{aligned}
& \omega_{0}: \omega_{0}(x, y, g)=\omega(x, g) \\
& \omega_{t}: \omega_{t}(x, y, g)=\omega_{0}\left(\alpha_{t}(x, y), g\right) .
\end{aligned}
$$

We have found that
$\omega_{1 / n} \sim \omega_{0}$ as 1 -cocycles for $\Gamma \curvearrowright X \times X$ with values in $\mathcal{U}(\mathcal{L}(\Lambda))$.

Sketch of the proof

So, we started with $\omega: X \times \Gamma \rightarrow \Lambda$. We defined

$$
\begin{aligned}
& \omega_{0}: \omega_{0}(x, y, g)=\omega(x, g) \\
& \omega_{t}: \omega_{t}(x, y, g)=\omega_{0}\left(\alpha_{t}(x, y), g\right)
\end{aligned}
$$

We have found that
$\omega_{1 / n} \sim \omega_{0}$ as 1 -cocycles for $\Gamma \curvearrowright X \times X$ with values in $\mathcal{U}(\mathcal{L}(\Lambda))$.

- Applying $\alpha_{1 / n}$, we obtain : $\omega_{2 / n} \sim \omega_{1 / n}, \ldots, \omega_{1} \sim \omega_{(n-1) / n}$.
- But then, $\omega_{1} \sim \omega_{0}$.

Sketch of the proof

Since $\omega_{1} \sim \omega_{0}$ and

$$
\omega_{1}(x, y, g)=\omega(y, g), \quad \omega_{0}(x, y, g)=\omega(x, g)
$$

there exists $\varphi: X \times X \rightarrow \mathcal{U}(\mathcal{L}(\Lambda))$ with

$$
\omega(y, g) \varphi(x \cdot g, y \cdot g)=\varphi(x, y) \omega(x, g)
$$

Sketch of the proof

Since $\omega_{1} \sim \omega_{0}$ and

$$
\omega_{1}(x, y, g)=\omega(y, g), \quad \omega_{0}(x, y, g)=\omega(x, g)
$$

there exists $\varphi: X \times X \rightarrow \mathcal{U}(\mathcal{L}(\Lambda))$ with

$$
\omega(y, g) \varphi(x \cdot g, y \cdot g)=\varphi(x, y) \omega(x, g)
$$

- Let $\varphi_{0}: X \rightarrow \mathcal{U}(\mathcal{L}(\Lambda))$ be an ess. value of $\varphi: X \rightarrow \mathcal{U}(X \rightarrow \mathcal{L}(\Lambda))$.

Sketch of the proof

Since $\omega_{1} \sim \omega_{0}$ and

$$
\omega_{1}(x, y, g)=\omega(y, g), \quad \omega_{0}(x, y, g)=\omega(x, g)
$$

there exists $\varphi: X \times X \rightarrow \mathcal{U}(\mathcal{L}(\Lambda))$ with

$$
\omega(y, g) \varphi(x \cdot g, y \cdot g)=\varphi(x, y) \omega(x, g)
$$

- Let $\varphi_{0}: X \rightarrow \mathcal{U}(\mathcal{L}(\Lambda))$ be an ess. value of $\varphi: X \rightarrow \mathcal{U}(X \rightarrow \mathcal{L}(\Lambda))$.
- Then, by weak mixing,

$$
\varphi(x)^{-1} \omega(x, g) \varphi(x \cdot g)=\pi(g) \text { for } \pi: \Gamma \rightarrow \mathcal{U}(\mathcal{L}(\Lambda)) .
$$

Sketch of the proof

Since $\omega_{1} \sim \omega_{0}$ and

$$
\omega_{1}(x, y, g)=\omega(y, g), \quad \omega_{0}(x, y, g)=\omega(x, g)
$$

there exists $\varphi: X \times X \rightarrow \mathcal{U}(\mathcal{L}(\Lambda))$ with

$$
\omega(y, g) \varphi(x \cdot g, y \cdot g)=\varphi(x, y) \omega(x, g)
$$

- Let $\varphi_{0}: X \rightarrow \mathcal{U}(\mathcal{L}(\Lambda))$ be an ess. value of $\varphi: X \rightarrow \mathcal{U}(X \rightarrow \mathcal{L}(\Lambda))$.
- Then, by weak mixing,

$$
\varphi(x)^{-1} \omega(x, g) \varphi(x \cdot g)=\pi(g) \text { for } \pi: \Gamma \rightarrow \mathcal{U}(\mathcal{L}(\Lambda)) .
$$

- We may assume that 1 is an essential value of φ. Again by weak mixing, $\varphi(x), \pi(g) \in \Lambda$!

End of the proof.

What did we really use

We have $\Gamma \curvearrowright(X, \mu)$ and $H \triangleleft \Gamma$ infinite normal subgroup with the relative property (T).

- Malleability of $\Gamma \curvearrowright(X, \mu)$.
- Weak mixing of $H \curvearrowright(X, \mu)$.
- All 1-cocycles
with values in a closed subgroup of the unitary group of (M, τ), are cohomologous to a homomorphism.

A first application of cocycle superrigidity

Take $\Gamma \curvearrowright(X, \mu)=\prod_{\Gamma / \Gamma_{0}}\left(X_{0}, \mu_{0}\right)$. Assume

- Commensurator of $\Gamma_{0} \subset \Gamma$ equals Γ_{0}.
- Γ has no finite normal subgroups.
- $H \triangleleft \Gamma$ has relative (T) with $H \Gamma_{0} / \Gamma_{0}$ infinite.

Corollary to Popa's cocycle superrigidity

The action $\Gamma \curvearrowright(X, \mu)$ is orbitally superrigid.
The orbit equivalence relation remembers $\Gamma_{0} \subset \Gamma$ and $\left(X_{0}, \mu_{0}\right)$.

What we are after

- Distinguish group actions up to orbit equivalence.
- Distinguish group actions up to von Neumann equivalence : $L^{\infty}(X) \rtimes \Gamma \cong L^{\infty}(Y) \rtimes \Lambda$.
- Even distinguish group actions 'up to commensurablity of their von Neumann algebras'.

What we are after

- Distinguish group actions up to orbit equivalence.
- Distinguish group actions up to von Neumann equivalence : $L^{\infty}(X) \rtimes \Gamma \cong L^{\infty}(Y) \rtimes \Lambda$.
- Even distinguish group actions 'up to commensurablity of their von Neumann algebras'.
$\leadsto \|_{1}$ factor : tracial $v N a l g(M, \tau)$ having trivial center.
\leadsto Distinguishing II_{1} factors is an extremely hard problem.
\leadsto Orbit equivalence $=$ von Neumann equivalence + control of Cartan.

Group measure space construction

Let $\Gamma \curvearrowright(X, \mu)$, probability measure preserving, free, ergodic.

The I_{1} factor $L^{\infty}(X) \rtimes \Gamma$

- contains a copy of $L^{\infty}(X)$,
- contains a copy of Γ as unitaries $\left(u_{g}\right)_{g \in \Gamma}$,

Group measure space construction

Let $\Gamma \curvearrowright(X, \mu)$, probability measure preserving, free, ergodic.

The II_{1} factor $L^{\infty}(X) \rtimes \Gamma$

- contains a copy of $L^{\infty}(X)$,
- contains a copy of Γ as unitaries $\left(u_{g}\right)_{g \in \Gamma}$,
in such a way that
- $u_{g} F(\cdot) u_{g}^{*}=F(\cdot g)$,
$\tau\left(F u_{g}\right)= \begin{cases}\int_{X} F d \mu & \text { if } g=e, \\ 0 & \text { if } g \neq e .\end{cases}$

Popa's von Neumann strong rigidity theorem

w-rigid group : admitting an infinite normal subgroup with the relative property (T).

Theorem (Popa, 2005)

Let Γ be w-rigid and ICC. Take $\Gamma \curvearrowright(X, \mu)$ free ergodic. Let Λ be ICC and $\Lambda \curvearrowright\left(X_{0}, \mu_{0}\right)^{\Lambda}$ plain Bernoulli action. If both actions are von Neumann equivalent, the groups are isomorphic and the actions conjugate.
\leadsto To get hold of the Cartan subalgebras, an extremely fine analysis is needed.

Good generalized Bernoulli actions

We study $\Gamma \curvearrowright I=\Gamma / \Gamma_{0}$ and $\Gamma \curvearrowright \prod_{I}\left(X_{0}, \mu_{0}\right)$ satisfying

- Commensurator of Γ_{0} in Γ equals Γ_{0}.
- $H<\Gamma$ almost normal, with the relative property (T) and the relative ICC property.
- No infinite sequence (i_{n}) in / with $\operatorname{Stab}\left(i_{1}, \ldots, i_{n}\right)$ strictly decreasing.
- For every $g \in \Gamma-\{e\}$, Fix $g \subset I$ has infinite index.

Good generalized Bernoulli actions

Some examples

- $\operatorname{PSL}(n, \mathbb{Z}) \curvearrowright P\left(\mathbb{Q}^{n}\right)$ and $\operatorname{PSL}(n, \mathbb{Q}) \curvearrowright P\left(\mathbb{Q}^{n}\right)$ for $n \geq 3$.
- $\left(\mathrm{SL}(n, \mathbb{Z}) \ltimes \mathbb{Z}^{n}\right) \curvearrowright \mathbb{Z}^{n}$ and $\left(\operatorname{SL}(n, \mathbb{Q}) \ltimes \mathbb{Q}^{n}\right) \curvearrowright \mathbb{Q}^{n}$ for $n \geq 2$.
- $(\Gamma \times \Gamma) \curvearrowright \Gamma$ for Γ an ICC group, with property (T), without infinite strictly decreasing sequence $C_{\Gamma}\left(g_{1}, \ldots, g_{n}\right)$ of centralizers.

Good generalized Bernoulli actions

Some examples

- $\operatorname{PSL}(n, \mathbb{Z}) \curvearrowright P\left(\mathbb{Q}^{n}\right)$ and $\operatorname{PSL}(n, \mathbb{Q}) \curvearrowright P\left(\mathbb{Q}^{n}\right)$ for $n \geq 3$.
- $\left(\mathrm{SL}(n, \mathbb{Z}) \ltimes \mathbb{Z}^{n}\right) \curvearrowright \mathbb{Z}^{n}$ and $\left(\operatorname{SL}(n, \mathbb{Q}) \ltimes \mathbb{Q}^{n}\right) \curvearrowright \mathbb{Q}^{n}$ for $n \geq 2$.
- $(\Gamma \times \Gamma) \curvearrowright \Gamma$ for Γ an ICC group, with property (T), without infinite strictly decreasing sequence $C_{\Gamma}\left(g_{1}, \ldots, g_{n}\right)$ of centralizers.

Write $\quad \mathrm{vN}\left(\Gamma_{0} \subset \Gamma, x_{0}, \mu_{0}\right)=L^{\infty}\left(\prod_{\Gamma / \Gamma_{0}}\left(X_{0}, \mu_{0}\right)\right) \rtimes \Gamma$.

Theorem (Popa-V, 2006 and V, 2007)

Under the good conditions, every isomorphism between

$$
\mathrm{vN}\left(\Gamma_{0} \subset \Gamma, X_{0}, \mu_{0}\right) \quad \text { and } \quad \mathrm{vN}\left(\Lambda_{0} \subset \Lambda, Y_{0}, \eta_{0}\right)^{t}
$$

yields $t=1, \quad\left(\Gamma_{0} \subset \Gamma\right) \cong\left(\Lambda_{0} \subset \Lambda\right)$ and $\left(X_{0}, \mu_{0}\right) \cong\left(Y_{0}, \eta_{0}\right)$.

Good generalized Bernoulli actions

Some examples

- $\operatorname{PSL}(n, \mathbb{Z}) \curvearrowright P\left(\mathbb{Q}^{n}\right)$ and $\operatorname{PSL}(n, \mathbb{Q}) \curvearrowright P\left(\mathbb{Q}^{n}\right)$ for $n \geq 3$.
- $\left(\mathrm{SL}(n, \mathbb{Z}) \ltimes \mathbb{Z}^{n}\right) \curvearrowright \mathbb{Z}^{n}$ and $\left(\operatorname{SL}(n, \mathbb{Q}) \ltimes \mathbb{Q}^{n}\right) \curvearrowright \mathbb{Q}^{n}$ for $n \geq 2$.
- $(\Gamma \times \Gamma) \curvearrowright \Gamma$ for Γ an ICC group, with property (T), without infinite strictly decreasing sequence $C_{\Gamma}\left(g_{1}, \ldots, g_{n}\right)$ of centralizers.

Write $\quad \mathrm{vN}\left(\Gamma_{0} \subset \Gamma, x_{0}, \mu_{0}\right)=L^{\infty}\left(\prod_{\Gamma / \Gamma_{0}}\left(x_{0}, \mu_{0}\right)\right) \rtimes \Gamma$.

Trivial Out

With $\operatorname{PSL}(n, \mathbb{Z}) \curvearrowright P\left(\mathbb{Q}^{n}\right)$, we get the simplest available concrete I_{1} factors with trivial Out (and trivial fundamental group).

Connes' correspondences

A representation theory of II_{1} factors

Let M be a type I_{1} factor with trace τ.

- A right M-module is a Hilbert space with a right action of M.
\sim Example : $L^{2}(M, \tau)_{M}$.
- Always, $H_{M} \cong \bigoplus_{i \in I} p_{i} L^{2}(M)$ and one defines $\operatorname{dim}\left(H_{M}\right)=\sum_{i} \tau\left(p_{i}\right) \in[0,+\infty]$.
\leadsto Complete invariant of right M-modules.

Definition

A bifinite M - M-bimodule, is an M - M-bimodule $M_{M} H_{M}$ satisfying

$$
\operatorname{dim}\left(H_{M}\right)<\infty \quad \text { and } \quad \operatorname{dim}\left({ }_{M} H\right)<\infty .
$$

The fusion algebra of bifinite bimodules

Notation : $\operatorname{FAlg}(M)$ is the set of all bifinite M - M-bimodules modulo isomorphism and called the fusion algebra of M.
\leadsto Both Out (M) and $\mathcal{F}(M)$ are encoded in $\operatorname{FAlg}(M)$.

The fusion algebra of bifinite bimodules

Notation : $\operatorname{FAlg}(M)$ is the set of all bifinite M - M-bimodules modulo isomorphism and called the fusion algebra of M.
\leadsto Both Out (M) and $\mathcal{F}(M)$ are encoded in FAlg (M).

The set $\mathrm{FAlg}(M)$ carries the following structure.

- Direct sum of elements in $\operatorname{FAlg}(M)$.
- Connes' tensor product $H \underset{M}{\otimes} K$ of bimodules $H, K \in \operatorname{FAlg}(M)$.
- Notion of irreducible elements.

The fusion algebra of bifinite bimodules

Notation : $\operatorname{FAlg}(M)$ is the set of all bifinite M - M-bimodules modulo isomorphism and called the fusion algebra of M.
\leadsto Both $\operatorname{Out}(M)$ and $\mathcal{F}(M)$ are encoded in $\operatorname{FAlg}(M)$.

The set $\mathrm{FAlg}(M)$ carries the following structure.

- Direct sum of elements in $\operatorname{FAlg}(M)$.
- Connes' tensor product $H \underset{M}{\otimes} K$ of bimodules $H, K \in \operatorname{FAlg}(M)$.
- Notion of irreducible elements.
$\leadsto \operatorname{FAlg}(M)$ is a group-like invariant of II_{1} factors.
\leadsto We present the first explicit computations of $\mathrm{FAlg}(M)$.

Again generalized Bernoulli actions

Take again $\mathrm{vN}\left(\Gamma_{0} \subset \Gamma, X_{0}, \mu_{0}\right)=L^{\infty}\left(\prod_{\Gamma / \Gamma_{0}}\left(X_{0}, \mu_{0}\right)\right) \rtimes \Gamma$.

Theorem (V, 2007)

Under the good conditions, every bifinite bimodule between

$$
\mathrm{vN}\left(\Gamma_{0} \subset \Gamma, X_{0}, \mu_{0}\right) \quad \text { and } \quad \mathrm{vN}\left(\Lambda_{0} \subset \Lambda, Y_{0}, \eta_{0}\right)
$$

is described through

- a commensurability of $\Gamma \curvearrowright \Gamma / \Gamma_{0}$ and $\Lambda \curvearrowright \Lambda / \Lambda_{0}$,
- a finite-dimensional unitary rep. of $\Gamma_{1}<\Gamma$.

Again generalized Bernoulli actions

Take again $\mathrm{vN}\left(\Gamma_{0} \subset \Gamma, X_{0}, \mu_{0}\right)=L^{\infty}\left(\prod_{\Gamma / \Gamma_{0}}\left(X_{0}, \mu_{0}\right)\right) \rtimes \Gamma$.

Theorem (V, 2007)

Under the good conditions, every bifinite bimodule between

$$
\mathrm{vN}\left(\Gamma_{0} \subset \Gamma, x_{0}, \mu_{0}\right) \quad \text { and } \quad \mathrm{vN}\left(\Lambda_{0} \subset \Lambda, Y_{0}, \eta_{0}\right)
$$

is described through

- a commensurability of $\Gamma \curvearrowright \Gamma / \Gamma_{0}$ and $\Lambda \curvearrowright \Lambda / \Lambda_{0}$,
- a finite-dimensional unitary rep. of $\Gamma_{1}<\Gamma$.
\leadsto General principle.
Conclusion holds whenever $\Gamma \curvearrowright(X, \mu)$ is cocycle superrigid and the bimodule 'preserves the Cartan subalgebra'.

Again generalized Bernoulli actions

Take again $\mathrm{vN}\left(\Gamma_{0} \subset \Gamma, X_{0}, \mu_{0}\right)=L^{\infty}\left(\prod_{\Gamma / \Gamma_{0}}\left(X_{0}, \mu_{0}\right)\right) \rtimes \Gamma$.

Theorem (V, 2007)

Under the good conditions, every bifinite bimodule between

$$
\mathrm{vN}\left(\Gamma_{0} \subset \Gamma, x_{0}, \mu_{0}\right) \text { and } \operatorname{vN}\left(\Lambda_{0} \subset \Lambda, Y_{0}, \eta_{0}\right)
$$

is described through

- a commensurability of $\Gamma \curvearrowright \Gamma / \Gamma_{0}$ and $\Lambda \curvearrowright \Lambda / \Lambda_{0}$,
- a finite-dimensional unitary rep. of $\Gamma_{1}<\Gamma$.

Example : trivial fusion algebra

With $\left(\operatorname{SL}(2, \mathbb{Q}) \ltimes \mathbb{Q}^{2}\right) \curvearrowright \mathbb{Q}^{2}$ (and a scalar 2-cocycle), we get the first concrete II_{1} factors without non-trivial bifinite bimodules.

