Coordinatewise decomposition and dichotomy results in descriptive set theory

Benjamin D. Miller

November $7^{\text {th }}, 2006$

Introduction

Basic definitions

Definition

A topological space X is a Polish space if it is separable and completely metrizable.

Introduction

Basic definitions

Definition

A topological space X is a Polish space if it is separable and completely metrizable.

Definition

A subset $B \subseteq X$ of a Polish space is Borel if it is in the σ-algebra generated by the open subsets of X.

Introduction

Basic definitions

Definition

A topological space X is a Polish space if it is separable and completely metrizable.

Definition

A subset $B \subseteq X$ of a Polish space is Borel if it is in the σ-algebra generated by the open subsets of X.

Definition

A function $f: X \rightarrow Y$ is Borel if

$$
\forall B \subseteq Y\left(B \text { is open } \Rightarrow f^{-1}(B) \text { is Borel }\right)
$$

Introduction

Basic definitions

Definition

Suppose that $S \subseteq X \times Y, G$ is a group, and $f: S \rightarrow G$ is a function. A coordinatewise decomposition of f is a pair (u, v), where $u: X \rightarrow G$ and $v: Y \rightarrow G$, such that

$$
\forall(x, y) \in S(f(x, y)=u(x) v(y))
$$

Introduction

Basic definitions

Definition

Suppose that $S \subseteq X \times Y, G$ is a group, and $f: S \rightarrow G$ is a function. A coordinatewise decomposition of f is a pair (u, v), where $u: X \rightarrow G$ and $v: Y \rightarrow G$, such that

$$
\forall(x, y) \in S(f(x, y)=u(x) v(y))
$$

Definition

A coordinatewise decomposition is Borel if both u and v are Borel.

Introduction

Basic definitions

Definition

Suppose that $S \subseteq X \times Y, G$ is a group, and $f: S \rightarrow G$ is a function. A coordinatewise decomposition of f is a pair (u, v), where $u: X \rightarrow G$ and $v: Y \rightarrow G$, such that

$$
\forall(x, y) \in S(f(x, y)=u(x) v(y))
$$

Definition

A coordinatewise decomposition is Borel if both u and v are Borel.

Remark

For the sake of simplicity, we will assume that $2 \leq|G| \leq \aleph_{0}$ and $\forall x \in X \forall y \in Y\left(1 \leq\left|S_{x}\right|,\left|S^{y}\right| \leq \aleph_{0}\right)$.

Coordinatewise decomposition Global decomposability

Question (Kłopotowski-Nadkarni-Sarbadhikari-Srivastava)

Suppose that X and Y are Polish spaces and $S \subseteq X \times Y$ is Borel. Under what circumstances does every Borel function from S into G admit a Borel coordinatewise decomposition?

Coordinatewise decomposition
 Global decomposability

Question (Kłopotowski-Nadkarni-Sarbadhikari-Srivastava)

Suppose that X and Y are Polish spaces and $S \subseteq X \times Y$ is Borel. Under what circumstances does every Borel function from S into G admit a Borel coordinatewise decomposition?

Remark

We consider first the purely combinatorial version of the question.

Coordinatewise decomposition

Global decomposability

Question (Kłopotowski-Nadkarni-Sarbadhikari-Srivastava)

Suppose that X and Y are Polish spaces and $S \subseteq X \times Y$ is Borel. Under what circumstances does every Borel function from S into G admit a Borel coordinatewise decomposition?

Remark

We consider first the purely combinatorial version of the question.

Remark

For notational convenience, assume that X and Y are disjoint.

Coordinatewise decomposition
 Global decomposability

Definition

We use \mathcal{G}_{S} to denote the graph on the set $Z=X \cup Y$ given by

$$
\mathcal{G}_{S}=S \cup S^{\perp}
$$

Coordinatewise decomposition Global decomposability

Definition

We use \mathcal{G}_{S} to denote the graph on the set $Z=X \cup Y$ given by

$$
\mathcal{G}_{S}=S \cup S^{\perp}
$$

Proposition

The following are equivalent:
1 Every $f: S \rightarrow G$ admits a coordinatewise decomposition;
2 The graph \mathcal{G}_{S} is acyclic.

Coordinatewise decomposition
 Global decomposability

Proof of $\neg(2) \Rightarrow \neg(1)$

Suppose that $\left\langle x_{0}, y_{0}, x_{1}, \ldots, x_{n}\right\rangle$ is a \mathcal{G}_{S}-cycle, and fix any function $f: S \rightarrow G$ with the property that

$$
\prod_{i<n} f\left(x_{i}, y_{i}\right) f\left(x_{i+1}, y_{i}\right)^{-1} \neq 1_{G}
$$

Coordinatewise decomposition Global decomposability

Proof of $\neg(2) \Rightarrow \neg(1)$

Suppose that $\left\langle x_{0}, y_{0}, x_{1}, \ldots, x_{n}\right\rangle$ is a \mathcal{G}_{S}-cycle, and fix any function $f: S \rightarrow G$ with the property that

$$
\prod_{i=n} f\left(x_{i}, y_{i}\right) f\left(x_{i+1}, y_{i}\right)^{-1} \neq 1_{G}
$$

If (u, v) is a coordinatewise decomposition of f, then

$$
\prod_{i<n} f\left(x_{i}, y_{i}\right) f\left(x_{i+1}, y_{i}\right)^{-1}=\prod_{i<n} u\left(x_{i}\right) v\left(y_{i}\right) v\left(y_{i}\right)^{-1} u\left(x_{i+1}\right)^{-1}
$$

which equals 1_{G}, contradicting our choice of f.

Coordinatewise decomposition Global decomposability

Proof of $(2) \Rightarrow(1)$

Fix a set $Z_{0} \subseteq X$ which intersects every connected component of \mathcal{G}_{S} in exactly one point, and let

$$
Z_{n+1}=\left\{z \in Z \backslash \bigcup_{m \leq n} Z_{m}: \exists z^{\prime} \in Z_{n}\left(\left(z, z^{\prime}\right) \in \mathcal{G}_{S}\right)\right\}
$$

Coordinatewise decomposition Global decomposability

Proof of $(2) \Rightarrow(1)$

Fix a set $Z_{0} \subseteq X$ which intersects every connected component of \mathcal{G}_{S} in exactly one point, and let

$$
Z_{n+1}=\left\{z \in Z \backslash \bigcup_{m \leq n} Z_{m}: \exists z^{\prime} \in Z_{n}\left(\left(z, z^{\prime}\right) \in \mathcal{G}_{S}\right)\right\}
$$

Suppose that $f: S \rightarrow G$, and define

$$
\left[u \mid Z_{0}\right](x)=1_{G} .
$$

Coordinatewise decomposition Global decomposability

Proof of $(2) \Rightarrow(1)$

Fix a set $Z_{0} \subseteq X$ which intersects every connected component of \mathcal{G}_{S} in exactly one point, and let

$$
Z_{n+1}=\left\{z \in Z \backslash \bigcup_{m \leq n} Z_{m}: \exists z^{\prime} \in Z_{n}\left(\left(z, z^{\prime}\right) \in \mathcal{G}_{S}\right)\right\}
$$

Suppose that $f: S \rightarrow G$, and define

$$
\left[u \mid Z_{0}\right](x)=1_{G} .
$$

Suppose now that we have defined $u \mid Z_{2 n}$, and set

$$
\left[v \mid Z_{2 n+1}\right](y)=u(x)^{-1} f(x, y)
$$

where $x \in Z_{2 n}$ and $(x, y) \in \mathcal{G}_{S}$. Define $u \mid Z_{2 n+2}$ similarly.

Coordinatewise decomposition
 Global decomposability

Definition

Let E_{S} denote the equivalence relation on Z induced by \mathcal{G}_{S}.

Coordinatewise decomposition
 Global decomposability

Definition

Let E_{S} denote the equivalence relation on Z induced by \mathcal{G}_{S}.

Definition

A transversal of E_{S} is a set $B \subseteq Z$ which intersects every equivalence class of E_{S} in exactly one point.

Coordinatewise decomposition
 Global decomposability

Definition

Let E_{S} denote the equivalence relation on Z induced by \mathcal{G}_{S}.

Definition

A transversal of E_{S} is a set $B \subseteq Z$ which intersects every equivalence class of E_{S} in exactly one point.

Theorem

The following are equivalent:
1 Every Borel function $f: S \rightarrow G$ admits a Borel coordinatewise decomposition;
$2 \mathcal{G}_{S}$ is acyclic and E_{S} admits a Borel transversal.

Coordinatewise decomposition
 Global decomposability

Remark

We have essentially already given the proof of $(2) \Rightarrow(1)$.

Coordinatewise decomposition
 Global decomposability

Remark

We have essentially already given the proof of $(2) \Rightarrow(1)$.

Definition

Let E_{0} denote the equivalence relation on $2^{\mathbb{N}}$ given by

$$
x E_{0} y \Leftrightarrow \exists n \in \mathbb{N} \forall m \geq n(x(m)=y(m))
$$

Coordinatewise decomposition

Global decomposability

Remark

We have essentially already given the proof of $(2) \Rightarrow(1)$.

Definition

Let E_{0} denote the equivalence relation on $2^{\mathbb{N}}$ given by

$$
x E_{0} y \Leftrightarrow \exists n \in \mathbb{N} \forall m \geq n(x(m)=y(m))
$$

Definition

Suppose that E_{1} and E_{2} are equivalence relations on X_{1} and X_{2}. An embedding of E_{1} into E_{2} is an injection $\pi: X_{1} \rightarrow X_{2}$ with

$$
\forall x, y \in X_{1}\left(x E_{1} y \Leftrightarrow \pi(x) E_{2} \pi(y)\right)
$$

Coordinatewise decomposition
 Global decomposability

Remark

By the Glimm-Effros dichotomy, we can assume that there is a Borel embedding $\pi: 2^{\mathbb{N}} \rightarrow Z$ of E_{0} into E_{S}.

Coordinatewise decomposition Global decomposability

Remark

By the Glimm-Effros dichotomy, we can assume that there is a Borel embedding $\pi: 2^{\mathbb{N}} \rightarrow Z$ of E_{0} into E_{S}.

Definition

Fix $g_{0} \in G$ with $g_{0} \neq 1_{G}$, and define $\rho_{0}: E_{0} \rightarrow G$ by setting $\rho_{0}(x, y)=g$ if and only if there exists $n \in \mathbb{N}$ such that

$$
\forall m \geq n(x(m)=y(m)) \text { and } g=g_{0}^{\sum_{m<n} x(m)-\sum_{m<n} y(m)}
$$

Coordinatewise decomposition

Global decomposability

Remark

By the Glimm-Effros dichotomy, we can assume that there is a Borel embedding $\pi: 2^{\mathbb{N}} \rightarrow Z$ of E_{0} into E_{S}.

Definition

Fix $g_{0} \in G$ with $g_{0} \neq 1_{G}$, and define $\rho_{0}: E_{0} \rightarrow G$ by setting $\rho_{0}(x, y)=g$ if and only if there exists $n \in \mathbb{N}$ such that

$$
\forall m \geq n(x(m)=y(m)) \text { and } g=g_{0}^{\sum_{m<n} x(m)-\sum_{m<n} y(m)}
$$

Remark

The map ρ_{0} is a cocycle: $x E_{0} y E_{0} z \Rightarrow \rho_{0}(x, z)=\rho_{0}(x, y) \rho_{0}(y, z)$.

Coordinatewise decomposition
 Global decomposability

Definition

Let $E_{\rho_{0}}$ be the subequivalence relation of E_{0} given by

$$
x E_{\rho_{0}} y \Leftrightarrow\left(x E_{0} y \text { and } \rho_{0}(x, y)=1_{G}\right)
$$

Coordinatewise decomposition
 Global decomposability

Definition

Let $E_{\rho_{0}}$ be the subequivalence relation of E_{0} given by

$$
x E_{\rho_{0}} y \Leftrightarrow\left(x E_{0} y \text { and } \rho_{0}(x, y)=1_{G}\right)
$$

Definition

A set $B \subseteq Z / E$ is Borel if it is Borel when viewed as a subset of Z.

Coordinatewise decomposition Global decomposability

Definition

Let $E_{\rho_{0}}$ be the subequivalence relation of E_{0} given by

$$
x E_{\rho_{0}} y \Leftrightarrow\left(x E_{0} y \text { and } \rho_{0}(x, y)=1_{G}\right)
$$

Definition

A set $B \subseteq Z / E$ is Borel if it is Borel when viewed as a subset of Z.

Claim

$E_{0} / E_{\rho_{0}}$ does not admit a Borel transversal.

Coordinatewise decomposition Global decomposability

Definition

By the Lusin-Novikov uniformization theorem, there is a Borel cocycle $\rho: E_{S} \rightarrow G$ such that

$$
\forall(x, y) \in E_{0}\left(\rho(\pi(x), \pi(y))=\rho_{0}(x, y)\right)
$$

Coordinatewise decomposition Global decomposability

Definition

By the Lusin-Novikov uniformization theorem, there is a Borel cocycle $\rho: E_{S} \rightarrow G$ such that

$$
\forall(x, y) \in E_{0}\left(\rho(\pi(x), \pi(y))=\rho_{0}(x, y)\right)
$$

Definition

Let E_{ρ} be the subequivalence relation of E_{S} given by

$$
x E_{\rho} y \Leftrightarrow\left(x E_{S} y \text { and } \rho(x, y)=1_{G}\right)
$$

Coordinatewise decomposition
 Global decomposability

Definition

By the Lusin-Novikov uniformization theorem, there is a Borel cocycle $\rho: E_{S} \rightarrow G$ such that

$$
\forall(x, y) \in E_{0}\left(\rho(\pi(x), \pi(y))=\rho_{0}(x, y)\right)
$$

Definition

Let E_{ρ} be the subequivalence relation of E_{S} given by

$$
x E_{\rho} y \Leftrightarrow\left(x E_{S} y \text { and } \rho(x, y)=1_{G}\right)
$$

Remark

E_{S} / E_{ρ} does not admit a Borel transversal.

Coordinatewise decomposition

Global decomposability

Definition

Let f be the restriction of ρ to the set S.

Coordinatewise decomposition
 Global decomposability

Definition

Let f be the restriction of ρ to the set S.

Definition

Suppose, towards a contradiction, that (u, v) is a Borel coordinatewise decomposition of f, and set

$$
w=u \sqcup v^{-1} .
$$

Coordinatewise decomposition
 Global decomposability

Definition

Let f be the restriction of ρ to the set S.

Definition

Suppose, towards a contradiction, that (u, v) is a Borel coordinatewise decomposition of f, and set

$$
w=u \sqcup v^{-1} .
$$

Claim

The function w witnesses that ρ is a Borel coboundary, i.e.,

$$
\forall(x, y) \in E_{S}\left(\rho(x, y)=w(x) w(y)^{-1}\right)
$$

Coordinatewise decomposition
 Global decomposability

Claim

For each $g \in G$, the set $B_{g}=w^{-1}(g) / E_{\rho}$ is a Borel partial transversal of E_{S} / E_{ρ}, i.e., it intersects each equivalence class of E_{S} / E_{ρ} in at most one point.

Coordinatewise decomposition Global decomposability

Claim

For each $g \in G$, the set $B_{g}=w^{-1}(g) / E_{\rho}$ is a Borel partial transversal of E_{S} / E_{ρ}, i.e., it intersects each equivalence class of E_{S} / E_{ρ} in at most one point.

Claim

By appealing again to the Lusin-Novikov uniformization theorem, we can build from the sets B_{g} a Borel transversal of E_{S} / E_{ρ}.

Coordinatewise decomposition

Global decomposability

Claim

For each $g \in G$, the set $B_{g}=w^{-1}(g) / E_{\rho}$ is a Borel partial transversal of E_{S} / E_{ρ}, i.e., it intersects each equivalence class of E_{S} / E_{ρ} in at most one point.

Claim

By appealing again to the Lusin-Novikov uniformization theorem, we can build from the sets B_{g} a Borel transversal of E_{S} / E_{ρ}.

Remark

Since ρ was chosen to ensure that there is no such transversal, this completes the proof of the theorem.

Coordinatewise decomposition

Local decomposability

Remark

Next, we consider the circumstances under which a given function $f: S \subseteq X \times Y \rightarrow G$ admits a coordinatewise decomposition.

Coordinatewise decomposition

Local decomposability

Remark

Next, we consider the circumstances under which a given function $f: S \subseteq X \times Y \rightarrow G$ admits a coordinatewise decomposition.

Definition

The weight of a \mathcal{G}_{S}-cycle $\gamma=\left\langle x_{0}, y_{0}, \ldots, x_{n}\right\rangle$ is given by

$$
w(\gamma)=\prod_{i<n} f\left(x_{i}, y_{i}\right) f\left(x_{i+1}, y_{i}\right)^{-1}
$$

Coordinatewise decomposition

Local decomposability

Remark

Next, we consider the circumstances under which a given function $f: S \subseteq X \times Y \rightarrow G$ admits a coordinatewise decomposition.

Definition

The weight of a \mathcal{G}_{S}-cycle $\gamma=\left\langle x_{0}, y_{0}, \ldots, x_{n}\right\rangle$ is given by

$$
w(\gamma)=\prod_{i<n} f\left(x_{i}, y_{i}\right) f\left(x_{i+1}, y_{i}\right)^{-1}
$$

Proposition

The following are equivalent:
1 There is a coordinatewise decomposition of f;
2 The weight of every \mathcal{G}_{S}-cycle is 1_{G}.

Coordinatewise decomposition

Local decomposability

Proof of $(1) \Rightarrow(2)$

Suppose that (u, v) is a coordinatewise decomposition of f, and observe that if $\gamma=\left\langle x_{0}, y_{0}, x_{1}, \ldots, x_{n}\right\rangle$ is \mathcal{G}_{S}-cycle, then

$$
\begin{aligned}
w(\gamma) & =\prod_{i<n} f\left(x_{i}, y_{i}\right) f\left(x_{i+1}, y_{i}\right)^{-1} \\
& =\prod_{i<n} u\left(x_{i}\right) v\left(y_{i}\right) v\left(y_{i}\right)^{-1} u\left(x_{i+1}\right)^{-1}
\end{aligned}
$$

which equals 1_{G}.

Coordinatewise decomposition

Local decomposability

Proof of $(2) \Rightarrow(1)$

Fix a set $Z_{0} \subseteq X$ which intersects every connected component of \mathcal{G}_{S} in exactly one point, and let

$$
Z_{n+1}=\left\{z \in Z \backslash \bigcup_{m \leq n} Z_{m}: \exists z^{\prime} \in Z_{n}\left(\left(z, z^{\prime}\right) \in \mathcal{G}_{S}\right)\right\}
$$

Coordinatewise decomposition

Local decomposability

Proof of $(2) \Rightarrow(1)$

Fix a set $Z_{0} \subseteq X$ which intersects every connected component of \mathcal{G}_{S} in exactly one point, and let

$$
Z_{n+1}=\left\{z \in Z \backslash \bigcup_{m \leq n} Z_{m}: \exists z^{\prime} \in Z_{n}\left(\left(z, z^{\prime}\right) \in \mathcal{G}_{S}\right)\right\}
$$

Suppose that $f: S \rightarrow G$, and define

$$
\left[u \mid Z_{0}\right](x)=1_{G} .
$$

Coordinatewise decomposition

Local decomposability

Proof of $(2) \Rightarrow(1)$

Fix a set $Z_{0} \subseteq X$ which intersects every connected component of \mathcal{G}_{S} in exactly one point, and let

$$
Z_{n+1}=\left\{z \in Z \backslash \bigcup_{m \leq n} Z_{m}: \exists z^{\prime} \in Z_{n}\left(\left(z, z^{\prime}\right) \in \mathcal{G}_{S}\right)\right\}
$$

Suppose that $f: S \rightarrow G$, and define

$$
\left[u \mid Z_{0}\right](x)=1_{G} .
$$

Suppose now that we have defined $u \mid Z_{2 n}$, and set

$$
\left[v \mid Z_{2 n+1}\right](y)=u(x)^{-1} f(x, y)
$$

where $x \in Z_{2 n}$ and $(x, y) \in \mathcal{G}_{S}$. Define $u \mid Z_{2 n+2}$ similarly.

Coordinatewise decomposition

Local decomposability

Remark

From this point forward, we assume that f admits a coordinatewise decomposition, and examine the circumstances under which f admits a Borel coordinatewise decomposition.

Coordinatewise decomposition

Local decomposability

Remark

From this point forward, we assume that f admits a coordinatewise decomposition, and examine the circumstances under which f admits a Borel coordinatewise decomposition.

Definition

Since the weight of every $\mathcal{G}_{S^{\prime}}$-cycle is 1_{G}, there is a unique extension of f to a cocycle $\rho_{f}: E_{S} \rightarrow G$.

Coordinatewise decomposition

Local decomposability

Remark

From this point forward, we assume that f admits a coordinatewise decomposition, and examine the circumstances under which f admits a Borel coordinatewise decomposition.

Definition

Since the weight of every \mathcal{G}_{S}-cycle is 1_{G}, there is a unique extension of f to a cocycle $\rho_{f}: E_{S} \rightarrow G$.

Proposition

The following are equivalent:
1 There is a Borel coordinatewise decomposition of f;
$2 \rho_{f}$ is a Borel coboundary.

Coordinatewise decomposition

Local decomposability

Proof of (1) \Rightarrow (2)

A straightforward induction shows that if (u, v) is a Borel coordinatewise decomposition of f, then

$$
w=u \sqcup v^{-1}
$$

witnesses that ρ_{f} is a Borel coboundary.

Coordinatewise decomposition

Local decomposability

Proof of (1) \Rightarrow (2)

A straightforward induction shows that if (u, v) is a Borel coordinatewise decomposition of f, then

$$
w=u \sqcup v^{-1}
$$

witnesses that ρ_{f} is a Borel coboundary.

Proof of $(2) \Rightarrow(1)$

If $w: Z \rightarrow G$ witnesses that ρ_{f} is a Borel coboundary, then

$$
(u, v)=\left(w \mid X,(w \mid Y)^{-1}\right)
$$

is a Borel coordinatewise decomposition of f.

Coordinatewise decomposition

Local decomposability

Remark

This reduces the problem to finding the circumstances under which a cocycle $\rho: E \rightarrow G$ is a Borel coboundary.

Coordinatewise decomposition

Local decomposability

Remark

This reduces the problem to finding the circumstances under which a cocycle $\rho: E \rightarrow G$ is a Borel coboundary.

Remark

As before, define $E_{\rho} \subseteq E$ by

$$
x E_{\rho} y \Leftrightarrow\left(x E y \text { and } \rho(x, y)=1_{G}\right)
$$

Coordinatewise decomposition

Local decomposability

Remark

This reduces the problem to finding the circumstances under which a cocycle $\rho: E \rightarrow G$ is a Borel coboundary.

Remark

As before, define $E_{\rho} \subseteq E$ by

$$
x E_{\rho} y \Leftrightarrow\left(x E y \text { and } \rho(x, y)=1_{G}\right)
$$

Proposition

The following are equivalent:
1ρ is a Borel coboundary;
$2 E / E_{\rho}$ admits a Borel transversal.

Coordinatewise decomposition

Local decomposability

Definition

A function $f: X_{1} / E_{1} \rightarrow X_{2} / E_{2}$ is Borel if its graph is Borel, when thought of as a subset of $X_{1} \times X_{2}$.

Coordinatewise decomposition

Local decomposability

Definition

A function $f: X_{1} / E_{1} \rightarrow X_{2} / E_{2}$ is Borel if its graph is Borel, when thought of as a subset of $X_{1} \times X_{2}$.

Theorem

Suppose that G is torsion-free. Exactly one of the following holds:
$1 E / E_{\rho}$ admits a Borel transversal;
2 There is a Borel embedding of E_{0} into E / E_{ρ}.

Coordinatewise decomposition

Local decomposability

Remark

The proof follows closely the usual Glimm-Effros style arguments.

Coordinatewise decomposition

Local decomposability

Remark

The proof follows closely the usual Glimm-Effros style arguments.
Theorem
Suppose that G is torsion-free. Exactly one of the following holds:
$1 f$ admits a Borel coordinatewise decomposition;
2 There is a Borel embedding of E_{0} into $E_{S} / E_{\rho_{f}}$.

Coordinatewise decomposition

Local decomposability

Remark

The analog of this theorem fails badly if G is not torsion free.

Coordinatewise decomposition

Local decomposability

Remark

The analog of this theorem fails badly if G is not torsion free.

Remark

However, there are still basis theorems which describe the circumstances under which a cocycle is a Borel coboundary, and which therefore describe the circumstances under which a Borel function admits a Borel coordinatewise decomposition.

Coordinatewise decomposition

Local decomposability

Remark

The analog of this theorem fails badly if G is not torsion free.

Remark

However, there are still basis theorems which describe the circumstances under which a cocycle is a Borel coboundary, and which therefore describe the circumstances under which a Borel function admits a Borel coordinatewise decomposition.

Remark

From this point forward, we focus on the case that G is finite.

Coordinatewise decomposition

Local decomposability

Definition

Recall that, given $g_{0} \in G \backslash\left\{1_{G}\right\}$, we obtain a cocycle $\rho_{G}: E_{0} \rightarrow G$ by setting $\rho_{G}(x, y)=g$ if and only if there exists $n \in \mathbb{N}$ such that

$$
\forall m \geq n(x(m)=y(m)) \text { and } g=g_{0}^{\sum_{m<n} x(m)-\sum_{m<n} y(m)}
$$

Coordinatewise decomposition

Local decomposability

Definition

Recall that, given $g_{0} \in G \backslash\left\{1_{G}\right\}$, we obtain a cocycle $\rho_{G}: E_{0} \rightarrow G$ by setting $\rho_{G}(x, y)=g$ if and only if there exists $n \in \mathbb{N}$ such that

$$
\forall m \geq n(x(m)=y(m)) \text { and } g=g_{0}^{\sum_{m<n} x(m)-\sum_{m<n} y(m)}
$$

Definition

For $G=\mathbb{Z} / p \mathbb{Z}$, this defines a cocycle $\rho_{p}=\rho_{G}$.

Coordinatewise decomposition

Local decomposability

Proposition

Suppose that $\rho: E \rightarrow G$ is not a Borel coboundary. Then there is at most one prime p such that E / E_{ρ} Borel embeds into $E_{0} / E_{\rho_{p}}$.

Coordinatewise decomposition

Local decomposability

Proposition

Suppose that $\rho: E \rightarrow G$ is not a Borel coboundary. Then there is at most one prime p such that E / E_{ρ} Borel embeds into $E_{0} / E_{\rho_{\rho}}$.

Theorem

Exactly one of the following holds:
$1 E / E_{\rho}$ admits a Borel transversal;
2 There is a prime p such that $E_{0} / E_{\rho_{p}}$ Borel embeds into E / E_{ρ}.

Coordinatewise decomposition

Local decomposability

Theorem

Suppose that X and Y are Polish spaces, $S \subseteq X \times Y$ is a Borel set with countable sections, G is a non-trivial countable group, and $f: S \rightarrow G$ is a Borel function which admits a coordinatewise decomposition. Then exactly one of the following holds:
$1 f$ admits a Borel coordinatewise decomposition;
2 Either (a) E_{0} Borel embeds into $E_{S} / E_{\rho_{f}}$, or (b) there is a prime p such that $E_{0} / E_{\rho_{p}}$ Borel embeds into $E_{S} / E_{\rho_{f}}$.

Coordinatewise decomposition

Quotient spaces

Remark

The special case of the basis theorem for finite groups falls out of a proof of a series of much more general results.

Coordinatewise decomposition

Quotient spaces

Remark

The special case of the basis theorem for finite groups falls out of a proof of a series of much more general results.

Remark

These results give also a complete classification of equivalence relations of the form E_{0} / E, where E is of finite index below E_{0}.

Coordinatewise decomposition

Quotient spaces

Remark

The special case of the basis theorem for finite groups falls out of a proof of a series of much more general results.

Remark

These results give also a complete classification of equivalence relations of the form E_{0} / E, where E is of finite index below E_{0}.

Remark

Equivalently, we obtain a classification of Borel equivalence relations on $2^{\mathbb{N}} / E_{0}$ whose classes are of finite cardinality.

Coordinatewise decomposition

Quotient spaces

Remark

The classification problem associated with such equivalence relations is smooth.

Coordinatewise decomposition

Quotient spaces

Remark

The classification problem associated with such equivalence relations is smooth.

Remark

In fact, one can associate with each Borel equivalence relation on $2^{\mathbb{N}} / E_{0}$ whose classes are of size n a family of subgroups of S_{n} which completely determines its isomorphism type.

Coordinatewise decomposition

Quotient spaces

Remark

The classification problem associated with such equivalence relations is smooth.

Remark

In fact, one can associate with each Borel equivalence relation on $2^{\mathbb{N}} / E_{0}$ whose classes are of size n a family of subgroups of S_{n} which completely determines its isomorphism type.

Remark

This invariant describes also the ways of assigning structures to the classes of E / E_{0} in a Borel way, and the proof gives a family of dichotomy theorems which characterize the circumstances under which such assignments exist.

Coordinatewise decomposition

Quotient spaces

Theorem

Up to Borel isomorphism, there are exactly two Borel equivalence relations on $2^{\mathbb{N}} / E_{0}$ whose classes are of cardinality two. In order of Borel embeddability, they are: (1) the one which admits a Borel transversal, and (2) the one which does not.

Coordinatewise decomposition

Quotient spaces

Theorem

Up to Borel isomorphism, there are exactly two Borel equivalence relations on $2^{\mathbb{N}} / E_{0}$ whose classes are of cardinality two. In order of Borel embeddability, they are: (1) the one which admits a Borel transversal, and (2) the one which does not.

Theorem

Up to Borel isomorphism, there are exactly five Borel equivalence relations on $2^{\mathbb{N}} / E_{0}$ whose classes are of cardinality three.

Coordinatewise decomposition

Quotient spaces

Remark

The family of such equivalence relations is not linearly ordered under Borel embeddability.

Coordinatewise decomposition

Quotient spaces

Remark

The family of such equivalence relations is not linearly ordered under Borel embeddability.

Remark

There is a minimal one. It is characterized by the fact that $2^{\mathbb{N}} / E_{0}$ can be covered with its Borel transversals.

Coordinatewise decomposition

Quotient spaces

Remark

The family of such equivalence relations is not linearly ordered under Borel embeddability.

Remark

There is a minimal one. It is characterized by the fact that $2^{\mathbb{N}} / E_{0}$ can be covered with its Borel transversals.

Remark

There is also maximal one. It is characterized by the fact that it admits no non-trivial Borel assignments of structures.

Coordinatewise decomposition

Quotient spaces

Remark

There are also two incompatible such equivalence relations.

Coordinatewise decomposition

Quotient spaces

Remark

There are also two incompatible such equivalence relations.

Remark

One is generated by a Borel action of $\mathbb{Z} / 3 \mathbb{Z}$ on $2^{\mathbb{N}} / E_{0}$, but does not admit a Borel transversal.

Coordinatewise decomposition

Quotient spaces

Remark

There are also two incompatible such equivalence relations.

Remark

One is generated by a Borel action of $\mathbb{Z} / 3 \mathbb{Z}$ on $2^{\mathbb{N}} / E_{0}$, but does not admit a Borel transversal.

Remark

The other admits a Borel transversal, but is not generated by a Borel action of a countable group on $2^{\mathbb{N}} / E_{0}$.

Coordinatewise decomposition

Quotient spaces

Remark

There are also two incompatible such equivalence relations.

Remark

One is generated by a Borel action of $\mathbb{Z} / 3 \mathbb{Z}$ on $2^{\mathbb{N}} / E_{0}$, but does not admit a Borel transversal.

Remark

The other admits a Borel transversal, but is not generated by a Borel action of a countable group on $2^{\mathbb{N}} / E_{0}$.

Remark

There are over fifty Borel equivalence relations on $2^{\mathbb{N}} / E_{0}$ whose classes are of cardinality four!

References

References

- Cowsik, R. C. and Kłopotowski, A. and Nadkarni, M. G., When is $\mathbf{f}(\mathbf{x}, \mathbf{y})=\mathbf{u}(\mathbf{x})+\mathbf{v}(\mathbf{y})$?, Proc. Indian Acad. Sci.
Math. Sci., 109, 1999, 1, $57-64$.
- Kłopotowski, A. and Nadkarni, M.G. and Sarbadhikari, H. and Srivastava, S.M., Sets with doubleton sections, good sets and ergodic theory, Fund. Math., 173, 2002, 2, 133 - 158.

References

References
■ Miller, Benjamin D., Coordinatewise decomposition, Borel cohomology, and invariant measures, Fund. Math., 191, 2006, 1, 81 - 94.
■ Miller, Benjamin D., Coordinatewise decomposition of group-valued Borel functions, Preprint.

- Miller, Benjamin D., The classification of finite Borel equivalence relations on $2^{\mathbb{N}} / \mathrm{E}_{0}$, Preprint.

These papers are available at:
http://www.math.ucla.edu/~bdm/papersandsuch.html.

