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Introduction
Basic definitions

Definition

A topological space X is a Polish space if it is separable and
completely metrizable.

Definition

A subset B ⊆ X of a Polish space is Borel if it is in the σ-algebra
generated by the open subsets of X .

Definition

A function f : X → Y is Borel if

∀B ⊆ Y (B is open ⇒ f −1(B) is Borel).
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Introduction
Basic definitions

Definition

Suppose that S ⊆ X × Y , G is a group, and f : S → G is a
function. A coordinatewise decomposition of f is a pair (u, v),
where u : X → G and v : Y → G , such that

∀(x , y) ∈ S (f (x , y) = u(x)v(y)).

Definition

A coordinatewise decomposition is Borel if both u and v are Borel.

Remark

For the sake of simplicity, we will assume that 2 ≤ |G | ≤ ℵ0 and
∀x ∈ X ∀y ∈ Y (1 ≤ |Sx |, |Sy | ≤ ℵ0).
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Coordinatewise decomposition
Global decomposability

Question (K lopotowski-Nadkarni-Sarbadhikari-Srivastava)

Suppose that X and Y are Polish spaces and S ⊆ X × Y is Borel.
Under what circumstances does every Borel function from S into
G admit a Borel coordinatewise decomposition?

Remark

We consider first the purely combinatorial version of the question.

Remark

For notational convenience, assume that X and Y are disjoint.
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Coordinatewise decomposition
Global decomposability

Definition

We use GS to denote the graph on the set Z = X ∪ Y given by

GS = S ∪ S⊥.

Proposition

The following are equivalent:

1 Every f : S → G admits a coordinatewise decomposition;

2 The graph GS is acyclic.
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Coordinatewise decomposition
Global decomposability

Proof of ¬(2) ⇒ ¬(1)

Suppose that 〈x0, y0, x1, . . . , xn〉 is a GS -cycle, and fix any function
f : S → G with the property that∏

i<n

f (xi , yi )f (xi+1, yi )
−1 6= 1G .

If (u, v) is a coordinatewise decomposition of f , then∏
i<n

f (xi , yi )f (xi+1, yi )
−1 =

∏
i<n

u(xi )v(yi )v(yi )
−1u(xi+1)−1,

which equals 1G , contradicting our choice of f . �
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Coordinatewise decomposition
Global decomposability

Proof of (2) ⇒ (1)

Fix a set Z0 ⊆ X which intersects every connected component of
GS in exactly one point, and let

Zn+1 = {z ∈ Z \
⋃

m≤n

Zm : ∃z ′ ∈ Zn ((z , z ′) ∈ GS)}.

Suppose that f : S → G , and define

[u|Z0](x) = 1G .

Suppose now that we have defined u|Z2n, and set

[v |Z2n+1](y) = u(x)−1f (x , y),

where x ∈ Z2n and (x , y) ∈ GS . Define u|Z2n+2 similarly. �
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Global decomposability

Definition

Let ES denote the equivalence relation on Z induced by GS .

Definition

A transversal of ES is a set B ⊆ Z which intersects every
equivalence class of ES in exactly one point.

Theorem

The following are equivalent:

1 Every Borel function f : S → G admits a Borel coordinatewise
decomposition;

2 GS is acyclic and ES admits a Borel transversal.
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Remark

We have essentially already given the proof of (2) ⇒ (1).

Definition

Let E0 denote the equivalence relation on 2N given by

xE0y ⇔ ∃n ∈ N ∀m ≥ n (x(m) = y(m)).

Definition

Suppose that E1 and E2 are equivalence relations on X1 and X2.
An embedding of E1 into E2 is an injection π : X1 → X2 with

∀x , y ∈ X1 (xE1y ⇔ π(x)E2π(y)).
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Global decomposability

Remark

By the Glimm-Effros dichotomy, we can assume that there is a
Borel embedding π : 2N → Z of E0 into ES .

Definition

Fix g0 ∈ G with g0 6= 1G , and define ρ0 : E0 → G by setting
ρ0(x , y) = g if and only if there exists n ∈ N such that

∀m ≥ n (x(m) = y(m)) and g = g
P

m<n x(m)−
P

m<n y(m)
0 .

Remark

The map ρ0 is a cocycle: xE0yE0z ⇒ ρ0(x , z) = ρ0(x , y)ρ0(y , z).
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Global decomposability

Definition

Let Eρ0 be the subequivalence relation of E0 given by

xEρ0y ⇔ (xE0y and ρ0(x , y) = 1G ).

Definition

A set B ⊆ Z/E is Borel if it is Borel when viewed as a subset of Z .

Claim

E0/Eρ0 does not admit a Borel transversal.
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Definition

By the Lusin-Novikov uniformization theorem, there is a Borel
cocycle ρ : ES → G such that

∀(x , y) ∈ E0 (ρ(π(x), π(y)) = ρ0(x , y)).

Definition

Let Eρ be the subequivalence relation of ES given by

xEρy ⇔ (xESy and ρ(x , y) = 1G ).

Remark

ES/Eρ does not admit a Borel transversal.
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Definition

Let f be the restriction of ρ to the set S .

Definition

Suppose, towards a contradiction, that (u, v) is a Borel
coordinatewise decomposition of f , and set

w = u t v−1.

Claim

The function w witnesses that ρ is a Borel coboundary, i.e.,

∀(x , y) ∈ ES (ρ(x , y) = w(x)w(y)−1).
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Claim

For each g ∈ G , the set Bg = w−1(g)/Eρ is a Borel partial
transversal of ES/Eρ, i.e., it intersects each equivalence class of
ES/Eρ in at most one point.

Claim

By appealing again to the Lusin-Novikov uniformization theorem,
we can build from the sets Bg a Borel transversal of ES/Eρ.

Remark

Since ρ was chosen to ensure that there is no such transversal, this
completes the proof of the theorem. �
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Coordinatewise decomposition
Local decomposability

Remark

Next, we consider the circumstances under which a given function
f : S ⊆ X × Y → G admits a coordinatewise decomposition.

Definition

The weight of a GS -cycle γ = 〈x0, y0, . . . , xn〉 is given by

w(γ) =
∏
i<n

f (xi , yi )f (xi+1, yi )
−1.

Proposition

The following are equivalent:

1 There is a coordinatewise decomposition of f ;

2 The weight of every GS -cycle is 1G .
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Proof of (1) ⇒ (2)

Suppose that (u, v) is a coordinatewise decomposition of f , and
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Fix a set Z0 ⊆ X which intersects every connected component of
GS in exactly one point, and let

Zn+1 = {z ∈ Z \
⋃

m≤n

Zm : ∃z ′ ∈ Zn ((z , z ′) ∈ GS)}.
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Local decomposability

Remark

From this point forward, we assume that f admits a coordinatewise
decomposition, and examine the circumstances under which f
admits a Borel coordinatewise decomposition.

Definition

Since the weight of every GS -cycle is 1G , there is a unique
extension of f to a cocycle ρf : ES → G .

Proposition

The following are equivalent:

1 There is a Borel coordinatewise decomposition of f ;

2 ρf is a Borel coboundary.
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Proof of (1) ⇒ (2)

A straightforward induction shows that if (u, v) is a Borel
coordinatewise decomposition of f , then

w = u t v−1

witnesses that ρf is a Borel coboundary. �

Proof of (2) ⇒ (1)

If w : Z → G witnesses that ρf is a Borel coboundary, then

(u, v) = (w |X , (w |Y )−1)

is a Borel coordinatewise decomposition of f . �
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Local decomposability

Remark

This reduces the problem to finding the circumstances under which
a cocycle ρ : E → G is a Borel coboundary.

Remark

As before, define Eρ ⊆ E by

xEρy ⇔ (xEy and ρ(x , y) = 1G ).

Proposition

The following are equivalent:

1 ρ is a Borel coboundary;

2 E/Eρ admits a Borel transversal.
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Local decomposability

Definition

A function f : X1/E1 → X2/E2 is Borel if its graph is Borel, when
thought of as a subset of X1 × X2.

Theorem

Suppose that G is torsion-free. Exactly one of the following holds:

1 E/Eρ admits a Borel transversal;

2 There is a Borel embedding of E0 into E/Eρ.
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Remark

The proof follows closely the usual Glimm-Effros style arguments.

Theorem

Suppose that G is torsion-free. Exactly one of the following holds:

1 f admits a Borel coordinatewise decomposition;

2 There is a Borel embedding of E0 into ES/Eρf
.
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Local decomposability

Remark

The analog of this theorem fails badly if G is not torsion free.

Remark

However, there are still basis theorems which describe the
circumstances under which a cocycle is a Borel coboundary, and
which therefore describe the circumstances under which a Borel
function admits a Borel coordinatewise decomposition.

Remark

From this point forward, we focus on the case that G is finite.
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Definition

Recall that, given g0 ∈ G \ {1G}, we obtain a cocycle ρG : E0 → G
by setting ρG (x , y) = g if and only if there exists n ∈ N such that

∀m ≥ n (x(m) = y(m)) and g = g
P

m<n x(m)−
P

m<n y(m)
0 .

Definition

For G = Z/pZ, this defines a cocycle ρp = ρG .
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Proposition

Suppose that ρ : E → G is not a Borel coboundary. Then there is
at most one prime p such that E/Eρ Borel embeds into E0/Eρp .

Theorem

Exactly one of the following holds:

1 E/Eρ admits a Borel transversal;

2 There is a prime p such that E0/Eρp Borel embeds into E/Eρ.
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Theorem

Suppose that X and Y are Polish spaces, S ⊆ X ×Y is a Borel set
with countable sections, G is a non-trivial countable group, and
f : S → G is a Borel function which admits a coordinatewise
decomposition. Then exactly one of the following holds:

1 f admits a Borel coordinatewise decomposition;

2 Either (a) E0 Borel embeds into ES/Eρf
, or (b) there is a

prime p such that E0/Eρp Borel embeds into ES/Eρf
.



Coordinatewise decomposition
Quotient spaces

Remark

The special case of the basis theorem for finite groups falls out of a
proof of a series of much more general results.

Remark

These results give also a complete classification of equivalence
relations of the form E0/E , where E is of finite index below E0.

Remark

Equivalently, we obtain a classification of Borel equivalence
relations on 2N/E0 whose classes are of finite cardinality.
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Remark

The classification problem associated with such equivalence
relations is smooth.

Remark

In fact, one can associate with each Borel equivalence relation on
2N/E0 whose classes are of size n a family of subgroups of Sn

which completely determines its isomorphism type.

Remark

This invariant describes also the ways of assigning structures to the
classes of E/E0 in a Borel way, and the proof gives a family of
dichotomy theorems which characterize the circumstances under
which such assignments exist.
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Theorem

Up to Borel isomorphism, there are exactly two Borel equivalence
relations on 2N/E0 whose classes are of cardinality two. In order of
Borel embeddability, they are: (1) the one which admits a Borel
transversal, and (2) the one which does not.

Theorem

Up to Borel isomorphism, there are exactly five Borel equivalence
relations on 2N/E0 whose classes are of cardinality three.
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Remark

The family of such equivalence relations is not linearly ordered
under Borel embeddability.

Remark

There is a minimal one. It is characterized by the fact that 2N/E0

can be covered with its Borel transversals.

Remark

There is also maximal one. It is characterized by the fact that it
admits no non-trivial Borel assignments of structures.
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Remark

There are also two incompatible such equivalence relations.

Remark

One is generated by a Borel action of Z/3Z on 2N/E0, but does
not admit a Borel transversal.

Remark

The other admits a Borel transversal, but is not generated by a
Borel action of a countable group on 2N/E0.

Remark

There are over fifty Borel equivalence relations on 2N/E0 whose
classes are of cardinality four!
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