Coordinatewise decomposition and dichotomy results in descriptive set theory

Benjamin D. Miller

November $7^{\rm th}$, 2006

Definition

A topological space X is a *Polish space* if it is separable and completely metrizable.

Definition

A topological space X is a *Polish space* if it is separable and completely metrizable.

Definition

A subset $B \subseteq X$ of a Polish space is *Borel* if it is in the σ -algebra generated by the open subsets of X.

Definition

A topological space X is a *Polish space* if it is separable and completely metrizable.

Definition

A subset $B \subseteq X$ of a Polish space is *Borel* if it is in the σ -algebra generated by the open subsets of X.

Definition

A function $f: X \to Y$ is *Borel* if

$$\forall B \subseteq Y \ (B \text{ is open } \Rightarrow f^{-1}(B) \text{ is Borel}).$$

Introduction Basic definitions

Definition

Suppose that $S \subseteq X \times Y$, G is a group, and $f : S \to G$ is a function. A *coordinatewise decomposition* of f is a pair (u, v), where $u : X \to G$ and $v : Y \to G$, such that

$$\forall (x,y) \in S \ (f(x,y) = u(x)v(y)).$$

Introduction Basic definitions

Definition

Suppose that $S \subseteq X \times Y$, G is a group, and $f : S \to G$ is a function. A *coordinatewise decomposition* of f is a pair (u, v), where $u : X \to G$ and $v : Y \to G$, such that

$$\forall (x,y) \in S \ (f(x,y) = u(x)v(y)).$$

Definition

A coordinatewise decomposition is *Borel* if both u and v are Borel.

Introduction Basic definitions

Definition

Suppose that $S \subseteq X \times Y$, G is a group, and $f : S \to G$ is a function. A *coordinatewise decomposition* of f is a pair (u, v), where $u : X \to G$ and $v : Y \to G$, such that

$$\forall (x,y) \in S \ (f(x,y) = u(x)v(y)).$$

Definition

A coordinatewise decomposition is *Borel* if both u and v are Borel.

Remark

For the sake of simplicity, we will assume that $2 \le |G| \le \aleph_0$ and $\forall x \in X \ \forall y \in Y \ (1 \le |S_x|, |S^y| \le \aleph_0)$.

Question (Kłopotowski-Nadkarni-Sarbadhikari-Srivastava)

Suppose that X and Y are Polish spaces and $S \subseteq X \times Y$ is Borel. Under what circumstances does every Borel function from S into G admit a Borel coordinatewise decomposition?

Question (Kłopotowski-Nadkarni-Sarbadhikari-Srivastava)

Suppose that X and Y are Polish spaces and $S \subseteq X \times Y$ is Borel. Under what circumstances does every Borel function from S into G admit a Borel coordinatewise decomposition?

Remark

We consider first the purely combinatorial version of the question.

Question (Kłopotowski-Nadkarni-Sarbadhikari-Srivastava)

Suppose that X and Y are Polish spaces and $S \subseteq X \times Y$ is Borel. Under what circumstances does every Borel function from S into G admit a Borel coordinatewise decomposition?

Remark

We consider first the purely combinatorial version of the question.

Remark

For notational convenience, assume that X and Y are disjoint.

Coordinatewise decomposition Global decomposability

Definition

We use \mathcal{G}_S to denote the graph on the set $Z = X \cup Y$ given by

$$\mathcal{G}_{S}=S\cup S^{\perp}.$$

Definition

We use \mathcal{G}_S to denote the graph on the set $Z = X \cup Y$ given by

$$\mathcal{G}_S = S \cup S^{\perp}.$$

Proposition

The following are equivalent:

- **1** Every $f : S \rightarrow G$ admits a coordinatewise decomposition;
- **2** The graph \mathcal{G}_S is acyclic.

Proof of $\neg(2) \Rightarrow \neg(1)$

Suppose that $\langle x_0, y_0, x_1, \dots, x_n \rangle$ is a \mathcal{G}_S -cycle, and fix any function $f: S \to G$ with the property that

$$\prod_{i< n} f(x_i, y_i) f(x_{i+1}, y_i)^{-1} \neq 1_G.$$

Proof of $\neg(2) \Rightarrow \neg(1)$

Suppose that $\langle x_0, y_0, x_1, \dots, x_n \rangle$ is a \mathcal{G}_S -cycle, and fix any function $f: S \to G$ with the property that

$$\prod_{i< n} f(x_i, y_i) f(x_{i+1}, y_i)^{-1} \neq 1_G.$$

If (u, v) is a coordinatewise decomposition of f, then

$$\prod_{i< n} f(x_i, y_i) f(x_{i+1}, y_i)^{-1} = \prod_{i< n} u(x_i) v(y_i) v(y_i)^{-1} u(x_{i+1})^{-1},$$

which equals 1_G , contradicting our choice of f.

Coordinatewise decomposition Global decomposability

Proof of $(2) \Rightarrow (1)$

Fix a set $Z_0 \subseteq X$ which intersects every connected component of \mathcal{G}_S in exactly one point, and let

$$Z_{n+1} = \{z \in Z \setminus \bigcup_{m \leq n} Z_m : \exists z' \in Z_n \ ((z,z') \in \mathcal{G}_S)\}.$$

Proof of $(2) \Rightarrow (1)$

Fix a set $Z_0 \subseteq X$ which intersects every connected component of \mathcal{G}_S in exactly one point, and let

$$Z_{n+1} = \{z \in Z \setminus \bigcup_{m \leq n} Z_m : \exists z' \in Z_n \ ((z,z') \in \mathcal{G}_S)\}.$$

Suppose that $f: S \rightarrow G$, and define

 $[u|Z_0](x)=1_G.$

Proof of $(2) \Rightarrow (1)$

Fix a set $Z_0 \subseteq X$ which intersects every connected component of \mathcal{G}_S in exactly one point, and let

$$Z_{n+1} = \{z \in Z \setminus \bigcup_{m \le n} Z_m : \exists z' \in Z_n \ ((z,z') \in \mathcal{G}_S)\}.$$

Suppose that $f: S \rightarrow G$, and define

$$[u|Z_0](x)=1_G.$$

Suppose now that we have defined $u|Z_{2n}$, and set

$$[v|Z_{2n+1}](y) = u(x)^{-1}f(x,y),$$

where $x \in Z_{2n}$ and $(x, y) \in G_S$. Define $u|Z_{2n+2}$ similarly.

Coordinatewise decomposition Global decomposability

Definition

Let E_S denote the equivalence relation on Z induced by \mathcal{G}_S .

Definition

Let E_S denote the equivalence relation on Z induced by \mathcal{G}_S .

Definition

A *transversal* of E_S is a set $B \subseteq Z$ which intersects every equivalence class of E_S in exactly one point.

Definition

Let E_S denote the equivalence relation on Z induced by \mathcal{G}_S .

Definition

A *transversal* of E_S is a set $B \subseteq Z$ which intersects every equivalence class of E_S in exactly one point.

Theorem

The following are equivalent:

- Every Borel function f : S → G admits a Borel coordinatewise decomposition;
- **2** G_S is acyclic and E_S admits a Borel transversal.

Global decomposability

Remark

We have essentially already given the proof of $(2) \Rightarrow (1)$.

Global decomposability

Remark

We have essentially already given the proof of $(2) \Rightarrow (1)$.

Definition

Let E_0 denote the equivalence relation on $2^{\mathbb{N}}$ given by

$$xE_0y \Leftrightarrow \exists n \in \mathbb{N} \, \forall m \ge n \; (x(m) = y(m)).$$

Global decomposability

Remark

We have essentially already given the proof of $(2) \Rightarrow (1)$.

Definition

Let E_0 denote the equivalence relation on $2^{\mathbb{N}}$ given by

$$xE_0y \Leftrightarrow \exists n \in \mathbb{N} \, \forall m \ge n \; (x(m) = y(m)).$$

Definition

Suppose that E_1 and E_2 are equivalence relations on X_1 and X_2 . An *embedding of* E_1 *into* E_2 is an injection $\pi : X_1 \to X_2$ with

$$\forall x, y \in X_1 \ (xE_1y \Leftrightarrow \pi(x)E_2\pi(y)).$$

Coordinatewise decomposition Global decomposability

Remark

By the Glimm-Effros dichotomy, we can assume that there is a Borel embedding $\pi : 2^{\mathbb{N}} \to Z$ of E_0 into E_S .

Remark

By the Glimm-Effros dichotomy, we can assume that there is a Borel embedding $\pi: 2^{\mathbb{N}} \to Z$ of E_0 into E_S .

Definition

Fix $g_0 \in G$ with $g_0 \neq 1_G$, and define $\rho_0 : E_0 \to G$ by setting $\rho_0(x, y) = g$ if and only if there exists $n \in \mathbb{N}$ such that

$$\forall m \geq n \ (x(m) = y(m)) \text{ and } g = g_0^{\sum_{m < n} x(m) - \sum_{m < n} y(m)}$$

Remark

By the Glimm-Effros dichotomy, we can assume that there is a Borel embedding $\pi : 2^{\mathbb{N}} \to Z$ of E_0 into E_S .

Definition

Fix $g_0 \in G$ with $g_0 \neq 1_G$, and define $\rho_0 : E_0 \to G$ by setting $\rho_0(x, y) = g$ if and only if there exists $n \in \mathbb{N}$ such that

$$\forall m \geq n \ (x(m) = y(m)) \text{ and } g = g_0^{\sum_{m < n} x(m) - \sum_{m < n} y(m)}$$

Remark

The map ρ_0 is a *cocycle*: $xE_0yE_0z \Rightarrow \rho_0(x,z) = \rho_0(x,y)\rho_0(y,z)$.

Coordinatewise decomposition Global decomposability

Definition

Let E_{ρ_0} be the subequivalence relation of E_0 given by

$$xE_{\rho_0}y \Leftrightarrow (xE_0y \text{ and } \rho_0(x,y) = 1_G).$$

Definition

Let E_{ρ_0} be the subequivalence relation of E_0 given by

$$xE_{\rho_0}y \Leftrightarrow (xE_0y \text{ and } \rho_0(x,y) = 1_G).$$

Definition

A set $B \subseteq Z/E$ is *Borel* if it is Borel when viewed as a subset of Z.

Definition

Let E_{ρ_0} be the subequivalence relation of E_0 given by

$$xE_{\rho_0}y \Leftrightarrow (xE_0y \text{ and } \rho_0(x,y) = 1_G).$$

Definition

A set $B \subseteq Z/E$ is *Borel* if it is Borel when viewed as a subset of Z.

Claim

 E_0/E_{ρ_0} does not admit a Borel transversal.

Coordinatewise decomposition Global decomposability

Definition

By the Lusin-Novikov uniformization theorem, there is a Borel cocycle $\rho: E_S \to G$ such that

$$\forall (x,y) \in E_0 \ (\rho(\pi(x),\pi(y)) = \rho_0(x,y)).$$

Definition

By the Lusin-Novikov uniformization theorem, there is a Borel cocycle $\rho: E_S \to G$ such that

$$orall (x,y)\in E_0 \ (
ho(\pi(x),\pi(y))=
ho_0(x,y)).$$

Definition

Let E_{ρ} be the subequivalence relation of E_S given by

$$xE_{\rho}y \Leftrightarrow (xE_{S}y \text{ and } \rho(x,y) = 1_{G}).$$

Definition

By the Lusin-Novikov uniformization theorem, there is a Borel cocycle $\rho: E_S \rightarrow G$ such that

$$orall (x,y)\in E_0 \ (
ho(\pi(x),\pi(y))=
ho_0(x,y)).$$

Definition

Let E_{ρ} be the subequivalence relation of E_S given by

$$xE_{\rho}y \Leftrightarrow (xE_{S}y \text{ and } \rho(x,y) = 1_{G}).$$

Remark

 E_S/E_{ρ} does not admit a Borel transversal.

Global decomposability

Definition

Let f be the restriction of ρ to the set S.

Global decomposability

Definition

Let f be the restriction of ρ to the set S.

Definition

Suppose, towards a contradiction, that (u, v) is a Borel coordinatewise decomposition of f, and set

$$w=u\sqcup v^{-1}.$$

Global decomposability

Definition

Let f be the restriction of ρ to the set S.

Definition

Suppose, towards a contradiction, that (u, v) is a Borel coordinatewise decomposition of f, and set

$$w=u\sqcup v^{-1}.$$

Claim

The function w witnesses that ρ is a *Borel coboundary*, i.e.,

$$\forall (x,y) \in E_{\mathcal{S}} \ (\rho(x,y) = w(x)w(y)^{-1}).$$

Claim

For each $g \in G$, the set $B_g = w^{-1}(g)/E_\rho$ is a Borel *partial* transversal of E_S/E_ρ , i.e., it intersects each equivalence class of E_S/E_ρ in at most one point.
Claim

For each $g \in G$, the set $B_g = w^{-1}(g)/E_\rho$ is a Borel *partial* transversal of E_S/E_ρ , i.e., it intersects each equivalence class of E_S/E_ρ in at most one point.

Claim

By appealing again to the Lusin-Novikov uniformization theorem, we can build from the sets B_g a Borel transversal of E_S/E_{ρ} .

Claim

For each $g \in G$, the set $B_g = w^{-1}(g)/E_\rho$ is a Borel *partial* transversal of E_S/E_ρ , i.e., it intersects each equivalence class of E_S/E_ρ in at most one point.

Claim

By appealing again to the Lusin-Novikov uniformization theorem, we can build from the sets B_g a Borel transversal of E_S/E_{ρ} .

Remark

Since ρ was chosen to ensure that there is no such transversal, this completes the proof of the theorem.

Local decomposability

Remark

Next, we consider the circumstances under which a given function $f: S \subseteq X \times Y \rightarrow G$ admits a coordinatewise decomposition.

Local decomposability

Remark

Next, we consider the circumstances under which a given function $f: S \subseteq X \times Y \rightarrow G$ admits a coordinatewise decomposition.

Definition

The weight of a \mathcal{G}_S -cycle $\gamma = \langle x_0, y_0, \dots, x_n \rangle$ is given by

$$w(\gamma) = \prod_{i < n} f(x_i, y_i) f(x_{i+1}, y_i)^{-1}.$$

Local decomposability

Remark

Next, we consider the circumstances under which a given function $f: S \subseteq X \times Y \rightarrow G$ admits a coordinatewise decomposition.

Definition

The weight of a \mathcal{G}_S -cycle $\gamma = \langle x_0, y_0, \dots, x_n \rangle$ is given by

$$w(\gamma) = \prod_{i < n} f(x_i, y_i) f(x_{i+1}, y_i)^{-1}.$$

Proposition

The following are equivalent:

- **1** There is a coordinatewise decomposition of *f*;
- 2 The weight of every \mathcal{G}_S -cycle is 1_G .

Proof of $(1) \Rightarrow (2)$

Suppose that (u, v) is a coordinatewise decomposition of f, and observe that if $\gamma = \langle x_0, y_0, x_1, \dots, x_n \rangle$ is \mathcal{G}_S -cycle, then

$$\begin{aligned} \mathsf{v}(\gamma) &= \prod_{i < n} f(x_i, y_i) f(x_{i+1}, y_i)^{-1} \\ &= \prod_{i < n} u(x_i) \mathsf{v}(y_i) \mathsf{v}(y_i)^{-1} u(x_{i+1})^{-1}, \end{aligned}$$

which equals 1_G .

Proof of $(2) \Rightarrow (1)$

Fix a set $Z_0 \subseteq X$ which intersects every connected component of \mathcal{G}_S in exactly one point, and let

$$Z_{n+1} = \{z \in Z \setminus \bigcup_{m \leq n} Z_m : \exists z' \in Z_n \ ((z,z') \in \mathcal{G}_S)\}.$$

Proof of $(2) \Rightarrow (1)$

Fix a set $Z_0 \subseteq X$ which intersects every connected component of \mathcal{G}_S in exactly one point, and let

$$Z_{n+1} = \{z \in Z \setminus \bigcup_{m \leq n} Z_m : \exists z' \in Z_n \ ((z,z') \in \mathcal{G}_S)\}.$$

Suppose that $f: S \rightarrow G$, and define

 $[u|Z_0](x)=1_G.$

Proof of $(2) \Rightarrow (1)$

Fix a set $Z_0 \subseteq X$ which intersects every connected component of \mathcal{G}_S in exactly one point, and let

$$Z_{n+1} = \{z \in Z \setminus \bigcup_{m \le n} Z_m : \exists z' \in Z_n \ ((z,z') \in \mathcal{G}_S)\}.$$

Suppose that $f: S \rightarrow G$, and define

$$[u|Z_0](x)=1_G.$$

Suppose now that we have defined $u|Z_{2n}$, and set

$$[v|Z_{2n+1}](y) = u(x)^{-1}f(x,y),$$

where $x \in Z_{2n}$ and $(x, y) \in G_S$. Define $u|Z_{2n+2}$ similarly.

Local decomposability

Remark

From this point forward, we assume that f admits a coordinatewise decomposition, and examine the circumstances under which f admits a Borel coordinatewise decomposition.

Local decomposability

Remark

From this point forward, we assume that f admits a coordinatewise decomposition, and examine the circumstances under which f admits a Borel coordinatewise decomposition.

Definition

Since the weight of every \mathcal{G}_S -cycle is 1_G , there is a unique extension of f to a cocycle $\rho_f : E_S \to G$.

Local decomposability

Remark

From this point forward, we assume that f admits a coordinatewise decomposition, and examine the circumstances under which f admits a Borel coordinatewise decomposition.

Definition

Since the weight of every \mathcal{G}_S -cycle is 1_G , there is a unique extension of f to a cocycle $\rho_f : E_S \to G$.

Proposition

The following are equivalent:

- **1** There is a Borel coordinatewise decomposition of *f*;
- **2** ρ_f is a Borel coboundary.

Proof of $(1) \Rightarrow (2)$

A straightforward induction shows that if (u, v) is a Borel coordinatewise decomposition of f, then

 $w = u \sqcup v^{-1}$

witnesses that ρ_f is a Borel coboundary.

Proof of $(1) \Rightarrow (2)$

A straightforward induction shows that if (u, v) is a Borel coordinatewise decomposition of f, then

 $w = u \sqcup v^{-1}$

witnesses that ρ_f is a Borel coboundary.

Proof of $(2) \Rightarrow (1)$

If $w: Z \to G$ witnesses that ho_f is a Borel coboundary, then

$$(u, v) = (w|X, (w|Y)^{-1})$$

is a Borel coordinatewise decomposition of f.

Local decomposability

Remark

This reduces the problem to finding the circumstances under which a cocycle $\rho: E \to G$ is a Borel coboundary.

Local decomposability

Remark

This reduces the problem to finding the circumstances under which a cocycle $\rho: E \to G$ is a Borel coboundary.

Remark

As before, define $E_{\rho} \subseteq E$ by

$$xE_{\rho}y \Leftrightarrow (xEy \text{ and } \rho(x,y) = 1_G).$$

Local decomposability

Remark

This reduces the problem to finding the circumstances under which a cocycle $\rho: E \to G$ is a Borel coboundary.

Remark

As before, define $E_{\rho} \subseteq E$ by

$$xE_{\rho}y \Leftrightarrow (xEy \text{ and } \rho(x,y) = 1_G).$$

Proposition

The following are equivalent:

- **1** ρ is a Borel coboundary;
- **2** E/E_{ρ} admits a Borel transversal.

Definition

A function $f: X_1/E_1 \rightarrow X_2/E_2$ is *Borel* if its graph is Borel, when thought of as a subset of $X_1 \times X_2$.

Definition

A function $f: X_1/E_1 \rightarrow X_2/E_2$ is *Borel* if its graph is Borel, when thought of as a subset of $X_1 \times X_2$.

Theorem

Suppose that G is torsion-free. Exactly one of the following holds:

- **1** E/E_{ρ} admits a Borel transversal;
- **2** There is a Borel embedding of E_0 into E/E_{ρ} .

Remark

The proof follows closely the usual Glimm-Effros style arguments.

Remark

The proof follows closely the usual Glimm-Effros style arguments.

Theorem

Suppose that G is torsion-free. Exactly one of the following holds:

- **1** *f* admits a Borel coordinatewise decomposition;
- **2** There is a Borel embedding of E_0 into E_S/E_{ρ_f} .

Remark

The analog of this theorem fails badly if G is not torsion free.

Remark

The analog of this theorem fails badly if G is not torsion free.

Remark

However, there are still basis theorems which describe the circumstances under which a cocycle is a Borel coboundary, and which therefore describe the circumstances under which a Borel function admits a Borel coordinatewise decomposition.

Remark

The analog of this theorem fails badly if G is not torsion free.

Remark

However, there are still basis theorems which describe the circumstances under which a cocycle is a Borel coboundary, and which therefore describe the circumstances under which a Borel function admits a Borel coordinatewise decomposition.

Remark

From this point forward, we focus on the case that G is finite.

Definition

Recall that, given $g_0 \in G \setminus \{1_G\}$, we obtain a cocycle $\rho_G : E_0 \to G$ by setting $\rho_G(x, y) = g$ if and only if there exists $n \in \mathbb{N}$ such that

$$\forall m \geq n \; (x(m) = y(m)) \text{ and } g = g_0^{\sum_{m < n} x(m) - \sum_{m < n} y(m)}$$

Definition

Recall that, given $g_0 \in G \setminus \{1_G\}$, we obtain a cocycle $\rho_G : E_0 \to G$ by setting $\rho_G(x, y) = g$ if and only if there exists $n \in \mathbb{N}$ such that

$$\forall m \geq n \ (x(m) = y(m)) \text{ and } g = g_0^{\sum_{m < n} x(m) - \sum_{m < n} y(m)}$$

Definition

For $G = \mathbb{Z}/p\mathbb{Z}$, this defines a cocycle $\rho_p = \rho_G$.

Proposition

Suppose that $\rho: E \to G$ is not a Borel coboundary. Then there is at most one prime p such that E/E_{ρ} Borel embeds into $E_0/E_{\rho_{\rho}}$.

Proposition

Suppose that $\rho: E \to G$ is not a Borel coboundary. Then there is at most one prime p such that E/E_{ρ} Borel embeds into $E_0/E_{\rho_{\rho}}$.

Theorem

Exactly one of the following holds:

1
$$E/E_{\rho}$$
 admits a Borel transversal;

2 There is a prime p such that E_0/E_{ρ_p} Borel embeds into E/E_{ρ} .

Theorem

Suppose that X and Y are Polish spaces, $S \subseteq X \times Y$ is a Borel set with countable sections, G is a non-trivial countable group, and $f : S \rightarrow G$ is a Borel function which admits a coordinatewise decomposition. Then exactly one of the following holds:

- **1** *f* admits a Borel coordinatewise decomposition;
- 2 Either (a) E_0 Borel embeds into E_S/E_{ρ_f} , or (b) there is a prime p such that E_0/E_{ρ_p} Borel embeds into E_S/E_{ρ_f} .

Quotient spaces

Remark

The special case of the basis theorem for finite groups falls out of a proof of a series of much more general results.

Quotient spaces

Remark

The special case of the basis theorem for finite groups falls out of a proof of a series of much more general results.

Remark

These results give also a complete classification of equivalence relations of the form E_0/E , where E is of finite index below E_0 .

Quotient spaces

Remark

The special case of the basis theorem for finite groups falls out of a proof of a series of much more general results.

Remark

These results give also a complete classification of equivalence relations of the form E_0/E , where E is of finite index below E_0 .

Remark

Equivalently, we obtain a classification of Borel equivalence relations on $2^{\mathbb{N}}/E_0$ whose classes are of finite cardinality.

Quotient spaces

Remark

The classification problem associated with such equivalence relations is smooth.

Quotient spaces

Remark

The classification problem associated with such equivalence relations is smooth.

Remark

In fact, one can associate with each Borel equivalence relation on $2^{\mathbb{N}}/E_0$ whose classes are of size *n* a family of subgroups of S_n which completely determines its isomorphism type.

Quotient spaces

Remark

The classification problem associated with such equivalence relations is smooth.

Remark

In fact, one can associate with each Borel equivalence relation on $2^{\mathbb{N}}/E_0$ whose classes are of size *n* a family of subgroups of S_n which completely determines its isomorphism type.

Remark

This invariant describes also the ways of assigning structures to the classes of E/E_0 in a Borel way, and the proof gives a family of dichotomy theorems which characterize the circumstances under which such assignments exist.

Quotient spaces

Theorem

Up to Borel isomorphism, there are exactly two Borel equivalence relations on $2^{\mathbb{N}}/E_0$ whose classes are of cardinality two. In order of Borel embeddability, they are: (1) the one which admits a Borel transversal, and (2) the one which does not.
Quotient spaces

Theorem

Up to Borel isomorphism, there are exactly two Borel equivalence relations on $2^{\mathbb{N}}/E_0$ whose classes are of cardinality two. In order of Borel embeddability, they are: (1) the one which admits a Borel transversal, and (2) the one which does not.

Theorem

Up to Borel isomorphism, there are exactly five Borel equivalence relations on $2^{\mathbb{N}}/E_0$ whose classes are of cardinality three.

Quotient spaces

Remark

The family of such equivalence relations is not linearly ordered under Borel embeddability.

Quotient spaces

Remark

The family of such equivalence relations is not linearly ordered under Borel embeddability.

Remark

There is a minimal one. It is characterized by the fact that $2^{\mathbb{N}}/E_0$ can be covered with its Borel transversals.

Quotient spaces

Remark

The family of such equivalence relations is not linearly ordered under Borel embeddability.

Remark

There is a minimal one. It is characterized by the fact that $2^{\mathbb{N}}/E_0$ can be covered with its Borel transversals.

Remark

There is also maximal one. It is characterized by the fact that it admits no non-trivial Borel assignments of structures.

Quotient spaces

Remark

There are also two incompatible such equivalence relations.

Quotient spaces

Remark

There are also two incompatible such equivalence relations.

Remark

One is generated by a Borel action of $\mathbb{Z}/3\mathbb{Z}$ on $2^{\mathbb{N}}/E_0$, but does not admit a Borel transversal.

Quotient spaces

Remark

There are also two incompatible such equivalence relations.

Remark

One is generated by a Borel action of $\mathbb{Z}/3\mathbb{Z}$ on $2^{\mathbb{N}}/E_0$, but does not admit a Borel transversal.

Remark

The other admits a Borel transversal, but is not generated by a Borel action of a countable group on $2^{\mathbb{N}}/E_0$.

Quotient spaces

Remark

There are also two incompatible such equivalence relations.

Remark

One is generated by a Borel action of $\mathbb{Z}/3\mathbb{Z}$ on $2^{\mathbb{N}}/E_0$, but does not admit a Borel transversal.

Remark

The other admits a Borel transversal, but is not generated by a Borel action of a countable group on $2^{\mathbb{N}}/E_0$.

Remark

There are over fifty Borel equivalence relations on $2^{\mathbb{N}}/E_0$ whose classes are of cardinality four!

References

References

- Cowsik, R. C. and Kłopotowski, A. and Nadkarni, M. G.,
 When is f(x, y) = u(x) + v(y)?, *Proc. Indian Acad. Sci. Math. Sci.*, 109, 1999, 1, 57 - 64.
- Kłopotowski, A. and Nadkarni, M.G. and Sarbadhikari, H. and Srivastava, S.M., Sets with doubleton sections, good sets and ergodic theory, Fund. Math., 173, 2002, 2, 133 – 158.

References

References

- Miller, Benjamin D., Coordinatewise decomposition, Borel cohomology, and invariant measures, *Fund. Math.*, 191, 2006, 1, 81 94.
- Miller, Benjamin D., Coordinatewise decomposition of group-valued Borel functions, Preprint.
- Miller, Benjamin D., The classification of finite Borel equivalence relations on 2^N/E₀, Preprint.

These papers are available at:

http://www.math.ucla.edu/~bdm/papersandsuch.html.