Some open problems on countable Borel equivalence relations

Simon Thomas
Rutgers University

19th March 2007

Countable Borel equivalence relations

Definition

The Borel equivalence relation E on the standard Borel space X is said to be countable iff every E-class is countable.

Standard Example

Let G be a countable (discrete) group and let X be a standard Borel G-space. Then the corresponding orbit equivalence relation E_{G}^{X} is a countable Borel equivalence relation.

Countable Borel equivalence relations

Definition

The Borel equivalence relation E on the standard Borel space X is said to be countable iff every E-class is countable.

Standard Example

Let G be a countable (discrete) group and let X be a standard Borel G-space. Then the corresponding orbit equivalence relation E_{G}^{X} is a countable Borel equivalence relation.

Theorem (Feldman-Moore)

If E is a countable Borel equivalence relation on the standard Borel space X, then there exists a countable group G and a Borel action of G on X such that $E=E_{G}^{X}$.

The space of torsion-free abelian groups of rank n

Definition

The standard Borel space of torsion-free abelian groups of rank n is defined to be

$$
R\left(\mathbb{Q}^{n}\right)=\left\{A \leqslant \mathbb{Q}^{n} \mid A \text { contains a basis }\right\} .
$$

Remark

Notice that if $A, B \in R\left(\mathbb{Q}^{n}\right)$, then

$$
A \cong B \quad \text { iff } \quad \text { there exists } \varphi \in G L_{n}(\mathbb{Q}) \text { such that } \varphi[A]=B \text {. }
$$

Thus the isomorphism relation \cong_{n} on $R\left(\mathbb{Q}^{n}\right)$ is a countable Borel equivalence relation.

The Polish space of f.g. groups

Let \mathbb{F}_{m} be the free group on $\left\{x_{1}, \cdots, x_{m}\right\}$ and let \mathcal{G}_{m} be the compact space of normal subgroups of \mathbb{F}_{m}. Since each m-generator group can be realised as a quotient \mathbb{F}_{m} / N for some $N \in \mathcal{G}_{m}$, we can regard \mathcal{G}_{m} as the space of m-generator groups. There are natural embeddings

$$
\mathcal{G}_{1} \hookrightarrow \mathcal{G}_{2} \hookrightarrow \cdots \hookrightarrow \mathcal{G}_{m} \hookrightarrow \cdots
$$

and we can regard

$$
\mathcal{G}=\bigcup_{m \geq 1} \mathcal{G}_{m}
$$

as the space of f.g. groups.

Theorem (Champetier)

The isomorphism relation \cong on the space \mathcal{G} of f.g. groups is a countable Borel equivalence relation.

Borel reductions

Definition

Let E, F be Borel equivalence relations on the standard Borel spaces X, Y respectively.

- $E \leq_{B} F$ iff there exists a Borel map $f: X \rightarrow Y$ such that

$$
x E y \Longleftrightarrow f(x) F f(y)
$$

In this case, f is called a Borel reduction from E to F.

- $E \sim_{B} F$ iff both $E \leq_{B} F$ and $F \leq_{B} E$.
- $E<_{B} F$ iff both $E \leq_{B} F$ and $E \varkappa_{B} F$.

Borel reductions

Definition

Let E, F be Borel equivalence relations on the standard Borel spaces X, Y respectively.

- $E \leq_{B} F$ iff there exists a Borel map $f: X \rightarrow Y$ such that

$$
x E y \Longleftrightarrow f(x) F f(y)
$$

In this case, f is called a Borel reduction from E to F.

- $E \sim_{B} F$ iff both $E \leq_{B} F$ and $F \leq_{B} E$.
- $E<_{B} F$ iff both $E \leq_{B} F$ and $E \varkappa_{B} F$.

Definition

More generally, $f: X \rightarrow Y$ is a Borel homomorphism from E to F iff

$$
x E y \Longrightarrow f(x) F f(y)
$$

A Cantor-Bernstein Theorem

Theorem

If E, F are countable Borel equivalence relations on the standard Borel spaces X, Y, then the following are equivalent:

- $E \sim_{B} F$.
- There exist complete Borel sections $A \subseteq X$ and $B \subseteq Y$ such that

$$
(A, E \upharpoonright A) \cong(B, F \upharpoonright B)
$$

via a Borel isomorphism.

Definition

A Borel subset $A \subseteq X$ is a complete section iff A intersects every E-class.

Countable Borel equivalence relations

Definition

The Borel equivalence relation E is smooth iff $E \leq_{B}$ id $2_{2^{\mathbb{N}}}$, where $2^{\mathbb{N}}$ is the space of infinite binary sequences.

Countable Borel equivalence relations

Definition

E_{0} is the equivalence relation of eventual equality on the space $2^{\mathbb{N}}$ of infinite binary sequences.

Countable Borel equivalence relations

Definition

E_{0} is the equivalence relation of eventual equality on the space $2^{\mathbb{N}}$ of infinite binary sequences.

Question

Does there exist a nonsmooth countable Borel E with an immediate $<_{B}$-successor?

Countable Borel equivalence relations

Definition

E_{0} is the equivalence relation of eventual equality on the space $2^{\mathbb{N}}$ of infinite binary sequences.

Question

Does there exist a nonsmooth countable Borel E with an immediate $<_{B}$-successor?

Question

Does there exist a nonsmooth countable Borel E with no immediate $<_{B}$-successor?

Countable Borel equivalence relations

Definition

A countable Borel equivalence relation E is universal iff $F \leq_{B} E$ for every countable Borel equivalence relation F.

Countable Borel equivalence relations

Theorem (JKL)

The orbit equivalence relation E_{∞} of the action of the free group \mathbb{F}_{2} on its powerset $\mathcal{P}\left(\mathbb{F}_{2}\right)=2^{\mathbb{F}_{2}}$ is countable universal.

Countable Borel equivalence relations

Theorem (JKL)

The orbit equivalence relation E_{∞} of the action of the free group \mathbb{F}_{2} on its powerset $\mathcal{P}\left(\mathbb{F}_{2}\right)=2^{\mathbb{F}_{2}}$ is countable universal.

Theorem (TV)

The isomorphism relation on the space of f.g. groups is countable universal.

Countable Borel equivalence relations

Theorem (Adams-Kechris 2000)

There exist $2^{\aleph_{0}}$ many countable Borel equivalence relations up to Borel bireducibility.

The measurable vs. Borel settings

Let G be a countable group and let X be a standard Borel G-space.

The Fundamental Question in the Borel setting
To what extent does the data $\left(X, E_{G}^{X}\right)$ "remember" G and its action on X ?

The measurable vs. Borel settings

Let G be a countable group and let X be a standard Borel G-space.

The Fundamental Question in the Borel setting

To what extent does the data $\left(X, E_{G}^{X}\right)$ "remember" G and its action on X ?

Fact

We cannot possibly recover the group G from the data $\left(X, E_{G}^{X}\right)$ unless we add the hypotheses that:

- G acts freely on X.
- there exists a G-invariant probability measure μ on X.

The obvious question

Question

Let E be a nonsmooth countable Borel equivalence relation. Does there necessarily exist a countable group G with a free measure-preserving Borel action on a standard probability space (X, μ) such that $E \sim_{B} E_{G}^{X}$?

The obvious question

Question

Let E be a nonsmooth countable Borel equivalence relation. Does there necessarily exist a countable group G with a free measure-preserving Borel action on a standard probability space (X, μ) such that $E \sim_{B} E_{G}^{X}$?

Definition

- The countable Borel equivalence relation E on X is free iff there exists a countable group G with a free Borel action on X such that $E_{G}^{X}=E$.

The obvious question

Question

Let E be a nonsmooth countable Borel equivalence relation. Does there necessarily exist a countable group G with a free measure-preserving Borel action on a standard probability space (X, μ) such that $E \sim_{B} E_{G}^{X}$?

Definition

- The countable Borel equivalence relation E on X is free iff there exists a countable group G with a free Borel action on X such that $E_{G}^{X}=E$.
- The countable Borel equivalence relation E is essentially free iff there exists a free countable Borel equivalence relation F such that $E \sim_{B} F$.

Some closure properties

Theorem (Jackson-Kechris-Louveau)
Let E, F be countable Borel equivalence relations on the standard Borel spaces X, Y respectively.

Some closure properties

Theorem (Jackson-Kechris-Louveau)
Let E, F be countable Borel equivalence relations on the standard Borel spaces X, Y respectively.

- If $E \leq_{B} F$ and F is essentially free, then so is E.

Some closure properties

Theorem (Jackson-Kechris-Louveau)
Let E, F be countable Borel equivalence relations on the standard Borel spaces X, Y respectively.

- If $E \leq_{B} F$ and F is essentially free, then so is E.
- If $E \subseteq F$ and F is essentially free, then so is E.

Some closure properties

Theorem (Jackson-Kechris-Louveau)

Let E, F be countable Borel equivalence relations on the standard Borel spaces X, Y respectively.

- If $E \leq_{B} F$ and F is essentially free, then so is E.
- If $E \subseteq F$ and F is essentially free, then so is E.

Corollary

The following statements are equivalent:

- Every countable Borel equivalence relation is essentially free.
- E_{∞} is essentially free.

Essentially free countable Borel equivalence relations

Theorem (S.T.)

The class of essentially free countable Borel equivalence relations does not admit a universal element.

Corollary

E_{∞} is not essentially free.

Bernoulli actions

- Let G be a countably infinite group and let μ be the usual product probability measure on $\mathcal{P}(G)=2^{G}$.

Bernoulli actions

- Let G be a countably infinite group and let μ be the usual product probability measure on $\mathcal{P}(G)=2^{G}$.
- Then the free part of the action

$$
\mathcal{P}^{*}(G)=(2)^{G}=\left\{x \in 2^{G} \mid g \cdot x \neq x \text { for all } 1 \neq g \in G\right\}
$$

has μ-measure 1 .

Bernoulli actions

- Let G be a countably infinite group and let μ be the usual product probability measure on $\mathcal{P}(G)=2^{G}$.
- Then the free part of the action

$$
\mathcal{P}^{*}(G)=(2)^{G}=\left\{x \in 2^{G} \mid g \cdot x \neq x \text { for all } 1 \neq g \in G\right\}
$$

has μ-measure 1 .

- Let E_{G} be the corresponding orbit equivalence relation on (2) ${ }^{G}$.

Bernoulli actions

- Let G be a countably infinite group and let μ be the usual product probability measure on $\mathcal{P}(G)=2^{G}$.
- Then the free part of the action

$$
\mathcal{P}^{*}(G)=(2)^{G}=\left\{x \in 2^{G} \mid g \cdot x \neq x \text { for all } 1 \neq g \in G\right\}
$$

has μ-measure 1 .

- Let E_{G} be the corresponding orbit equivalence relation on (2) ${ }^{G}$.

Observation

If $G \leqslant H$, then $E_{G} \leq_{B} E_{H}$.

Proof.

The inclusion map $\mathcal{P}^{*}(G) \hookrightarrow \mathcal{P}^{*}(H)$ is a Borel reduction from E_{G} to E_{H}.

Homomorphisms

Definition

Homomorphisms

Definition

- Let E be a countable Borel equivalence relation on the standard Borel space X with invariant nonatomic probability measure μ.

Homomorphisms

Definition

- Let E be a countable Borel equivalence relation on the standard Borel space X with invariant nonatomic probability measure μ.
- Let F be a countable Borel equivalence relation on the standard Borel space Y.

Homomorphisms

Definition

- Let E be a countable Borel equivalence relation on the standard Borel space X with invariant nonatomic probability measure μ.
- Let F be a countable Borel equivalence relation on the standard Borel space Y.
- Then the Borel homomorphism $f: X \rightarrow Y$ from E to F is said to be μ-trivial iff there exists a Borel subset $Z \subseteq X$ with $\mu(Z)=1$ such that f maps Z into a single F-class.

Homomorphisms

Definition

- Let E be a countable Borel equivalence relation on the standard Borel space X with invariant nonatomic probability measure μ.
- Let F be a countable Borel equivalence relation on the standard Borel space Y.
- Then the Borel homomorphism $f: X \rightarrow Y$ from E to F is said to be μ-trivial iff there exists a Borel subset $Z \subseteq X$ with $\mu(Z)=1$ such that f maps Z into a single F-class.

Definition

If G, H are countable groups, then the group homomorphism $\pi: G \rightarrow H$ is a virtual embedding iff $|\operatorname{ker} \pi|<\infty$.

An easy consequence of Popa superrigidity

Theorem

An easy consequence of Popa superrigidity

Theorem

- Let $G=S L_{3}(\mathbb{Z}) \times S$, where S is any countable group.

An easy consequence of Popa superrigidity

Theorem

- Let $G=S L_{3}(\mathbb{Z}) \times S$, where S is any countable group.
- Let H be any countable group and let Y be a free standard Borel H-space.

An easy consequence of Popa superrigidity

Theorem

- Let $G=S L_{3}(\mathbb{Z}) \times S$, where S is any countable group.
- Let H be any countable group and let Y be a free standard Borel H -space.
If there exists a μ-nontrivial Borel homomorphism from E_{G} to E_{H}^{Y}, then there exists a virtual embedding $\pi: G \rightarrow H$.

An easy consequence of Popa superrigidity

Theorem

- Let $G=S L_{3}(\mathbb{Z}) \times S$, where S is any countable group.
- Let H be any countable group and let Y be a free standard Borel H -space.
If there exists a μ-nontrivial Borel homomorphism from E_{G} to E_{H}^{Y}, then there exists a virtual embedding $\pi: G \rightarrow H$.

Corollary

If S, T are countable groups with no nontrivial finite normal subgroups, then the following are equivalent:

- $E_{S L_{3}(\mathbb{Z}) \times S} \leq_{B} E_{S L_{3}(\mathbb{Z}) \times T}$.
- $S L_{3}(\mathbb{Z}) \times S$ embeds into $S L_{3}(\mathbb{Z}) \times T$.

Essentially free countable Borel equivalence relations

Corollary

If E is an essentially free countable Borel equivalence relation, then there exists a countable group G such that $E_{G} \not \mathbb{Z}_{B} E$.

Essentially free countable Borel equivalence relations

Corollary

If E is an essentially free countable Borel equivalence relation, then there exists a countable group G such that $E_{G} \not \mathbb{Z}_{B} E$.

Proof.

- We can suppose that $E=E_{H}^{X}$ is realised by a free Borel action on X of the countable group H.

Essentially free countable Borel equivalence relations

Corollary

If E is an essentially free countable Borel equivalence relation, then there exists a countable group G such that $E_{G} \not \mathbb{Z}_{B} E$.

Proof.

- We can suppose that $E=E_{H}^{X}$ is realised by a free Borel action on X of the countable group H.
- Let L be a f.g. group which does not embed into H.

Essentially free countable Borel equivalence relations

Corollary

If E is an essentially free countable Borel equivalence relation, then there exists a countable group G such that $E_{G} \not \mathbb{Z}_{B} E$.

Proof.

- We can suppose that $E=E_{H}^{X}$ is realised by a free Borel action on X of the countable group H.
- Let L be a f.g. group which does not embed into H.
- Let $S=L * \mathbb{Z}$ and let $G=S L_{3}(\mathbb{Z}) \times S$.

Essentially free countable Borel equivalence relations

Corollary

If E is an essentially free countable Borel equivalence relation, then there exists a countable group G such that $E_{G} \not \mathbb{L}_{B} E$.

Proof.

- We can suppose that $E=E_{H}^{X}$ is realised by a free Borel action on X of the countable group H.
- Let L be a f.g. group which does not embed into H.
- Let $S=L * \mathbb{Z}$ and let $G=S L_{3}(\mathbb{Z}) \times S$.
- Then G has no finite normal subgroups and so there does not exist a virtual embedding $\pi: G \rightarrow H$.

Essentially free countable Borel equivalence relations

Corollary

If E is an essentially free countable Borel equivalence relation, then there exists a countable group G such that $E_{G} \not \mathbb{Z}_{B} E$.

Proof.

- We can suppose that $E=E_{H}^{X}$ is realised by a free Borel action on X of the countable group H.
- Let L be a f.g. group which does not embed into H.
- Let $S=L * \mathbb{Z}$ and let $G=S L_{3}(\mathbb{Z}) \times S$.
- Then G has no finite normal subgroups and so there does not exist a virtual embedding $\pi: G \rightarrow H$.
- Hence $E_{G} \not \backslash_{B} E_{H}^{X}$.

Towards uncountably many non-essentially free countable Borel equivalence relations

Towards uncountably many non-essentially free countable Borel equivalence relations

Definition

The countable groups G, H are isomorphic up to finite kernels iff there exist finite normal subgroups $N \unlhd G, M \unlhd H$ such that $G / N \cong H / M$.

Towards uncountably many non-essentially free countable Borel equivalence relations

Definition

The countable groups G, H are isomorphic up to finite kernels iff there exist finite normal subgroups $N \unlhd G, M \unlhd H$ such that $G / N \cong H / M$.

Lemma

There exists a Borel family $\left\{S_{x} \mid x \in 2^{\mathbb{N}}\right\}$ of f.g. groups such that if $G_{x}=S L_{3}(\mathbb{Z}) \times S_{x}$, then the following conditions hold:

- If $x \neq y$, then G_{x} and G_{y} are not isomorphic up to finite kernels.
- If $x \neq y$, then G_{x} doesn't virtually embed in G_{y}.

Towards uncountably many non-essentially free countable Borel equivalence relations

Definition

The countable groups G, H are isomorphic up to finite kernels iff there exist finite normal subgroups $N \unlhd G, M \unlhd H$ such that $G / N \cong H / M$.

Lemma

There exists a Borel family $\left\{S_{x} \mid x \in 2^{\mathbb{N}}\right\}$ of f.g. groups such that if $G_{x}=S L_{3}(\mathbb{Z}) \times S_{x}$, then the following conditions hold:

- If $x \neq y$, then G_{x} and G_{y} are not isomorphic up to finite kernels.
- If $x \neq y$, then G_{x} doesn't virtually embed in G_{y}.

Definition

For each Borel subset $A \subseteq 2^{\mathbb{N}}$, let $E_{A}=\bigsqcup_{x \in A} E_{G_{x}}$ on $\bigsqcup_{x \in A}(2)^{G_{x}}$.

Not essentially free

Lemma

If the Borel subset $A \subseteq 2^{\mathbb{N}}$ is uncountable, then E_{A} is not essentially free.

Not essentially free

Lemma

If the Borel subset $A \subseteq 2^{\mathbb{N}}$ is uncountable, then E_{A} is not essentially free.

Proof.

- Suppose that $E_{A} \leq_{B} E_{H}^{Y}$, where H is a countable group and Y is a free standard Borel H-space.

Not essentially free

Lemma

If the Borel subset $A \subseteq 2^{\mathbb{N}}$ is uncountable, then E_{A} is not essentially free.

Proof.

- Suppose that $E_{A} \leq_{B} E_{H}^{Y}$, where H is a countable group and Y is a free standard Borel H-space.
- Then for each $x \in A$, we have that $E_{G_{x}} \leq_{B} E_{H}^{Y}$ and so there exists a virtual embedding $\pi_{x}: G_{x} \rightarrow H$.

Not essentially free

Lemma

If the Borel subset $A \subseteq 2^{\mathbb{N}}$ is uncountable, then E_{A} is not essentially free.

Proof.

- Suppose that $E_{A} \leq_{B} E_{H}^{Y}$, where H is a countable group and Y is a free standard Borel H-space.
- Then for each $x \in A$, we have that $E_{G_{x}} \leq_{B} E_{H}^{Y}$ and so there exists a virtual embedding $\pi_{x}: G_{x} \rightarrow H$.
- Since A is uncountable, there exist $x \neq y \in A$ such that $\pi_{x}\left[G_{x}\right]=\pi_{y}\left[G_{y}\right]$.

Not essentially free

Lemma

If the Borel subset $A \subseteq 2^{\mathbb{N}}$ is uncountable, then E_{A} is not essentially free.

Proof.

- Suppose that $E_{A} \leq_{B} E_{H}^{Y}$, where H is a countable group and Y is a free standard Borel H-space.
- Then for each $x \in A$, we have that $E_{G_{x}} \leq_{B} E_{H}^{Y}$ and so there exists a virtual embedding $\pi_{x}: G_{x} \rightarrow H$.
- Since A is uncountable, there exist $x \neq y \in A$ such that $\pi_{x}\left[G_{x}\right]=\pi_{y}\left[G_{y}\right]$.
- But then G_{x}, G_{y} are isomorphic up to finite kernels, which is a contradiction.

Uncountably many non-essentially free relations

Lemma

$E_{A} \leq_{B} E_{B}$ iff $A \subseteq B$.

Uncountably many non-essentially free relations

Lemma

$E_{A} \leq_{B} E_{B}$ iff $A \subseteq B$.

Proof.

- Suppose that $E_{A} \leq_{B} E_{B}$.

Uncountably many non-essentially free relations

Lemma

$E_{A} \leq_{B} E_{B}$ iff $A \subseteq B$.

Proof.

- Suppose that $E_{A} \leq_{B} E_{B}$.
- Suppose also that $A \nsubseteq B$ and let $x \in A \backslash B$.

Uncountably many non-essentially free relations

Lemma

$E_{A} \leq_{B} E_{B}$ iff $A \subseteq B$.

Proof.

- Suppose that $E_{A} \leq_{B} E_{B}$.
- Suppose also that $A \nsubseteq B$ and let $x \in A \backslash B$.
- Then there exists a Borel reduction from $E_{G_{x}}$ to E_{B}

$$
f:(2)^{G_{x}} \rightarrow \bigsqcup_{y \in B}(2)^{G_{y}}
$$

Uncountably many non-essentially free relations

Lemma

$E_{A} \leq_{B} E_{B}$ iff $A \subseteq B$.

Proof.

- Suppose that $E_{A} \leq_{B} E_{B}$.
- Suppose also that $A \nsubseteq B$ and let $x \in A \backslash B$.
- Then there exists a Borel reduction from $E_{G_{x}}$ to E_{B}

$$
f:(2)^{G_{x}} \rightarrow \bigsqcup_{y \in B}(2)^{G_{y}} .
$$

- By ergodicity, there exists μ_{x}-measure 1 subset of (2) $)^{G_{x}}$ which maps to a fixed (2) ${ }^{G_{y}}$.

Uncountably many non-essentially free relations

Lemma

$E_{A} \leq_{B} E_{B}$ iff $A \subseteq B$.

Proof.

- Suppose that $E_{A} \leq_{B} E_{B}$.
- Suppose also that $A \nsubseteq B$ and let $x \in A \backslash B$.
- Then there exists a Borel reduction from $E_{G_{x}}$ to E_{B}

$$
f:(2)^{G_{x}} \rightarrow \bigsqcup_{y \in B}(2)^{G_{y}} .
$$

- By ergodicity, there exists μ_{x}-measure 1 subset of $(2)^{G_{x}}$ which maps to a fixed (2) ${ }^{G_{y}}$.
- This yields a μ_{x}-nontrivial Borel homomorphism from $E_{G_{x}}$ to $E_{G_{y}}$ and so G_{x} virtually embeds into G_{y}, which is a contradiction.

Smooth disjoint unions

Question

- Is every countable Borel equivalence relation is Borel bireducible with a smooth disjoint union of free countable Borel equivalence relations?

Smooth disjoint unions

Question

- Is every countable Borel equivalence relation is Borel bireducible with a smooth disjoint union of free countable Borel equivalence relations?
- Equivalently, is E_{∞} Borel a smooth disjoint union of essentially free countable Borel equivalence relations?

Smooth disjoint unions

Question

- Is every countable Borel equivalence relation is Borel bireducible with a smooth disjoint union of free countable Borel equivalence relations?
- Equivalently, is E_{∞} Borel a smooth disjoint union of essentially free countable Borel equivalence relations?

Question

Suppose that $E_{\infty}=\bigsqcup_{z \in A} E_{z}$ is expressed as a smooth disjoint union of countable Borel equivalence relations $\left\{E_{z} \mid z \in A\right\}$. Does there necessarily exist an element $z \in A$ such that E_{z} is countable universal?

Smooth disjoint unions

Question

- Is every countable Borel equivalence relation is Borel bireducible with a smooth disjoint union of free countable Borel equivalence relations?
- Equivalently, is E_{∞} Borel a smooth disjoint union of essentially free countable Borel equivalence relations?

Question

Suppose that $E_{\infty}=\bigsqcup_{z \in A} E_{z}$ is expressed as a smooth disjoint union of countable Borel equivalence relations $\left\{E_{z} \mid z \in A\right\}$. Does there necessarily exist an element $z \in A$ such that E_{z} is countable universal?

Remark

The previous question remains open when $A=\{1,2\}$.

Partitions of the space of f.g. groups

Recall that the isomorphism relation \cong on the standard Borel space \mathcal{G} of f.g. groups is countable universal.

Question

Suppose \mathcal{G} is partitioned into two \cong-invariant Borel subsets

$$
\mathcal{G}=X \sqcup Y
$$

Is it necessarily the case that either $\cong \uparrow X$ or $\cong \uparrow Y$ countable universal?

Strongly universal relations

Definition

Suppose that E is a countable Borel equivalence relation on the standard Borel space X with invariant ergodic probability measure μ. Then E is strongly universal iff $E \upharpoonright A$ is universal for every Borel subset $A \subseteq X$ with $\mu(A)=1$.

Question

Does there exist a strongly universal countable Borel equivalence relation?

Strongly universal relations

Definition

Suppose that E is a countable Borel equivalence relation on the standard Borel space X with invariant ergodic probability measure μ. Then E is strongly universal iff $E \upharpoonright A$ is universal for every Borel subset $A \subseteq X$ with $\mu(A)=1$.

Question

Does there exist a strongly universal countable Borel equivalence relation?

Question

Suppose that E is a countable Borel equivalence relation on the standard Borel space X with invariant ergodic probability measure μ. Does there always exist a Borel subset $A \subseteq X$ with $\mu(A)=1$ such that $E \upharpoonright A$ is essentially free?

Equivalently ...

Question

Suppose that E is a countable Borel equivalence relation on the standard Borel space X with invariant ergodic probability measure μ. Does there always exist a Borel subset $A \subseteq X$ with $\mu(A)>0$ such that $(E \upharpoonright A) \times I(\mathbb{N})$ is free?

Definition

Here $I(\mathbb{N})$ is the equivalence relation on \mathbb{N} such that all points are equivalent.

