Some open problems on countable Borel equivalence relations

Simon Thomas

Rutgers University

19th March 2007

シ < (? ▲ 🗇 ▶ ▲ 🗎 ▶

Simon Thomas (Rutgers University)

UCLA Workshop

The Borel equivalence relation *E* on the standard Borel space *X* is said to be countable iff every *E*-class is countable.

Standard Example

Let G be a countable (discrete) group and let X be a standard Borel G-space. Then the corresponding orbit equivalence relation E_G^X is a countable Borel equivalence relation.

The Borel equivalence relation *E* on the standard Borel space *X* is said to be countable iff every *E*-class is countable.

Standard Example

Let G be a countable (discrete) group and let X be a standard Borel G-space. Then the corresponding orbit equivalence relation E_G^X is a countable Borel equivalence relation.

Theorem (Feldman-Moore)

If E is a countable Borel equivalence relation on the standard Borel space X, then there exists a countable group G and a Borel action of G on X such that $E = E_G^X$.

The space of torsion-free abelian groups of rank n

Definition

The standard Borel space of torsion-free abelian groups of rank n is defined to be

$$R(\mathbb{Q}^n) = \{A \leqslant \mathbb{Q}^n \mid A \text{ contains a basis } \}.$$

Remark

Notice that if $A, B \in R(\mathbb{Q}^n)$, then

 $A \cong B$ iff there exists $\varphi \in GL_n(\mathbb{Q})$ such that $\varphi[A] = B$.

Thus the isomorphism relation \cong_n on $R(\mathbb{Q}^n)$ is a countable Borel equivalence relation.

The Polish space of f.g. groups

Let \mathbb{F}_m be the free group on $\{x_1, \dots, x_m\}$ and let \mathcal{G}_m be the compact space of normal subgroups of \mathbb{F}_m . Since each *m*-generator group can be realised as a quotient \mathbb{F}_m/N for some $N \in \mathcal{G}_m$, we can regard \mathcal{G}_m as the space of *m*-generator groups. There are natural embeddings

$$\mathcal{G}_1 \hookrightarrow \mathcal{G}_2 \hookrightarrow \cdots \hookrightarrow \mathcal{G}_m \hookrightarrow \cdots$$

and we can regard

$$\mathcal{G} = \bigcup_{m \geq 1} \mathcal{G}_m$$

as the space of f.g. groups.

Theorem (Champetier)

The isomorphism relation \cong on the space G of f.g. groups is a countable Borel equivalence relation.

Simon Thomas (Rutgers University)

Let E, F be Borel equivalence relations on the standard Borel spaces X, Y respectively.

• $E \leq_B F$ iff there exists a Borel map $f : X \to Y$ such that

$$x E y \iff f(x) F f(y).$$

In this case, f is called a Borel reduction from E to F.

- $E \sim_B F$ iff both $E \leq_B F$ and $F \leq_B E$.
- $E <_B F$ iff both $E \leq_B F$ and $E \nsim_B F$.

Let E, F be Borel equivalence relations on the standard Borel spaces X, Y respectively.

• $E \leq_B F$ iff there exists a Borel map $f : X \to Y$ such that

$$x E y \iff f(x) F f(y).$$

In this case, f is called a Borel reduction from E to F.

- $E \sim_B F$ iff both $E \leq_B F$ and $F \leq_B E$.
- $E <_B F$ iff both $E \leq_B F$ and $E \nsim_B F$.

Definition

More generally, $f: X \rightarrow Y$ is a Borel homomorphism from E to F iff

$$x E y \Longrightarrow f(x) F f(y).$$

Simon Thomas (Rutgers University)

UCLA Workshop

Theorem

If E, F are countable Borel equivalence relations on the standard Borel spaces X, Y, then the following are equivalent:

- $E \sim_B F$.
- There exist complete Borel sections $A \subseteq X$ and $B \subseteq Y$ such that

$$(A, E \upharpoonright A) \cong (B, F \upharpoonright B)$$

via a Borel isomorphism.

Definition

A Borel subset $A \subseteq X$ is a complete section iff A intersects every *E*-class.

Simon Thomas (Rutgers University)

Definition

The Borel equivalence relation E is smooth iff $E \leq_B id_{2^N}$, where 2^N is the space of infinite binary sequences.

Simon Thomas (Rutgers University)

UCLA Workshop

Definition

 E_0 is the equivalence relation of eventual equality on the space $2^{\mathbb{N}}$ of infinite binary sequences.

Simon Thomas (Rutgers University)

UCLA Workshop

Definition

 E_0 is the equivalence relation of eventual equality on the space $2^{\mathbb{N}}$ of infinite binary sequences.

Question

Does there exist a nonsmooth countable Borel E with an immediate $<_B$ -successor?

うく(? * @ * * 言 *

Definition

 E_0 is the equivalence relation of eventual equality on the space $2^{\mathbb{N}}$ of infinite binary sequences.

Question

Does there exist a nonsmooth countable Borel E with an immediate $<_B$ -successor?

Question

Does there exist a nonsmooth countable Borel E with no immediate <_B-successor?

Definition

A countable Borel equivalence relation E is universal iff $F \leq_B E$ for every countable Borel equivalence relation F.

Simon Thomas (Rutgers University)

UCLA Workshop

Theorem (JKL)

The orbit equivalence relation E_{∞} of the action of the free group \mathbb{F}_2 on its powerset $\mathcal{P}(\mathbb{F}_2) = 2^{\mathbb{F}_2}$ is countable universal.

Simon Thomas (Rutgers University)

Theorem (JKL)

The orbit equivalence relation E_{∞} of the action of the free group \mathbb{F}_2 on its powerset $\mathcal{P}(\mathbb{F}_2) = 2^{\mathbb{F}_2}$ is countable universal.

Theorem (TV)

The isomorphism relation on the space of f.g. groups is countable universal.

シへ (? < 酉 ト < 亘) 19th March 2007

Theorem (Adams-Kechris 2000)

There exist 2^{\aleph_0} many countable Borel equivalence relations up to Borel bireducibility.

シ < ? ▲ 🖓 ト ▲ 🗏 ト

Simon Thomas (Rutgers University)

UCLA Workshop

Let G be a countable group and let X be a standard Borel G-space.

The Fundamental Question in the Borel setting

To what extent does the data (X, E_G^X) "remember" G and its action on X?

Let G be a countable group and let X be a standard Borel G-space.

The Fundamental Question in the Borel setting

To what extent does the data (X, E_G^X) "remember" G and its action on X?

Fact

We cannot possibly recover the group G from the data (X, E_G^X) unless we add the hypotheses that:

• G acts freely on X.

• there exists a G-invariant probability measure μ on X.

Question

Let E be a nonsmooth countable Borel equivalence relation. Does there necessarily exist a countable group G with a free measure-preserving Borel action on a standard probability space (X, μ) such that E $\sim_B E_G^X$?

Question

Let E be a nonsmooth countable Borel equivalence relation. Does there necessarily exist a countable group G with a free measure-preserving Borel action on a standard probability space (X, μ) such that $E \sim_B E_G^X$?

Definition

The countable Borel equivalence relation E on X is free iff there exists a countable group G with a free Borel action on X such that E^X_G = E.

Question

Let E be a nonsmooth countable Borel equivalence relation. Does there necessarily exist a countable group G with a free measure-preserving Borel action on a standard probability space (X, μ) such that $E \sim_B E_G^X$?

Definition

- The countable Borel equivalence relation E on X is free iff there exists a countable group G with a free Borel action on X such that $E_G^X = E$.
- The countable Borel equivalence relation E is essentially free iff there exists a free countable Borel equivalence relation F such that E ∼_B F.

Let E, F be countable Borel equivalence relations on the standard Borel spaces X, Y respectively.

Simon Thomas (Rutgers University)

Let E, F be countable Borel equivalence relations on the standard Borel spaces X, Y respectively.

• If $E \leq_B F$ and F is essentially free, then so is E.

Let E, F be countable Borel equivalence relations on the standard Borel spaces X, Y respectively.

- If $E \leq_B F$ and F is essentially free, then so is E.
- If $E \subseteq F$ and F is essentially free, then so is E.

Let E, F be countable Borel equivalence relations on the standard Borel spaces X, Y respectively.

- If $E \leq_B F$ and F is essentially free, then so is E.
- If $E \subseteq F$ and F is essentially free, then so is E.

Corollary

The following statements are equivalent:

- Every countable Borel equivalence relation is essentially free.
- E_{∞} is essentially free.

Essentially free countable Borel equivalence relations

Theorem (S.T.)

The class of essentially free countable Borel equivalence relations does not admit a universal element.

Corollary

 E_{∞} is not essentially free.

• Let *G* be a countably infinite group and let μ be the usual product probability measure on $\mathcal{P}(G) = 2^{G}$.

- Let G be a countably infinite group and let μ be the usual product probability measure on P(G) = 2^G.
- Then the free part of the action

$$\mathcal{P}^*(G) = (2)^G = \{x \in 2^G \mid g \cdot x
eq x ext{ for all } 1
eq g \in G\}$$

has μ -measure 1.

- Let *G* be a countably infinite group and let μ be the usual product probability measure on $\mathcal{P}(G) = 2^{G}$.
- Then the free part of the action

$$\mathcal{P}^*(G) = (2)^G = \{x \in 2^G \mid g \cdot x
eq x ext{ for all } 1
eq g \in G\}$$

has μ -measure 1.

• Let E_G be the corresponding orbit equivalence relation on $(2)^G$.

- Let G be a countably infinite group and let μ be the usual product probability measure on P(G) = 2^G.
- Then the free part of the action

$$\mathcal{P}^*(G) = (2)^G = \{x \in 2^G \mid g \cdot x
eq x ext{ for all } 1
eq g \in G\}$$

has μ -measure 1.

• Let E_G be the corresponding orbit equivalence relation on $(2)^G$.

Observation

If $G \leq H$, then $E_G \leq_B E_H$.

Proof.

The inclusion map $\mathcal{P}^*(G) \hookrightarrow \mathcal{P}^*(H)$ is a Borel reduction from E_G to E_H .

Simon Thomas (Rutgers University)

UCLA Workshop

Homomorphisms

Definition

Simon Thomas (Rutgers University)

UCLA Workshop

 Let E be a countable Borel equivalence relation on the standard Borel space X with invariant nonatomic probability measure μ.

Simon Thomas (Rutgers University)

- Let E be a countable Borel equivalence relation on the standard Borel space X with invariant nonatomic probability measure μ.
- Let F be a countable Borel equivalence relation on the standard Borel space Y.

- Let E be a countable Borel equivalence relation on the standard Borel space X with invariant nonatomic probability measure μ.
- Let F be a countable Borel equivalence relation on the standard Borel space Y.
- Then the Borel homomorphism f : X → Y from E to F is said to be μ-trivial iff there exists a Borel subset Z ⊆ X with μ(Z) = 1 such that f maps Z into a single F-class.

- Let E be a countable Borel equivalence relation on the standard Borel space X with invariant nonatomic probability measure μ.
- Let F be a countable Borel equivalence relation on the standard Borel space Y.
- Then the Borel homomorphism f : X → Y from E to F is said to be μ-trivial iff there exists a Borel subset Z ⊆ X with μ(Z) = 1 such that f maps Z into a single F-class.

Definition

If G, H are countable groups, then the group homomorphism $\pi: G \to H$ is a virtual embedding iff $|\ker \pi| < \infty$.

An easy consequence of Popa superrigidity

Theorem

Simon Thomas (Rutgers University)

UCLA Workshop

An easy consequence of Popa superrigidity

Theorem

• Let $G = SL_3(\mathbb{Z}) \times S$, where S is any countable group.

Simon Thomas (Rutgers University)

An easy consequence of Popa superrigidity

Theorem

- Let $G = SL_3(\mathbb{Z}) \times S$, where S is any countable group.
- Let H be any countable group and let Y be a free standard Borel H-space.

Theorem

• Let $G = SL_3(\mathbb{Z}) \times S$, where S is any countable group.

• Let H be any countable group and let Y be a free standard Borel H-space.

If there exists a μ -nontrivial Borel homomorphism from E_G to E_H^{γ} , then there exists a virtual embedding $\pi : G \to H$.

Theorem

• Let $G = SL_3(\mathbb{Z}) \times S$, where S is any countable group.

• Let H be any countable group and let Y be a free standard Borel H-space.

If there exists a μ -nontrivial Borel homomorphism from E_G to E_H^Y , then there exists a virtual embedding $\pi : G \to H$.

Corollary

If *S*, *T* are countable groups with no nontrivial finite normal subgroups, then the following are equivalent:

•
$$E_{SL_3(\mathbb{Z})\times S} \leq_B E_{SL_3(\mathbb{Z})\times T}$$
.

• $SL_3(\mathbb{Z}) \times S$ embeds into $SL_3(\mathbb{Z}) \times T$.

If *E* is an essentially free countable Borel equivalence relation, then there exists a countable group *G* such that $E_G \not\leq_B E$.

Simon Thomas (Rutgers University)

If *E* is an essentially free countable Borel equivalence relation, then there exists a countable group *G* such that $E_G \not\leq_B E$.

Proof.

• We can suppose that $E = E_H^X$ is realised by a free Borel action on X of the countable group H.

If *E* is an essentially free countable Borel equivalence relation, then there exists a countable group *G* such that $E_G \not\leq_B E$.

- We can suppose that $E = E_H^X$ is realised by a free Borel action on X of the countable group H.
- Let *L* be a f.g. group which does not embed into *H*.

If *E* is an essentially free countable Borel equivalence relation, then there exists a countable group *G* such that $E_G \not\leq_B E$.

- We can suppose that $E = E_H^X$ is realised by a free Borel action on X of the countable group H.
- Let *L* be a f.g. group which does not embed into *H*.
- Let $S = L * \mathbb{Z}$ and let $G = SL_3(\mathbb{Z}) \times S$.

If *E* is an essentially free countable Borel equivalence relation, then there exists a countable group *G* such that $E_G \not\leq_B E$.

- We can suppose that $E = E_H^X$ is realised by a free Borel action on X of the countable group H.
- Let *L* be a f.g. group which does not embed into *H*.
- Let $S = L * \mathbb{Z}$ and let $G = SL_3(\mathbb{Z}) \times S$.
- Then G has no finite normal subgroups and so there does not exist a virtual embedding π : G → H.

If *E* is an essentially free countable Borel equivalence relation, then there exists a countable group *G* such that $E_G \not\leq_B E$.

- We can suppose that $E = E_H^X$ is realised by a free Borel action on X of the countable group H.
- Let *L* be a f.g. group which does not embed into *H*.
- Let $S = L * \mathbb{Z}$ and let $G = SL_3(\mathbb{Z}) \times S$.
- Then G has no finite normal subgroups and so there does not exist a virtual embedding π : G → H.

• Hence
$$E_G \not\leq_B E_H^X$$
.

うく(? * @ * * 三 *

Simon Thomas (Rutgers University)

UCLA Workshop

19th March 2007

Definition

The countable groups G, H are isomorphic up to finite kernels iff there exist finite normal subgroups $N \trianglelefteq G$, $M \trianglelefteq H$ such that $G/N \cong H/M$.

Definition

The countable groups G, H are isomorphic up to finite kernels iff there exist finite normal subgroups $N \trianglelefteq G$, $M \trianglelefteq H$ such that $G/N \cong H/M$.

Lemma

There exists a Borel family $\{S_x \mid x \in 2^{\mathbb{N}}\}\$ of f.g. groups such that if $G_x = SL_3(\mathbb{Z}) \times S_x$, then the following conditions hold:

- If $x \neq y$, then G_x and G_y are not isomorphic up to finite kernels.
- If $x \neq y$, then G_x doesn't virtually embed in G_y .

Definition

The countable groups G, H are isomorphic up to finite kernels iff there exist finite normal subgroups $N \trianglelefteq G$, $M \trianglelefteq H$ such that $G/N \cong H/M$.

Lemma

There exists a Borel family $\{S_x \mid x \in 2^{\mathbb{N}}\}\$ of f.g. groups such that if $G_x = SL_3(\mathbb{Z}) \times S_x$, then the following conditions hold:

- If $x \neq y$, then G_x and G_y are not isomorphic up to finite kernels.
- If $x \neq y$, then G_x doesn't virtually embed in G_y .

Definition

For each Borel subset $A \subseteq 2^{\mathbb{N}}$, let $E_A = \bigsqcup_{x \in A} E_{G_x}$ on $\bigsqcup_{x \in A} (2)^{G_x}$.

Lemma

If the Borel subset $A \subseteq 2^{\mathbb{N}}$ is uncountable, then E_A is not essentially free.

Simon Thomas (Rutgers University)

Lemma

If the Borel subset $A \subseteq 2^{\mathbb{N}}$ is uncountable, then E_A is not essentially free.

Proof.

• Suppose that $E_A \leq_B E_H^Y$, where *H* is a countable group and *Y* is a free standard Borel *H*-space.

Lemma

If the Borel subset $A \subseteq 2^{\mathbb{N}}$ is uncountable, then E_A is not essentially free.

- Suppose that *E_A* ≤_{*B*} *E^Y_H*, where *H* is a countable group and *Y* is a free standard Borel *H*-space.
- Then for each $x \in A$, we have that $E_{G_x} \leq_B E_H^Y$ and so there exists a virtual embedding $\pi_x : G_x \to H$.

Lemma

If the Borel subset $A \subseteq 2^{\mathbb{N}}$ is uncountable, then E_A is not essentially free.

- Suppose that *E_A* ≤_{*B*} *E^Y_H*, where *H* is a countable group and *Y* is a free standard Borel *H*-space.
- Then for each $x \in A$, we have that $E_{G_x} \leq_B E_H^Y$ and so there exists a virtual embedding $\pi_x : G_x \to H$.
- Since *A* is uncountable, there exist $x \neq y \in A$ such that $\pi_x[G_x] = \pi_y[G_y]$.

Lemma

If the Borel subset $A \subseteq 2^{\mathbb{N}}$ is uncountable, then E_A is not essentially free.

- Suppose that $E_A \leq_B E_H^Y$, where *H* is a countable group and *Y* is a free standard Borel *H*-space.
- Then for each $x \in A$, we have that $E_{G_x} \leq_B E_H^Y$ and so there exists a virtual embedding $\pi_x : G_x \to H$.
- Since *A* is uncountable, there exist $x \neq y \in A$ such that $\pi_x[G_x] = \pi_y[G_y]$.
- But then *G_x*, *G_y* are isomorphic up to finite kernels, which is a contradiction.

Lemma

 $E_A \leq_B E_B$ iff $A \subseteq B$.

Simon Thomas (Rutgers University)

Lemma

 $E_A \leq_B E_B$ iff $A \subseteq B$.

Proof.

• Suppose that $E_A \leq_B E_B$.

Lemma

 $E_A \leq_B E_B$ iff $A \subseteq B$.

- Suppose that $E_A \leq_B E_B$.
- Suppose also that $A \nsubseteq B$ and let $x \in A \setminus B$.

Lemma

 $E_A \leq_B E_B$ iff $A \subseteq B$.

- Suppose that $E_A \leq_B E_B$.
- Suppose also that $A \nsubseteq B$ and let $x \in A \setminus B$.
- Then there exists a Borel reduction from E_{G_x} to E_B

$$f:(2)^{G_x} \rightarrow \bigsqcup_{y \in B} (2)^{G_y}.$$

Lemma

 $E_A \leq_B E_B$ iff $A \subseteq B$.

Proof.

- Suppose that $E_A \leq_B E_B$.
- Suppose also that $A \nsubseteq B$ and let $x \in A \setminus B$.
- Then there exists a Borel reduction from E_{G_x} to E_B

$$f:(2)^{G_x} \rightarrow \bigsqcup_{y \in B} (2)^{G_y}.$$

 By ergodicity, there exists μ_x-measure 1 subset of (2)^{G_x} which maps to a fixed (2)^{G_y}.

Lemma

 $E_A \leq_B E_B$ iff $A \subseteq B$.

- Suppose that $E_A \leq_B E_B$.
- Suppose also that $A \nsubseteq B$ and let $x \in A \setminus B$.
- Then there exists a Borel reduction from E_{G_x} to E_B

$$f:(2)^{G_x} \rightarrow \bigsqcup_{y \in B} (2)^{G_y}.$$

- By ergodicity, there exists μ_x-measure 1 subset of (2)^{G_x} which maps to a fixed (2)^{G_y}.
- This yields a μ_x-nontrivial Borel homomorphism from E_{G_x} to E_{G_y} and so G_x virtually embeds into G_y, which is a contradiction.

Smooth disjoint unions

Question

 Is every countable Borel equivalence relation is Borel bireducible with a smooth disjoint union of free countable Borel equivalence relations?

- Is every countable Borel equivalence relation is Borel bireducible with a smooth disjoint union of free countable Borel equivalence relations?
- Equivalently, is E_∞ Borel a smooth disjoint union of essentially free countable Borel equivalence relations?

- Is every countable Borel equivalence relation is Borel bireducible with a smooth disjoint union of free countable Borel equivalence relations?
- Equivalently, is E_∞ Borel a smooth disjoint union of essentially free countable Borel equivalence relations?

Question

Suppose that $E_{\infty} = \bigsqcup_{z \in A} E_z$ is expressed as a smooth disjoint union of countable Borel equivalence relations $\{E_z \mid z \in A\}$. Does there necessarily exist an element $z \in A$ such that E_z is countable universal?

- Is every countable Borel equivalence relation is Borel bireducible with a smooth disjoint union of free countable Borel equivalence relations?
- Equivalently, is E_∞ Borel a smooth disjoint union of essentially free countable Borel equivalence relations?

Question

Suppose that $E_{\infty} = \bigsqcup_{z \in A} E_z$ is expressed as a smooth disjoint union of countable Borel equivalence relations $\{E_z \mid z \in A\}$. Does there necessarily exist an element $z \in A$ such that E_z is countable universal?

Remark

The previous question remains open when $A = \{1, 2\}$.

シ < C < □ > < 目

Recall that the isomorphism relation \cong on the standard Borel space \mathcal{G} of f.g. groups is countable universal.

Question

Suppose \mathcal{G} is partitioned into two \cong -invariant Borel subsets

 $\mathcal{G}=\boldsymbol{X}\sqcup\boldsymbol{Y}.$

Is it necessarily the case that either $\cong \upharpoonright X$ or $\cong \upharpoonright Y$ countable universal?

Definition

Suppose that *E* is a countable Borel equivalence relation on the standard Borel space *X* with invariant ergodic probability measure μ . Then *E* is strongly universal iff $E \upharpoonright A$ is universal for every Borel subset $A \subseteq X$ with $\mu(A) = 1$.

Question

Does there exist a strongly universal countable Borel equivalence relation?

Definition

Suppose that *E* is a countable Borel equivalence relation on the standard Borel space *X* with invariant ergodic probability measure μ . Then *E* is strongly universal iff $E \upharpoonright A$ is universal for every Borel subset $A \subseteq X$ with $\mu(A) = 1$.

Question

Does there exist a strongly universal countable Borel equivalence relation?

Question

Suppose that *E* is a countable Borel equivalence relation on the standard Borel space *X* with invariant ergodic probability measure μ . Does there always exist a Borel subset $A \subseteq X$ with $\mu(A) = 1$ such that $E \upharpoonright A$ is essentially free?

Suppose that E is a countable Borel equivalence relation on the standard Borel space X with invariant ergodic probability measure μ . Does there always exist a Borel subset $A \subseteq X$ with $\mu(A) > 0$ such that $(E \upharpoonright A) \times I(\mathbb{N})$ is free?

Definition

Here $I(\mathbb{N})$ is the equivalence relation on \mathbb{N} such that all points are equivalent.

Simon Thomas (Rutgers University)