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1. Group actions: basic properties

1.1. Probability spaces as von Neumann algebras. The “classical” measure the-
oretical approach to the study of actions of groups on the probability space is equivalent
to a “non-classical” operator algebra approach due to a well known observation of von
Neumann, showing that measure preserving isomorphisms between standard probabil-
ity spaces (X,µ) are in natural correspondence with ∗-algebra isomorphisms between
their function algebras L∞X = L∞(X,µ) preserving the functional given by the inte-
gral, τµ =

∫
·dµ. More precisely:

1.1.1. Theorem. 1◦. Let T : (X,µ) → (Y, ν) be a measurable map with ν ◦ T = µ.
Then ρT : L∞Y → L∞X defined by ρT (x)(s) = x(Ts), s ∈ X, is an injective ∗-algebra
morphism satisfying τµ◦ρT = τν . Conversely, if (X,µ), (Y, ν) are probability spaces and
ρ : L∞Y → L∞X is an injective ∗-algebra morphism such that τµ ◦ j = τν , then there
exists a measurable map T : X → Y , such that ρ = ρT . Moreover, T is unique and
onto, modulo a set of measure 0, and the correspondence T 7→ ρT is “contravariant”
functorial, i.e. ρS◦T = ρT ◦ ρS. Also, T is a.e. 1 to 1 if and only if ρ is onto and if
this is the case then T−1 is also measurable and measure preserving.

2◦. If (X,µ) is a non-atomic probability space then (X,µ) ' (T, λ) and (L∞X, τµ) '
(L∞T, τλ).

Proof. The fact that ρT is a ∗-algebra isomorphism preserving the integral is trivial by
the definition. Also, T 7→ ρT is clearly functorial.

If (X,µ) has no atoms then one can easily construct recursively finite “diadic” parti-
tions Pn = {pnk | 1 ≤ k ≤ mn} with projections in L∞X such that τµ(pnk ) = 2−mn ,∀k,

Pn ⊂ Pn+1,∀n, and ∪nΣkCpnk = L∞X, thus giving an isomorphism ρ of (L∞X, τµ)
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onto (L∞Y, τλ), where Y is the compact group (Z/2Z)N with its Haar measure λ. Also,
this isomorphism clearly implements a measurebale onto (a.e.) map T : X → Y such
that ρ = ρT . From this point on, the only non-trivial part in completing the proof of
both 1◦ and 2◦ is then to show that T follows 1 to 1 a.e. as well (by using the fact
that ρT is onto). We refer to Royden’s “Real Analysis” book for the proof of this latter
fact. Q.E.D.

From now on, if T : (X,µ) ' (Y, ν) is an isomorphism of probability spaces then we
denote ϑT the integral preseving isomorphism of L∞X onto L∞Y given by ϑT = ρT−1 .
Note that the correspondence T → ϑT becomes “covariant” functorial.

There are two norms on L∞X that are relevant for us, namely the ess-sup norm
‖ · ‖ = ‖ · ‖∞ and the norm ‖ · ‖2. Note that the unit ball (L∞X)1 of L∞X (in the
norm ‖ · ‖) is complete in the norm ‖ · ‖2. At times, we will also consider the norm

‖ · ‖1 on L∞X. By Cauchy-Schwartz, we have ‖x‖1 ≤ ‖x‖2 ≤ ‖x‖1/21 , ∀x ∈ (L∞X)1,
so the the corresponding topologies structures are equivalent.

We often identify L∞X with the von Neumann algebra of (left) multiplication op-
erators Lx, x ∈ L∞X, where Lx(ξ) = xξ, ξ ∈ L2X. The identification x 7→ Lx is a
∗-algebra morphism, it is isometric (from L∞X with the ess-sup norm into B(L2X) with
the operatorial norm) and takes the ‖·‖2-topology of (L∞X)1 onto the strong operator
topology on the image. Also, the integral τµ(x) becomes the vector state 〈Lx(1), 1〉,
x ∈ L∞X. Moreover, if T : (X,µ) ' (Y, ν) for some other probability space (Y, ν), then
ϑT extends to an (isometric) isomorphism of Hilbert spaces UT : L2X ' L2Y which
conjugates the von Neumann algebras L∞X ⊂ B(L2X), L∞Y ⊂ B(L2Y ) onto each
other, spatially implementing the isomorphism ϑT , i.e. UTLxU

∗
T = LϑT (x), ∀x ∈ L∞X.

If {(Xn, µn)}n is a sequence of standard probability spaces then the product prob-
ability space Πn(Xn, µn) can be defined in the obvious way. One can readily see that
there is a natural identification between L∞ΠnXn with the integral given by the prod-
uct measure and the tensor product of algebras ⊗n(L∞Xn, τµn).

1.2. Actions of groups by automorphisms. We denote by Aut(X,µ) the group
of (classes modulo null sets of) measure preserving automorphisms T : (X,µ) '
(X,µ) of the standard probability space (X,µ). Denote Aut(L∞X, τµ) the group
of ∗-automorphisms of the von Neumann algebra L∞X that preserve the functional
τµ =

∫
·dµ, and identify Aut(X,µ) and Aut(L∞X, τµ) via the map T 7→ ϑT described

in 1.1.1◦ above.
One immediate benefit of the functional analysis framework and of this identification

is that it gives a natural Polish group topology on Aut(X,µ), given by pointwise ‖ · ‖2-
convergence in Aut(L∞X, τµ), i.e. ϑn → ϑ in Aut(L∞X, τµ) if limn ‖ϑn(x)−ϑ(x)‖2 =
0, ∀x ∈ L∞X.

1.2.1. Lemma. 1◦. The topologies of wo, so and so∗ convergence on the unitary
group U(H) on a Hilbert space H coincide and give a structure of topological group on
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U(H). If H is separable then U(H) endowed with either one of these topologies is a
Polish group.

2◦. The map Aut(X,µ) 3 T 7→ UT ∈ U(L2X) has close image and it is an isomor-
phism of topological groups, from Aut(X,µ) onto its image in U(L2X).

Proof. If ui, u ∈ U(H) are unitary elements such that limi ‖uiξ − uξ‖ = 0, ∀ξ ∈ H,
then taking ξ = u∗η we get

lim
i
‖uiξ − uξ‖ = lim

i
‖uiu∗η − η‖ = 0,∀η ∈ H.

Thus, the so and so∗ topologies coincide on U(H). Also, if ui tends to u in the wo
topology then for any unit vector ξ ∈ H we have 〈uiξ, uξ〉 → 1, thus ‖uiξ − uξ‖2 =
2− 2Re〈uiξ, uξ〉 → 0, showing that ui converges so to u. The rest of the statement is
trivial by the definitions. Q.E.D.

An action of a discrete group Γ on the standard probability space (X,µ) is a group

morphism σ : Γ → Aut(X,µ). We’ll often use the notation Γ
σy (X,µ) to emphasize

an action σ, or simply Γ y X if no confusion is possible. We’ll sometimes consider
topological groups G other than discrete (typically locally compact or Polish), in which
case an action of G on (X,µ) will be a morphism of topological groups G→ Aut(X,µ).

Using the identification between Aut(X,µ) and Aut(L∞X, τµ), we alternatively view
σ as an action of Γ on (L∞X, τµ), i.e as a group morphism σ : Γ → Aut(L∞X, τµ).
Although we use the same notation for both actions, the difference will be clear from
the context. Furthermore, when viewing σ as an action on the probability space (X,µ),
we’ll use the simplified notation σg(t) = gt, for g ∈ Γ, t ∈ X. The relation between σ
as an action on (X,µ) and respectively on (L∞X, τµ) is then given by the equations
σg(x)(t) = x(g−1t), ∀t ∈ X (a.e.), which hold true for each g ∈ Γ, x ∈ L∞X.

Since any σg extends to a unitary operator on L2X, σ : Γ→ Aut(L∞X, τµ) extends
to a unitary representation of Γ on the Hilbert space L2X, denoted Uσ, or simply σ.

Two actions σ : Γ → Aut(X,µ), θ : Λ → Aut(Y, ν), are conjugate with respect
to an isomorphism δ : Γ ' Λ if there exists an isomorphism of probability spaces
∆ : (X,µ)→ (Y, ν) (or equivalently an integral preserving isomorphism ∆ from L∞X
onto L∞Y ) such that ∆ ◦ σg = θδ(g) ◦∆, ∀g ∈ Γ. If there exists some δ : Γ ' Λ such
that Γ y X,Λ y Y are conjugate with respect to δ, then we simply say that Γ y X,
Λ y Y are conjugate. Note that if σ, θ are faithful then this condition is equivalent to
the condition {∆σg∆−1 | g ∈ Γ} = {θh | h ∈ Λ}.

1.3. Freeness, ergodicity and mixing properties. The action Γ y X is free if
for any g ∈ Γ, g 6= e, the set {t ∈ X | gt = t} has µ-measure 0. On the function space
L∞X, this amounts to aσg(x) = xa,∀x ∈ L∞X, for some a ∈ L∞X, implies either
g = e or a = 0.
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The action is ergodic if X0 ⊂ X measurable with gX0 = X0 (a.e.) for all g ∈ Γ,
implies X0 = X or X0 = ∅ (a.e.), in other words µ(X0) = 0, 1. Equivalently, if p is a
projection in the von Neumann algebra L∞X then σg(p) = p, ∀g ∈ Γ implies p = 0, 1. It
is immediate to see that if this condition is satisfied then the only measurable functions
x : X → C that are fixed by σ, i.e. σg(x) = x, ∀g ∈ Γ, are the constant functions (a.e.).
Indeed, this is clear for x ∈ L∞X, because if σ fixes x then it fixes all its spectral
decomposition (this being obtained as weak limits of polynomials in x, x∗, which are
all fixed by σ), which thus follow scalar multiples of 1, thus x itself is constant. If x
is arbitrary measurable then σ fixes its polar decomposition x = ua, i.e. σg(u) = u,

σg(a) = a, ∀g ∈ Γ, where a = (x∗x)1/2 and u = xa−1. Thus u ∈ C by the first part, and
b = (1 + a)−1 ∈ L∞X+ satisfies σg(b) = b, ∀g ∈ Γ, implying b ∈ C, thus a ∈ C. Note
that the above argument also shows that the fixed point algebra (L∞X)σ is ‖·‖2-dense
(resp. ‖ · ‖1-dense) in the set of fixed points of the action σ on L2X (resp. L1X).

Notice that an action Γ
σy (X,µ) is ergodic iff the corresponding unitary represen-

tation σ of Γ on L2X 	 C1 has no fixed vectors, i.e. it does not contain the trivial
representation 1Γ.

1.3.1. Lemma. 1◦. A unitary representation σ : Γ → U(H) is ergodic (i.e. 1Γ � σ)
iff given any ξ, η ∈ H and any ε > 0 there exists g ∈ Γ such that Re〈σg(ξ), η〉 ≤ ε.

2◦. An action Γ
σy (X,µ) is ergodic iff for any p, q ∈ P(L∞X) and any ε > 0 there

exists g ∈ Γ such that τµ(σg(p)q) ≤ (1 + ε)τµ(p)τµ(q).

Proof. 1◦. If Re〈σg(ξ), η〉 ≥ ε, ∀g ∈ Γ, then Re〈ζ, η〉 ≥ ε, ∀ζ ∈ Kξ = cow{σg(ξ) | g ∈
Γ}. Since Kξ is convex and compact in the w∗ duality topology, it follows that there
exists a unique element ζ0 ∈ Kξ of minimal norm. But Kξ is σ-invariant by definition
and ‖σg(ζ)‖ = ‖ζ‖, ∀ζ ∈ Kξ, so by uniqueness σg(ζ0) = ζ0,∀g ∈ Γ. Since σ is ergodic,
this implies ζ0 = 0 ∈ Kξ. Thus 0 = Re〈ζ0, η〉 ≥ ε, a contradiction.

2◦. Just apply part 1◦ to ξ = p− τµ(p)1, η = q − τµ(q)1. Q.E.D.

1.3.2. Remarks. (a). The proof of part 1◦ of the above lemma works equally
well when instead of a unitary representation σ one has a semigroup Th, h ∈ H, of
contractions on the Hilbert space H, i.e. ThTh′ = Thh′ , h, h

′ ∈ H, and ‖Th‖ ≤ 1,∀h.
(b). Assume σ is as in 1◦ of the lemma (or more generally an ergodic semigroup

of contractions on H). Since the closure of convex subsets of H in the w∗-duality
topology and in the Hilbert norm coincide and since the proof of 1.3.1.1◦ above shows
that 0 ∈ Kξ, it follows that for any ε > 0 there exist g1, ..., gn ∈ Γ such that

(b’) ‖n−1Σiσgi(ξ)‖ ≤ ε.

On the other hand, this latter fact trivially implies 1.3.1.1◦. More concrete ways
of getting convex combinations of σgi(ξ) of small norm are provided by the following
general form of von Neumann’s Mean Ergodic theorem: If {Th | h ∈ H} is an amenable
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semigroup of contractions on the Hilbert space H, and Fi ⊂ Γ is a (right) Folner family
of finite subsets of the amenable semigroup H, then

(b”) lim
i
‖|Fi|−1Σg∈FiTg(ξ)− p0(ξ)‖ = 0,∀ξ ∈ H,

where p0 is the orthogonal projection onto the subspace of fixed points H0 = {ξ ∈ H |
Tgξ = ξ,∀g ∈ H}. The proof of this result goes as follows: Since Tg are contractions,
any fixed point of Tg is a fixed point for T ∗g , thus H 	 H0 is invariant to Tg, g ∈ H.
So to prove the theorem it is sufficient to prove it in the case H0 = 0. But then the
span of the vectors ξ = η − Th(η), η ∈ H, is dense in H, showing that it is sufficient
to prove the convergence (b′′) for such η− Th(η) only. But this is trivial by the Følner
condition.

If the group Γ in 1.3.1.1◦ above is finitely generated, say by g1, ..., gk ∈ Γ, and we
denote by T the Laplacian k−1Σhσgi ∈ B(H), then by von Neumann’s ergodic mean
value theorem (for the semigoup H = {n | n ≥ 1}) it follows that for each ξ ∈ H, ε > 0
there exists n large enough such that ‖Tnξ‖ ≤ ε. In case Γ is itself amenable with
Folner sets Fn ⊂ Γ, one can take the “specific” convex combinations in (b′) of the form
|Fn|−1Σg∈Fnσg(ξ).

(c). The above considerations applied to q = 1− p in part 1◦ of Lemma 1.3.1 show
that if the group Γ is infinite and σ is an arbitrary m.p. action of Γ on the probability
space (X,µ) then given any subset of positive measure X0 ⊂ X there exist an infinite
sequence gn ∈ Γ such that lim supn µ(X0∩gnX0) ≥ µ(X0)2, i.e. a version for arbitrary
groups of Poincare’s “returning” lemma. We leave this as an exercise. There is a
straight way to get recursively a “returning” sequence gn when the group Γ satisfies
the following property: For any finite F0 ⊂ Γ there exists a semigroup Γ0 ⊂ Γ disjoint
from F0 that generates Γ as a group. For if we assume Γ satisfies this property, then for
any ξ ∈ L2X the set KΓ0

ξ = {σg(ξ) | g ∈ Γ0} is Γ0-invariant thus its (unique) element

ξ0 of minimal norm ‖ · ‖2 is a Γ0-fixed point. Since Γ0 generates Γ, ξ0 is fixed by Γ as
well. Applying this to ξ0 = 1 − p and reasoning as in the proof of 1.3.1, for a given
ε > 0 one gets g ∈ Γ0 (thus not in F ) such that τµ(σg(1− p)p) ≤ (1 + ε)τµ(E(1− p)p),
where E is the conditional expectation onto the fixed points of σ. But τµ(E(1−p)p) ≤
τµ(1− p)τµ(p) (exercise) so τµ(σg(p)p) ≥ (1 + ε)τ(p)2− ετ(p), which for ε ≤ τ(p)2/4 is

larger than (1− ε1/2)τ(p)2.

An action Γ
σy (X,µ) is weak mixing (resp. mixing) if for any finite set F ⊂

L∞X 	C and any ε > 0 there exists g ∈ Γ (resp. there exists K0 ⊂ Γ finite) such that
|τµ(η∗σg(ξ))| ≤ ε, ∀ξ, η ∈ F (resp. ∀g ∈ K0). It is trivial to see that if this condition
holds true for subsets F in L∞X 	C1 then it holds true for subsets F in L2X 	C1 as
well.

Related to this, we’ll say that a unitary representation of Γ on a Hilbert space H
is weak mixing (resp. mixing) if ∀F ⊂ H finite there exists g ∈ Γ (resp. there exists
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K0 ⊂ Γ finite) such that |〈σg(ξ), η〉| ≤ ε,∀ξ, η ∈ F (resp. ∀g ∈ K0). We will use the
same terminology for orthogonal representations of Γ on real Hilbert spaces (i.e. group
morphisms of Γ into the group of orthogonal operators on a real Hilbert space H; note
that such representations correspond, via GNS construction, to positive definite real
valued maps on Γ).

It is immediate to see that a representation σ is mixing iff all its coefficients vanish at
infinity, equivalently all positive definite functions affiliated with the representation are
in c0(Γ) (are compact). For weak-mixing, we have some alternative characterisations:

1.3.3. Lemma. Let σ : Γ → U(H) be a unitary representation of Γ on the Hilbert
space H. The following are equivalent:

(i). σ is weak mixing.
(ii). Given any other representation σ0 : Γ → U(H0) the product representation

σ ⊗ σ0 of the group Γ is ergodic.
(iii). σ(Γ)′ ∩ K(H) = 0.
(iii′). There are no σ(Γ)-invariant finite dimensional non-zero vector subspaces of

H.

Proof. (i) =⇒ (ii). Assume ξ ∈ H⊗H0 is fixed by σ ⊗ ρ. By the density of
H ⊗ H0 in H⊗H0 there exists an orthonormal system ξ1, ξ2, ..., ξn ∈ H and elements

η1, η2, ..., ηn ∈ H0 such that if we denote ξ′ =
n

Σ
i=1
ξi ⊗ ηi then we have

‖ξ − ξ′‖2 < ε/(3‖ξ‖2) and‖ξ′‖2 ≤ ‖ξ‖2.

Since σ is weakly mixing, there exists g ∈ Γ such that

n

Σ
i,j=1
|〈(σg(ξi)ξ∗j 〉| |〈(ρg(ηi)η∗j 〉| < ε/3.

Thus, in H⊗H0 we have:
|〈(σg ⊗ ρg)(ξ′

∗
)ξ′〉| < ε/3.

As a consequence we get

‖ξ‖2 ≤ |〈(θg ⊗ ρg)(ξ′
∗
)ξ′)|+ 2‖ξ − ξ′‖2‖ξ‖2 < ε.

Since ε > 0 was arbitrary, it follows that ξ = 0.
(ii) =⇒ (iii). If σ(Γ) commutes with a non-zero compact operator then it com-

mutes with a non-zero finite rank projection. By applying (ii) to ρ = σ and by taking
into account that the Hilbert space of Hilbert-Schmidt operators S on H, with the ac-
tion S 7→ Adσg(S) of Γ on it, can be naturally identified with H⊗H∗, with the action
σ ⊗ σ on it, it follows that there are no finite rank projections commuting with σ(Γ).
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(iii) ⇔ (iii′). If H0 ⊂ H is finite-deminsional invariant then the projection on
it is compact and commutes with σ(Γ). Conversely if K ∈ σ(Γ)′ ∩ K(H) then any
spectral projection of K∗K still commutes with σ(Γ), so the suspace it projects on is
σ(Γ)-invariant.

(iii) =⇒ (i). Let H0 ⊂ H be the linear span of F and p0 the orthogonal projection
onto H0, regarded as an element in the Hilbert space HS of Hilbert-Schmidt operators
on H. Since by (ii), H has no non-zero finite dimensional subspaces invariant to σ
it follows that ∀δ > 0, ∃g ∈ Γ such that in HS we have Tr(σg(p0)p0) < δ. Indeed,
because if there would exist some δ0 > 0 such that Tr(σg(p0)p0) ≥ δ0,∀g ∈ Γ, then
for any y in the weak closure of the convex hull Kp0 ⊂ HS of {σg(p0)}g we would still
have Tr(yp0) ≥ δ0.

In particular, this would happen for the unique element y0 ∈ Kp0 of minimal norm
‖ ‖2,Tr. But since ‖σg(y0)‖2,Tr = ‖y0‖2,Tr, it follows that σg(y0) = y0,∀g ∈ Γ. This
implies that any spectral projection of y0 ≥ 0 is invariant to σ. By (ii) any such
projection is equal to 0. Thus y0 = 0, contradicting Tr(y0p0) ≥ δ0 > 0. But if
Tr(σg(p0)p0) < δ for some g ∈ G and for a sufficiently small δ > 0, then this implies
〈σg(ξ)η〉 < ε,∀ξ, η ∈ F = F ∗. Q.E.D.

1.3.4. Corollary. If Γ is an infinite group then the left regular representation λΓ

of Γ is mixing and all infinite dimensional irreducible representations of Γ are weakly
mixing.

Note that (i)⇔ (iii′) in Lemma 1.3.3 holds true for real orthogonal representations
of Γ as well, as its proof doesn’t depend on H being complex or real Hilbert space.
Likewise, 1.3.4 equally holds for orthogonal representations of Γ.

Lemma 1.3.3 also implies:

1.3.5. Corollary. Let Γ
σy (X,µ) be an action of a discrete group Γ on the standard

probability space (X,µ). The following conditions are equivalent:

(i). σ is weakly mixing.

(ii). For any action Γ
ρ
y (Y, ν), the fixed point algebra of the product action σg ⊗

ρg, g ∈ Γ, coincides with the fixed point algebra of ρ, i.e. L∞(X × Y, µ × ν)θ⊗ρ =
C⊗ L∞(Y, ν)ρ.

(iii). For any ergodic action Γ
ρ
y (Y, ν), the product action σg⊗ρg, g ∈ Γ, is ergodic.

(iv). The only finite dimensional vector subspace of L2X invariant to σg, g ∈ G, is
C1.

1.4. Compact actions. An action Γ
σy (X,µ) is compact if the closure of σ(Γ) in

Aut(X,µ) is compact. Similarly, a representation σ : Γ → U(H) is compact if σ(Γ) is
precompact in U(H) (the later with its Polish group topology).
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1.4.1. Lemma. The following conditions are equivalent.
(i). σ is compact.
(ii). σ(Γ)ξ is precompact in H,∀ξ ∈ H.
(iii). The von Neumann algebra generated by σ(Γ) is atomic of type Ifin, i.e. σ is

a direct sum of finite dimensional representations.

Proof. This is well known (and trivial). Q.E.D.

Note that a compact representation (or action) can be ergodic, or even strongly
ergodic (see examples ...), but not weakly mixing. Even more so, if ρ is compact and
σ weak mixing then ρ cannot be contained (direct summand) in σ, i.e. a compact rep
cannot be contained in a w-mixing rep.

1.5. Strong ergodicity and spectral gap. An action Γ
σy (X,µ) has spectral gap if

there exist g1, g2, ..., gn ∈ Γ and c > 0 such that Σi‖σgi(ξ)−ξ‖2 ≥ c‖ξ‖2, ∀ξ ∈ L2X\C1.
The convexity properties of the Hilbert space L2X easily imply that this is equivalent
to the existence of a gap (c0, 1) in the spectrum of the (norm one selfadjoint) Laplace
operator ξ 7→ (2n)−1Σi(σgi(ξ) + σ−1

gi (ξ)) on L2X 	 C1, with C1 as the eigenspace for
the eigenvalue 1.

A bounded sequence (xn)n ⊂ L∞X is asymptotically σ-invariant if limn ‖σg(xn) −
xn‖2 = 0, ∀g ∈ Γ. The asymptotically invariant sequence (xn) is non-trivial if

lim infn ‖xn − τ(xn)1‖2 6= 0. The action Γ
σy (X,µ) is strongly ergodic if it has no

non-trivial asymptotically invariant sequences. Spectral gap clearly implies strong er-
godicity. We have the following equivalent characterisations of each of these properties.

1.5.1. Proposition. The following are equivalent:

(i). The action Γ
σy (X,µ) has spectral gap.

(ii). There exist c0 > 0 and g1, ..., gn ∈ Γ such that for any projection p ∈ L∞X
with τµ(p) ≤ 1/2 we have Σi‖σgi(p)− p‖2 ≥ c0‖p‖2.

(ii′). For any 1 > δ0 > 0 there exists c > 0 and g1, ..., gn ∈ Γ such that for any
projection p ∈ L∞X with τµ(p) ≤ δ0 we have Σi‖σgi(p)− p‖2 ≥ c‖p‖2.

(iii). There exists a countable subgroup Γ0 ⊂ Γ for which there is no σ(Γ0)-invariant
state on L∞X other than τµ =

∫
·dµ.

(iv). 1Γ ⊀ (Γ y L2X 	 C1).

Proof. (i)⇔ (iv) and (ii′)⇒ (ii) are trivial.
(iii) ⇒ (ii′). This amounts to showing that if we assume (ii′) is not satisfied then

given any countable subgroup Γ0 ⊂ Γ there exists a σ(Γ0)-invariant state on L∞X
other than τµ.

But non-(ii′) implies that there exists 1 > δ0 > 0 such that given any countable
Γ0 ⊂ Γ there exists a sequence of non-zero projections pn ∈ L∞X such that τµ(pn) ≤ δ0
and limn ‖σg(pn)−pn‖2/‖pn‖2 = 0, ∀g ∈ Γ0. We call such a sequence a σ(Γ0)-invariant
sequence of projections. By taking a subsequence of pn if necessary, we may assume
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τµ(pn) is convergent. We want to prove that we may further assume limn τµ(pn) = 0.
Note that if c ≥ 0 is the infimum over all s ≥ 0 for which there exists a σ(Γ0)-invariant
sequence pn with limn τµ(pn) = s then there exists a σ(Γ0)-invariant sequence qn with
limn σµ(qn) = c. If c > 0 then by ergodicity there exist finite sets Fn ⊂ Γ0 such that
‖|Fn|−1Σg∈Fnσg(qn)−τ(qn)1‖2 ≤ 2−n. By the asymptotic invariance of qn, there exists
a fast growing k1 << k2 << ... such that ‖|Fn|−1Σg∈Fnσg(qkn)−qkn‖2 ≤ 2−n. But then
an easy calculation shows that pn = qnqkn is still σ(Γ0)-invariant and limn τµ(pn) = c2.
Thus c = 0. Note that this also proves (ii)⇒ (ii′).

By taking a subsequence of the σ(Γ0)-invariant sequence pn we may even assume
τµ(pn) ≤ 2−n. But then it is immediate to see that any weak limit point of τµ(·pn)/τµ(pn) ∈
L1X ⊂ (L∞X)∗ is a singular σ(Γ0)-invariant state on L∞X (because its support has
arbitrarily small size).

(iv)⇒ (iii) Assume by contradiction that for any countable subgroup Γ0 ⊂ Γ there
exists a σ(Γ0)-invariant state ϕ 6= τµ on L∞X. We will show that this implies that for
any g1, ..., gn ∈ Γ and any ε > 0 there exists a unit vector ξ ∈ L2X 	 C1 such that
‖σgi(ξ)− ξ‖2 ≤ ε, ∀i.

We first show that we may assume ϕ is singular (with respect to µ). If ϕ would
be normal then by the Radon-Nykodim theorem it is of the form ϕ = τµ(·a) for some

a ∈ L1X+ with τµ(a) = 1, a 6= 1. But then a1/2 − τµ(a1/2)1 6= 0 is a σ(Γ0-invariant
vector in L1X 	 C1 and since Γ0 was arbitrary this would imply that 1Γ is contained
in the representation σ of Γ on L2X 	C1, a contradiction. Thus, ϕ is not normal and
so its singular part is non-zero and still σ(Γ0)-invariant.

Let f ∈ L∞X be a non-zero projection such that ϕ(f) = 1 and τµ(f) ≤ ε. Denote
L the set of normal states ψ on L∞X such that ψ(f) ≥ 1−ε. Thus L is a subset of the
unit ball of L1X+, and note right away that ϕ is in the closure of L in (L∞X)∗ in the
duality topology with L∞X. Let V denote the set of n-tuples (ψ − ψ ◦ σgi)ni=1, with
ψ ∈ L. Then V is a (bounded) convex subset of (L1X)n ⊂ (L∞X∗)n = (LinftyXn)∗.
We claim that 0 = (0, ..., 0) is in the (norm) closure of V in the Banach space (L1X)n.
Indeed, for if not then by the Hahn-Banach theorem there exists ψ = (x1, ..., xn) ∈
((L1X)n)∗ = (L1X∗)n = (L∞X)n such that

ReΣni=1(ψ(xi)− ψ(σgi(xi)) ≥ α > 0,∀ψ ∈ L.
But this would then hold true equally well for all weak limits of ψ ∈ L in L∞X∗, thus
for ϕ. But ϕ is σgi-invariant, thus

0 = ReΣni=1(φ(xi)− φ(σgi(xi)) ≥ α > 0,

a contradiction.
Thus, since 0 ∈ L it follows that there is a ∈ L1X+ with τµ(a) = 1, τµ(af) ≥ 1− ε

and ‖σgi(a)− a‖1 ≤ ε2. But then b = (fa)1/2 − τµ((fa)1/2)1 ∈ L2X 	 C1 satisfies

‖b‖2 = τ(fa)− τµ(fa1/2)2 ≥ 1− ε− τ(f)τ(a) ≥ 1− 2ε,
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(by Cauchy-Schwartz), while

‖σgi(b)− b‖2 ≤ ‖σgi(fa)− fa‖1/21 ≤ (‖σgi(a)− a‖1 + 2ε)1/2 ≤ 2ε1/2

Altogether, b0 = b/‖b‖2 is a unit vector in L2X	C1 with ‖σgi(b0)− b0‖2 ≤ 2ε1/2/(1−
2ε). Since ε > 0 was arbitrary, we are done.

(ii)⇒ (iv). If (iv) doesn’t hold true and ξ ∈ L2X 	 C1 is a unit vector ε-invariant
to σgi for some finite set g1, ..., gn ∈ Γ then either the real or the imaginary part of
ξ will still be σgi-invariant and be of L2-norm ≥ 1/2. Thus, we may assume ξ = ξ∗.
This implies |ξ| is almost invariant as well, thus so are ξ+, ξ−, while τµ(ξ+) = τµ(ξ−)
(because τµ(ξ) = 0) and τµ(ξ2

+) + τ(ξ2
−) = 1. We may assume ξ+ has support s

of smaller size than the support of ξ−. Then if τµ(ξ2
+) is “sizeable”, an appropriate

spectral projection of ξ+ will be almost invariant and of trace ≤ 1/2, by Lemma 1.5.2
below. If in turn τµ(ξ2

+) is small then τ(ξ+) is small, so τ(|ξ|) = 2τ(ξ+) is altogether
small. Thus an appropriate spectral projection of |ξ| will be away from 0 and still be
almost invariant by Lemma 1.5.2 again. Q.E.D.

1.5.2. Lemma (Namioka’s trick). Let (Y, ν) be a measurable space and a, bi ∈ L1Y ,
1 ≤ i ≤ n, with a, bi ≥ 0, τν(a) = 1, Σi‖a− bi‖1 < ε. Then there exists s > 0 such that
Σi‖es(a) − es(bi)‖22 < ε‖es(a)‖22, where for a measurable function b : Y → [0,∞) and
s > 0 we denote es(b) the characteristic function of the set {t ∈ Y | b(t) > s}.
Proof. Note first that if t, ti ≥ 0 then |t− ti| =

∫
s>0
|χ[s,∞)(t)−χ[s,∞)(ti)|ds. Applying

this to t = a(x), ti = bi(x), by Fubini’s theorem we have

Σi‖a− bi‖1 = Σi

∫
Y

|a(x)− bi(x)|dν(x)

= Σi

∫
Y

(

∫
s>0

|es(a(x))− es(bi(x))|ds)dν(x)

= Σi

∫
s>0

(

∫
Y

|es(a(x))− es(bi(x))|dν(x))ds

= Σi

∫
s>0

‖es(a)− es(bi)‖1ds.

In particular, this also shows that 1 = ‖a‖1 =
∫
s>0
‖es(a)‖1ds. Thus we have

Σi

∫
s>0

‖es(a)− es(bi)‖1ds < ε

∫
s>0

‖es(a)‖1ds,

which implies that for at least one s > 0 we have Σi‖es(a) − es(bi)‖1 < ε‖es(a)‖1.
Since for any partial isometry v (which both es(a) and es(a) − es(bi) are) we have
‖v‖1 = ‖v‖22, the statement follows.

Q.E.D.
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1.5.3. Proposition. The following are equivalent:

(i). The action Γ
σy (X,µ) is strongly ergodic.

(ii). There exist g1, ..., gn ∈ Γ and 1/2 ≥ c0 > 0 such that for any projection
p ∈ L∞X with c0 ≤ τµ(p) ≤ 1− c0 we have Σi‖σgi(p)− p‖2 ≥ c0‖p‖2.

(iii). If ω is a free ultrafilter on N and Aω = `∞(N, L∞X)/Iω, where Iω =
{(xn)n ∈ `∞(N, L∞X) | limω τµ(x∗nxn) = 0}, then the action implemented by σ on
Aω by σg((xn)n) = (σg(xn))n is ergodic.

Moreover, if either of these conditions doesn’t hold, then the fixed pont algebra of
Aω under the Γ-action is diffuse (has no minimal projections). Equivalently, given any
0 ≤ c ≤ 1 there exists an asymptotically invariant sequence pn with limn τ(pn) = c.

Proof. The proofs are the same as the proofs in 1.4.1. Q.E.D.

1.5.4. Remark. We should mention that the only way in which group actions have
been shown strongly ergodic in various concrete examples (so far) was by proving they
have spectral gap. It is an open problem whether there exist strongly ergodic actions
that have no spectral gap. This problem is very similar to a problem of Effros on
whether there exist non-Γ group von Neumann II1 factors LΛ (in the sense of Murray
and von Neumann) from groups Λ that are inner amenable.
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2. Examples

2.1. Group-like actions. Let α be an automorphism of the discrete abelian group
H. Then α implements an automorphism σα on the dual Ĥ of H, preserving the Haar
measure λ, by σα(χ) = χ ◦ α−1, χ ∈ Ĥ. Thus, if we identify H with its bidual, i.e.

with the dual of Ĥ and view elements h in H as functions uh on Ĥ, thus as elements
in L∞(Ĥ), then as an automorphism on L∞(Ĥ), σα acts by σα(uh) = uα(h), h ∈ H.

Note that, any h ∈ H,h 6= e, satisfies τλ(uh) =
∫
hdλ = 0 and that in fact {uh}h∈Γ

gives an orthonormal basis for L2(Ĥ).

2.1.1. Lemma. If |{α(h)h−1 | h ∈ H}| =∞ then σα is properly outer.

Proof. If σα acts as the identity on a set of positive measure X0 ⊂ Ĥ then there exists
h0 ∈ H such that c = τλ(χX0

uh0
) 6= 0. Since σα(uh)χX0

= uhχX0
,∀h, this implies

c = τλ(uhχX0uh0uh−1) = τλ(χX0(σα(uh)uh0uh−1)), i.e. χX0 has infinitely many Fourier

coefficients equal to c 6= 0, contradicting the fact that χX0
∈ L∞(Ĥ) ⊂ L2(Ĥ). Q.E.D.

Let now α : Γ → Aut(H) be a group morhism and denote by σα the action it

implements on (Ĥ, λ) by σαg = σα(g), g ∈ Γ.

2.1.2. Lemma. The following conditions are equivalent:
(i). σα is ergodic.
(ii). σα is weakly mixing.
(iii). α has no finite invariant subsets 6= {e}.
(iv). For any finite subset S ⊂ H there exists h ∈ Γ such that αh(S) ∩ S = ∅.
(v). The orbit of every element h ∈ H \ {e} is infinite.

Proof. (ii) =⇒ (i) and (iv)⇔ (v) are trivial.
(i) =⇒ (iii). If αh(S) = S,∀h ∈ Γ0 for some finite set S ⊂ G with e 6∈ S, then

x = Σh∈Suh /∈ C1 satisfies σα(g)(x) = x,∀g ∈ Γ, implying that σα is not ergodic.
(iii) =⇒ (iv). If αh(S) ∩ S 6= ∅,∀h ∈ Γ, for some finite set S ⊂ G\{e}, then

denote by f the characteristic function of S regarded as an element of `2(H). If we
denote by α̃ the action (=representation) of Γ on `2(H) implemented by α, then we
have 〈α̃g(f), f〉 ≥ 1/|S|,∀g ∈ Γ. Thus, the element a of minimal norm ‖ ‖2 in the
weak closure of co{α̃g(f) | g ∈ Γ} ⊂ `2(H) is non zero. But then any “level set” of
a ≥ 0 is invariant to α, showing that (c) doesn’t hold true.

(iv) =⇒ (ii). Let E0 be a finite set in the unit ball of L∞(Ĥ) = {uh}′′, ε > 0
and F0 ⊂ Γ \ {e} a finite set as well. Let S0 ⊂ H \ {e} be finite and such that
‖(x− τ(x)1)− xS0‖2 ≤ ε/2,∀x ∈ E0, where xS0 is the orthogonal projection of `2(H)
onto `2(S0). By applying the hypothesis to S = ∪{αg(S0) | g ∈ F0}, it follows that
there exists g ∈ Γ0 such that αg(S) ∩ S = ∅. But then g /∈ F0 and αg(S0) ∩ S0 = ∅.
Also, by Cauchy-Schwartz, for each x, y ∈ E0 we have:

|τ(σα(g)(x)y)− τ(x)τ(y)|
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≤ ‖(x− τ(x)1)− xS0‖2‖y‖2 + ‖(y − τ(y)1)− yS0‖2‖x‖2 + |τ(σα(g)(xS0)yS0)|

= ‖(x− τ(x)1)− xS0
‖2‖y‖2 + ‖(y − τ(y)1)− yS0

‖2‖x‖2 ≤ ε.

Q.E.D.

2.1.3. Lemma. Let Γ be a non-amenable group and {Hi}i the family of amenable sub-
groups of Γ. Then the trivial representation of Γ is not weakly contained in ⊕i`2(Γ/Hi)
(thus not weakly contained in ⊕i`2(Γ/Hi)⊗`2(N) either).

Proof. This follows immediately from the continuity of induction of representations.
Indeed, every `2(Γ/Hi) is equivalent to the induced from Hi to Γ of the trivial rep-
resentation 1Hi of Hi, IndΓ

Hi
1Hi . Since Hi is amenable, 1Hi follows weakly contained

in the left regular representation λHi of Hi. Thus, IndΓ
Hi

1Hi is weakly contained in

IndΓ
Hi

(λHi), which in turn is just the left regular representation λΓ of Γ. Altogether,

this shows that if 1Γ is weakly contained in ⊕i`2(Γ/Hi) then it is weakly contained in a
multiple of λΓ. Since the latter is weakly equivalent to λΓ, 1Γ follows weakly contained
in λΓ, implying that Γ is amenable, a contradiction. Q.E.D.

Let now Γ act by automorphisms on a discrete abelian group H and denote by σ
the action it implements on (Ĥ, λ), and thus on L∞(Ĥ, λ), then note that the ensuing

representation of Γ on L2(Ĥ)	C1 = `2(H \{e}) is equal to ⊕h`2(Γ/Γh), where Γh ⊂ Γ
denotes the stabilizer of h ∈ H \ {e}, Γh = {γ ∈ Γ | γ(h) = h}. Lemma 2.1.3 thus
shows:

2.1.4. Corollary. Assume Γ is non-amenable and the stabilizer Γh of each h ∈ H\{e}
is amenable. For any non-amenable Γ0 ⊂ Γ the action σ|Γ0

of Γ on (Ĥ, λ) has a spectral
gap, and thus is strongly ergodic. In particular we have:

1◦. If Γ0 ⊂ SL(2,Z) is non-amenable then the restriction to Γ0 of the canonical
action of SL(2,Z) on (T2, λ) is strongly ergodic.

2◦. If Γ is an arbitrary non-amenable group and H0 is a non-trivial, countable
discrete abelian group and H denotes the direct sum of infinitely many copies of H0

indexed by Γ, then the action of Γ by Bernoulli shifts on Ĥ0
Γ

= Ĥ has spectral gap.

Finally, note that if one takes H = Γ and let Γ act on itself by conjugation, then
Lemma 2.1.3 implies that if Γ is non-amenable and the commutant in Γ of any h ∈
Γ \ {e} is amenable then Γ is not inner amenable either.

2.2. Bernoulli actions. Let (X0, µ0) be a standard probability space. Let Γ be a
countable discrete group and K a countable set on which Γ acts (by permutations of
the set K). Let (X,µ) = Πk(X0, µ0)k be the standard probability space obtained as
the product of identical copies (X0, µ0)k of (X0, µ0), k ∈ K. Let σ : Γ→ Aut(X,µ) be
defined by σ(g)((xk)k) = (x′k)k, where x′k = xg−1k. We call σ the (X0, µ0)-Bernoulli
(Γ y K)-action. We generically refer to such actions as generalized Bernoulli actions.
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In case K = Γ and Γ y Γ is the left multiplication, we simply call σ the (X0, µ0)-
Bernoulli Γ-action.

Note that if we denote (A0, τ0) = (L∞X0,
∫
·dµ0), then the algebra (L∞X,

∫
·dµ)

coincides with ⊗k(A0, τ0), with the action implemented by σ on elements of the form
⊗kak ∈ ⊗k(A0, τ0) being given by σg(⊗kak) = ⊗ka′k, a′k = ag−1k, k ∈ K, g ∈ Γ.

2.2.1. Lemma. 1◦. If either (X0, µ0) has no atoms and for all g 6= e there exists
k ∈ K such that gk 6= k, or if (X0, µ0) is arbitrary and for all g 6= e the set {k ∈ K |
gk 6= k} is infinite, then σ is a free action.

2◦. σ is weakly mixing iff ∀K0 ⊂ K ∃g ∈ Γ such that gK0∩K0 = ∅ and iff any orbit
of Γ y K is infinite.

3◦. σ is strongly mixing iff ∀K0 ⊂ K finite ∃F ⊂ Γ finite such that gK0 ∩K0 = ∅,
∀g ∈ Γ \ F , and iff the stabilizer {h ∈ Γ | hk = k} of any k ∈ K is finite.

Proof. Part 3◦ and the first equivalence in 2◦ are trivial (exercise!). To prove 2◦ note
that if K0 ⊂ K is a finite set such that gK0 ∩ K0 6= ∅ then tr(gχK0

χK0
) ≥ |K0|−1,

∀g ∈ Γ, where tr is the “trace” (or integral) on `∞K, corresponding to the measure
giving mass 1 to each atom. Taking the element of minimal `2K-norm in cow{gχK0

|
g ∈ Γ} ⊂ `2(K), gives a Γ-invariant b ∈ `2(K) with tr(bχK0) 6= 0. But then any
non-empty “level set” L0 of b is finite and Γ-invariant (cf. Lemma 1.5.2). This ends
the proof of 2◦. We leave the proof of 1◦ as an exercise. Q.E.D.

2.2.2. Proposition. Let Γ be a non-amenable group acting on a set K such that
Γk = {g ∈ Γ | gk = k} is amenable ∀k ∈ K. Then any (X0, µ)-Bernoulli (Γ y K)-
action has spectral gap. In particular any Bernoulli Γ-action has spectral gap.

Proof. Let {ηi}i∈I0 be an orthonormal basis for L2X0. Denote by (L2X0)k, k ∈
K, copies of L2X0 indexed by K and {ηki }i ⊂ (L2X0)k the corresponding copies of

the orthonormal basis of {ηi}i∈I0 . It is immediate to see that if we denote by Ĩ the
set of multi-indices (ik)k∈K with entries in I0 such that ik = 0 for all but finitely

many ik, then E = {⊗kηkik | (ik)k ∈ Ĩ} is an orthonormal basis of the Hilbert space

L2X = ⊗k(L2X0)k, where (X,µ) = Πk(X0, µ0)k. Moreover, E is invariant to the
action (or representation) σ of Γ on L2X implemented by the Bernoulli (Γ y K)-
action. Thus, Γ y L2X coincides with ⊕η`2(Γ/Γη), where for η ∈ E we denote

Γη = {g ∈ Γ | σg(η) = η}, the stabilizer of η, and the direct sum is over the set Ê of
orbits of elements η ∈ E. If for η ∈ E we denote Sη ⊂ K the “support” of η = ⊗kηkik ,
i.e. the set of k ∈ K with ik 6= 0, then Sη is a finite subset of K and each g ∈ Γη leaves
Sη invariant. Thus, the stabilizer of η, Γη, is contained in the stabilizer of the finite set
Sη ⊂ K, ΓSη = {g ∈ Γ | gSη = Sη}. But the latter has the amenable (by hypothesis)
subgroup {g ∈ Γ | gk = k, ∀k ∈ Sη} as a normal subgroup of finite index. Thus ΓSη is
amenable implying that Sη is amenable and Lemma 2.1.3 applies. Q.E.D.
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2.3. Gaussian actions. Let Hn be the real Hilbert space of dimension n ≤ ∞ and
Un its orthogonal group (group of unitaries on Hn). If n <∞ then we view Hn ' Rn
as a probability space with the measure µn given by

(2π)−n/2
∫
Hn

· e−‖t‖
2
2dλ(t).

Note that if we view Hn as Rn then (Hn, µn) = Πn
i=1(H1, µ1)i, where H1 = R and µ1

is given by the Gaussian distribution on R, i.e. (2π)−1/2
∫
R ·e
−t2/2dt.

Note that Un, with its Polish group topology (which is a compact group topology
in fact) obviously acts (continuously) on (Hn, µn) by µn-preserving transformations.
The action is clearly free, because if α ∈ Un is non trivial then the fixed points of α is
a proper vector subspace of Hn, thus its measure in (Hn, µn) is zero.

We then define onH∞ the infinite product probability space (H∞, µ∞) = Π∞i=1(R, µ1),
or alternatively define (L∞(H∞, µ∞), τµ∞) as the von Neumann algebra inductive limit
of (L∞Hn, µn), τµn). Then the infinite dimensional orthogonal group U∞ clearly acts
µ∞-preservingly on H∞ as the closure of the ∪nU∞-action (the embeddings Un ⊂ Un+1

being given by say fixing an orthonormal basis for H∞ and identifying Un with the n-
dimensional orthogonal group acting on the first n elements of the basis, while leaving
all other elements in the basis fixed. It is easy to see that the action of U∞ is still
free (Same argument works to show that any proper real Hilbert subspace of H∞ has
µ∞-measure zero. Exercise!).

Any orthogonal representation π of a discrete group Γ on Hn implements a free m.p.
action σ = σπ of Γ on (Hn, µn), by composing π with the action of Un. It is an easy
exercise to show that if n =∞ and π is a weak mixing orthogonal representation of Γ
on H∞ (i.e. without finite dimensional invariant subspaces) then the action σ is weak
mixing (Exercise!). This also follows from the following:

2.3.1. Lemma. If π : Γ → U(H∞) is a representation then, when viewed as a
representation of Γ on L2(H∞, µ∞), σπ is contained in ⊕n≥0π

⊗n
C , where πC is the

complexification of π. More precisely, if we denote by ρ⊗sn the symmetric tensor

product of a rep ρ then σπ = ⊕n≥0π
⊗sn
C

Proof. Dan’s presentation.

2.3.2. Corollary. Let π : Γ → H∞ be an orthogonal representation of the discrete
group Γ. Then 1Γ ⊀ π ⇔ σπ has spectral gap ⇔ σπ is strongly ergodic.

Proof. Immediate by 2.3.1. Q.E.D.

2.4. Left actions from group embeddings. Let G be a locally compact group with
λ its Haar measure. A countable subgroup Λ ⊂ G is called a lattice in G if it admits a
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fundamental domain, i.e. a measurable subset S ⊂ G such that the sets {gS}g∈Λ are
disjoint and ∪ggS = X a.e. Denote by µ the probability measure on the homogeneous
space G/Λ given by the natural identification of G/Λ with S (modulo a set of measure
zero), the latter being endowed with the measure λ|S) (after renormalizing λ so that
λ(S) = 1).

The left action of the group G on G/Λ is then clearly measure preserving. Thus,
any discrete subgroup Γ ⊂ G acts on (G/Λ, µ) by left translations.

A particular case of interest is when G is a compact group, λ its Haar measure
normalized so that λ(G) = 1 and we take Λ = {e}. The action of G on itself by left
translation is then clearly continuous and compact. It is also free, because if h ∈ G\{e}
then the set {k ∈ G | hk 6= k} is empty.

Take now Γ ⊂ G a dense subgroup and consider the action by left translation Γ y G,
i.e. the restriction to Γ of Gy G.

2.4.1. Lemma. The action Γ y G is free and ergodic.

Proof. We have already shown that the action is free. To see it is ergodic note first
that if f ∈ L1(G,λ) is Γ-invariant then for any f ′ ∈ L1G the map f ∗ f ′(k) =∫
f(kg−1)f ′gdλ(g) is still Γ-invariant. If we now take fn ∈ L1G to be an approxi-

mate identity for the algebra (L1G, ∗) then f ∗ fn is Γ-invariant and continuous, thus
f ∗ fn is constant. But ‖f − f ∗ fn‖1 → 0, thus f is constant as well. Q.E.D.

2.5. Quotients and products. Given an action Γ yσ (X,µ) (of which we have
plenty of examples by now), let A ⊂ L∞X be a σ-invariant von Neumann subalgebra,
i.e. a weakly closed ∗-subalgebra containing 1 and such that σg(A) = A, ∀g ∈ Γ. By
Theorem 1.1, (A, τµ) = (L∞(Y, ν), τν), for some standard probability space (Y, ν), with
the restriction θg = σg |A, g ∈ Γ, implementing an action θ of Γ on L∞Y , thus coming

from an action Γ yθ (Y, ν). Such actions are called quotients of σ and can be quite
useful. Properties such as ergodicity, (weak) mixing, strong ergodicity and spectral gap
are clearly inherited by θ, but not freeness (in general).

We’ll also often need to take the (diagonal) product of finitely or infinitely (but
countably) many actions σi of the same group Γ on (Xi, µi), i = 1, 2, ..., thus getting
an action σ = σ1 × σ2 × ... of Γ on (X,µ) = Πi(Xi, µi). On function spaces, this
corresponds to the (diagonal tensor) product action σ = ⊗iσi of Γ on ⊗i(L∞Xi, τµi).

It is easy to see that the product of a properly outer transformation with any other

transformation is still properly outer (exercise). Thus, if Γ
σy X is free then σg⊗ρg, g ∈

Γ is free for any other action Γ
ρ
y Y . By Lemma 1.3.1 if all σi are weak mixing Γ-actions

then ⊗iσi is weak mixing.
If ρ is not strongly ergodic, then σ ⊗ ρ is not strongly ergodic ∀σ. If σ has spectral

gap (resp. is strongly ergodic) then any asymptotically invariant (resp. non-trivial as.
inv.) sequence for σ ⊗ ρ is asymptotically contained in L∞Y (exercise).



ERGODIC THEORY OF GROUP ACTIONS 17

The following combination of Bernoulli shifts and products of actions will be of
interest to us: Let σ0 be an action of Γ0 on (X0, µ0). Let also Γ1 be another discrete
group and α an action of Γ1 on Γ0 by group automorphisms. (N.B.: The action α may
be trivial.) Let σ1 be the Bernoulli shift action of Γ1 on (X,µ) = ⊗

g1∈Γ1

(X0, µ0)g1 . Let

also σγ0 be the action of Γ0 on (X,µ) given by σα0 = ⊗g1σ0 ◦ α(g1).

2.5.1. Lemma. 1◦. We have σ1(g1)σα0 (g0)σ1(g−1
1 ) = σα0 (α(g1)(g0)), for any g0 ∈ Γ0

and g1 ∈ Γ1. Thus, (g0, g1) 7→ σα0 (g0)σ1(g1) implements an action σ = σ0 oα σ1 of
Γ0 oα Γ1 on (B, τ).

2◦. If the group Γ0 is infinite and the action σ0 is properly outer then the action σ
defined in 1◦ is properly outer.

3◦. If the action σ0 is weakly mixing, or if the group Γ1 is infinite, then σ is weakly
mixing (thus ergodic).

4◦. If the group Γ1 is non-amenable, then σ has spectral gap.

Proof. 1◦ is straightforward direct calculation.
2◦ follows once we notice that if Γ0 is infinite and σ0 is properly outer, it automat-

ically follows that X0 has no atomic part. This in turn implies the Bernoulli shift of
Γ1 on (X0, µ0)⊗Γ1 is a properly outer action, even when Γ1 is a finite group.

3◦. This follows by the observations at the beginning of 2.4.
4◦. This follows from part 2◦ of Corollary 2.1.4. Q.E.D.
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3. Full (pseudo)groups and orbit equivalence of actions

3.1. Full groups and pseudogroups. Let G ⊂ Aut(X,µ) be a (discrete) subgroup
of automorphisms of the probability space (X,µ). Following H. Dye ([Dy1]), G is called
a full group if the following implication holds true: If φ ∈ Aut(X,µ) is so that there
exists a countable partition of X into measurable subsets Xn ⊂ X and φn ∈ G such
that φ|Xn = φn|Xn must be contained in G. (Note that this condition automatically

entails that φn(Xn) is also a partition of X.) In other words, any automorphism of
(X,µ) which coincides “piecewise” with automorphisms in G must lye itself in G. An
isomorphism of full groups Gi on (Xi, µi), i = 1, 2, is an isomorphism ∆ : (X1, µ1) '
(X2, µ2) satisfying ∆G1∆−1 = G2.

The next two results are from ([Dy1]).

3.1.1. Lemma. Let S ⊂ Aut(X,µ) and let S denote the subgroup of Aut(X,µ)
generated by S. Denote [S] the set of automorphisms φ ∈ Aut(X,µ) for which there
exist a partition of X, {Xn}n and φn ∈ S, such that φ|Xn = φn|Xn . Then [S] is a full
group and it is in fact the smallest full group that contains S.

Proof. Trivial by the definitions. Q.E.D.

The argument in the next lemma is reminiscent of the Murray-von Neumann proof
that if a von Neumann algebra M is finite (i.e. u ∈M , uu∗ = 1 implies u∗u = 1), then
any partial isometry v ∈M can be extended to a unitary in M .

3.1.2. Lemma. Let G be a full group. If X1, X2, ... ⊂ X are disjoint measurable
subsets and φ1, φ2, ... ∈ G are so that φn(Xn) are disjoint then there exists φ ∈ G such
that φ|Xn = φn|Xn ,∀n.

Proof. Denote R = ∪n≥1Xn, L = ∪n≥1φn(Xn) and let ψ : R ' L be the isomorphism
given by ψ|Xn = φn|Xn . Let also Y0 = X \R.

It is clearly sufficient (by maximality argument) to prove that there exists φ0 ∈ G
such that φ0(Y0) ∩ (X \ L) 6= ∅ (a.e.). Assume this is not the case and denote by Y ′0
the G-centralizer of Y0. This is defined a.e. as follows: For each φ ∈ G let pφ = χφ(Y0)

viewed as an element in L∞X. Then let p = ∨{pφ | φ ∈ G} and choose Y ′0 ⊂ X so that
χY ′0 = p in L∞X.

By the definition of Y ′0 , the contradiction assumption implies Y ′0 is disjoint from
X \ L, thus Y ′0 ⊂ L, so in particular Y0 ⊂ L. This implies there exists Y1 ⊂ R such
that ψ(Y1) = Y0. Since Y0 ⊂ Y ′0 we also have Y1 ⊂ Y ′0 . Assume we constructed
disjoint subsets Y1, Y2, ..., Yk of R such that ψ(Yi+1) = Yi, i = 0, 1, ..., k − 1, with
Yi ⊂ Y ′0 , ∀0 ≤ i ≤ k. In particular, since Y ′0 ⊂ L, we have Yk ⊂ L, implying
there exists Yk+1 ⊂ R such that ψ(Yk+1) = Yk. Also, for all 0 ≤ i ≤ k − 1 we have
ψ(Yk+1∩Yi+1) = ψ(Yk+1)∩ψ(Yi+1) = Yk∩Yi = ∅. We also have Yk+1∩Y0 ⊂ R∩Y0 = ∅.
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This means we can construct recursively a whole sequence of disjoint subsets {Yk}k≥0

such that ψ(Yk+1) = Yk,∀k ≥ 0. In particular, all Yk have the same measure, implying
µ(∪kYk) =∞, a contradiction. Q.E.D.

A measurable, measure preserving a.e. isomorphism φ : R → L, for R,L ⊂ X
measurable with µ(L) = µ(R), µ|L ◦ φ = µ|R will be called a local isomorphism of
(X,µ). The sets R,L are called the right, resp. left supports of φ. We denote by 0
the local isomorphism with empty (a.e.) left-right supports. The composition ψφ of
two local isomorphisms φ, ψ is by definition the local isomorphism with right support
R(ψφ) = {t ∈ R(φ) | φ(t) ∈ R(ψ)} acting by ψφ(t) = ψ(φ(t)), t ∈ R(ψφ), and of course
left support equal to {ψφ(t) | t ∈ R(ψφ)}. The inverse φ−1 of a local isomorphism φ
is the local isomorphism with right support R(φ−1) = L(φ) defined on this set as the
inverse of φ. We make the convention that 0−1 = 0.

A set Gp of local isomorphisms of (X,µ) is a pseudogroup if it contains 0, 1X and
is closed to composition and inverse operations. It is a full pseudogroup if it is a
pseudogroup and satisfies the following conditions:

(3.1.i). If φ ∈ Gp and Y ⊂ R(φ) is measurable then φ|Y ∈ G
p

.

(3.1.ii). If φ is a local isomorphism such that there exists a countable partition of R(φ)
with measurable subsets {Rn}n with the property that φ|Rn ∈ G

p

,∀n, then φ ∈ Gp .

Conditions (i) and (ii) state that Gp is closed to “cutting” (restrictions) and count-
able “pasting”. Like for full groups, an isomorphism of full pseudogroups is an isomor-
phism of probability spaces taking one full pseudogroup onto the other.

3.1.3. Lemma. 1◦. Given a set S of local isomorphisms of (X,µ), denote by S
the pseudogroup generated by S and by [S]

p

the set of local isomorphisms φ with the
property that there exist a partition of R(φ), {Xn}n, and φn ∈ S, with Xn ⊂ R(φn),
such that φ|Xn = φn|Xn . Then [S]

p

is a full pseudogroup and it is in fact the smallest
full pseudogroup that contains S.

2◦. If Gp is a full pseudogroup then the set Gp1 = {φ ∈ Gp | R(φ) = X} is a full
group, called the full group associated with Gp .

3◦. If G is a full group then the set Gp = {φ|Y | φ ∈ G, Y ⊂ X} is a full pseudogroup

called the pseudogroup associated with G. With the notations in 2◦ we have (Gp)1 = G.

Proof. Trivial by 3.1.2. Q.E.D.

We denote Gp0 = {φ ∈ Gp | ψφ = ψ,∀ψ,R(ψ) = L(φ)} the set of units of Gp .
Note that it can be naturally identified with the lattice of projections of L∞X (after
identifying the local iso differing on a set of measure 0). We denote Z(Gp) = {φ ∈ Gp |
φψ = ψφ,∀ψ ∈ Gp} the centralizer of Gp .

A full group G is ergodic if its action on (X,µ) is ergodic. A full pseudogroup Gp is
ergodic if its associated full group is ergodic. We have:
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3.1.4. Lemma. 1◦. Z(Gp) ⊂ Gp0 and Gp is ergodic iff Z(Gp) = {1}.
2◦. If G (resp. Gp) is ergodic then for any subsets R,L ⊂ X with µ(R) = µ(L) there

exists φ ∈ G (resp. φ ∈ Gp) such that φ(R) = L (resp. R(φ) = R,L(φ) = L).

Proof. Part 1◦ is left as an exercise. The two conditions in 2◦ clearly imply one another
and the one refering to full pseudogroups is trivial by a maximality argumet.

Q.E.D.

Let us finally mention that any algebraic isomorphism of full pseudogroups Gpi on
(Xi, µi), i = 1, 2, i.e. a bijective map α : Gp1 → G

p

2 which preserves the product comes
from an isomorphism of full pseudogroups, i.e. there exists ∆ : (X1, µ1) ' (X2, µ2)
such that α(φ)∆ = ∆φ, ∀φ ∈ Gp1 . This is easy to prove, and we leave it as an exercise.
It is less trivial to show that in fact a similar stament holds true for full groups as well:

3.1.5. Theorem [Dye 59]. If Gi is a full pseudogroup on (Xi, µi), i = 1, 2, and
α : G1 ' G2 is an (algebraic, plain) isomorphism of groups, then there exists ∆ :
(X1, µ1) ' (X2, µ2) such that α(φ) = ∆φ∆−1,∀φ ∈ G1.

Proof. Presented by Julien. Q.E.D.

3.2. Orbit equivalence of group actions. Following H. Dye ([Dy1]), two subgroups
of automorphisms Γ ⊂ Aut(X,µ) and Λ ⊂ Aut(Y, ν) are weakly equivalent if there exists
an isomorphism ∆ : (X,µ) ' (Y, ν) such that ∆([Γ])∆−1 = [Λ]. Note that by Lemma
3.1.3 this is equivalent to the fact that ∆([Γ]

p

) = [Λ]
p

.
Two (faithful) actions Γ yσ (X,µ) and Λ yθ (Y, ν) are weakly equivalent if σ(Γ),

θ(Λ) are weakly equivalent. The isomorphism ∆ is called a weak equivalence of the
corresponding automorphism groups, or actions.

Following Feldman-Moore ([FM77]), two groups of automorphisms Γ ⊂ Aut(X,µ),
Λ ⊂ Aut(Y, ν) are orbit equivalent (abbreviated OE) if there exists ∆ : (X,µ) ' (Y, ν)
and a set X0 ⊂ X of measure zero such that ∆(Γt) = Λ(∆t),∀t ∈ X \ X0. Two
(faithful) actions Γ yσ (X,µ) and Λ yθ (Y, ν) are orbit equivalent if σ(Γ), θ(Λ) are
orbit equivalent. We then write σ ∼OE θ, or (Γ y X) ∼OE (Λ y Y ). An isomor-
phism ∆ satisfying such condition is called an orbit equivalence of the corresponding

automorphism groups (or actions), and we write σ
∆∼OE θ when we want to emphasize

it.
The next lemma, due to Feldman and Moore, relates the orbit and weak equivalence,

showing they are “the same”.

3.2.1. Lemma. Let Γ ⊂ Aut(X,µ), be a countable group.
1◦. If Γ′ ⊂ [Γ] is any other countable subgroup that generates [Γ] as a full group, i.e.

[Γ′] = [Γ], then for almost all t ∈ X we have Γt = Γ′t.
2◦. Let RΓ be the equivalence relation given by the orbits of Γ. If φ ∈ Aut(X,µ)

then φ ∈ [Γ] iff the graph of φ is contained in RΓ. Same for [Γ]
p

.
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3◦. If Λ ⊂ Aut(Y, ν) is a countable group and ∆ : (X,µ) ' (Y, ν) is an isomorphism,
then ∆ is an orbit equivalence of Γ,Λ if and only if it is a weak equivalence.

Proof. Parts 1◦, 2◦ and the implication ⇐ of 3◦ are trivial. Proving ⇒ in 3◦ amounts
to show that if φ : (X,µ) ' (Y, ν) satisfies φ(t) ∈ Γt, ∀t ∈ R, then φ ∈ [Γ]. Fixing
g ∈ Γ, note that the set Xg = {t ∈ R | φ(t) = gt} (i.e. the set Xg on which φ coincides
with g) is measurable and by hypothesis we have ∪gXg = R. But this means φ ∈ [Γ].
Q.E.D.

The above lemma shows that the full group (or pseudogroup) [Γ] of a countable
group Γ ⊂ Aut(X,µ) is completely encoded (up to weak equivalence) by the equivalence
relation RΓ = {(t, gt) | t ∈ Γ} ⊂ X ×X (up to OE). Note that RΓ is well defined only
up to a set t ∈ X of measure 0, but that this is not a problem since the RΓ saturated
of any X0 ⊂ X of measure 0 has measure zero.

A standard, measurable, measure preserving, countable equivalence relation (here-
after called a standard equivalence relation) on (X,µ) is an equivalence relation R on
X with the property that: (a) Each orbit of R is countable; (b) The R-saturated of any
subset X0 ⊂ X of measure 0 has measure zero; (c) There exists a countable subgroup
Γ ⊂ Aut(X,µ) such that for almost all t ∈ X the orbit of t under R coincides with Γt.

Related to this abstract notion of equivalence relation, it is convenient to say that a
full group G (resp. full pseudogroup Gp) is countably generated if there exists ∃S ⊂ G
(resp. S ⊂ Gp) at most countable such that [S] = G (resp. [S]

p

= Gp). It is trivial
to see that a full group G is countably generated iff its associated pseudogroup Gp is
countably generated.

From the above considerations we see that a countably generated full group G is
“same as” the standard, measurable, measure preserving, countable equivalence rela-
tion R implemented by any of the countable subgroups Γ of G that generates G.

Let us finally mention that the abstraction of countable equivalence relations can be
pushed a bit further. Thus, it is shown in ([FM]) that if one considers a standard Borel
structure X underlying (X,µ), then any countable equivalence relation R as above
comes from an equivalence relation on X × X with the property that R lies in the
product Borel structure X ×X , with each orbit of R countable, and generated by local
m.p. Borel maps between Borel subsets of X with graph included into R.

3.3. Amplifications and stable OE. If G (resp Gp) is a full group (resp. pseu-
dogroup) and Y ⊂ X then we denote by GY (resp GpY ) the set of automorphisms

(resp. local isomorphism) ψ of (Y, µY ) for which there exists φ ∈ G (resp φ ∈ Gp) with
φ|Y = ψ. We call GY (resp GpY ) the restriction of G (resp Gp) to Y .

3.3.1. Lemma. Let G be a full group on (X,µ).

1◦. If Y ⊂ X is a measurable subset of non-zero measure then GY (resp. GpY ) is a

full group (resp. pseudogroup) on (Y, µY ) and we have (GY )
p

= (Gp)Y .
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2◦. If G is countably generated then so is GY . Also, if R is the equivalence relation

implemented by G then the equivalence relation associated with GY is equal to RY
def
=

R∩Y ×Y . Thus, if Γ ⊂ Aut(X,µ) is countable and such that R = RΓ, then the orbits
of RY are given by Γt ∩ Y , for almost all t ∈ Y .

3◦. If Y1, Y2 ⊂ X are so that there exists a local isomorphism φ ∈ Gp such that
R(φ) = Y1, L(φ) = Y2 then φ implements an isomorphism from GY1 onto GY2 (as well
as between the corresponding full pseudogroups). In particular, if G is ergodic then for
any Y1, Y2 ⊂ X with µ(Y1) = µ(Y2) > 0 we have GY1

' GY2
and GpY1

' GpY2
.

Proof. This is trivial by the definitions and 3.1.4. Q.E.D.

If n ≥ 1 then denote by Gn (resp. Gp)n) the full group (resp. full pseudogroup)
generated on the product of (X,µ) and ({1, .., n} with the counting measure by G × id
and the permutations of {1, ..., n}. These full (pseudo)groups are clearly ergodic. For
each t > 0 we denote by Gt (resp. (Gp)t) the isomorphism class of GY (resp of GpY )
where n ≥ t and Y ⊂ X × {1, ..., n} is a subset of measure t/n. This clearly doesn’t
depend on n and Y .

The full group Gt (resp. full pseudogroup (Gp)t) is called the amplification by t of
G (resp. of Gp).

Two ergodic actions Γ yσ X,Λ yθ Y are stably orbit equivalent (stably OE) if there
exists subsets X0 ⊂ X,Y0 ⊂ Y of positive measure such that [σ(Γ)]Y0 ' [θ(Λ)]Y0 . Note
that this condition holds true iff [σ(Γ)] ' [θ(Λ)]t, where t = ν(Y0)/µ(X0). We write
σ 'OEt θ. The constant t is called the coupling constant (or amplification constant) of
the stable OE.
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4. von Neumann algebras from group actions

4.1. The group measure space construction. A key tool in the study of actions is
the so-called group measure space construction of Murray and von Neumann ([MvN1]),
which associates to Γ y (X,µ) the von Neumann algebra L∞X o Γ generated on
the Hilbert space H = L2X⊗`2Γ by a copy of the algebra L∞X, acting on H by left
multiplication on the component L2X of the tensor product L2X⊗`2Γ, and a copy of
the group Γ, acting on H as the multiple of left regular representation given by the
unitary operators ug = σg ⊗ λg, g ∈ Γ, where σg, g ∈ Γ, is viewed here as a unitary
representation on L2X.

The following more concrete description of M = L∞XoΓ and its standard represen-
tation is quite useful: Identify H = L2X⊗`2Γ with the Hilbert space of `2-summable
formal sums Σgξgug, with “coefficients” ξg in L2X and “undeterminates” {ug}g la-
beled by the elements of the group Γ. Define a ∗-operation on H by (Σgξgug)

∗ =
Σgσg(ξ

∗
g−1)ug and let both L∞X and the ug’s act on H by left multiplication, sub-

ject to the product rules y(ξug) = (yξ)ug, ug(ξuh) = σg(ξ)ugh,∀g, h ∈ G, y ∈ L∞X,
ξ ∈ L2X. In fact, given any ξ = Σgξgug, ζ = Σhζhuh ∈ H one can define the product ξ·ζ
as the formal sum Σkηkuk with coefficients ηk = Σgξgζg−1k, the sum being absolutely
convergent in the norm ‖ · ‖1 on L1X, with estimates ‖ηk‖1 ≤ ‖ξ‖2‖ζ‖2, ∀k ∈ Γ, by
the Cauchy-Schwartz inequality. In other words, ξη ∈ `∞(Γ, L1X) ⊃ `2(Γ, L2X) = H.

We say that ξ ∈ H is a convolver if ξζ ∈ H (i.e. with the above notations ηk ∈ L2X
and Σk‖ηk‖22 <∞) for all ζ ∈ H. By the closed graph theorem it follows that Lξ(ζ) =
ξζ, ζ ∈ H, defines a linear bounded operator on H. It is immedaite to see that L∗ξ then
coincides with Lξ∗ , showing that the set of convolvers is closed to the ∗-operation.

Then M = L∞X o Γ in its standard representation on L2M is nothing but the
algebra of all left multiplication operators Lξ by convolvers ξ. Its commutant in B(H)
is the algebra of all right multiplication operators Rξ(ζ) = ζξ, by convolvers ξ. If
T ∈ M then ξ = T (1) ∈ H is a convolver and T is the operator of left multiplication
by ξ. The left multiplication by convolvers supported on L∞X = L∞Xue give rise to
the (multiple of the) standard representation of L∞X, while the left multiplication by
the convolvers {ug}g give rise to the copy of the left regular representation of Γ. The
integral τµ on L∞X extends to a trace on L∞X o Γ by τ(Σgygug) = τµ(ye) = 〈ξ, 1〉 =
〈ξ · 1, 1〉, where ξ = Σgygug. The Hilbert space H naturally identifies with L2(M, τ),
with M as a subspace of L2M identifying with the set of convolvers and the standard
representation of M as left multiplication by convolvers.

All one has to retain from the above construction is: any element in M = L∞X oΓ
has a Fourier expansion; the way such Fourier expansions multiply; a Fourier expansion
x = Σgagug of an element in M , as opposed to an arbitrary square summable vector
ξ = Σgξgug ∈ H = ⊕gL2Xug, has the property that the multiplication by x of any
square summable η ∈ H stays in H.
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The following “twisted” version of the above construction is quite useful: In addition
to Γ y (X,µ), take now a (normalized) U(X)-valued 2-cocycle for (σ,Γ), i.e. a map
v : Γ×Γ→ U(X) such that vg,hvgh,k = σg(vh,k)vg,hk, ∀g, h, k ∈ Γ, vg,e = ve,g = 1. On
the same Hilbert space H = ⊕gL2Xug as before, consider a new product by a(ξgug) =
(aξg)ug and uh(ξgug) = σh(ξg)vh,guhg, then follow exactly the same procedure as
above to get a von Neumann algebra of (left multiplication operators by) convolvers
L∞X oσ,v Γ. The formula for the trace is the same.

We say that two cocycles v, v′ for σ are equivalent (or cohomologous), and we write
w′ ∼ w, if there exists w : Γ→ U(X) such that v′g,h = wgσg(wh)vg,hw

∗
gh, ∀g, h ∈ Γ. It

is immediate to see that if v′ ∼ v then the unitary operator U onH = ΣgL
2Xug defined

by U(Σgξgug) = Σgξgwgug implements a spatial isomorphism taking L∞Xoσ,v Γ onto
L∞X oσ,v Γ, more precisely U is L∞X bimodular and satisfies UugU

∗ = u′g.

4.1.1. Theorem. Let Γ
σy (X,µ) be a group action and v a 2-cocycle for (σ,Γ).

1◦. L∞X is maximal abelian in L∞X oσ,v Γ iff Γ y X is free.
2◦. If Γ y X is free then L∞X oσ,v Γ is a factor iff Γ y X is ergodic.
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4.2. The von Neumann algebra of a full pseudogroup. Let now Gp be a given
full pseudogroup on (X,µ). Then let CGp denote the algebra of formal finite linear
combinations Σφcφuφ. Let τ(uφ) denote the µ-measure of the largest set on which

φ acts as the identity and extend it by linearity to CGp . Then define a sesquilinear
form on CGp by 〈x, y〉 = τ(y∗x) and denote by L2(Gp) the Hilbert space obtained by
completing CGp/Iτ in the norm ‖x‖2 = τ(x∗x)1/2, where Iτ = {x | 〈x, x〉 = 0}. Each
φ ∈ Gp acts on L2(Gp) as the left multiplication operator by uφ, given by uφ(uψ) = uφψ.

Denote by L(Gp) the von Neumann algebra generated by the operators {uφ, φ ∈ G
p}

and by L(Gp0 ) ' L∞(X,µ) the von Neumann subalgebra generated by the units Gp0 .

Note that in the above we could equally start with the ∗-algebra M0 = AGp of
finite formal sums σφaφuφ subject to multiplication rule (auφ)(buψ) = aφ(bχR(φ))uφψ)

and trace τ(auφ) =
∫
aχR(φ)dµ, the resulting Hilbert space L2(Gp) and von Neumann

algebra L(Gp), obtained by taking the weak closure of the algebra of left multiplication
operators by elements inM0 on L2(Gp , being the same as when starting withM0 = CGp .

It is easy to check that L(Gp) is a finite von Neumann algebra, with the subalgebra
L(Gp0 ) = L∞(X,µ) being maximal abelian in it, and that the vector state τ = 〈·1, 1〉
gives a faithful normal trace τ on L(Gp) extending the integral on L∞(X,µ), with the
Hilbert space L2(L(Gp)) = L2(Gp) giving the standard representation of (L(Gp), τ).

Also, note that L(Gp) is a factor iff Gp is ergodic, in which case either L(Gp) '
Mn×n(C) (when (X,µ) is the n-points probability space) or L(Gp) is a II1 factor (when
(X,µ) has no atoms, equivalently when G has infinitely many elements).

4.2.1. Theorem. Let Γ ⊂ Aut(X,µ), Λ ⊂ Aut(Y, ν) be countable groups and ∆ :
(X,µ) ' (Y, ν). The following conditions are equivalent:

1◦. ∆ is an orbit equivalence of Γ,Λ, i.e. it takes the Γ-orbits onto the Λ-orbits,
a.e.

2◦. ∆ is a weak equivalence, i.e. it takes the full groups [Γ] (or pseudogroup [Γ]
p

) of
Γ onto the full group [Λ] (resp. pseudogroup [Λ]

p

) of Λ.

3◦. The isomorphism implemented by ∆ on the function algebras, ∆ : L∞X ' L∞Y ,
extends to an isomorphism of L([Γ]

p

) onto L([Λ]
p

).

Proof. Q.E.D.

Let us end this subsection by mentioning the “full pseudogroup” version of the
twisted group measure space construction in 4.1. Thus, let Gp be a full pseudogroup on
(X,µ) and denote Up the (commutative) pseudogroup of partial isometries of L∞X.
A Up -valued 2-cocycle for Gp is a map v : Gp × Gp → Up satifying the conditions
vφ,ψvφψ,ρ = φ(vψ,ρ)vφ,ψρ, ∀φ, ψ, ρ ∈ G

p

, and ve,e = 1. It is easy to see that the
axioms together with this normalization condition imply that ve,φ = vφ,e = l(φ),

∀φ ∈ Gp . Two such 2-cocycles v, v′ are equivalent if there exists w : Gp → Up such that
v′φ,ψ = wφφ(wψ)vφ,ψw

∗
φψ, ∀φ, ψ ∈ Gp .
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We associate to the pair (Gp , v) the von Neumann algebra Lv(G
p

) as follows: Take
AGp be the vector space of formal finite sums Σφaφuφ, with aφ ∈ A = L∞X and

φ ∈ Gp , but with product rule (aφuφ)(aψuψ) = aφφ(aψr(φ))uφψ, then define a trace τ
formally the same way as before, etc. It is easy to see that an equivalence of 2-cocycles
implements a natural spatial isomorphism between the associated von Neumann alge-
bras. Like with the “un-twisted” version, Lv(G

p

) is a factor iff G is ergodic.

(I should not forget to do the orthonormal basis for L(Gp). Also, include a remark
commenting on the difference between the group measure space construction 4.1 and
the full pseudogroup construction 4.2)

4.3. Normalizers and Cartan subalgebras. Let (M, τ) be a finite fon Neumann
algebra and A ⊂M a maximal abelian ∗-subalgebra of M . The normalizer of A in M is
the group of unitaries NM (A) = {u ∈ U(M) | uAu∗ = A}. Let also N p

(A) = {v ∈M |
vv∗, v∗v ∈ P(A), vAv∗ = Avv∗}, where P(A) denotes the projections (or idempotents)
of A. N p

(A) with its product inherited from M and inverse given by the ∗-operation
is clearly an abstract pseudogroup and we call it the normalizing pseudogroup, or the
pseudo-normalizer of A ⊂ M . Note that v ∈ N p

(A) iff there exists u ∈ N (A) and
p ∈ P(A) such that v = up.

If NM (A) (equivalently N p

(A)) generates M as a von Neumann algebra we say that
A is regular in M , or that A is a Cartan subalgebra of M .

Taking some representation of A as a function algebra, A = L∞X, we let G = GA⊂M
denote the set of all automorphisms of (X,µ) (or of A = L∞X) of the form Ad(u) with
u ∈ N (A), and GpA⊂M be the set of all local isomorphisms of the from φv = Ad(v), with

v ∈ N p

(A). Note that r(φv) = v∗v, l(φv) = vv∗ and φvφw = φvw, ∀v, w ∈ N p

(A). It
is easy to see that GA⊂M (resp. GpA⊂M ) is a full group (resp full pseudogroup), called
the full group (resp. full pseudogroup) of the Cartan subalgebra A ⊂ M . Note that
G = N/U , where U = U(A), and similarly Gp = N p

/U .

There is also a natural 2-cocycle for GpA⊂M associated with the Cartan inclusion

A ⊂M , as follows: For each φ ∈ GpA⊂M = N p

(A)/Up let vφ ∈ N
p

(A) be a representant,
with vidX = 1. Define v = vA⊂M by vφ,ψ = vφvψv

∗
φψ. It is easy to verify that v is a

2-cocycle for Gp whose class does not depend on the choice of vφ’s.

Note that if Gp is an “abstract” full pseudogroup on (X,µ) and v a Up(X)-valued
2-cocycle for Gp , and we denote A = L(Gp0 ), M = Lv(G

p

) then N p

(A) = {auφ |
φ ∈ Gp , a ∈ Up(A)}. Thus, the full pseudogroup GpA⊂M associated with the Cartan

subalgebra inclusion L(Gp0 ) ⊂ L(Gp) can be naturally identified with the initial abstract
full pseudogroup Gp . Also, vA⊂M clearly coincides (modulo equivalence) with the initial
v. Altogether, we have thus shown:

Two Cartan subalgebra inclusions (A1 ⊂ M1, τ1), (A2 ⊂ M2, τ2) are isomorphic if
there exists θ : (M1, τ1) ' (M2, τ2) such that θ(A1) = A2. Considering the category
of Cartan subalgebra inclusions A ⊂M , with (M, τ) finite von Neumann algebras and
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morphisms given by isomorphisms as above, on the one hand, and the category of pairs
(Gp , v), consisting of a full pseudogroup and a 2-cocycle on it, with morphisms given
by isomorphisms of the full pseudogroups which intertwine the 2-cocycles, we have:

4.3.1. Theorem. The correspondence (A ⊂ M) → (GpA⊂M , vA⊂M ) gives an equiva-

lence of categories, whose inverse is (Gp , v)→ (L(Gp0 ) ⊂ Lv(G
p

)).

4.3.2. Lemma. Let (M, τ) be a finite von Neumann algebra and A ⊂ M a maximal
abelian ∗-subalgebra. Let B ⊂ M be a von Neumann subalgebra containing A. If
v ∈ N p

M (A) then there exists a projection q ∈ A, q ≤ v∗v such that EB(v) = vq. Thus,

EB(N p

M (A)) = N p

B(A).

4.3.3. Corollary. With A ⊂ B ⊂ M as in 4.3.2, let M0 (resp B0) denote the von
Neumann algebra generated by N p

M (A) (resp N p

B(A)). Then EBEM0
= EM0

EB = EB0
.

In particular, if A is Cartan in M then it is Cartan in B.

4.4. Amplification of a Cartan subalgebra inclusion. If M is a II1 factor and
t > 0 then for any n ≥ m ≥ t and any projections p ∈ Mn×n(M), q ∈ Mm×m(M)
of (normalized) trace τ(p) = t/n, τ(q) = t/m, one has pMn×n(M)p ' qMm×m(M)q.
Indeed, because if we regard Mm×m(M) as a “corner” of Mn×n(M) then p, q have the
same trace in Mn×n(M), so they are conjugate by a unitary U in Mn×n(M), which
implements an isomorphism between pMn×n(M)p and qMm×m(M)q. One denotes by
M t this common (up to isomorphism) II1 factor and one calls it the amplification of
M by t.

Similarly, if A ⊂ M is a Cartan subalgebra of the II1 factor M then (A ⊂ M)t =
(At ⊂ M t) denotes the (isomorphism class of the) Cartan subalgebra inclusion p(A⊗
Dn ⊂ M ⊗ Mn×n(C))p where n ≥ t, Dn is the diagonal subalgebra of Mn×n(C)
and p ∈ A ⊗ Dn is a projection of trace τ(p) = t/n. In this case, the fact that the
isomorphism class of (A ⊂ M)t doesn’t depend on the choice of n, p follows from a
lemma of H. Dye ([D63]), showing that if M0 is a II1 factor and A0 ⊂M0 is a Cartan
subalgebra, then two projections p, q ∈ A0 having the same trace are conjugate by a
unitary element in the normalizer of A0 in M0.

(A ⊂ M)t is called the t-amplification of A ⊂ M . We clearly have Gp(A⊂M)t =

(Gp(A⊂M))
t, R(A⊂M)t = Rt(A⊂M) and if Gp , R correspond with one another then so

do Rt, (Gp)t, ∀t. Note that ((A ⊂ M)t)s = (A ⊂ M)st, (Gt)s = Gts, (Rt)s = Rts,
∀t, s > 0.

4.5. Basic construction for Cartan subalgebra inclusions. Let (M, τ) be a finite
von Neumann algebra and A ⊂M a Cartan subalgebra. Denote by eA the orthogonal
projection of L2M onto L2A. More generally, if v ∈ N p

(A) then denote by evA the
orthogonal projection of L2M onto vL2A. Thus, evA = veAv

∗.
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4.5.1. Proposition. Let {vn}n ⊂ N p(A) be an orthonormal basis over A. Then the

abelian von Neumann subalgebra Ã = {ΣnanevnA | an ∈ Avnv
∗
n, supn ‖an‖ < ∞} of

B(L2M) is maximal abelian and it coincides with the von Neumann algebra generated

by A and JMAJM . Also, Ã is the smallest von Neumann algebra which contains A,
eA and is normalized by Ad(v), ∀v ∈ N (A).

If Gp is a full pseudogroup on (X,µ) we denote (X̃, µ̃) the measurable space...
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5. Amenable actions and their classification up to OE

5.1. Definition. A Cartan subalgebra inclusion A ⊂ M is approximately finite di-
mensional (AFD) if for any finite set F ⊂ M and any ε > 0 there exist matrix units
{ekij | 1 ≤ i, j ≤ nk, 1 ≤ k ≤ m} ⊂ N p

(A), ekii ∈ A, such that if B denotes the finite

dimensional von Neumann algebra generated by ekij then ‖EB(x)− x‖2 ≤ ε, ∀x ∈ F .

A full pseudogroup Gp (resp. full group G) is AFD if the corresponding Cartan
subalgebra inclusion L(G0) ⊂ L(Gp) is AFD. Note that this amounts to requiring that
for all F ⊂ Gp and ε > 0 there exists a finite sub-pseudogroup F ⊂ Gp such that
∀φ ∈ F , ∃ψ ∈ F with µ(r(ψ) \ i(φ−1ψ)), µ(r(φ) \ i(ψ−1φ) ≤ ε. It is a trivial exercise
to show that this condition on a full pseudogroup Gp is equivalent to G having the
property that for all F ⊂ G finite and ε > 0 there exists a finite subgroup F ⊂ G such
that ∀φ ∈ F , ∃ψ ∈ F with µ(i(φ−1ψ) ≥ 1− ε.
5.2. Definition. A Cartan subalgebra A ⊂ M is amenable if there exists an AdN (A)

invariant state φ (called an invariant mean) on Ã. A full group G (resp full pseudogroup

Gp) is amenable if L(Gp0 ) ⊂ L(Gp) is amenable. Note that this amounts to Ã having a
G-invariant mean. An action σ : Γ→ Aut(X,µ) is amenable if [σ(Γ)] is amenable.

5.3. Proposition. Let A ⊂M be a Cartan subalgebra inclusion.

1◦. Let Γ ⊂ N (A) be a subgroup such that (A ∪ Γ)′′ = M . If Γ is amenable then
A ⊂ M is amenable. Conversely, if Γ acts freely and A ⊂ M is amenable then Γ is
amenable.

2◦. A ⊂M is amenable iff M is amenable as a vN algebra.

3◦. If A ⊂M is amenable and p ∈ P(A) then Ap ⊂ pMp is amenable.

5.4. Theorem. 1◦. A ⊂M (or Gp) amenable iff AFD.

2◦. If M is a factor and A ⊂M amenable, then either (A ⊂M) = (D ⊂Mn×n(C)),
or (A ⊂M) ' (D ⊂ R).

Proof. It is an easy exercise to deduce part 2◦ from part 1◦, so we will only prove the
latter.

Step 1 (Day’s trick). We first prove that given any v1, v2, ..., vn ∈ N (A) and any

ε > 0 there exists b ∈ Ã+ such that τ̃(b) = 1 and ‖vbv∗ − b‖1,τ̃ < ε. To do this, we
use an argument similar to the one used in the proof of (iv) ⇒ (iii) in 1.5.1. Let V
be the set on n-tuples (ψ − ψ(u∗i · ui)i with ψ ∈ Ã∗ a normal state on Ã. Then V is

a (bounded) convex subset of (Ã∗)
n ⊂ (Ã∗)n = (Ãn)∗. We claim that 0 = (0, ..., 0) is

in the (norm) closure of V in the Banach space (Ã∗)
n. Indeed, for if not then by the

Hahn-Banach theorem there exists (x1, ..., xn) ∈ ((Ã∗)
n)∗ = ((Ã∗)

∗)n = Ãn such that

ReΣni=1(ψ(xi)− ψ(u∗i xiui)) ≥ α > 0,∀ψ ∈ L.
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But this would then hold true equally well for all weak limits of normal states ψ ∈ Ã∗
in tildeA∗, thus for ϕ. In particular, it holds true for any AdN (A)-invariant mean ϕ

on Ã, for which we thus get

0 = ReΣni=1(φ(xi)− φ(u∗i xiui)) ≥ α > 0,

a contradiction.
Thus, there must exist a state ψ ∈ Ã∗ such that Σi‖ψ − ψ(u∗i · ui)‖ < ε. Since the

states of the form τ̃(b·) with b ∈ Ã+, τ̃(b) = 1 are dense in the set of normal states on

Ã, it follows that there exists b ∈ Ã+ satisfying τ̃(b) = 1 and

(5.4.1) Σi‖τ̃(b·)− τ̃(bu∗i · ui)‖ < ε,

the norm being taken in the Banach space Ã∗ ⊂ Ã∗. But ‖τ̃(b·) − τ̃(bu∗i · ui)‖ =
‖b− uibu∗i ‖1,τ̃ , so that (5.4.1) implies

(5.4.1’) Σi‖b− uibu∗i ‖1,τ̃ < ε.

Step 2 (Namioka’s trick). We now show that for any finite set F ⊂ N (A) and any

ε > 0 there exists a projection e ∈ Ã such that τ̃(e) <∞ and Σi‖e−uieu∗i ‖22,τ̃ < ε‖e‖22,τ̃ .

Indeed, with b ∈ Ã+ as in Step 1, by Lemma 1.5.2 it follows that there exists s > 0
such that if we denote by e = es(b) the spectral projection (or if one prefers the level
set) of b corresponding to the interval [s,∞) then

(5.4.2) Σi‖e− uieu∗i ‖22,τ̃ < ε‖e‖22,τ̃ .

Note that τ̃(e) <∞.
Step 3 (Local AFD approximation). We now prove that given any finite set {vi}i ⊂

N p

(A) and any ε > 0 there exists matrix units {ekl}k,l ⊂ N
p

(A), ekk ∈ A, such
that if we denote s0 = Σkekk and N0 the algebra generated by As0 and {ekl}k,l then
s0vis0 ∈ N0 and Σi‖[s0, vi]‖22 < ε‖s0‖22. It is clearly sufficient to prove this for vi = ui
unitary elements, thus from N (A). Let then e be the finite projection in Ã satisfying
Σi‖e− uieu∗i ‖22,τ̃ < ε‖e‖22,τ̃ , obtained in Step 2.

Since any projection in Ã is of the form ΣnevnA for some orthonormal system
{vn}n ⊂ N

p

(A) and since τ̃(e) < ∞, we may assume in addition that e = Σmn=1evnA
(finite sum). Let {qj}j≥1 ⊂ A be a partition of 1 such that qj(v

∗
kuivl)qj is either equal

to 0 or to a unitary element in Aqj , for all i, k, l and for all j ≥ 1. By (5.4.2) and
Pythagora’s Theorem, it follows that

Σj(Σi‖(e− uieu∗i )JqjJ‖22,τ̃ < εΣj‖eJqjJ‖22,τ̃ .
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Thus, there must exist j ≥ 1 such that q = qj satisfies

(5.4.3) Σi‖(e− uieu∗i )JqJ‖22,τ̃ < ε‖eJqJ‖22,τ̃ .

But eJqJ = ΣnevnAJqJ = ΣnvneAv
∗
nJqJ = ΣnvnqeAv

∗
n. By our choice of q, for each

n we have either vnq = 0 or q(v∗nvn)q = q. Thus, after a suitable relabeling, we may
assume e in (5.4.3) is of the form e = ΣnvneAv

∗
n with v∗kvl = δlkq and v∗kuivl ∈ Aq,

∀i, l, k. Thus, for this new e we have

(5.4.3’) Σi‖e− uieu∗i ‖22,τ̃ < ε‖e‖22,τ̃ .

Denote e0
kl = vkv

∗
l , s0 = Σke

0
kk and N0 the algebra generated by the matrix units

{e0
kl}kl and As0. Then s0uis0 ∈ N0. We claim that the left hand term of (5.4.2′) is

equal to Σi‖s0−uis0u
∗
i ‖22 while the right hand term is equal to ‖s0‖22, so that altogether

(5.4.3′) amounts to

(5.4.3”) Σi‖s0 − uis0u
∗
i ‖22 < ε‖s0‖22.

Indeed, by the definition of τ̃ we have

‖e‖22,τ̃ = τ̃(Σkvkeav
∗
k) = Σkτ(vkv

∗
k) = τ(s0)

and similarly

‖e− uieu∗i ‖22,τ̃ = 2Σk τ̃(vkeAv
∗
k)− 2Σk,lτ̃(vkeAv

∗
kuivleAv

∗
l )

= 2Σk(vkv
∗
k)− 2Σk,lτ(vkv

∗
kuivlv

∗
l u
∗
i ) = ‖s0 − uis0u

∗
i ‖22

Step 4 (Maximality argument). Consider now the set A of all families of subalgebras
{Nj}j of M with mutually orthogonal units sj = 1Nj , with each Nj generated by Asj
and by a finite set of matrix units {ejkl}k,l ⊂ N

p

(A), such that sjuisj ∈ Nj ,∀i, j and

(5.4.4) Σi‖Σjsjuisj − (ui − (1− s)ui(1− s))‖22 ≤ ε‖s‖22,

where s = Σjsj . The set A is clearly inductively ordered with respect to inclusion. Let
{Nj}j be a maximal family and suppose the units sj do not fill up the unity of M . Take
p = 1− s ∈ A. Then Ap ⊂ pMp is still amenable by Proposition 5.3, so we can apply
Step 3 above to the finite set vi = puip, to get a non-zero projection s0 ⊂ Ap and a set
of matrix units {e0

kl}k,l ⊂ N
p

(A) with s0 = Σke
0
kk such that s0uis0 ∈ N0 = Σk,lAs0,

∀i, and Σi‖[puip, s0]‖22 ≤ ε‖s0‖22. Together with (5.4.4), by using Pythagora this gives

Σi‖(s0uis0 + Σjsjuisj)− (ui − (1− (s+ s0))ui(1− (s+ s0)))‖22



32 SORIN POPA

= Σi‖Σjsjuisj − (ui − (1− s)ui(1− s))‖22 + Σi‖s0uis0 − (puip− (p− s0)ui(p− s0))‖22
= Σi‖Σjsjuisj − (ui − (1− s)ui(1− s))‖22 + Σi‖[puip, s0]‖22

≤ ε(‖s‖22 + ‖s0‖22) = ε‖s+ s0‖22.

But this contradicts the maximality of {Nj}j . Thus, we must have Σjsj = 1.
This clearly finishes the proof, since we can now take any sufficiently large finite

subset {Nj}1≤j≤n of the maximal family and the algebra N = Σmj=1Nj will be fi-
nite dimensional over A, will be generated by a finite set of matrix units from the
pseudonormalizer N p

(A) and will still approximate the given finite set ui. Q.E.D.
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6. The first cohomology group of an action

6.1. 1-cohomology for groups of automorphisms. Let σ : Γ → Aut(X,µ) be
a measure preserving action of a discrete group Γ on the standard probability space
(X,µ) and denote A = L∞X, U(A) = {u ∈ A | uu∗ = 1}. A function w : Γ → U(A)
satisfying wgσg(wh) = wgh,∀g, h ∈ Γ, is called a 1-cocycle for σ. Note that a scalar
valued function w : Γ→ U(A) is a 1-cocycle iff w ∈ Char(Γ).

Two 1-cocycles w,w′ are cohomologous, w ∼ w′, if there exists u ∈ U(A) such that
w′g = u∗wgσg(u),∀g ∈ G. A 1-cocycle w is coboundary if w ∼ 1, where 1g = 1,∀g.

Denote by Z1(σ) the set of 1-cocycles for σ, endowed with the structure of a topolog-
ical (commutative) group given by point multiplication and pointwise convergence in
norm ‖ · ‖2. Denote by B1(σ) ⊂ Z1(σ) the subgroup of coboundaries and by H1(σ) the
quotient group Z1(σ)/B1(σ) = Z1(σ)/ ∼, called the 1’st cohomology group of σ. Note
that Char(Γ) with its usual topology is canonically embedded as a compact subgroup of
Z1(σ), via the map γ 7→ wγ , where wγg = γ(g)1, g ∈ Γ. Its image in H1(σ) is a compact
subgroup. If in addition σ is weakly mixing, then this image is actually faithful:

6.1.1. Lemma. If σ is weakly mixing then the group morphism γ 7→ wγ is 1 to 1 and
continuous from Char(Γ) into H1(σ).

Proof. If w1(g) = u∗w2(g)σg(u),∀g ∈ Γ then σg(u) ∈ Cu,∀g ∈ Γ and since σ is weakly
mixing, this implies u ∈ C1 so w1 = w2.

Q.E.D.
Let us note that under appropriate mixing conditions the fact that a cocycle w is

scalar on a subgroup H ⊂ Γ automatically entails that wg for all elements g ∈ Γ which
“almost” normalize H:

6.1.2. Lemma. . Let H ⊂ Γ be an infinite subgroup of Γ and w ∈ Z1(σ) be so that
w|H ∈ Char(H). If g ∈ Γ is such that H ′ = g−1Hg∩H is infinite and σ is weak mixing
on H ′ then wg ∈ C1.

Proof. Take k ∈ H ′ and put h = gkg−1 ∈ H. Then hg = gk. The 1-cocycle relation
yields whσh(wg) = wgσg(wk). Since wh, wk ∈ C1, this implies σh(wg) ∈ Cwg. Thus,
σh(wg) ∈ Cwg,∀h ∈ gH ′g−1. Since σ|gH′g−1 is weakly mixing (because σ|H′ is weakly
mixing) this implies wg ∈ C1. Q.E.D.

The above lemma justifies considering the following:

6.1.3. Definition. Let H ⊂ Γ be an inclusion of infinite groups. The w-normalizer of
H in Γ is the group... The wq-normalizer of H in Γ is...

6.2. Automorphisms associated with 1-cocycles. The groups B1(σ),Z1(σ),H1(σ)
were first considered in I.M. Singer, who also noticed that they can be identified with
certain groups of automorphisms of the finite von Neumann algebra M = L∞X oσ Γ,
as follows.
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Let M = L∞X o Γ and A = L∞X ⊂ M . Denote by Aut0(M ;A) the group of
automorphisms of M that leave all elements of A fixed, endowed with the topology
of pointwise convergence in norm ‖ · ‖2 (the topology it inherits from Aut(M, τ)). If
θ ∈ Aut0(M ;A) then wθg = θ(ug)u

∗
g, g ∈ Γ, is a 1-cocycle, where {ug}g ⊂ M denote

the canonical unitaries implementing the action σ. Conversely, if w ∈ Z1(σ) then
θw(aug) = awgug, a ∈ A, g ∈ Γ, defines an automorphism of M that fixes A. Clearly
θ 7→ wθ, w 7→ θw are group morphisms and are inverse one another, thus identifying
Z1(σ) with Aut0(M ;A) as topological groups, with B1(σ) corresponding to the inner
automorphism group Int0(M ;A) = {Ad(u) | u ∈ U(A)}. Thus, H1(σ) is naturally

isomorphic to Out0(M ;A)
def
= Aut0(M ;A)/Int0(M ;A).

The groups Aut0(M ;A), Int0(M ;A), Out0(M ;A) make actually sense for any in-
clusion A ⊂M consisting of a II1 factor M with a Cartan subalgebra A.

6.3. 1-cohomology for full pseudogroups. Let G be a full pseudogroup acting
on the probability space (X,µ) and denote A = L∞(X,µ), as before. A 1-cocycle for
G is a map w : G →p U(A) satisfying the relation wφφ(wψ) = wφψ, ∀φ, ψ ∈ G. In
particular, this implies that the support of wφ, wφw

∗
φ, is equal to the range r(φ) of φ.

Thus, widY = χY ,∀Y ⊂ X measurable.
We denote by Z1(G) the set of all 1-cocycles and endow it with the (commutative)

semigroup structure given by point multiplication. We denote by 1 the 1-cocycle given
by 1φ = r(φ),∀φ ∈ G. If we let (w−1)φ = wφ

∗ then we clearly have ww−1 = 1 and
1w = w, ∀w ∈ Z1(G). Thus, together also with the topology given by pointwise norm
‖ · ‖2-convergence, Z1(G) is a commutative Polish group.

Two 1-cocycles w1, w2 are cohomologous, w1 ∼ w2, if there exists u ∈ U(A) such that
w2(φ) = u∗w2(φ)φ(u), ∀φ ∈ G. A 1-cocycle w cohomologous to 1 is called a coboundary
for G and the set of coboundaries is denoted B1(G). It is clearly a subgroup of Z1(G).

We denote the quotient group H1(G)
def
= Z1(G)/B1(G) = Z1(G)/ ∼c and call it the 1’st

cohomology group of G.
By the correspondence between countably generated full pseudogroups and count-

able m.p. standard equivalence relations described in Section 6.2, one can alternatively
view the 1-cohomology groups Z1(G),B1(G),H1(G) as associated to the equivalence
relation R = RG .

Let now A ⊂ M be a II1 factor with a Cartan subalgebra. If θ ∈ Aut0(M ;A) and
φv = Ad(v) ∈ GA⊂M for some v ∈ GNM (A) then wθ(φv) = θ(v)v∗ is a well defined
1-cocycle for G. Conversely, if w ∈ H1(G) then there exists a unique automorphism
θw ∈ Aut0(M ;A) satisfying θw(av) = awφvv, ∀a ∈ A, v ∈ GNM (A).

6.3.1. Proposition. θ 7→ wθ is an isomorphism of topological groups, from Aut0(M ;A)
onto Z1(GA⊂M ), that takes Int0(M ;A) = {Ad(u) | u ∈ U(A)} onto B1(GA⊂M ) and
whose inverse is w 7→ θw. Thus, θ 7→ wθ implements an isomorphism between the
topological groups Out0(M ;A) = Aut0(M ;A)/Int0(M ;A) and H1(GA⊂M ).
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Proof. This is trivial by the definitions. Q.E.D.

It is an easy exercise to show that if θ ∈ Aut0(M ;A) satisfies θ|pMp = Ad(u)|pMp

for some p ∈ P(A), u ∈ U(A) then θ ∈ Int0(M ;A). Thus, θ 7→ θ|pMp defines an
isomorphism from Out0(M ;A) onto Out0(pMp;Ap). Applying this to the Cartan
subalgebra inclusion L(G0) ⊂ L(G) for G an ergodic full pseudogroup acting on the
non-atomic probability space, from 1.5.1 we get: H1(G) is naturally isomorphic to
H1(Gt),∀t > 0. In particular, since 1.5.1 also implies H1(σ) = H1(Gσ), it follows that
H1(σ) is invariant to stable orbit equivalence. We have thus shown:

6.3.2. Corollary. 1◦. H1(Gt) is naturally isomorphic to H1(G),∀t > 0.

2◦. If σ is a free ergodic measure preserving action then H1(σ) = H1(Gσ) and H1(σ)
is invariant to stable orbit equivalence. Also, Z1(σ) = Z1(Gσ) and Z1(σ) is invariant
to orbit equivalence.

6.4. The closure of B1(G) in Z1(G). Given any ergodic full pseudogroup G,
the groups B1(G) ' Int0(M ;A) are naturally isomorphic to U(A)/T, where A =
L(G0),M = L(G). But this isomorphism doesn’t always carry the topology that B1(G)
(resp. Int0(M ;A)) inherits from Z1(G) (resp. Aut0(M ;A)) onto the quotient of the
‖ · ‖2-topology on U(A)/T.

6.4.1. Proposition. Let A ⊂ M be a II1 factor with a Cartan subalgebra. The
following conditions are equivalent:

(a). H1(GA⊂M ) is a Polish group (equivalently H1(GA⊂M ) is separate), i.e. B1(GA⊂M )
is closed in Z1(GA⊂M ).

(b). Int0(M ;A) is closed in Aut0(M ;A).

(c). The action of GA⊂M on A is strongly ergodic, i.e. it has no non-trivial asymp-
totically invariant sequences.

Moreover, if M = A oσ Γ for some free action σ of a group Γ on (A, τ), then the
above conditions are equivalent to σ being strongly ergodic.

Proof. (a) ⇔ (b) follows from 6.3.1. Then notice that (b) ⇔ (d) is a relative version
of Connes’ result in ([C75]), showing that “Int(N) is closed in Aut(N) iff N has no
non-trivial central sequences” for II1 factors N . Thus, a proof of (b)⇔ (d) is obtained
by following the argument in ([C75]), but replacing everywhere Int(N) by Int0(M ;A),
Aut(N) by Aut0(M ;A) and “non-trivial central sequences of N” by “non-trivial central
sequences of M that are contained in A”.

To prove the last part, note that σ strongly ergodic iff {ug}′g ∩ Aω = C, where
{ug}g ⊂ M denote the canonical unitaries implementing the action σ of G on A. But
{ug}′g ∩Aω = (A∪ {ug}g)′ ∩Aω = M ′ ∩Aω, hence strong ergodicity of σ is equivalent
to (d). Q.E.D.
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6.4.2. Proposition. Assume Γ has an infinite subgroup H ⊂ Γ such that the pair
(Γ, H) has the relative property (T). If σ is a free m.p. action of Γ on the probability
space such that σ|H is ergodic, then σ is strongly ergodic, equivalently B1(σ) is closed in

Z1(σ). Moreover, the subgroup Z1
H(σ)

def
= {w ∈ Z1(σ) | w|H ∼ 1H} is open and closed

in Z1(σ).

Proof. Since (Γ, H) has the relative property (T), by ([Jol02]) there exist a finite
subset F ⊂ G and δ > 0 such that if π : Γ → U(H), ξ ∈ H, ‖ξ‖2 = 1 satisfy
‖πg(ξ) − ξ‖2 ≤ δ, ∀g ∈ F then ‖πh(ξ) − ξ‖2 ≤ 1/2,∀h ∈ H and π|H has a non-trivial
fixed vector.

If σ is not strongly ergodic then there exists p ∈ P(A) such that τ(p) = 1/2 and
‖σg(p)− p‖2 ≤ δ/2,∀g ∈ F . But then u = 1− 2p satisfies τ(u) = 0 and ‖σg(u)−u‖2 ≤
δ, ∀g ∈ F . Taking π to be the G-representation induced by σ on L2(A, τ)	C1, it follows
that L2(A, τ)	C1 contains a non-trivial vector fixed by σ|H . But this contradicts the
ergodicity of σ|H .

Let now M = A oσ Γ and θ = θw ∈ Aut0(M ;A) be the automorphism associated
to some w ∈ Z1(σ) satisfying ‖θ(ug) − ug‖2 = ‖wg − 1‖2 ≤ δ, ∀g ∈ F . Then the
unitary representation π : G → U(L2(M, τ)) defined by πg(ξ) = ugξθ(u

∗
g) satisfies

‖πg(1̂)− 1̂‖2 = ‖wg−1‖2 ≤ δ, ∀g ∈ F . Thus, ‖wh−1‖2 = ‖πh(1̂)− 1̂‖2 ≤ 1/2 implying

‖θ(vuh)− vuh‖2 = ‖θ(uh)− uh‖2 ≤ 1/2,∀h ∈ H, v ∈ U(A).

It follows that if b denotes the element of minimal norm ‖ · ‖2 in cow{u∗hv∗θ(vuh) | h ∈
H, v ∈ U(A)} then ‖b − 1‖2 ≤ 1/2 and vuhb = bθ(vuh) = bwhvuh, ∀h ∈ H, v ∈ U(A).
But this implies b 6= 0 and xb = bθ(x),∀x ∈ N = A oσ|H H. In particular [b, A] = 0

so b ∈ A ⊂ N . Since N is a factor (because σ|H is ergodic), this implies b is a
scalar multiple of a unitary element u in A satisfying wh = u∗σh(u),∀h ∈ H. Thus
w ∈ Z1

H(σ), showing that Z1
H(σ) is open (thus closed too). Q.E.D.

6.4.3. Corollary. Assume Γ has an infinite rigid subgroup H ⊂ Γ. Let Γ yσ

(X,µ) be a m.p. action with σ|H ergodic. If w,w′ ∈ Z1(σ) are in the same connected

component of Z1(σ) then w|H ∼ w′|H .

Proof. If w,w′ are in the same connected component of Z1(σ) then w′w−1 is in the
connected component C of 1 in Z1(σ). But then Z1

H(σ) is open (by 6.4.2), contains 1
and its complement is also open, implying that C ⊂ Z1

H(σ), i.e. w′w−1 ∼ 1, equivalently
w ∼ w′. Q.E.D.

6.5. Calculation of H1 for malleable actions. Throughout this section let Γ yσ

(X,µ) denote a m.p. action of the discrete group Γ on the probability space (X,µ).

6.5.1. Definition. σ is malleable if the flip automorphism α1 on X × X, defined by
α1(t, t′) = (t′, t), t, t′ ∈ X, is in the connected component of the identity idX in
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the Polish group σ̃(Γ)′ ∩ Aut(X × X,µ × µ), where σ̃ is the diagonal product action
σ̃g = σg × σg, g ∈ Γ.

6.5.2. Theorem. Let Γ be a countable discrete group with an infinite subgroup H ⊂ Γ
such that (Γ, H) has the relative property (T). Let σ be a free ergodic m.p. action of
Γ on the probability space. Assume that σ is malleable w-mixing on H. Then the
restriction to H of any 1-cocycle w for σ is cohomologous to a cocycle which restricted
to H is a character of H. If in addition we assume that either H is w-normal in Γ, or
σ|H is mixing with H wq-normal in Γ, then H1(σ,Γ) = Char(Γ).

Proof. Let w ∈ Z1(σ). Note that w × 1 and 1 × w are cocycles for the diagonal
product action σ̃ of Γ on L∞⊗L∞X and that 1 ⊗ w is obtained by applying the flip
automorphism on L∞X o L∞X to w ⊗ 1. Thus, by Corollary 6.4.3 it follows that the
restrictions to H of the cocycles w ⊗ 1, 1⊗w are equivalent in Z1(σ̃|H). The Theorem
then follows from the following general:

6.5.3. Proposition. Let ρ be an action of an infinite group H on (X,µ) and w ∈
Z1(ρ). Assume w ⊗ 1 ∼ 1 ⊗ w in Z1(ρ̃), where ρ̃h = ρh ⊗ ρh, h ∈ H. Then w ∼ 1 in
Z1(ρ).

Proof. Let u ∈ U(L∞(X)⊗L∞X) be so that (wh ⊗ 1)ρ̃h(u) = u(1 ⊗ wh), h ∈ H. For

each h ∈ H and ξ̃ ∈ L2X⊗L2X, denote by σ̃wh (ξ̃) = (wh⊗1)σ̃h(ξ̃)(1⊗wh). Notice that
σ̃wh is a unitary element on L2X⊗L2X and that h 7→ σ̃h is a unitary representation of
H on the Hilbert space L2X⊗L2X.

Let G denote the connected component of id in σ̃′ ∩ Aut(X × X,µ × µ). By the
definition of malleability and Corollary 6.4.3 it follows that {α(wl) Q.E.D.

6.5.4. Lemma. Let Γ, L be discrete groups with Γ infinite. Let σ be a free, weakly
mixing m.p. action of Γ on the probability space and β a free measure preserving action

of L on the same probability space which commutes with σ. If AL
def
= {a ∈ A | βh(a) =

a,∀h ∈ L} then σg(A
L) = AL,∀g ∈ Γ, so σLg

def
= σg |AL defines an integral preserving

action of Γ on AL.

Proof. Since βh(σg(a)) = σg(βh(a)) = σg(a), ∀h ∈ L, a ∈ AL, it follows that σg leaves
AΓ invariant ∀g ∈ Γ. Q.E.D.

6.5.5. Lemma. With Γ, L, σ, β, AL, σL as in 6.5.4, assume the action σL of Γ on

AL is free. For each γ ∈ Char(L) denote Uγ
def
= {v ∈ U(A) | βh(v) = γ(h)v,∀h ∈ L}

and Charβ(L)
def
= {γ ∈ Char(L) | Uγ 6= ∅}. Then we have:

1◦. UγUγ′ = Uγγ′ ,∀γ, γ′ ∈ Char(Γ), and Charβ(L) is a countable group.
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2◦. If γ0 ∈ Char(Γ), γ ∈ Charβ(L) and v ∈ Uγ , then wγ0,γ(g)
def
= σg(v)v∗γ0(g) ∈

AL,∀g ∈ Γ, and wγ0,γ defines a 1-cocycle for (σL,Γ) whose class in H1(σL,Γ) doesn’t
depend on the choice of v ∈ Uγ .

Proof. 1◦. If v ∈ Uγ , v′ ∈ Uγ′ then

βh(vv′) = βh(v)βh(v′) = γ(h)γ′(h)vv′,

so vv′ ∈ Uγγ′ . This also implies Charβ(L) is a group. Noticing that {Uγ}γ are mutually
orthogonal in L2(A, τ) = L2(X,µ), by the separability of L2(X,µ), Charβ(L) follows
countable.

2◦. Since σ, β commute, σg(Uγ) = Uγ , ∀g ∈ Γ, γ ∈ Charβ(L). In particular,
σg(v)v∗ ∈ U1 = U(AL), ∀g ∈ Γ showing that the function wγ0,γ takes values in U(AL).
Since wγ0,γ is clearly a 1-cocycle for σ (in fact wγ0,γ ∼c γ01 as elements in Z1(σ,Γ)),
it follows that wγ0,γ ∈ Z1(σL).

If v′ is another element in Uγ then u = v′v∗ ∈ U(AL) and the associated 1-cocycles
wγ0,γ constructed out of v, v′ follow cohomologous via u, in Z1(σL,Γ). Q.E.D.

6.5.6. Theorem. Let (σ,Γ), (β, L) be commuting, free m.p. actions on the same
probability space, with Γ infinite and σ weakly mixing, as in 6.5.4, 6.5.5. Let AL, (σL,Γ)
be defined as in 6.5.4 and Charβ(L) as in 6.5.5. Also, for γ0 ∈ Char(L), γ ∈ Charβ(L)
let wγ0,γ be defined as in part 2◦ of 6.5.5. If Charβ(L) is given the discrete topology
then ∆ : Char(Γ)×Charβ(L)→ H1(σL) defined by letting ∆(γ0, γ) be the class of wγ0,γ

in H1(σL) is a 1 to 1 continuous group morphism. If in addition H1(σ) = Char(Γ)
then ∆ is an isomorphism of topological groups.

Proof. The map ∆ is clearly a group morphism and continuous. To see that it is 1 to
1 let γ0 ∈ Char(Γ), γ ∈ Charβ(L) and v ∈ Uγ and represent the element ∆(γ0, γ) ∈
H1(σL) by the 1-cocycle wγ0,γg = σg(v)v∗γ0(g), g ∈ Γ. If wγ0,γ ∼c 1 then there exists

u ∈ U(AL) such that σg(u)u∗ = σg(v)v∗γ0(g),∀g ∈ Γ. Thus, if we denote u0 = uv∗ ∈
U(A) then σg(u0)u∗0 = γ0(g)1,∀g. It follows that σg(Cu0) = Cu0, ∀g ∈ G, and since
σ is weakly mixing this implies u0 ∈ C1 and γ0 = 1. Thus, v ∈ Cu ⊂ U(AL) = U1,
showing that γ = 1 as well.

If we assume H1(σ) = Char(Γ) and take w ∈ Z1(σL) then we can view w as a 1-
cocycle for σ. But then w ∼ γ01, for some γ0 ∈ Char(Γ). Since σ is ergodic, there exists
a unique v ∈ U(A) (up to multiplication by a scalar) such that wg = σg(v)v∗γ0(g),
∀g ∈ Γ. Since w is AΓ-valued, σg(v)v∗ ∈ U(AΓ),∀g. Thus σg(v)v∗ = βh(σg(v)v∗) =
σg(βh(v))βh(v)∗,∀g. By the uniqueness of v this implies βh(v) = γ(h)v, for some scalar
γ(h). The map Γ 3 h 7→ γ(h) is easily seen to be a character, so w = wγ0,γ showing
that (γ0, γ) 7→ wγ0,γ is onto.

Since H1(σ) = Char(Γ) is compact, by ... and ... σ is strongly ergodic so σL is also
strongly ergodic. Thus H1(σL) is Polish, with ∆(Char(Γ)) a closed subgroup, implying
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that ∆(Charβ(L)) ' H1(σΓ)/∆(Char(Γ)) is Polish. Since it is also countable, it is
discrete. Thus, ∆ is an isomorphism of topological groups. Q.E.D.

6.6. Some calculations of H1-groups.

6.6.1. Lemma. Let Γ be an infinite group and σ be the Bernoulli shift action of Γ on
(X,µ) = Πg(T, λ)g. With the notations of 6.5.4, 6.5.5, for any countable abelian group
Λ there exists a countable abelian group L and a free action β of L on (X,µ) such that
Charβ(L) = Λ, [σ, β] = 0 and σ|AL is a free action of Γ. Moreover, if Λ is finite then
one can take L = Λ and β to be any action of L = Λ on (X,µ) that commutes with σ
and such that σ × β is a free action of Γ× L.

Proof. Let L be a countable dense subgroup in the (2’nd countable) compact group Λ̂

and µ0 be the Haar measure on Λ̂. Let β0 denote the action of L on L∞(Λ̂, µ0) = L(Λ)
given by β0(h)(uγ) = γ(h)uγ ,∀h ∈ L, where {uγ}γ∈Λ ⊂ L(Λ) denotes the canonical
basis of unitaries in the group von Neumann algebra L(Λ) and γ ∈ Λ is viewed as a

character on L ⊂ Λ̂. Denote A0 = L∞(Λ̂, µ0)⊗L∞(T, λ) and τ0 the state on A0 given
by the product measure µ0×λ. Let β denote the product action of L on ⊗g∈Γ(A0, τ0)g
given by β(h) = ⊗g(β0(h)⊗ id)g.

Since (A0, τ0) ' (L∞(T, λ),
∫
·dλ), we can view σ as the Bernoulli shift action of G

on A = ⊗g(A0, τ0)g. By the construction of β we have [σ, β] = 0. Also, the fixed point
algebra AL contains a σ-invariant subalgebra on which σ acts as the (classic) Bernoulli
shift. Thus, the restriction σΓ = σ|AL is a free, mixing action of G. Finally, we see by
construction that Charβ(L) = Λ.

The last part is trivial, once we notice that if the action σ× β of Γ×L on A is free
then the action σL of Γ on AL is free. Q.E.D.
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