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1. GROUP ACTIONS: BASIC PROPERTIES

1.1. Probability spaces as von Neumann algebras. The “classical” measure the-
oretical approach to the study of actions of groups on the probability space is equivalent
to a “non-classical” operator algebra approach due to a well known observation of von
Neumann, showing that measure preserving isomorphisms between standard probabil-
ity spaces (X, u) are in natural correspondence with *-algebra isomorphisms between
their function algebras L>°X = L>°(X, u) preserving the functional given by the inte-
gral, 7, = [ -du. More precisely:

1.1.1. Theorem. 1°. Let T : (X,u) — (Y,v) be a measurable map with voT = p.
Then pr : LY — L*X defined by pr(z)(s) = x(Ts),s € X, is an injective *-algebra
morphism satisfying T,0pr = T,. Conversely, if (X, ), (Y,v) are probability spaces and
p: LY — L°°X is an injective x-algebra morphism such that 7, o j = 7, then there
exists a measurable map T : X — Y, such that p = pr. Moreover, T is unique and
onto, modulo a set of measure 0, and the correspondence T +— pr is “contravariant”
functorial, i.e. psor = pr o ps. Also, T is a.e. 1 to 1 if and only if p is onto and if
this is the case then T~ is also measurable and measure preserving.

2°. If (X, ) is a non-atomic probability space then (X, pu) ~ (T, X) and (L*°X,T,) ~
(LT, 7).

Proof. The fact that pr is a x-algebra isomorphism preserving the integral is trivial by
the definition. Also, T' — pr is clearly functorial.

If (X, p) has no atoms then one can easily construct recursively finite “diadic” parti-
tions P, = {p} | 1 <k < m,,} with projections in L>*X such that 7,(p}}) = 27", Vk,
P, C P,y1,Yn, and U,2;Cpl = L>*X, thus giving an isomorphism p of (L>*X,7,)
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onto (L™Y, 7y), where Y is the compact group (Z/2Z)" with its Haar measure \. Also,
this isomorphism clearly implements a measurebale onto (a.e.) map 7' : X — Y such
that p = pp. From this point on, the only non-trivial part in completing the proof of
both 1° and 2° is then to show that T follows 1 to 1 a.e. as well (by using the fact
that pr is onto). We refer to Royden’s “Real Analysis” book for the proof of this latter
fact. Q.E.D.

From now on, if T": (X, u) ~ (Y, v) is an isomorphism of probability spaces then we
denote ¥ the integral preseving isomorphism of L>°X onto L*>Y given by 7 = pp-1.
Note that the correspondence T — 1 becomes “covariant” functorial.

There are two norms on L*>°X that are relevant for us, namely the ess-sup norm
|- |l = || - ||c and the norm || - ||2. Note that the unit ball (L>*°X); of L>*X (in the
norm || - ||) is complete in the norm || - [|2. At times, we will also consider the norm

| - |l1 on L X. By Cauchy-Schwartz, we have [|z|; < ||z|2 < H.r]H/Z, Ve e (L*°X),
so the the corresponding topologies structures are equivalent.

We often identify L>°X with the von Neumann algebra of (left) multiplication op-
erators L.,z € L>®X, where L,(§) = 2§, £ € L?X. The identification x — L, is a
*_algebra morphism, it is isometric (from L> X with the ess-sup norm into B(L2X) with
the operatorial norm) and takes the || - ||2-topology of (L°°X); onto the strong operator
topology on the image. Also, the integral 7,(z) becomes the vector state (L,(1),1),
x € L>*X. Moreover, if T : (X, u) ~ (Y, v) for some other probability space (Y, ), then
JI7 extends to an (isometric) isomorphism of Hilbert spaces Ur : L?X =~ L2Y which
conjugates the von Neumann algebras L°X C B(L?X), L>®Y C B(L?Y) onto each
other, spatially implementing the isomorphism ¥, i.e. UrL, U} = Ly, (), Vo € L X.

If {(X,, pn)}n is a sequence of standard probability spaces then the product prob-
ability space I1,,(X,,, tt,,) can be defined in the obvious way. One can readily see that
there is a natural identification between L°°II,, X,, with the integral given by the prod-
uct measure and the tensor product of algebras ®,,(L*°X,,7,, ).

1.2. Actions of groups by automorphisms. We denote by Aut(X, ) the group
of (classes modulo null sets of) measure preserving automorphisms T : (X,u) ~
(X, ) of the standard probability space (X,u). Denote Aut(L*X,7,) the group
of *-automorphisms of the von Neumann algebra L°°X that preserve the functional
7, = [ -dp, and identify Aut(X, p) and Aut(L>*X,7,) via the map T — 7 described
in 1.1.1° above.

One immediate benefit of the functional analysis framework and of this identification
is that it gives a natural Polish group topology on Aut(X, i), given by pointwise || - ||2-
convergence in Aut(L*X,7,), i.e. 9, — 0¥ in Aut(L>®X, 7,) if lim,, |0, (x) — 9 (z)|]2 =
0, Vx € L>*X.

1.2.1. Lemma. 1°. The topologies of wo, so and so* convergence on the unitary
group U(H) on a Hilbert space H coincide and give a structure of topological group on
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U(H). If H is separable then U(H) endowed with either one of these topologies is a
Polish group.

2°. The map Aut(X,p) > T — Ur € U(L?X) has close image and it is an isomor-
phism of topological groups, from Aut(X,p) onto its image in U(L?X).

Proof. 1f u;,u € U(H) are unitary elements such that lim; ||u;§ — u&|| = 0, V€ € H,
then taking & = u*n we get

lim [Ju;€ — u|| = lim [Ju;u™n —n|| = 0,Vn € H.

Thus, the so and so* topologies coincide on U(H). Also, if u; tends to u in the wo
topology then for any unit vector £ € H we have (u;€, u&) — 1, thus |u;é — ué||?* =
2 — 2Re(u;&, u€) — 0, showing that u; converges so to u. The rest of the statement is
trivial by the definitions. Q.E.D.

An action of a discrete group I' on the standard probability space (X, ) is a group
morphism o : I' — Aut(X, z). We'll often use the notation I' A (X, ) to emphasize
an action o, or simply I' ~ X if no confusion is possible. We’ll sometimes consider
topological groups G other than discrete (typically locally compact or Polish), in which
case an action of G on (X, 1) will be a morphism of topological groups G — Aut(X, u).

Using the identification between Aut(X, u) and Aut(L>X, 7,), we alternatively view
o as an action of I' on (L*°X,7,), i.e as a group morphism o : I' = Aut(L>*X,7,).
Although we use the same notation for both actions, the difference will be clear from
the context. Furthermore, when viewing o as an action on the probability space (X, u),
we’'ll use the simplified notation o,(t) = gt, for g € I',t € X. The relation between o
as an action on (X, p) and respectively on (L*°X,7,) is then given by the equations
o4(x)(t) = z(g~'t), V¢t € X (a.e.), which hold true for each g € I', z € L X.

Since any o, extends to a unitary operator on L?X, o : I' — Aut(L>X, 7,) extends
to a unitary representation of I' on the Hilbert space L?X, denoted U,, or simply o.

Two actions o : I' — Aut(X,u), 0 : A — Aut(Y,v), are conjugate with respect
to an isomorphism ¢ : I' ~ A if there exists an isomorphism of probability spaces
A (X,pn) — (Y,v) (or equivalently an integral preserving isomorphism A from L>X
onto L*°Y’) such that A ooy = 05, 0 A, Vg € I'. If there exists some § : I' ~ A such
that ' ~ X, A ~ Y are conjugate with respect to §, then we simply say that I' ~ X,
A ~Y are conjugate. Note that if 0,0 are faithful then this condition is equivalent to
the condition {Ac;,A™1 | g €T} = {6, | h € A}.

1.3. Freeness, ergodicity and mixing properties. The action I' ~ X is free if
for any g € I', g # e, the set {t € X | gt = t} has p-measure 0. On the function space
L*>X, this amounts to acy(xr) = za,Vr € L*X, for some a € L>*X, implies either
g=eora=0.
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The action is ergodic if Xy C X measurable with gXy = X( (a.e.) for all g € T,
implies Xg = X or Xy = () (a.e.), in other words u(Xy) = 0,1. Equivalently, if p is a
projection in the von Neumann algebra L*° X then o4(p) = p,Vg € I'impliesp = 0,1. It
is immediate to see that if this condition is satisfied then the only measurable functions
x : X — C that are fixed by o, i.e. g4(x) =z, Vg € T, are the constant functions (a.e.).
Indeed, this is clear for x € L°°X, because if o fixes x then it fixes all its spectral
decomposition (this being obtained as weak limits of polynomials in x,z*, which are
all fixed by o), which thus follow scalar multiples of 1, thus z itself is constant. If x
is arbitrary measurable then o fixes its polar decomposition x = ua, i.e. o4(u) = u,
o4(a) =a,Vg € I', where a = (z*2)/? and v = za~'. Thus u € C by the first part, and
b= (1+4a)"! € L>®X satisfies o4(b) = b, Vg € I, implying b € C, thus a € C. Note
that the above argument also shows that the fixed point algebra (LX) is || - ||2-dense
(resp. || - ||i-dense) in the set of fixed points of the action o on L2X (resp. L'X).

Notice that an action T' A (X, p) is ergodic iff the corresponding unitary represen-
tation o of I' on L?2X © C1 has no fixed vectors, i.e. it does not contain the trivial
representation 1r.

1.3.1. Lemma. 1°. A unitary representation o : I' — U(H) is ergodic (i.e. 1p £ o)
iff given any &,m € H and any € > 0 there exists g € I' such that Re(oy(§),n) < e.

2°. An action T A (X, p) is ergodic iff for any p,q € P(L™®X) and any e > 0 there
exists g € I' such that 7,,(04(p)q) < (1 + €)1, (p)7u(q)-

Proof. 1°. If Re(o4(&),m) > ¢, Vg € T', then Re((,n) > ¢, V( € K¢ = co®{o4(&) | g €
I'}. Since K¢ is convex and compact in the w* duality topology, it follows that there
exists a unique element ¢y € K¢ of minimal norm. But K¢ is o-invariant by definition
and |log(C)|| = |[¢]|, V¢ € K¢, so by uniqueness o,({p) = o, Vg € I'. Since o is ergodic,
this implies (p = 0 € K¢. Thus 0 = Re((p,n) > ¢, a contradiction.

2°. Just apply part 1° to £ = p — 7,(p)1, n = q — 7.(q)1. Q.E.D.
1.3.2. Remarks. (a). The proof of part 1° of the above lemma works equally
well when instead of a unitary representation o one has a semigroup Tp,h € H, of
contractions on the Hilbert space H, i.e. TpT = Thp,h,h' € H, and ||T}|| < 1, Vh.

(b). Assume o is as in 1° of the lemma (or more generally an ergodic semigroup
of contractions on ). Since the closure of convex subsets of H in the w*-duality
topology and in the Hilbert norm coincide and since the proof of 1.3.1.1° above shows
that 0 € K¢, it follows that for any € > 0 there exist g1, ..., g, € I' such that

(b’) I~ Siog, ()] < e

On the other hand, this latter fact trivially implies 1.3.1.1°. More concrete ways
of getting convex combinations of o4, (§) of small norm are provided by the following
general form of von Neumann’s Mean Ergodic theorem: If {T}, | h € H} is an amenable
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semigroup of contractions on the Hilbert space H, and F; C T is a (right) Folner family
of finite subsets of the amenable semigroup H, then

(") lim || B~ Sgen T, (€) — po(€)]| = 0, € A,

where pg is the orthogonal projection onto the subspace of fixed points Ho = {{ € H |
Ty¢ = &,Vg € H}. The proof of this result goes as follows: Since T, are contractions,
any fixed point of T} is a fixed point for T7, thus H © Ho is invariant to Ty, g € H.
So to prove the theorem it is sufficient to prove it in the case Hg = 0. But then the
span of the vectors & = n — Tr(n), n € H, is dense in H, showing that it is sufficient
to prove the convergence (b") for such n — T} (n) only. But this is trivial by the Fglner
condition.

If the group I' in 1.3.1.1° above is finitely generated, say by ¢1,...,9x € I', and we
denote by T the Laplacian k~'¥,0,, € B(H), then by von Neumann’s ergodic mean
value theorem (for the semigoup H = {n | n > 1}) it follows that for each £ € H, e >0
there exists n large enough such that ||T"¢]| < e. In case T is itself amenable with
Folner sets F,, C I', one can take the “specific” convex combinations in (b’) of the form
| Ful ™' Eger, 04(8)-

(¢). The above considerations applied to ¢ = 1 — p in part 1° of Lemma 1.3.1 show
that if the group I is infinite and o is an arbitrary m.p. action of I' on the probability
space (X, p) then given any subset of positive measure Xy C X there exist an infinite
sequence g, € I' such that lim sup,, u(XoN g, Xo) > 1(Xo)?, i.e. a version for arbitrary
groups of Poincare’s “returning” lemma. We leave this as an exercise. There is a
straight way to get recursively a “returning” sequence g, when the group I' satisfies
the following property: For any finite Fy C I' there exists a semigroup I'g C I' disjoint
from Fj that generates I' as a group. For if we assume I satisfies this property, then for
any & € L?X the set Kgo ={04(&) | g € T'o} is Ip-invariant thus its (unique) element
&o of minimal norm || - ||2 is a I'g-fixed point. Since I'y generates I', & is fixed by I' as
well. Applying this to g = 1 — p and reasoning as in the proof of 1.3.1, for a given
e > 0 one gets g € I'g (thus not in F') such that 7,(04(1 —p)p) < (1 +¢)7,(E(1 —p)p),
where E is the conditional expectation onto the fixed points of o. But 7,(E(1 —p)p) <
7,(1 = p)7.(p) (exercise) so 7,(c4(p)p) > (1+¢)7(p)* —e7(p), which for e < 7(p)?/4 is
larger than (1 — &1/2)7(p)2.

An action I' A (X, p) is weak mizing (resp. mizing) if for any finite set F' C
L>*X ©C and any € > 0 there exists g € I" (resp. there exists Ky C I finite) such that
T (n*04(8))| <€, V&,m € F (resp. Vg € Kp). It is trivial to see that if this condition
holds true for subsets F' in L X © C1 then it holds true for subsets F in L2X © C1 as
well.

Related to this, we’ll say that a unitary representation of I' on a Hilbert space H
is weak mizing (resp. mixing) if VF C H finite there exists g € I' (resp. there exists
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Ky C T finite) such that |(o4(§),n)| < e,V,n € F (resp. Vg € Ky). We will use the
same terminology for orthogonal representations of I" on real Hilbert spaces (i.e. group
morphisms of I' into the group of orthogonal operators on a real Hilbert space H; note
that such representations correspond, via GNS construction, to positive definite real
valued maps on T).

It is immediate to see that a representation o is mixing iff all its coefficients vanish at
infinity, equivalently all positive definite functions affiliated with the representation are
in ¢o(I") (are compact). For weak-mixing, we have some alternative characterisations:

1.3.3. Lemma. Let 0 : I' — U(H) be a unitary representation of I' on the Hilbert
space H. The following are equivalent:

(7). o is weak mizing.

(73). Given any other representation ooy : I' — U(Ho) the product representation
o ® og of the group I" is ergodic.

(ii1). o(T) NK(H) = 0.

(137"). There are no o(I')-invariant finite dimensional non-zero vector subspaces of

H.

Proof. (i) == (ii). Assume & € H®Hy is fixed by 0 ® p. By the density of
H ® Ho in HR®H there exists an orthonormal system &1, &, ...,&, € H and elements

M1,M2, -y I € Ho such that if we denote &' = '21& ® n; then we have
1=

1€ = &'l < e/3ll€ll2) and[[g ]2 < [1€]l2-

Since o is weakly mixing, there exists g € I' such that
B @6 1 palmm)l < </

Thus, in H®Hy we have:
(09 @ pg)(§7)E)] < e/3.

As a consequence we get

€11* < [{(8y @ pg) (€)M + 2llE — &lI2I8]]2 < e

Since € > 0 was arbitrary, it follows that £ = 0.

(i1) = (iii). If o(I") commutes with a non-zero compact operator then it com-
mutes with a non-zero finite rank projection. By applying (i) to p = o and by taking
into account that the Hilbert space of Hilbert-Schmidt operators .S on H, with the ac-
tion S +— Ado,(S) of I on it, can be naturally identified with H®H*, with the action
o ® o on it, it follows that there are no finite rank projections commuting with o(I").
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(1i1) < (iid"). If Ho C H is finite-deminsional invariant then the projection on
it is compact and commutes with o(T"). Conversely if K € o(T')’ N KC(#H) then any
spectral projection of K*K still commutes with o(I"), so the suspace it projects on is
o(I")-invariant.

(7i1) = (i). Let Ho C H be the linear span of F' and pg the orthogonal projection
onto Hy, regarded as an element in the Hilbert space HS of Hilbert-Schmidt operators
on H. Since by (ii), H has no non-zero finite dimensional subspaces invariant to o
it follows that V§ > 0, 3g € T" such that in HS we have Tr(o4(po)po) < 0. Indeed,
because if there would exist some dy > 0 such that T'r(oq(po)po) > do,Vg € I', then
for any y in the weak closure of the convex hull K, C HS of {o,(po)}, we would still
have Tr(ypo) > do.

In particular, this would happen for the unique element yy € K, of minimal norm
| [|2,7- But since |log(yo) 2,7+ = l|yoll2, v, it follows that o4(yo) = yo, Vg € I'. This
implies that any spectral projection of yg > 0 is invariant to o. By (i¢) any such
projection is equal to 0. Thus yo = 0, contradicting Tr(yopo) > 69 > 0. But if
Tr(og(po)po) < 0 for some g € G and for a sufficiently small § > 0, then this implies
(04(&M) <e,V€,me F =F*. Q.E.D.

1.3.4. Corollary. If I' is an infinite group then the left reqular representation Ap
of T' is mizing and all infinite dimensional irreducible representations of I' are weakly
MiTing.

Note that (i) < (4i7’) in Lemma 1.3.3 holds true for real orthogonal representations
of I' as well, as its proof doesn’t depend on H being complex or real Hilbert space.
Likewise, 1.3.4 equally holds for orthogonal representations of I.

Lemma 1.3.3 also implies:

1.3.5. Corollary. LetT A (X, p) be an action of a discrete group I' on the standard
probability space (X, ). The following conditions are equivalent:

(7). o is weakly mizing.

. . p . .

(i7). For any action I' ~ (Y,v), the fized point algebra of the product action o4 ®
pg,g € T, coincides with the fived point algebra of p, i.e. L®(X x Y,u x v)f®r =
C o L®(Y,v)".

(731). For any ergodic action T’ A (Y,v), the product action c,®pg, g € I, is ergodic.

(iv). The only finite dimensional vector subspace of L*X invariant to 04,9 € G, is
C1.

1.4. Compact actions. An action I' A (X, ) is compact if the closure of o(T) in
Aut(X, p) is compact. Similarly, a representation o : I' — U(H) is compact if o(I") is
precompact in U(H) (the later with its Polish group topology).
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1.4.1. Lemma. The following conditions are equivalent.

(7). o is compact.

(ii). o(I)¢ is precompact in H,VE € H.

(¢4i). The von Neumann algebra generated by o(I') is atomic of type Ltip, i.e. o is
a direct sum of finite dimensional representations.

Proof. This is well known (and trivial). Q.E.D.

Note that a compact representation (or action) can be ergodic, or even strongly

ergodic (see examples ...), but not weakly mixing. Even more so, if p is compact and
o weak mixing then p cannot be contained (direct summand) in o, i.e. a compact rep
cannot be contained in a w-mixing rep.
1.5. Strong ergodicity and spectral gap. An action I A (X, u) has spectral gap if
there exist g1, ga, ..., gn € I and ¢ > 0 such that 3;||o,, () —&|l2 > c||€]|2, V€ € L2X\CL.
The convexity properties of the Hilbert space L?X easily imply that this is equivalent
to the existence of a gap (co, 1) in the spectrum of the (norm one selfadjoint) Laplace
operator & — (2n) "' X;(0g, (€) + 0,1 (€)) on L?X © C1, with C1 as the eigenspace for
the eigenvalue 1.

A bounded sequence (x,,), C L*X is asymptotically o-invariant if lim,, ||og(x,) —
ZTnllz2 = 0, Vg € T'. The asymptotically invariant sequence (z,) is non-trivial if
liminf,, ||z, — 7(zn)1]l2 # 0. The action T' A (X, u) is strongly ergodic if it has no
non-trivial asymptotically invariant sequences. Spectral gap clearly implies strong er-
godicity. We have the following equivalent characterisations of each of these properties.

1.5.1. Proposition. The following are equivalent:

(i). The action T' A (X, ) has spectral gap.

(13). There exist cg > 0 and g1,...,gn € T such that for any projection p € L>®X
with 7,(p) < 1/2 we have X;||og, (p) — pll2 > collp||2-

(#"). For any 1 > §g > 0 there exists ¢ > 0 and ¢1,...,9, € I' such that for any
projection p € L>X with 7,(p) < d¢ we have ¥;||ag, (p) — pll2 > ¢||pl|2-

(iii). There exists a countable subgroup I'y C T' for which there is no o(I'y)-invariant
state on L X other than 7, = [ -dp.

(iv). 1r A (' ~ L2X © C1).

Proof. (i) < (iv) and (ii") = (i4) are trivial.

(731) = (i'). This amounts to showing that if we assume (ii") is not satisfied then
given any countable subgroup I'g C I' there exists a o(I'g)-invariant state on L>°X
other than 7,,.

But non-(ii") implies that there exists 1 > §; > 0 such that given any countable
I'yp C T there exists a sequence of non-zero projections p,, € L*°X such that 7, (p,) < do
and limy, ||og4(pn) —Pnll2/|lPnll2 = 0, Vg € T'y. We call such a sequence a o(I'g)-invariant
sequence of projections. By taking a subsequence of p, if necessary, we may assume
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7, (pr) is convergent. We want to prove that we may further assume lim,, 7,(p,) = 0.
Note that if ¢ > 0 is the infimum over all s > 0 for which there exists a o(I'¢)-invariant
sequence p,, with lim,, 7,(p,) = s then there exists a o(I'g)-invariant sequence ¢,, with
lim,, 0,,(¢n) = c. If ¢ > 0 then by ergodicity there exist finite sets F;, C I'g such that
|1F| 1S ger, 04(gn) —7(gn)1|l2 < 27". By the asymptotic invariance of g, there exists
a fast growing k1 << ko << ... such that |||F,,| ' Yger, 04(qk, ) —qk, ||2 < 27™. But then
an easy calculation shows that p,, = ¢, qu, is still o(I'g)-invariant and lim,, 7,(p,) = 2.
Thus ¢ = 0. Note that this also proves (ii) = (ii').

By taking a subsequence of the o(T'g)-invariant sequence p,, we may even assume
7, (prn) < 27™. But then it is immediate to see that any weak limit point of 7, (-p») /7. (prn) €}
L'X C (L>*X)* is a singular o(Ty)-invariant state on L>°X (because its support has
arbitrarily small size).

(iv) = (i4i) Assume by contradiction that for any countable subgroup I'g C I" there
exists a o(I'g)-invariant state ¢ # 7, on L>X. We will show that this implies that for
any gi,...,gn € I' and any € > 0 there exists a unit vector £ € L?2X © C1 such that
I, (&) — €ll2 < e, i

We first show that we may assume ¢ is singular (with respect to u). If ¢ would
be normal then by the Radon-Nykodim theorem it is of the form ¢ = 7,(-a) for some
a € L'X, with 7,(a) = 1, a # 1. But then a*/? — 7,(a'/?)1 # 0 is a o(Tg-invariant
vector in L' X © C1 and since I'y was arbitrary this would imply that 1r is contained
in the representation o of I on L?X © C1, a contradiction. Thus, ¢ is not normal and
so its singular part is non-zero and still o(I'g)-invariant.

Let f € L*°X be a non-zero projection such that ¢(f) =1 and 7,(f) < . Denote
L the set of normal states 1) on L>° X such that ¢ (f) > 1 —¢e. Thus L is a subset of the
unit ball of L' X, and note right away that ¢ is in the closure of £ in (L>°X)* in the
duality topology with L>X. Let V denote the set of n-tuples (¢ — 1 o g4,)l,, with
Y € L. Then V is a (bounded) convex subset of (L' X)" C (L>®°X*)" = (LinftyX™)*.
We claim that 0 = (0, ...,0) is in the (norm) closure of V in the Banach space (L' X)™.
Indeed, for if not then by the Hahn-Banach theorem there exists ¥ = (z1,...,2,) €
(L*X)™)* = (L' X*)™ = (L>X)™ such that

ReXis, (¥(x:) — p(og, (2:)) = a > 0,V¢ € L.

But this would then hold true equally well for all weak limits of ¢ € £ in L>®X™, thus
for ¢. But ¢ is o4, -invariant, thus

0 = ReXi (¢(xi) — ¢(0g, (x:)) > a >0,
a contradiction.

Thus, since 0 € L it follows that there is a € L' Xy with 7,(a) = 1, 7,(af) > 1 —¢
and ||o,, (a) — all; < &2, But then b = (fa)'/? — 7,((fa)'/?)1 € L2X © C1 satisfies

Iblle = 7(fa) — 7. (fa'?)? > 1 —e—7(f)7(a) > 1 — 2e,



10 SORIN POPA

(by Cauchy-Schwartz), while
log: (B) = bllz < llog, (Fa) = fally? < (llog,(a) — afls + 26)'/? < 2272

Altogether, by = b/||b||2 is a unit vector in L2X © C1 with [|o, (bg) — o2 < 261/2/(1 -
2¢). Since € > 0 was arbitrary, we are done.

(i1) = (iv). If (iv) doesn’t hold true and ¢ € L?X © C1 is a unit vector e-invariant
to o4, for some finite set g1,...,g9, € I' then either the real or the imaginary part of
¢ will still be oy,-invariant and be of L?-norm > 1/2. Thus, we may assume & = £*.
This implies |¢] is almost invariant as well, thus so are {,,&_, while 7,({1) = 7,(§-)
(because 7,(¢) = 0) and 7,(£3) + 7(¢2) = 1. We may assume &, has support s
of smaller size than the support of {_. Then if 7, (Si) is “sizeable”, an appropriate
spectral projection of £, will be almost invariant and of trace < 1/2, by Lemma 1.5.2
below. If in turn 7,(£2) is small then 7(&) is small, so 7(|¢|) = 27(&) is altogether
small. Thus an appropriate spectral projection of |¢| will be away from 0 and still be
almost invariant by Lemma 1.5.2 again. Q.E.D.

1.5.2. Lemma (Namioka’s trick). Let (Y,v) be a measurable space and a,b; € L'Y,
1 <i<mn, witha,b; >0, 7,(a) =1, E;|ja—b;||1 <e. Then there exists s > 0 such that
Yilles(a) — es(bi)||3 < elles(a)||3, where for a measurable function b:Y — [0,00) and
s > 0 we denote es(b) the characteristic function of the set {t € Y | b(t) > s}.

Proof. Note first that if ¢,¢; > 0 then [t —t;| = [ _; [X[s,00) () = X[s,00) (ti)|ds. Applying
this to t = a(x),t; = b;(x), by Fubini’s theorem we have

Silla - billy = /Y laz) — bi(a)|dv(z)
- /Y ( / les{af@) = ex(bi(w) ds)dv(z)
-z f K | lesta() = ec(bita)iavie)ds

_3, / les(a) = ) s

In particular, this also shows that 1 = [ja||; = [,

5, / lew() — es(bi)lrds < € / lew(@)ll1ds,
s>0 s>0

<0 lles(a)]|1ds. Thus we have

which implies that for at least one s > 0 we have ¥;|les(a) — es(b;)|1 < ¢lles(a)]|1-
Since for any partial isometry v (which both es(a) and egs(a) — es(b;) are) we have
|v]|1 = ||v||3, the statement follows.

Q.E.D.
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1.5.3. Proposition. The following are equivalent:

(i). The action T A (X, p) is strongly ergodic.

(13). There exist gi,....,9n € T and 1/2 > ¢o > 0 such that for any projection
p € L®X with co < 7,(p) <1 —co we have 3;||og, (p) — pll2 > collpl|2-

(i3). If w is a free ultrafilter on N and A¥ = (*°(N,L>*X)/Z,, where I, =
{(xn)n € £*(N,L>*X) | lim, 7,(x}x,) = 0}, then the action implemented by o on
A by 04((zn)n) = (0g(zn))n is ergodic.

Moreover, if either of these conditions doesn’t hold, then the fized pont algebra of
A under the I'-action is diffuse (has no minimal projections). Equivalently, given any
0 < ¢ <1 there exists an asymptotically invariant sequence p,, with lim,, 7(p,) = c.

Proof. The proofs are the same as the proofs in 1.4.1. Q.E.D.

1.5.4. Remark. We should mention that the only way in which group actions have
been shown strongly ergodic in various concrete examples (so far) was by proving they
have spectral gap. It is an open problem whether there exist strongly ergodic actions
that have no spectral gap. This problem is very similar to a problem of Effros on
whether there exist non-I" group von Neumann II; factors LA (in the sense of Murray
and von Neumann) from groups A that are inner amenable.
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2. EXAMPLES

2.1. Group-like actions. Let o be an automorphism of the discrete abelian group
H. Then « implements an automorphism ¢® on the dual H of H, preserving the Haar
measure A, by 0®(x) = xoa~ !, x € H. Thus, if we identify H with its bidual, i.e.
with the dual of H and view elements h in H as functions u;, on H , thus as elements
in L°°(H), then as an automorphism on LOO(I;T), o% acts by 0%(up) = uqmn),h € H.
Note that, any h € H,h # e, satisfies 7\(up) = [ hd\ = 0 and that in fact {up}rer
gives an orthonormal basis for L2(H).

2.1.1. Lemma. If [{a(h)h™'|h € H}| = oo then o® is properly outer.

Proof. If 0* acts as the identity on a set of positive measure Xy C H then there exists
ho € H such that ¢ = 7x(xx,un,) # 0. Since o®(up)xx, = UnXX,, Vh, this implies
¢ = TA(URXXoUhoUn-1) = TA(XX, (0% (Un)Un,up-1)), .. Xx, has infinitely many Fourier
coefficients equal to ¢ # 0, contradicting the fact that xyx, € L(H) c L*(H). Q.E.D.

Let now o : I' — Aut(H) be a group morhism and denote by % the action it
implements on (ﬁ, A) by og = o9 g eT.

2.1.2. Lemma. The following conditions are equivalent:
(7). o is ergodic.
(ii). 0% is weakly mizing.
(1i1). « has no finite invariant subsets # {e}.
(iv). For any finite subset S C H there exists h € T such that an(S) NS = 0.
(v). The orbit of every element h € H \ {e} is infinite.

Proof. ( i) = (i) and (iv) < (v) are trivial.

(i) = (it7). If ap(S) = S,Vh € Ty for some finite set S C G with e ¢ S, then
x = Ypesup, ¢ C1 satisfies 0,(g)(z) = x,Vg € I', implying that o, is not ergodic.

(iti) = (). If ap(S)NS # 0,Vh € T, for some finite set S C G\{e}, then
denote by f the characteristic function of S regarded as an element of ¢2(H). If we
denote by & the action (=representation) of I' on £2(H) implemented by «, then we
have (a4(f), f) > 1/|S|,Vg € I'. Thus, the element a of minimal norm || ||z in the
weak closure of co{a,(f) | g € T} C ¢*(H) is non zero. But then any “level set” of
a > 0 is invariant to «, showing that (¢) doesn’t hold true.

(iv) = (ii). Let Ey be a finite set in the unit ball of L®(H) = {u}’, ¢ > 0
and Fy C I'\ {e} a finite set as well. Let Sy C H \ {e} be finite and such that
|(z — 7(2)1) — 25, |2 < €/2,Vx € Ey, where xg, is the orthogonal projection of ¢2(H)
onto ¢?(Sp). By applying the hypothesis to S = U{a,(Sy) | g € Fo}, it follows that
there exists g € T'g such that ayz(S) NS = 0. But then g ¢ Fy and «oy(Sp) NSy =
Also, by Cauchy-Schwartz, for each x,y € Ey we have:

(0 (9)(x)y) — T(2)7(y)|
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<|(z = 7(@)1) =2, ll2Mlyll2 + 1y = 7(¥)1) = yso 222 + [7(0% (9)(25)ys, )|
= l(z — 7(2)1) — zs, [l2llyll2 + [[(y — 7()1) — s [l2]lzll2 < e.
Q.E.D.

2.1.3. Lemma. LetI' be a non-amenable group and {H;}; the family of amenable sub-
groups of I'. Then the trivial representation of I' is not weakly contained in ®;¢*(T'/H;)
(thus not weakly contained in ®0*(T'/H;)@¢*(N) either).

Proof. This follows immediately from the continuity of induction of representations.
Indeed, every ¢*(I'/H;) is equivalent to the induced from H; to I' of the trivial rep-
resentation 1y, of Hj, Indl;lil i, Since H; is amenable, 1y, follows weakly contained
in the left regular representation Ap, of H;. Thus, Ind%il H, is weakly contained in
Indy; (Ag,), which in turn is just the left regular representation Ap of T'. Altogether,
this shows that if 11 is weakly contained in @;¢2(I'/ H;) then it is weakly contained in a
multiple of Ap. Since the latter is weakly equivalent to Ar, 1 follows weakly contained

in Ar, implying that I' is amenable, a contradiction. Q.E.D.

Let now I' act by automorphisms on a discrete abelian group H and denote by o
the action it implements on (I:I ,A), and thus on LOO(fI , A), then note that the ensuing
representation of I' on L2(H)&C1 = ¢2(H \ {e}) is equal to @&, ¢*(T'/T), where T', ¢ T
denotes the stabilizer of h € H \ {e}, I', = {y € ' | v(h) = h}. Lemma 2.1.3 thus
shows:

2.1.4. Corollary. AssumeT is non-amenable and the stabilizer T'y, of each h € H\{e}
is amenable. For any non-amenable 'y C I' the action ojr, of I" on (f[, A) has a spectral
gap, and thus is strongly ergodic. In particular we have:

1°. If Ty € SL(2,Z) is non-amenable then the restriction to I'y of the canonical
action of SL(2,Z) on (T?%,\) is strongly ergodic.

2°. If T is an arbitrary non-amenable group and Hy is a non-trivial, countable
discrete abelian group and H denotes the direct sum of infinitely many copies of Hy

AT ~
indexed by I', then the action of I' by Bernoulli shifts on Hy = H has spectral gap.

Finally, note that if one takes H = I' and let I' act on itself by conjugation, then
Lemma 2.1.3 implies that if I" is non-amenable and the commutant in I" of any h €
I'\ {e} is amenable then I' is not inner amenable either.

2.2. Bernoulli actions. Let (X, 19) be a standard probability space. Let T be a
countable discrete group and K a countable set on which I' acts (by permutations of
the set K). Let (X, u) = IIx(Xo, o)r be the standard probability space obtained as
the product of identical copies (Xg, o)r of (Xo, po), k € K. Let o : T' — Aut(X, u) be
defined by o(g)((zr)r) = (z},)k, where x}, = x,-1,. We call o the (Xo, po)-Bernoulli
(I' ~ K)-action. We generically refer to such actions as generalized Bernoulli actions.
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In case K =T and I' ~ T is the left multiplication, we simply call o the (Xq, uo)-
Bernoulli I'-action.

Note that if we denote (Ao, 70) = (L™Xo, [ -duo), then the algebra (L*X, [ -du)
coincides with ® (Ao, 70), with the action implemented by o on elements of the form
Rrar € @k (Ao, 70) being given by o4(®rar) = Qray, aj, = a,—1, k€ K, g .

2.2.1. Lemma. 1°. If either (Xo, o) has no atoms and for all g # e there exists
k € K such that gk # k, or if (Xo, po) is arbitrary and for all g # e the set {k € K |
gk # k} is infinite, then o is a free action.

2°. o is weakly mizing iff VKo C K dg € T such that gKoN Ko = 0 and iff any orbit
of ' ~ K 1is infinite.

3°. o is strongly mizing iff VKo C K finite 3F C T finite such that gKo N Ko = 0,
Vg € I'\ F, and iff the stabilizer {h € I | hk = k} of any k € K is finite.

Proof. Part 3° and the first equivalence in 2° are trivial (exercise!). To prove 2° note
that if Ko C K is a finite set such that gKo N Ko # 0 then tr(gxx,Xx,) > |Ko| ™!,
Vg € T, where tr is the “trace” (or integral) on ¢*°K, corresponding to the measure
giving mass 1 to each atom. Taking the element of minimal /2K-norm in co®{gxx, |
g € T} C 3(K), gives a I-invariant b € (*(K) with tr(bxg,) # 0. But then any
non-empty “level set” Ly of b is finite and I'-invariant (cf. Lemma 1.5.2). This ends
the proof of 2°. We leave the proof of 1° as an exercise. Q.E.D.

2.2.2. Proposition. Let I' be a non-amenable group acting on a set K such that
I'vy = {9 €T | gk =k} is amenable Yk € K. Then any (Xo, p)-Bernoulli (I' ~ K)-
action has spectral gap. In particular any Bernoulli T'-action has spectral gap.

Proof. Let {n;}icr, be an orthonormal basis for L?Xy. Denote by (L?Xg), k €
K, copies of L?Xj indexed by K and {nf}; C (L?Xy) the corresponding copies of
the orthonormal basis of {n;}icz,. It is immediate to see that if we denote by I the
set of multi-indices (ix)recx with entries in Iy such that i = 0 for all but finitely
many iy, then E = {@nf | (ix)r € I} is an orthonormal basis of the Hilbert space
L?X = ®p(L*Xo)k, where (X,pu) = I (Xo, o)x. Moreover, E is invariant to the
action (or representation) o of I' on L?X implemented by the Bernoulli (I' ~ K)-
action. Thus, I' ~ L?X coincides with &,¢*(T'/T",;), where for n € E we denote
T, = {g €T | o,(n) = n}, the stabilizer of 5, and the direct sum is over the set E of
orbits of elements n € E. If for n € £ we denote S, C K the “support” of n = ®k77fk,
i.e. the set of k € K with i, # 0, then S, is a finite subset of K and each g € I, leaves
Sy, invariant. Thus, the stabilizer of n, I',), is contained in the stabilizer of the finite set
Sy CK,I's, ={g €T |gS,=5,} But the latter has the amenable (by hypothesis)
subgroup {g € I' | gk = k,Vk € S;} as a normal subgroup of finite index. Thus I'g, is
amenable implying that S, is amenable and Lemma 2.1.3 applies. Q.E.D.
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2.3. Gaussian actions. Let H,, be the real Hilbert space of dimension n < oo and
U, its orthogonal group (group of unitaries on H,,). If n < oo then we view H,, ~ R"
as a probability space with the measure u,, given by

(gﬂ)—n/z/ e IE AN (p).

Hn

Note that if we view H,, as R™ then (Hy, ) = I, (H1, p11)i, where Hq = R and py
is given by the Gaussian distribution on R, i.e. (2m)~1/2 Jr e~ t/2dt.

Note that U,, with its Polish group topology (which is a compact group topology
in fact) obviously acts (continuously) on (Hy, ptn) by pn-preserving transformations.
The action is clearly free, because if o € U,, is non trivial then the fixed points of « is
a proper vector subspace of H,,, thus its measure in (H,,, t,) is zero.

We then define on H, the infinite product probability space (Hoo, fioo) = 1152 (R, 1)}
or alternatively define (L (Hoo, ftoc); Ty, ) @s the von Neumann algebra inductive limit
of (L*Hy, ttn), Ty, ). Then the infinite dimensional orthogonal group Us, clearly acts
Loo-preservingly on Ho, as the closure of the U, Uso-action (the embeddings U,, C Uyp+1
being given by say fixing an orthonormal basis for H., and identifying U,, with the n-
dimensional orthogonal group acting on the first n elements of the basis, while leaving
all other elements in the basis fixed. It is easy to see that the action of U, is still
free (Same argument works to show that any proper real Hilbert subspace of H, has
Hoo-measure zero. Exercise!).

Any orthogonal representation 7 of a discrete group I' on H,, implements a free m.p.
action 0 = o™ of I on (H,, ftn), by composing 7 with the action of U,,. It is an easy
exercise to show that if n = oo and 7 is a weak mixing orthogonal representation of I
on Hoo (i.e. without finite dimensional invariant subspaces) then the action o is weak
mixing (Exercise!). This also follows from the following:

2.3.1. Lemma. If 7 : I' — U(H) is a representation then, when viewed as a
representation of I' on L*(Heo, lieo), 0" is contained in @nzoﬁgn; where mc is the
complexification of m. More precisely, if we denote by p®s™ the symmetric tensor

product of a rep p then o™ = @nzowgsn

Proof. Dan’s presentation.

2.3.2. Corollary. Let m : I' = Ho, be an orthogonal representation of the discrete
group I'. Then 1pr £ ™ < o™ has spectral gap < o™ is strongly ergodic.

Proof. Immediate by 2.3.1. Q.E.D.

2.4. Left actions from group embeddings. Let GG be a locally compact group with
A its Haar measure. A countable subgroup A C G is called a lattice in G if it admits a



16 SORIN POPA

fundamental domain, i.e. a measurable subset S C G such that the sets {gS},ca are
disjoint and U,gS = X a.e. Denote by u the probability measure on the homogeneous
space G/A given by the natural identification of G/A with S (modulo a set of measure
zero), the latter being endowed with the measure A|S) (after renormalizing A so that
A(S) =1).

The left action of the group G on G/A is then clearly measure preserving. Thus,
any discrete subgroup I' C G acts on (G/A, ) by left translations.

A particular case of interest is when G is a compact group, A its Haar measure
normalized so that \(G) = 1 and we take A = {e}. The action of G on itself by left
translation is then clearly continuous and compact. It is also free, because if h € G\ {e}
then the set {k € G | hk # k} is empty.

Take now I' C GG a dense subgroup and consider the action by left translation I' ~ G,
i.e. the restriction to I' of G ~ G.

2.4.1. Lemma. The action I' ~ G is free and ergodic.

Proof. We have already shown that the action is free. To see it is ergodic note first
that if f € LY(G,)\) is T-invariant then for any f’ € L'G the map f x f'(k) =
ff(k:g_l)fs’]d/\(g) is still I-invariant. If we now take f, € L'G to be an approxi-
mate identity for the algebra (LG, *) then f * f, is [-invariant and continuous, thus
f * fn is constant. But ||f — f * f,|[1 — 0, thus f is constant as well. Q.E.D.

2.5. Quotients and products. Given an action I' 7 (X, ) (of which we have
plenty of examples by now), let A C L>*X be a o-invariant von Neumann subalgebra,
i.e. a weakly closed *-subalgebra containing 1 and such that o,(A) = A, Vg € I'. By
Theorem 1.1, (A4, 7,) = (L*>(Y,v), T,), for some standard probability space (Y, v), with
the restriction 0, = Og1a:9 € I', implementing an action 6 of I' on LY, thus coming

from an action I' A9 (Y, ). Such actions are called quotients of o and can be quite
useful. Properties such as ergodicity, (weak) mixing, strong ergodicity and spectral gap
are clearly inherited by 6, but not freeness (in general).

We'll also often need to take the (diagonal) product of finitely or infinitely (but
countably) many actions o; of the same group I' on (X;, 1;), i = 1,2, ..., thus getting
an action 0 = 01 X 09 X ... of I on (X, pu) = II;(X;, ;). On function spaces, this
corresponds to the (diagonal tensor) product action o = ®;0; of I on ®;(L>*X;, 7,,).

It is easy to see that the product of a properly outer transformation with any other
transformation is still properly outer (exercise). Thus, if ' A X is free then 04®pg,g €

I is free for any other action I' AY. By Lemma 1.3.1 if all o; are weak mixing I"-actions
then ®;0; is weak mixing.

If p is not strongly ergodic, then o ® p is not strongly ergodic Vo. If o has spectral
gap (resp. is strongly ergodic) then any asymptotically invariant (resp. non-trivial as.
inv.) sequence for o ® p is asymptotically contained in L*Y (exercise).
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The following combination of Bernoulli shifts and products of actions will be of
interest to us: Let op be an action of I'y on (Xo, 10). Let also I'y be another discrete
group and « an action of I'; on I'g by group automorphisms. (N.B.: The action o may

be trivial.) Let o1 be the Bernoulli shift action of I'; on (X, u) = ® (Xo, o)y, Let
g1€l
also o be the action of I'y on (X, i) given by 0§ = ®4,00 o a(g1).

2.5.1. Lemma. 1°. We have o1(g1)0§(g0)o1(97 ") = o8 (a(91)(g0)), for any go € Tg
and g1 € I'v. Thus, (go,91) — 0§ (g0)o1(g1) implements an action 0 = og Xo 01 Of
Lo %o Iy on (B, 7).

2°. If the group Ty is infinite and the action oy is properly outer then the action o
defined in 1° is properly outer.

3°. If the action oy is weakly mizing, or if the group 'y is infinite, then o is weakly
mixing (thus ergodic).

4°. If the group I'y is non-amenable, then o has spectral gap.

Proof. 1° is straightforward direct calculation.

2° follows once we notice that if I'g is infinite and o is properly outer, it automat-
ically follows that Xy has no atomic part. This in turn implies the Bernoulli shift of
I'; on (Xo, io)®'" is a properly outer action, even when I'; is a finite group.

3°. This follows by the observations at the beginning of 2.4.

4°. This follows from part 2° of Corollary 2.1.4. Q.E.D.
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3. FULL (PSEUDO)GROUPS AND ORBIT EQUIVALENCE OF ACTIONS

3.1. Full groups and pseudogroups. Let G C Aut(X, u) be a (discrete) subgroup
of automorphisms of the probability space (X, u). Following H. Dye ([Dyl1]), G is called
a full group if the following implication holds true: If ¢ € Aut(X,u) is so that there
exists a countable partition of X into measurable subsets X,, C X and ¢, € G such
that ¢|x, = én|x, must be contained in G. (Note that this condition automatically
entails that ¢, (X,) is also a partition of X.) In other words, any automorphism of
(X, p) which coincides “piecewise” with automorphisms in G must lye itself in G. An
isomorphism of full groups G; on (Xj, u;),7 = 1,2, is an isomorphism A : (X1, p1) ~
(Xo, p2) satisfying AGIA™! = G.
The next two results are from ([Dy1]).

3.1.1. Lemma. Let S C Aut(X,u) and let S denote the subgroup of Aut(X, u)
generated by S. Denote [S] the set of automorphisms ¢ € Aut(X, u) for which there
exist a partition of X, { Xy, }n and ¢n, € S, such thal ¢|x, = ¢n|x, - Then [S] is a full
group and it is in fact the smallest full group that contains S.

Proof. Trivial by the definitions. Q.E.D.

The argument in the next lemma is reminiscent of the Murray-von Neumann proof
that if a von Neumann algebra M is finite (i.e. w € M, uu* = 1 implies u*u = 1), then
any partial isometry v € M can be extended to a unitary in M.

3.1.2. Lemma. Let G be a full group. If X1,Xs,... C X are disjoint measurable
subsets and ¢1, @2, ... € G are so that ¢,(X,,) are disjoint then there exists ¢ € G such

that ¢|x,, = ¢n|x,,, V1.

Proof. Denote R = Up>1Xy,, L = Up>10,(X,,) and let ¢ : R ~ L be the isomorphism
given by ¢|x, = ¢n|x, . Let also Yo = X\ R.

It is clearly sufficient (by maximality argument) to prove that there exists ¢y € G
such that ¢o(Yo) N (X \ L) # 0 (a.e.). Assume this is not the case and denote by Y{
the G-centralizer of Yy. This is defined a.e. as follows: For each ¢ € G let py = X4(vy)
viewed as an element in L>°X. Then let p = V{py | ¢ € G} and choose Yj C X so that
Xy, =pin L*X.

By the definition of Yj, the contradiction assumption implies Yy is disjoint from
X \ L, thus Yy C L, so in particular Y C L. This implies there exists Y7 C R such
that ¢ (Y1) = Yy. Since Yy C Y we also have Y7 C Y{. Assume we constructed
disjoint subsets Y7, Y, ..., Yy of R such that ¥(Y;41) = Y;,i = 0,1,...,k — 1, with
Y, C Yy, VO < i < k. In particular, since Yy C L, we have Y}, C L, implying
there exists Yi11 C R such that ¢¥(Yx41) = Yi. Also, for all 0 < i < k — 1 we have
I/J(Y]H_l ﬂi/H_l) = ¢(Yk+1)mw<ifi+1) =Y,.NY; = (. We also have Yir1NYy C RNYy = 0.
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This means we can construct recursively a whole sequence of disjoint subsets {Y% } x>0
such that ¥ (Yi+1) = Yk, ¥k > 0. In particular, all Y}, have the same measure, implying
w(UrYy) = oo, a contradiction. Q.E.D.

A measurable, measure preserving a.e. isomorphism ¢ : R — L, for R, L C X
measurable with (L) = p(R), o ¢ = pr will be called a local isomorphism of
(X, ). The sets R, L are called the right, resp. left supports of ¢. We denote by 0
the local isomorphism with empty (a.e.) left-right supports. The composition ¢ of
two local isomorphisms ¢, 1 is by definition the local isomorphism with right support
R(16) = {t € R(9) | 6(£) € R($)} acting by $6(t) = ¥(4(1)), ¢ € R($), and of course
left support equal to {¢¢(t) | t € R(¢¢)}. The inverse ¢! of a local isomorphism ¢
is the local isomorphism with right support R(¢~1) = L(¢) defined on this set as the
inverse of ¢. We make the convention that 0~! = 0.

A set G of local isomorphisms of (X, p) is a pseudogroup if it contains 0, 1x and
is closed to composition and inverse operations. It is a full pseudogroup if it is a
pseudogroup and satisfies the following conditions:

(3.1.4). If € G" and Y C R(¢) is measurable then ¢y € G

(3.1.77). If ¢ is a local isomorphism such that there exists a countable partition of R(¢)
with measurable subsets { R, }, with the property that ¢z, € G",Vn, then ¢ € G".

Conditions (i) and (i) state that G~ is closed to “cutting” (restrictions) and count-
able “pasting”. Like for full groups, an isomorphism of full pseudogroups is an isomor-
phism of probability spaces taking one full pseudogroup onto the other.

3.1.3. Lemma. 1°. Given a set S of local isomorphisms of (X, u), denote by S
the pseudogroup generated by S and by [S]” the set of local isomorphisms ¢ with the
property that there exist a partition of R(¢p), {Xn}n, and ¢, € S, with X,, C R(¢n),
such that ¢|x,, = én|x, - Then [S]” is a full pseudogroup and it is in fact the smallest
full pseudogroup that contains S.

2°. If G" is a full pseudogroup then the set G = {¢ € G | R(¢) = X} is a full
group, called the full group associated with G .

3°. If G is a full group then the set G = {oy |0 €G,Y C X} is a full pseudogroup
called the pseudogroup associated with G. With the notations in 2° we have (G ), = G.

Proof. Trivial by 3.1.2. Q.E.D.

We denote Gy = {¢ € G | o = 1, Vo, R(x)) = L(¢)} the set of units of G .
Note that it can be naturally identified with the lattice of projections of L>®X (after
identifying the local iso differing on a set of measure 0). We denote Z(G") = {¢p € G |
dp =Y,V € G'} the centralizer of G .

A full group G is ergodic if its action on (X, ) is ergodic. A full pseudogroup G  is
ergodic if its associated full group is ergodic. We have:
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3.1.4. Lemma. 1°. 2(G") C G, and G* is ergodic iff Z(G") = {1}.
2°. If G (resp. G ) is ergodic then for any subsets R, L C X with u(R) = p(L) there
exists p € G (resp. ¢ €G" ) such that ¢(R) = L (resp. R(¢) = R, L(¢) = L).

Proof. Part 1° is left as an exercise. The two conditions in 2° clearly imply one another

and the one refering to full pseudogroups is trivial by a maximality argumet.
Q.E.D.

Let us finally mention that any algebraic isomorphism of full pseudogroups Qf on
(X5, i), i = 1,2, i.e. a bijective map « : Qf — g;’ which preserves the product comes
from an isomorphism of full pseudogroups, i.e. there exists A : (Xq,pu1) ~ (Xo, u2)
such that a(¢p)A = A, Vo € Q;. This is easy to prove, and we leave it as an exercise.
It is less trivial to show that in fact a similar stament holds true for full groups as well:

3.1.5. Theorem [Dye 59]. If G; is a full pseudogroup on (X;,u;),i = 1,2, and
a G ~ Gy is an (algebraic, plain) isomorphism of groups, then there exists A :

(X1, 1) ~ (Xa, po) such that a(¢) = ApA~ Ve € Gy.
Proof. Presented by Julien. Q.E.D.

3.2. Orbit equivalence of group actions. Following H. Dye ([Dy1]), two subgroups
of automorphisms I' C Aut(X, u) and A C Aut(Y, v) are weakly equivalent if there exists
an isomorphism A : (X, u) ~ (Y, v) such that A([l'])A~! = [A]. Note that by Lemma
3.1.3 this is equivalent to the fact that A([[']") = [A]".

Two (faithful) actions I' ~7 (X, ) and A A9 (Y,v) are weakly equivalent if o(T),
O(A) are weakly equivalent. The isomorphism A is called a weak equivalence of the
corresponding automorphism groups, or actions.

Following Feldman-Moore ([FM77]), two groups of automorphisms I' C Aut(X, u),
A C Aut(Y,v) are orbit equivalent (abbreviated OF) if there exists A : (X, pu) ~ (Y,v)
and a set Xg C X of measure zero such that A(T't) = A(A?),Vt € X \ Xo. Two
(faithful) actions I' A% (X, i) and A ~Y (Y,v) are orbit equivalent if o(T'),0(A) are
orbit equivalent. We then write ¢ ~og 0, or (I' ~ X) ~op (A ~ Y). An isomor-
phism A satisfying such condition is called an orbit equivalence of the corresponding

automorphism groups (or actions), and we write o é»O g 0 when we want to emphasize
it.

The next lemma, due to Feldman and Moore, relates the orbit and weak equivalence,
showing they are “the same”.

3.2.1. Lemma. LetT' C Aut(X, ), be a countable group.

1°. IfT' C [I] is any other countable subgroup that generates [I'] as a full group, i.e.
[I''] = [I'], then for almost all t € X we have I't = I"t.

2°. Let Rr be the equivalence relation given by the orbits of I'. If ¢ € Aut(X,p)
then ¢ € [U] iff the graph of ¢ is contained in Ry. Same for [T]".
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3°. If A C Aut(Y,v) is a countable group and A : (X, u) ~ (Y, v) is an isomorphism,
then A is an orbit equivalence of I', A if and only if it is a weak equivalence.

Proof. Parts 1°, 2° and the implication < of 3° are trivial. Proving = in 3° amounts
to show that if ¢ : (X, pu) ~ (Y,v) satisfies ¢(t) € I't, Vt € R, then ¢ € [I']. Fixing
g € I', note that the set X, = {t € R | ¢(t) = gt} (i.e. the set X, on which ¢ coincides
with g) is measurable and by hypothesis we have U, X, = R. But this means ¢ € [I'].
Q.E.D.

The above lemma shows that the full group (or pseudogroup) [I'] of a countable
group I' C Aut(X, p) is completely encoded (up to weak equivalence) by the equivalence
relation Rr = {(t,gt) |t e T} C X x X (up to OE). Note that Rr is well defined only
up to a set t € X of measure 0, but that this is not a problem since the Rr saturated
of any Xy C X of measure 0 has measure zero.

A standard, measurable, measure preserving, countable equivalence relation (here-
after called a standard equivalence relation) on (X, ) is an equivalence relation R on
X with the property that: (a) Each orbit of R is countable; (b) The R-saturated of any
subset Xg C X of measure 0 has measure zero; (c) There exists a countable subgroup
I' C Aut(X, i) such that for almost all t € X the orbit of ¢t under R coincides with I't.

Related to this abstract notion of equivalence relation, it is convenient to say that a
full group G (resp. full pseudogroup G') is countably generated if there exists 3S C G
(resp. S C G") at most countable such that [S] = G (resp. [S]” = G). It is trivial
to see that a full group G is countably generated iff its associated pseudogroup G  is
countably generated.

From the above considerations we see that a countably generated full group G is
“same as” the standard, measurable, measure preserving, countable equivalence rela-
tion R implemented by any of the countable subgroups I' of G that generates G.

Let us finally mention that the abstraction of countable equivalence relations can be
pushed a bit further. Thus, it is shown in ([FM]) that if one considers a standard Borel
structure X underlying (X, ), then any countable equivalence relation R as above
comes from an equivalence relation on X x X with the property that R lies in the
product Borel structure X x X', with each orbit of R countable, and generated by local
m.p. Borel maps between Borel subsets of X with graph included into R.

3.3. Amplifications and stable OE. If G (resp G") is a full group (resp. pseu-
dogroup) and Y C X then we denote by Gy (resp Gy-) the set of automorphisms
(resp. local isomorphism) 1 of (Y, uy') for which there exists ¢ € G (resp ¢ € G*) with
¢y =v. We call Gy (resp gé) the restriction of G (resp g”) toY.

3.3.1. Lemma. Let G be a full group on (X, u).
1°. If Y C X is a measurable subset of non-zero measure then Gy (resp. Q;) s a
full group (resp. pseudogroup) on (Y, uy) and we have (Gy)" = (G )y.
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2°. If G is countably generated then so is Gy . Also, if R is the equivalence relation

implemented by G then the equivalence relation associated with Gy is equal to Ry def

RNY xY. Thus, if ' C Aut(X, 1) is countable and such that R = Rr, then the orbits
of Ry are given by 't NY, for almost allt €Y.

3°. If Y1,Ys C X are so that there exists a local isomorphism ¢ € G such that
R(¢) = Y1, L(¢p) = Ya then ¢ implements an isomorphism from Gy, onto Gy, (as well
as between the corresponding full pseudogroups). In particular, if G is ergodic then for
any Y1,Ys C X with (Y1) = p(Y2) > 0 we have Gy, ~ Gy, and Gy, ~ Gy, .

Proof. This is trivial by the definitions and 3.1.4. Q.E.D.

If n > 1 then denote by G" (resp. G )") the full group (resp. full pseudogroup)
generated on the product of (X, ) and ({1,..,n} with the counting measure by G x id
and the permutations of {1,...,n}. These full (pseudo)groups are clearly ergodic. For
each t > 0 we denote by G* (resp. (G")?) the isomorphism class of Gy (resp of Gy-)
where n > ¢t and Y C X x {1,...,n} is a subset of measure ¢/n. This clearly doesn’t
depend on n and Y.

The full group G* (resp. full pseudogroup (G")) is called the amplification by t of
G (resp. of g”).

Two ergodic actions I' A7 X, A ~? Y are stably orbit equivalent (stably OE) if there
exists subsets Xg C X, Yy C Y of positive measure such that [o0(I')]y, ~ [#(A)]y,. Note
that this condition holds true iff [o(T")] ~ [#(A)]!, where t = v(Yy)/u(Xo). We write
o ~og, 0. The constant t is called the coupling constant (or amplification constant) of
the stable OE.
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4. VON NEUMANN ALGEBRAS FROM GROUP ACTIONS

4.1. The group measure space construction. A key tool in the study of actions is
the so-called group measure space construction of Murray and von Neumann ([MvN1}),
which associates to I' ~ (X, u) the von Neumann algebra L>X x I' generated on
the Hilbert space H = L2X®/¢°T by a copy of the algebra L>X, acting on H by left
multiplication on the component L?X of the tensor product L2X®¢?T", and a copy of
the group I', acting on H as the multiple of left regular representation given by the
unitary operators u, = 04 ® Ay, g € I', where 04,9 € I, is viewed here as a unitary
representation on L2X.

The following more concrete description of M = L*°X xI' and its standard represen-
tation is quite useful: Identify H = L?X®¢?T with the Hilbert space of />-summable
formal sums X,¢,u,, with “coefficients” ¢, in L?X and “undeterminates” {u4}, la-
beled by the elements of the group I'. Define a *-operation on H by (X,&uy)* =
290¢(&,-1)ug and let both L>°X and the uy’s act on H by left multiplication, sub-
ject to the product rules y(&uy) = (Y€)ug, ug(&up) = 04(§)ugn,vg,h € G, y € L=X,
¢ € L?X. In fact, given any £ = X, uy, ¢ = Xp¢pupn € H one can define the product £-¢
as the formal sum Xynguy with coefficients n, = ¥ £,(;-14, the sum being absolutely
convergent in the norm || - [|; on L'X, with estimates ||nx|1 < ||€]]2]/¢]l2, V& € T, by
the Cauchy-Schwartz inequality. In other words, én € £°(I', L' X) D ?(I', L?X) = H.

We say that & € H is a convolver if £ € H (i.e. with the above notations 7, € L?X
and i |nx |3 < oo) for all ¢ € H. By the closed graph theorem it follows that L¢(¢) =
£, ¢ € M, defines a linear bounded operator on H. It is immedaite to see that L then
coincides with L¢«, showing that the set of convolvers is closed to the *-operation.

Then M = L®X x I in its standard representation on L?M is nothing but the
algebra of all left multiplication operators L¢ by convolvers £. Its commutant in B(H)
is the algebra of all right multiplication operators R¢(() = (&, by convolvers . If
T € M then £ = T(1) € H is a convolver and T is the operator of left multiplication
by £. The left multiplication by convolvers supported on L*°X = L* Xu, give rise to
the (multiple of the) standard representation of L°° X, while the left multiplication by
the convolvers {ugy}, give rise to the copy of the left regular representation of I'. The
integral 7, on L>X extends to a trace on L*X x I' by 7(X,yguq) = 7u(ye) = (§,1) =
(€-1,1), where £ = X y,u,. The Hilbert space H naturally identifies with L?(M, 1),
with M as a subspace of L?M identifying with the set of convolvers and the standard
representation of M as left multiplication by convolvers.

All one has to retain from the above construction is: any element in M = L*X x T’
has a Fourier expansion; the way such Fourier expansions multiply; a Fourier expansion
x = Ygaqug of an element in M, as opposed to an arbitrary square summable vector
£ = X,&u, € H=®,L?>Xuy, has the property that the multiplication by = of any
square summable n € H stays in H.
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The following “twisted” version of the above construction is quite useful: In addition
to I' ~ (X, ), take now a (normalized) U(X)-valued 2-cocycle for (o,I'), i.e. a map
v:I'xI' = U(X) such that vy pvgn i = 0g(Vnk)Vg ks Vg, Rk €T, vg e =ve g =1. On
the same Hilbert space H = &,L*Xu, as before, consider a new product by a(&,u,) =
(a€g)uy and up(Egug) = op(&y)vn,gung, then follow exactly the same procedure as
above to get a von Neumann algebra of (left multiplication operators by) convolvers
L*>°X X4, I'. The formula for the trace is the same.

We say that two cocycles v, v for o are equivalent (or cohomologous), and we write
w' ~ w, if there exists w : I' = U(X) such that v, , = wgog(wp)vgnwyy,, Vg,h € I'. It
is immediate to see that if v/ ~ v then the unitary operator U on H = EgLQX ug defined
by U(¥4&quq) = Lg€gwyu, implements a spatial isomorphism taking L*°X X, , I' onto
L>*X x,,I', more precisely U is L*>°X bimodular and satisfies Uu,U* = u’g.
4.1.1. Theorem. LetT' A (X, p) be a group action and v a 2-cocycle for (o,T').

1°. L>°X is mazimal abelian in L>®°X xq, I iff ' ~ X is free.

2°. If I' ~ X is free then L°X X4, I' is a factor iff I' ~ X 1is ergodic.
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4.2. The von Neumann algebra of a full pseudogroup. Let now G~ be a given
full pseudogroup on (X, u). Then let CG" denote the algebra of formal finite linear
combinations Xycgug. Let 7(ug) denote the p-measure of the largest set on which
¢ acts as the identity and extend it by linearity to CG . Then define a sesquilinear
form on CG” by (z,y) = 7(y*z) and denote by L?(G") the Hilbert space obtained by
completing CG” /I, in the norm ||z||y = 7(z*z)'/2, where I, = {z | (z,z) = 0}. Each
¢ € G" acts on L?(G") as the left multiplication operator by ug, given by e (uy) = gy
Denote by L(G") the von Neumann algebra generated by the operators {ug, ¢ € G'}
and by L(Gy) ~ L>®(X, 1) the von Neumann subalgebra generated by the units G .

Note that in the above we could equally start with the x-algebra My = AG" of
finite formal sums ogague subject to multiplication rule (aug)(buy) = ad(bx r(g))Uey)
and trace T(aug) = [ axr(y)du, the resulting Hilbert space L?(G") and von Neumann
algebra L(G"), obtained by taking the weak closure of the algebra of left multiplication
operators by elements in My on L?(G", being the same as when starting with My = CG" .

It is easy to check that L(G") is a finite von Neumann algebra, with the subalgebra
L(Gy) = L*>(X, 1) being maximal abelian in it, and that the vector state 7 = (-1, 1)
gives a faithful normal trace 7 on L(G") extending the integral on L (X, i), with the
Hilbert space L?(L(G")) = L*(G") giving the standard representation of (L(G"), 7).

Also, note that L(G") is a factor iff G* is ergodic, in which case either L(G") ~
M5, (C) (when (X, ) is the n-points probability space) or L(G") is a II; factor (when
(X, ) has no atoms, equivalently when G has infinitely many elements).

4.2.1. Theorem. Let I' C Aut(X,pu), A C Aut(Y,v) be countable groups and A :
(X, p) =~ (Y,v). The following conditions are equivalent:

1°. A is an orbit equivalence of I', A, i.e. it takes the I'-orbits onto the A-orbits,
a.e.

2°. A is a weak equivalence, i.e. it takes the full groups [T] (or pseudogroup [T]”) of
T onto the full group [A] (resp. pseudogroup [A]”) of A.

3°. The isomorphism implemented by A on the function algebras, A : L X ~ LY,
extends to an isomorphism of L([T']") onto L([A]").

Proof. Q.E.D.

Let us end this subsection by mentioning the “full pseudogroup” version of the
twisted group measure space construction in 4.1. Thus, let G~ be a full pseudogroup on
(X, ) and denote U the (commutative) pseudogroup of partial isometries of L>®X.
A U -valued 2-cocycle for G* is amap v : G x G — U’ satifying the conditions
Vo pVppp = (Vg p)Vp0p, ¥, 00, p € G, and ve. = 1. It is easy to see that the
axioms together with this normalization condition imply that ve gy = vee = U(¢),
V¢ € G". Two such 2-cocycles v, v’ are equivalent if there exists w : G© — U such that

Vo = Wed(Wy )V Wy, Yo, € G
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We associate to the pair (G, v) the von Neumann algebra L, (G ) as follows: Take
AG" be the vector space of formal finite sums Ypapuy, with ap € A = L*°X and
¢ € G", but with product rule (agug)(apuy) = apd(ayr(d))usy, then define a trace 7
formally the same way as before, etc. It is easy to see that an equivalence of 2-cocycles
implements a natural spatial isomorphism between the associated von Neumann alge-
bras. Like with the “un-twisted” version, L,(G") is a factor iff G is ergodic.

(I should not forget to do the orthonormal basis for L(G"). Also, include a remark
commenting on the difference between the group measure space construction 4.1 and
the full pseudogroup construction 4.2)

4.3. Normalizers and Cartan subalgebras. Let (M, 7) be a finite fon Neumann
algebra and A C M a maximal abelian x-subalgebra of M. The normalizer of A in M is
the group of unitaries Ny (A) = {u € U(M) | uAu* = A}. Let also N* (A) = {v € M |
vo*, v*v € P(A),vAv* = Avv*}, where P(A) denotes the projections (or idempotents)
of A. N7 (A) with its product inherited from M and inverse given by the *-operation
is clearly an abstract pseudogroup and we call it the normalizing pseudogroup, or the
pseudo-normalizer of A C M. Note that v € N (A) iff there exists u € N(A) and
p € P(A) such that v = up.

If Nar(A) (equivalently N7 (A)) generates M as a von Neumann algebra we say that
A is reqular in M, or that A is a Cartan subalgebra of M.

Taking some representation of A as a function algebra, A = L>*°X, welet G = Gac
denote the set of all automorphisms of (X, p) (or of A = LX) of the form Ad(u) with
u € N'(A), and G, - ; be the set of all local isomorphisms of the from ¢, = Ad(v), with
v € N"(A). Note that r(¢,) = v*v, l(¢y) = vv* and Gy = Gyw, Yo, w € N” (A). Tt
is easy to see that Gacas (resp. QZC ) is a full group (resp full pseudogroup), called
the full group (resp. full pseudogroup) of the Cartan subalgebra A C M. Note that
G = N /U, where U = U(A), and similarly G* = N /U.

There is also a natural 2-cocycle for QZC a associated with the Cartan inclusion
A C M, as follows: Foreach ¢ € G,y =N (A)/U" let vy € N (A) be a representant,
with viq, = 1. Define v = vacm by vg,y = Vpvyy,. 1t is easy to verify that v is a
2-cocycle for G whose class does not depend on the choice of Vg'S.

Note that if G* is an “abstract” full pseudogroup on (X, u) and v a U’ (X)-valued
2-cocycle for G", and we denote A = L(Gy), M = L,(G") then N"(A) = {au, |
¢ € G',a € U (A)}. Thus, the full pseudogroup G, associated with the Cartan
subalgebra inclusion L(Gp) C L(G") can be naturally identified with the initial abstract
full pseudogroup G*. Also, vac ar clearly coincides (modulo equivalence) with the initial
v. Altogether, we have thus shown:

Two Cartan subalgebra inclusions (A; C My, 1), (A C Mas, 79) are isomorphic if
there exists 0 : (My, 1) ~ (M, 72) such that 6(A;) = A,. Considering the category
of Cartan subalgebra inclusions A C M, with (M, 7) finite von Neumann algebras and
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morphisms given by isomorphisms as above, on the one hand, and the category of pairs
(G",v), consisting of a full pseudogroup and a 2-cocycle on it, with morphisms given
by isomorphisms of the full pseudogroups which intertwine the 2-cocycles, we have:

4.3.1. Theorem. The correspondence (A C M) — (Gycar>Vacm) gives an equiva-
lence of categories, whose inverse is (G ,v) — (L(Gy) C Ly(G")).

4.3.2. Lemma. Let (M, ) be a finite von Neumann algebra and A C M a mazimal
abelian *-subalgebra. Let B C M be a von Neumann subalgebra containing A. If
v € Ny (A) then there exists a projection ¢ € A,q < v*v such that Eg(v) = vq. Thus,
Ep(Ny(A)) = Np(A).

4.3.3. Corollary. With A C B C M as in 4.3.2, let My (resp By) denote the von
Neumann algebra generated by Ny, (A) (resp Ng(A)). Then EgEyn, = Ey,Ep = Ep, .
In particular, if A is Cartan in M then it is Cartan in B.

4.4. Amplification of a Cartan subalgebra inclusion. If M is a II; factor and
t > 0 then for any n > m > t and any projections p € M, xn(M), ¢ € Myysm (M)
of (normalized) trace 7(p) = t/n, 7(q) = t/m, one has pM,,xn(M)p =~ qMxm(M)q.
Indeed, because if we regard M, ., (M) as a “corner” of M, «,(M) then p,q have the
same trace in My, «,(M), so they are conjugate by a unitary U in M, «, (M), which
implements an isomorphism between pM,, x,,(M)p and M, xm(M)g. One denotes by
M this common (up to isomorphism) II; factor and one calls it the amplification of
M by t.

Similarly, if A C M is a Cartan subalgebra of the II; factor M then (A C M)* =
(A € M?) denotes the (isomorphism class of the) Cartan subalgebra inclusion p(A ®
D, C M ® M,xn(C))p where n > t, D, is the diagonal subalgebra of M, «,(C)
and p € A® D, is a projection of trace 7(p) = t/n. In this case, the fact that the
isomorphism class of (A C M)* doesn’t depend on the choice of n,p follows from a
lemma of H. Dye ([D63]), showing that if My is a II; factor and Ag C My is a Cartan
subalgebra, then two projections p,q € Ay having the same trace are conjugate by a
unitary element in the normalizer of Ay in M.

(A C M) is called the t-amplification of A C M. We clearly have g(pAcM)t =

(ngcM))ﬂ Racmy: = RfACM) and if G*, R correspond with one another then so
do RY,(G")t, Vt. Note that ((A C M)")* = (A C M)*t, (G)* = G, (R")® = R,
Vt,s > 0.

4.5. Basic construction for Cartan subalgebra inclusions. Let (M, 7) be a finite
von Neumann algebra and A C M a Cartan subalgebra. Denote by e4 the orthogonal
projection of L?M onto L?A. More generally, if v € N7 (A) then denote by e, the
orthogonal projection of L2M onto vL?A. Thus, e,4 = vev*.
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4.5.1. Proposition. Let {v,}, C NP(A) be an orthonormal basis over A. Then the
abelian von Neumann subalgebra A = {X,aney, 4 | an € Av,v),sup, |an] < oo} of
B(L?>M) is mazimal abelian and it coincides with the von Neumann algebra generated

by A and JyrAdy. Also, A is the smallest von Neumann algebra which contains A,
ea and is normalized by Ad(v), Vv € N(A).

If G” is a full pseudogroup on (X, 1) we denote (X, /i) the measurable space...
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5. AMENABLE ACTIONS AND THEIR CLASSIFICATION UP TO OE

5.1. Definition. A Cartan subalgebra inclusion A C M is approximately finite di-
mensional (AFD) if for any finite set F' C M and any ¢ > 0 there exist matrix units
{efj |1 <i,7 <ng,1 <k<m}C Np(A), ek € A, such that if B denotes the finite

dimensional von Neumann algebra generated by ef; then ||Ep(z) — zl]2 < ¢, Vo € F.

A full pseudogroup G° (resp. full group G) is AFD if the corresponding Cartan
subalgebra inclusion L(Gy) C L(G") is AFD. Note that this amounts to requiring that
for all F C G© and ¢ > 0 there exists a finite sub-pseudogroup F C G" such that
Vo € F, Jp € F with u(r(y) \ i(¢=)), u(r(o) \ i(v=1¢) < e. It is a trivial exercise
to show that this condition on a full pseudogroup G* is equivalent to G having the
property that for all F' C G finite and £ > 0 there exists a finite subgroup F C G such
that Vo € F, 3 € F with u(i(¢p~1¢y) > 1 —«.

5.2. Definition. A Cartan subalgebra A C M is amenable if there exists an AN (A)
invariant state ¢ (called an invariant mean) on A. A full group G (resp full pseudogroup
G") is amenable if L(Gy) C L(G") is amenable. Note that this amounts to A having a
G-invariant mean. An action o : I' — Aut(X, p) is amenable if [o(T")] is amenable.

5.3. Proposition. Let A C M be a Cartan subalgebra inclusion.

1°. Let T' € N(A) be a subgroup such that (AUT)” = M. If T is amenable then
A C M is amenable. Conversely, if I' acts freely and A C M is amenable then T" is
amenable.

2°. A C M is amenable iff M is amenable as a vN algebra.

3°. If AC M is amenable and p € P(A) then Ap C pMp is amenable.

5.4. Theorem. 1°. A C M (or G") amenable iff AFD.
2°. If M is a factor and A C M amenable, then either (A C M) = (D C M, xn(C)),
or (AC M)~ (D CR).

Proof. It is an easy exercise to deduce part 2° from part 1°, so we will only prove the
latter.

Step 1 (Day’s trick). We first prove that given any vi,vs,...,v, € N(A) and any
€ > 0 there exists b € A, such that 7(b) = 1 and |Jubv* — b||;.# < . To do this, we
use an argument similar to the one used in the proof of (iv) = (i7i) in 1.5.1. Let V
be the set on n-tuples (¢ — ¥ (uf - u;); with ¢ € A, a normal state on A. Then V is
a (bounded) convex subset of (A4,)" C (A*)" = (A™)*. We claim that 0 = (0, ..., 0) is
in the (norm) closure of V in the Banach space (A,)". Indeed, for if not then by the
Hahn-Banach theorem there exists (21, ..., zn) € ((4,)")* = ((4,)*)" = A" such that

ReXi (Y(xi) — ¥(ujziug)) > a > 0,V € L.
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But this would then hold true equally well for all weak limits of normal states ) € A,
in tildeA*, thus for . In particular, it holds true for any AdN (A)-invariant mean ¢
on A, for which we thus get

0 =ReX!(p(x;) — Pp(u;xiu;)) > a >0,

a contradiction.

Thus, there must exist a state 1) € A, such that X;|j¢» — ¥ (u} - u;)|| < e. Since the
states of the form 7(b-) with b € A, , 7(b) = 1 are dense in the set of normal states on
A, it follows that there exists b € f~1+ satisfying 7(b) = 1 and

(5.4.1) Nil[7(b-) = 7(bui - ui)|| <e,

the norm being taken in the Banach space A, C A*. But ||7(b-) — 7(buf - u;)|| =
|b — w;bul||1 7, so that (5.4.1) implies

(5.4.1) Yillb — uibu || 7 < e.

Step 2 (Namioka’s trick). We now show that for any finite set F* C N (A) and any
e > 0 there exists a projection e € A such that 7(e) < oo and X;||e—u;ew’ 13,7 < ellell3 5-
Indeed, with b € /~1+ as in Step 1, by Lemma 1.5.2 it follows that there exists s > 0
such that if we denote by e = e4(b) the spectral projection (or if one prefers the level
set) of b corresponding to the interval [s,00) then

(5.4.2) Zz‘H@_Uz‘eUfH%f < 8||€||3,%~

Note that 7(e) < co.

Step 3 (Local AFD approximation). We now prove that given any finite set {v;}; C
N7(A) and any € > 0 there exists matrix units {ex}r; C N'(A), exx € A, such
that if we denote sp = Xierr and Ny the algebra generated by Asg and {ex;}r,; then
soviso € No and X;||[s0, vi]||3 < €[|sol|3. It is clearly sufficient to prove this for v; = u;
unitary elements, thus from N(A). Let then e be the finite projection in A satisfying
Yille — uieuf||3 - < elle]|3, 7, obtained in Step 2.

Since any projection in A is of the form ey, A for some orthonormal system
{vp}n C N7 (A) and since 7(e) < 0o, we may assume in addition that e = X7, e, 4
(finite sum). Let {g;};>1 C A be a partition of 1 such that ¢;(viu;v;)g; is either equal
to 0 or to a unitary element in Ag;, for all 4,%,1 and for all j > 1. By (5.4.2) and
Pythagora’s Theorem, it follows that

55 (Bill(e — wieui) Jq; 13 7 < €jlleJq; T |13 7.
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Thus, there must exist j > 1 such that g = ¢; satisfies
(5.4.3) Zill(e = uieu;) JqJ |3 7 < elleJq |3+

But eJqJ = X6, 4Jq] = Xpvpeav) JqJ = Y,v,qeav). By our choice of g, for each
n we have either v,q = 0 or ¢(v}v,)q = ¢q. Thus, after a suitable relabeling, we may
assume e in (5.4.3) is of the form e = X, v eqv; with viv; = d;kq and viuv; € Ag,
Vi, l, k. Thus, for this new e we have

(5.4.3") Sille — wieu; |37 < ellel3 7

Denote €9, = vgvf, so = Xgel, and Ny the algebra generated by the matrix units
{€Y} k1 and Asg. Then sou;s9 € Ng. We claim that the left hand term of (5.4.2") is
equal to 3;||so —u;sou}||3 while the right hand term is equal to ||sg||3, so that altogether
(5.4.3") amounts to

(5.4.3") Yillso — wisou}||3 < €l|soll3.
Indeed, by the definition of 7 we have
lell3.+ = T(Skvreavy) = SpT(vrvy) = 7(s0)
and similarly
lle — uieufH%f = 2%, T(vgeavy) — 28k 1T (Ve AV uvieAV))

= 2% (vpvy) — 285 1T (vpvusvvf Uy ) = ||so — uisoufH%

Step 4 (Mazimality argument). Consider now the set A of all families of subalgebras
{N;}; of M with mutually orthogonal units s; = 1y, with each N; generated by As;

and by a finite set of matrix units {e],}x; C N (A), such that sju;s; € N;,Vi,j and
(5.4.4) YillBjsjuis; — (ui — (1 — s)ui(1 — )3 < ellsll3,

where s = ¥;5;. The set A is clearly inductively ordered with respect to inclusion. Let
{N;}; be a maximal family and suppose the units s; do not fill up the unity of M. Take
p=1—s€ A. Then Ap C pMp is still amenable by Proposition 5.3, so we can apply
Step 3 above to the finite set v; = pu;p, to get a non-zero projection sg C Ap and a set
of matrix units {€?,}x; C N7 (A) with sg = Yrey,. such that squ;sg € No = Sk 1 Aso,
Vi, and 3;||[puip, so]l|3 < ¢[|s0]/3. Together with (5.4.4), by using Pythagora this gives

il (sousso + Ejsjuis;) — (i — (1 — (s + s0))ui(1 — (s + 50))) 13
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= B[Z5s5uisy — (us — (1 = s)ui(1 = s)) |3 + Zillsouiso — (puip — (p — s0)ui(p — 50)) |13
= 3|5 s5uis; — (i — (1= s)ui(1 = 8))[I3 + i [puip, so] 13
< e(llsll3 + llsoll3) = ells + soll3.
But this contradicts the maximality of {N;},. Thus, we must have ¥,s; = 1.
This clearly finishes the proof, since we can now take any sufficiently large finite
subset {IV;}1<j<n of the maximal family and the algebra N = X7, N; will be fi-

nite dimensional over A, will be generated by a finite set of matrix units from the
pseudonormalizer N (A) and will still approximate the given finite set u,;. Q.E.D.
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6. THE FIRST COHOMOLOGY GROUP OF AN ACTION

6.1. 1-cohomology for groups of automorphisms. Let o : I' — Aut(X,u) be
a measure preserving action of a discrete group I' on the standard probability space
(X, p) and denote A = L®X, U(A) = {u € A | wu* = 1}. A function w : I' — U(A)
satisfying wqyo,(wp) = wgp, Vg, h € T, is called a 1-cocycle for o. Note that a scalar
valued function w : I' — U(A) is a 1-cocycle iff w € Char(T").

Two 1-cocycles w,w’ are cohomologous, w ~ w', if there exists u € U(A) such that
=u*wgo4(u),Vg € G. A l-cocycle w is coboundary if w ~ 1, where 1, =1, Vg.
Denote by Z! (o) the set of 1-cocycles for o, endowed with the structure of a topolog-
ical (commutative) group given by point multiplication and pointwise convergence in
norm || - [|2. Denote by B!(c) C Z!(o) the subgroup of coboundaries and by H! (o) the
quotient group Z'(o)/Bl(c) = Z'(0)/ ~, called the 1’st cohomology group of o. Note
that Char(I") with its usual topology is canonically embedded as a compact subgroup of
Z'(o), via the map v — w?, where w) = v(g)1,g € I'. Its image in H!(o) is a compact

g
subgroup. If in addition ¢ is weakly mixing, then this image is actually faithful:

/
’U)g

6.1.1. Lemma. If o is weakly mixing then the group morphism ~v +— w7 is 1 to 1 and
continuous from Char(T') into H! (o).

Proof. If wi(g) = u*wa(g)og(u), Vg € I" then o,(u) € Cu,Vg € I' and since o is weakly
mixing, this implies u € C1 so w; = ws.
Q.E.D.
Let us note that under appropriate mixing conditions the fact that a cocycle w is
scalar on a subgroup H C I' automatically entails that w, for all elements g € I' which
“almost” normalize H:

6.1.2. Lemma. . Let H C T be an infinite subgroup of I' and w € Z (o) be so that
w g € Char(H). If g € T is such that H' = g YHgN H is infinite and o is weak mizing
on H' then wy € C1.

Proof. Take k € H' and put h = gkg~! € H. Then hg = gk. The 1-cocycle relation

yields wpopn(wy) = wyog(wy). Since wp, wy € C1, this implies oy (wy) € Cw,. Thus,

on(wg) € Cwy,Yh € gH'g™'. Since o|yp:4—1 is weakly mixing (because o is weakly

mixing) this implies w, € CI1. Q.E.D.
The above lemma justifies considering the following:

6.1.3. Definition. Let H C I' be an inclusion of infinite groups. The w-normalizer of
H in T is the group... The wg-normalizer of H in T’ is...

6.2. Automorphisms associated with 1-cocycles. The groups B! (o), Z! (o), H! (o)
were first considered in .M. Singer, who also noticed that they can be identified with
certain groups of automorphisms of the finite von Neumann algebra M = L>*X x, T,
as follows.
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Let M = L>*X xI"and A = L>*X C M. Denote by Autg(M;A) the group of
automorphisms of M that leave all elements of A fixed, endowed with the topology
of pointwise convergence in norm || - ||2 (the topology it inherits from Aut(M,1)). If
0 € Auto(M; A) then wf = O(ug)u, g € T, is a 1-cocycle, where {ug}y C M denote
the canonical unitaries implementing the action o. Conversely, if w € Z!(o) then
0¥ (auy) = awgug,a € A,g € I', defines an automorphism of M that fixes A. Clearly
0 — w?, w+— 6 are group morphisms and are inverse one another, thus identifying
7' (o) with Auto(M; A) as topological groups, with B!(o) corresponding to the inner

automorphism group Intg(M; A) = {Ad(u) | u € U(A)}. Thus, H!(o) is naturally
isomorphic to Outy(M; A) af Auto(M; A)/Into(M; A).
The groups Auto(M; A), Intg(M; A), Outg(M; A) make actually sense for any in-

clusion A C M consisting of a II; factor M with a Cartan subalgebra A.

6.3. 1l-cohomology for full pseudogroups. Let G be a full pseudogroup acting
on the probability space (X, u) and denote A = L*°(X, i), as before. A 1-cocycle for
G isamap w: G = U(A) satisfying the relation wgp(wy) = wey, Yo,% € G. In
particular, this implies that the support of wg, wgw}, is equal to the range r(¢) of ¢.
Thus, wiq, = xv,VY C X measurable.

We denote by Z!(G) the set of all 1-cocycles and endow it with the (commutative)
semigroup structure given by point multiplication. We denote by 1 the 1-cocycle given
by 14 = r(¢),Y¢ € G. If we let (w™1), = wy* then we clearly have ww™! = 1 and
1w = w, Yw € Z'(G). Thus, together also with the topology given by pointwise norm
| - [[o-convergence, Z!(G) is a commutative Polish group.

Two 1-cocycles wy, we are cohomologous, wy ~ wa, if there exists u € U(A) such that
wa (@) = u*wa(@)p(u), V¢ € G. A 1-cocycle w cohomologous to 1 is called a coboundary
for G and the set of coboundaries is denoted B(G). It is clearly a subgroup of Z!(G).

We denote the quotient group H(G) %' Z1(G)/BY(G) = Z}(G)/ ~. and call it the 1’st
cohomology group of G.

By the correspondence between countably generated full pseudogroups and count-
able m.p. standard equivalence relations described in Section 6.2, one can alternatively
view the 1-cohomology groups Z!(G),B(G),H!(G) as associated to the equivalence
relation R = Rg.

Let now A C M be a II; factor with a Cartan subalgebra. If § € Auto(M;A) and
by = Ad(v) € Gacar for some v € GNy(A) then w?(¢,) = O(v)v* is a well defined
1-cocycle for G. Conversely, if w € H'(G) then there exists a unique automorphism
0 € Auto(M; A) satisfying 6% (av) = awy, v, Ya € A,v € GNy(A).

6.3.1. Proposition. 0~ w? is an isomorphism of topological groups, from Auto(M; A)
onto ZY(Gacar), that takes Intg(M; A) = {Ad(u) | v € U(A)} onto BY(Gacar) and
whose inverse is w — 0%. Thus, 8 — w? implements an isomorphism between the
topological groups Outg(M; A) = Autg(M; A)/Into(M; A) and HY (Gacar).
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Proof. This is trivial by the definitions. Q.E.D.

It is an easy exercise to show that if 6 € Auto(M; A) satisfies 0,07, = Ad(w)parp
for some p € P(A), u € U(A) then § € Intg(M;A). Thus, 6 — 6),p, defines an
isomorphism from Outo(M; A) onto Outg(pMp; Ap). Applying this to the Cartan
subalgebra inclusion L(Gy) C L(G) for G an ergodic full pseudogroup acting on the
non-atomic probability space, from 1.5.1 we get: H!(G) is naturally isomorphic to
H!(G"),Vt > 0. In particular, since 1.5.1 also implies H(0) = H!(G,), it follows that
H!(o) is invariant to stable orbit equivalence. We have thus shown:

6.3.2. Corollary. 1°. HY(G) is naturally isomorphic to H(G),Vt > 0.

2°. If o is a free ergodic measure preserving action then H'(o) = HY(G,) and H' (o)
is invariant to stable orbit equivalence. Also, Z'(0) = Z(G,) and Z'(o) is invariant
to orbit equivalence.

6.4. The closure of B}(G) in Z'(G). Given any ergodic full pseudogroup G,
the groups B'(G) =~ Into(M;A) are naturally isomorphic to U(A)/T, where A =
L(Gy), M = L(G). But this isomorphism doesn’t always carry the topology that B!(G)
(resp. Into(M; A)) inherits from Z!(G) (resp. Autq(M;A)) onto the quotient of the
| - [|2-topology on U(A)/T.

6.4.1. Proposition. Let A C M be a I, factor with a Cartan subalgebra. The
following conditions are equivalent:

(a). HY(Gacar) is a Polish group (equivalently H (Gacar) is separate), i.e. BY(Gac )i
is closed in ZX(Gac ).

(b). Into(M; A) is closed in Auty(M; A).

(c). The action of Gacar on A is strongly ergodic, i.e. it has no non-trivial asymp-
totically invariant sequences.

Moreover, if M = A x, I' for some free action o of a group T' on (A, T), then the
above conditions are equivalent to o being strongly ergodic.

Proof. (a) < (b) follows from 6.3.1. Then notice that (b) < (d) is a relative version
of Connes’ result in ([C75]), showing that “Int(N) is closed in Aut(N) iff N has no
non-trivial central sequences” for II; factors N. Thus, a proof of (b) < (d) is obtained
by following the argument in ([C75]), but replacing everywhere Int(/N) by Into(M; A),
Aut(N) by Autg(M; A) and “non-trivial central sequences of N” by “non-trivial central
sequences of M that are contained in A”.

To prove the last part, note that o strongly ergodic iff {uy}; N A“ = C, where
{ug}y C M denote the canonical unitaries implementing the action o of G on A. But
{ug}y NAY = (AU{uy},) N AY = M"N A, hence strong ergodicity of o is equivalent
to (d). Q.E.D.
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6.4.2. Proposition. Assume I' has an infinite subgroup H C I' such that the pair
(T, H) has the relative property (T). If o is a free m.p. action of I' on the probability

space such that o) 1s ergodic, then o is strongly ergodic, equivalently BY(o) is closed in

Z' (o). Moreover, the subgroup 7k (o) def {we Z' (o) | wg ~ 1y} is open and closed

in 71 (o).

Proof. Since (I', H) has the relative property (T), by ([Jol02]) there exist a finite
subset ¥ C G and 6 > 0 such that if 7 : T' — U(H), £ € H, ||€|l2 = 1 satisfy
[7g(§) = &ll2 < 6,Vg € F then |[m4(§) — &ll2 < 1/2,Vh € H and 7y has a non-trivial
fixed vector.

If o is not strongly ergodic then there exists p € P(A) such that 7(p) = 1/2 and
log(p) —pll2 < 6/2,Vg € F. But then u =1 — 2p satisfies 7(u) = 0 and ||o,(u) — ul|2 <
§,Vg € F. Taking 7 to be the G-representation induced by o on L?(A, 7)©Cl, it follows
that L*(A, 7) © Cl contains a non-trivial vector fixed by o|;. But this contradicts the
ergodicity of og.

Let now M = A x, I and 0 = 0" € Auto(M; A) be the automorphism associated
to some w € Z'(o) satisfying [|0(uy) — uyll2 = |wy — 1|2 < 6,Yg € F. Then the
unitary representation m : G — U(L*(M, 7)) defined by m,(¢) = ug§f(uy) satisfies
Img(1) = 1ll2 = llwg —1]|2 < 6, Vg € F. Thus, wp — 1|2 = [7x(1) —1l|2 < 1/2 implying

|0(vup) — vup|l2 = [|0(ur) — up|l2 < 1/2,Yh € H,v € U(A).

It follows that if b denotes the element of minimal norm || - ||2 in €@6*{ujv*0(vuy) | h €
H,v € U(A)} then ||b — 1]|2 < 1/2 and vupb = bO(vuy,) = bwpvuy, Yh € Hyv € U(A).
But this implies b # 0 and xb = bf(x),Vx € N = A X, , H. In particular [b, A] =0
sob € A C N. Since N is a factor (because oy is ergodic), this implies b is a
scalar multiple of a unitary element u in A satisfying wp, = u*op(u),Yh € H. Thus
w € 7}, (o), showing that ZL (o) is open (thus closed too). Q.E.D.

6.4.3. Corollary. Assume I' has an infinite rigid subgroup H C TI'. Let I' ~°
(X, ) be a m.p. action with oy ergodic. If w,w' € Z*(c) are in the same connected
component of Z' (o) then wyy ~ Wy

Proof. If w,w’ are in the same connected component of Z!(c) then w'w™?! is in the

connected component C of 1 in Z!(c). But then ZL (o) is open (by 6.4.2), contains 1
and its complement is also open, implying that C C Z} (o), i.e. w'w™! ~ 1, equivalently
w~w. Q.E.D.

6.5. Calculation of H! for malleable actions. Throughout this section let I' ~7
(X, ) denote a m.p. action of the discrete group I' on the probability space (X, u).

6.5.1. Definition. o is malleable if the flip automorphism a; on X x X, defined by
ar(t,t') = (t',t), t,t' € X, is in the connected component of the identity idx in
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the Polish group 6(I")’ N Aut(X x X, pu X u), where & is the diagonal product action
0g=04XxX0g4,g€l.

6.5.2. Theorem. Let T be a countable discrete group with an infinite subgroup H C T’
such that (I'; H) has the relative property (T). Let o be a free ergodic m.p. action of
I' on the probability space. Assume that o is malleable w-mizing on H. Then the
restriction to H of any 1-cocycle w for o is cohomologous to a cocycle which restricted
to H is a character of H. If in addition we assume that either H is w-normal in T, or
og is mizing with H wg-normal in T, then H'(0,T) = Char(T).

Proof. Let w € Z'(0). Note that w x 1 and 1 x w are cocycles for the diagonal
product action ¢ of I" on L*°®L>*X and that 1 ® w is obtained by applying the flip
automorphism on L>*X x L*X to w ® 1. Thus, by Corollary 6.4.3 it follows that the
restrictions to H of the cocycles w ® 1,1 ® w are equivalent in Z1(6'| ). The Theorem
then follows from the following general:

6.5.3. Proposition. Let p be an action of an infinite group H on (X, pn) and w €
Z'(p). Assume w®1 ~ 1®@w in Z'(p), where pr, = pn, @ pn,h € H. Then w ~ 1 in
Z'(p).

Proof. Let u € U(L*(X)RL>®X) be so that (w, ® 1)pp(u) = u(l ® wy),h € H. For
cach h € H and € € L2X®L?X, denote by 5% (€) = (wp, ®1)&,(€)(1®wy,). Notice that
51 is a unitary element on L?X®L?X and that h + &}, is a unitary representation of
H on the Hilbert space L2X®L?*X.

Let G denote the connected component of id in 6" N Aut(X x X, x p). By the
definition of malleability and Corollary 6.4.3 it follows that {a/(w') Q.E.D.

6.5.4. Lemma. Let I', L be discrete groups with I' infinite. Let o be a free, weakly
mizing m.p. action of I' on the probability space and B a free measure preserving action

of L on the same probability space which commutes with o. If A" def

={a€ A|Bn(a) =
a,Yh € L} then o,(Al) = ALY Vg € T, so 05 def Og|aL defines an integral preserving
action of T' on AL,

Proof. Since B1,(04(a)) = 04(Bu(a)) = o4(a), Vh € L,a € AL, it follows that o, leaves
AV invariant Vg € T. Q.E.D.

6.5.5. Lemma. With I',L, 0,8, A¥,0" as in 6.5.4, assume the action o™ of ' on
AL is free. For each ry € Char(L) denote U, oot {velU(A) | Br(v) = v(h)v,Yh € L}
and Charg(L) def {v € Char(L) | U, # 0}. Then we have:

1°. UUy = Uy, V7,7 € Char(I'), and Charg(L) is a countable group.
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2°. If vo € Char(I'), v € Charg(L) and v € U,, then w7 (g) 2o og(v)v*y0(9) €
AL Yg €T, and w»Y defines a 1-cocycle for (o&,T') whose class in H (oL, T') doesn’t
depend on the choice of v € U, .

Proof. 1°. If v € Uy,v" € U, then

Br(vv') = B (v)Bn(v') = y(h)y (v’

so vv’ € Uy . This also implies Charg(L) is a group. Noticing that {{, }, are mutually
orthogonal in L?(A,7) = L?(X, u), by the separability of L?(X, u), Charg(L) follows
countable.

2°. Since o0, commute, o,(U,) = U,, Vg € I',7 € Charg(L). In particular,
og(v)v* €Uy =U(AL), Vg € T showing that the function w707 takes values in U(A¥).
Since w7 is clearly a 1-cocycle for o (in fact w77 ~. yg1 as elements in Z!(c,T)),
it follows that w7 € Z1(a%).

If v’ is another element in U, then u = v'v* € U(AF) and the associated 1-cocycles
w7 constructed out of v, v’ follow cohomologous via u, in Z!(c%,T). Q.E.D.

6.5.6. Theorem. Let (0,1"), (8,L) be commuting, free m.p. actions on the same
probability space, with T infinite and o weakly mizing, as in 6.5.4,6.5.5. Let AL, (X, T)
be defined as in 6.5.4 and Charg(L) as in 6.5.5. Also, for vy € Char(L), v € Charg(L)
let w7 be defined as in part 2° of 6.5.5. If Charg(L) is given the discrete topology
then A : Char(T') x Charg(L) — H'(ol) defined by letting A(vo,7) be the class of w0
in H* (%) is a 1 to 1 continuous group morphism. If in addition H'(c) = Char(T)
then A is an isomorphism of topological groups.

Proof. The map A is clearly a group morphism and continuous. To see that it is 1 to
1 let 79 € Char(I'), v € Charg(L) and v € U, and represent the element A(yp,7) €
H'(o") by the 1-cocycle w)*7 = o4(v)v*70(g),g € L. If w7 ~, 1 then there exists
u € U(AF) such that o,(u)u* = o,4(v)v*v9(g), Vg € T'. Thus, if we denote ug = uv* €
U(A) then o,(up)us = v0(g9)1,Vg. It follows that o,(Cug) = Cug, Vg € G, and since
o is weakly mixing this implies ug € C1 and 79 = 1. Thus, v € Cu C U(AY) = U,
showing that v =1 as well.

If we assume H'(0) = Char(T') and take w € Z'(c%) then we can view w as a 1-
cocycle for . But then w ~ 71, for some 7y € Char(I'). Since o is ergodic, there exists
a unique v € U(A) (up to multiplication by a scalar) such that wy, = o4(v)v*y0(g),
Vg € T'. Since w is Al-valued, o,(v)v* € U(AT),Vg. Thus o,(v)v* = Bp(oy(v)v*) =
o4(Bn(v))Bn(v)*,Vg. By the uniqueness of v this implies 8 (v) = v(h)v, for some scalar
~v(h). The map I" 3 h +— ~y(h) is easily seen to be a character, so w = w77 showing
that (yo,7) — w7 is onto.

Since H!(0) = Char(T") is compact, by ... and ... ¢ is strongly ergodic so o¥ is also
strongly ergodic. Thus H!(o%) is Polish, with A(Char(T")) a closed subgroup, implying

L
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that A(Charg(L)) ~ H'(o")/A(Char(I")) is Polish. Since it is also countable, it is
discrete. Thus, A is an isomorphism of topological groups. Q.E.D.

6.6. Some calculations of H!-groups.

6.6.1. Lemma. Let I be an infinite group and o be the Bernoulli shift action of I' on
(X, ) =11,(T,\),. With the notations of 6.5.4,6.5.5, for any countable abelian group
A there exists a countable abelian group L and a free action B of L on (X, u) such that
Charg(L) = A, [0, 8] = 0 and ojar is a free action of I'. Moreover, if A is finite then
one can take L = A and B to be any action of L = A on (X, u) that commutes with o
and such that o x B is a free action of I' x L.

Proof. Let L be a countable dense subgroup in the (2'nd countable) compact group A
and ji9 be the Haar measure on A. Let 3y denote the action of L on L®(A, ) = L(A)
given by By(h)(uy) = v(h)uy,Vh € L, where {uy},eca C L(A) denotes the canonical
basis of unitaries in the group von Neumann algebra L(A) and v € A is viewed as a
character on L C A. Denote Ag = LOO(A, to)QL>(T, A) and 7y the state on Ay given
by the product measure pg x A. Let 8 denote the product action of L on ®g4ecr(Ao, 70)4
given by B(h) = ®4(Bo(h) ®id),.

Since (Ao, 0) =~ (L*°(T, A), [ -d)), we can view o as the Bernoulli shift action of G
on A = ®y4(Ap,70)y. By the construction of 3 we have [0, 5] = 0. Also, the fixed point
algebra AL contains a o-invariant subalgebra on which o acts as the (classic) Bernoulli
shift. Thus, the restriction o = oL is a free, mixing action of G. Finally, we see by
construction that Charg(L) = A.

The last part is trivial, once we notice that if the action o x § of I' x L on A is free
then the action o’ of I' on A’ is free. Q.E.D.
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