Class 259B, Winter 2020: Classification results for II₁ factors Instructor: Sorin Popa Meetings: MWF 3-4pm in MS5118.

A central problem in von Neumann algebras is the classification of II_1 factors $L(\Gamma)$, $L(\Gamma \curvearrowright X)$ arising from countable groups Γ and their measure preserving actions $\Gamma \curvearrowright X$ on probability spaces (X, μ) . These algebras tend to forget their building data, for instance, by a Theorem of Connes in [1], all II_1 factors $L(\Gamma)$, $L(\Gamma \curvearrowright X)$ with Γ amenable are known to be isomorphic to the hyperfinite II_1 factor R. But for non-amenable groups the situation can be quite rigid, for example the II_1 factors associated with Bernoulli actions $\Gamma \curvearrowright X = [0, 1]^{\Gamma}$ of property (T) groups Γ are isomorphic [3].

We'll first prove Connes Theorem in [1], using an approximation technique in [2]. We'll then develop some tools known as *deformation-rigidity theory*, that will allow us to prove the above rigidity result [3].

Some familiarity with Operator Algebra and II₁ factors (255A&B, 259A) will be assumed (one can use https://www.math.ucla.edu/ popa/Books/IIun-v14.pdf to fill in the gaps). All registered students will get an A, but will have to make presentations in the Participating Seminar 290I Mondays 4-5:30 in MS5137.

 A. Connes: Classification of injective factors, Ann. Math., **104** (1976), 73-115.
S. Popa: A short proof that injectivity implies hyperfiniteness for finite von Newmann algebras. J. Operator Theory, **16** (1986), 261-272.

[3] S. Popa: Strong Rigidity of II₁ Factors Arising from Malleable Actions of w-Rigid Groups I, II, Invent. Math., **165** (2006), 369-408, 409-453.