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Preface

This is an evolving set of lecture notes on the classical theory of curves and
surfaces. More pictures will be added eventually. I recommend people download
3DXplorMath to check out the constructions of curves and surfaces with this app.
It can also be used to create new curves and surfaces in parametric form. Other
useful and free apps are Geogebra, Grapher (on Mac), and WolframAlpha.

At a minimum, a one quarter course should cover chapter 1, sections 2.1, 3.1,
3.2, and chapters 4, 5. In a semester course it’d be possible to cover more from
chapter 2 and also delve into chapter 6. Chapters 6 and 7 can be covered in a
second quarter class. Note that section 2.2 is a necessary prerequisite for proving
the general Gauss-Bonnet in section 6.5.

An excellent reference for the classical treatment of differential geometry is the
book by Struik [3]. The more descriptive guide by Hilbert and Cohn-Vossen [1] is
also highly recommended. This book covers both geometry and differential geome-
try essentially without the use of calculus, offers many interesting results, and gives
excellent descriptions of many of the constructions and results in differential geom-
etry. Finally, after having completed these notes, I realized that Hopf’s lectures in
[2] is a superb treatment of the global theory of curves and surfaces.

This text is fairly classical and is not intended as an introduction to abstract
2-dimensional Riemannian geometry. In fact, in a break with the modern tradition
of how to present the subject, we do not discuss covariant differentiation or parallel
translation. Most proofs are local in nature and try to use only basic linear algebra
and multivariable calculus. The only sense in which the text is more modern is
in not using the language of differentials and infinitesimals as most of the classical
texts do.

Note: Differentiability assumptions are not specific, but “as needed” for the
proof to work. Basic results from analysis and linear algebra, such as implicit and
inverse function theorems etc, are used freely without further justification. I highly
recommend that students look at the two appendices for a quick synopsis of the
basic elements of vector calculus and to help with calculations on surfaces using
different parametrizations.

Some standard topics are not covered in the text. However, I hope most of
them can be found among the exercises. As such, they can easily be incorporated
into lectures as the instructor sees fit.

I’d like to thank Chadwick Sprouse and Michael Williams for trying out these
notes and providing valuable feedback.

“Reading your notes is like reading poetry, and I don’t under-
stand that either.” Reed Douglas, UCLA student.
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CHAPTER 1

General Curve Theory

One of the key aspects in geometry is invariance. This can be somewhat diffi-
cult to define, but the idea is that the properties or measurements under discussion
should be described in such a way that they they make sense without reference to a
special coordinate system. This idea has been a guiding principle since the ancient
Greeks started formulating geometry. We’ll often take for granted that we work
in a Euclidean space where we know how to compute distances, angles, areas, and
even volumes of simple geometric figures. Descartes discovered that these types of
geometries could be described by what we call Cartesian space through coordina-
tizing the Euclidean space with Cartesian coordinates. This is the general approach
we shall use, however, it is still worthwhile to occasionally try to understand mea-
surements not just algebraically or analytically, but also purely descriptively in
geometric terms. For example, how does one define a circle? It can defined as a
set of points given by a specific type of equation, it can be given as a parametric
curve, or it can be described as the collection of points at a fixed distance from the
center. Using the latter definition without referring to coordinates is often a very
useful tool in solving many problems.

1.1. Curves

The primary goal in the geometric theory of curves is to measure their shapes
in ways that do not take in to account how they are parametrized or how Euclidean
space is coordinatized. However, it is generally hard to measure anything without
coordinatizing space and parametrizing the curve. Thus the idea will be to see if
some sort of canonical parametrization might exist and secondly to also show that
our measurements can be defined using whatever parametrization the curve comes
with. We will also try to make sure that our formulas do not necessarily refer
to a specific set of Cartesian coordinates. To understand more general types of
coordinates requires quite a bit of work and this will not be done until we introduce
surfaces later in these notes.

Imagine traveling in a car or flying an airplane. As you travel a curve or path
is traced and it is easy to keep track of time and distance. The goal of curve theory
is to decide what further measurements are needed to retrace the precise path.
Clearly one must also measure how one turns and that becomes the important
thing to describe mathematically.

The fundamental dynamical vectors of a curve whose position is denoted by q

are the velocity v = d q
dt , acceleration a = d2 q

dt2 , and jerk j = d3 q
dt3 .

The tangent line to a curve q at q (t) is the line through q (t) with direction
v (t). The goal is to find geometric quantities that depend on velocity (or tangent

1



1.1. CURVES 2

lines), acceleration, and jerk that completely determine the path of the curve when
we use some parameter t to travel along it.

q

v
a

j

Tangent Line

Most of the curves we study will be given as parametrized curves, i.e.,

q (t) =

 x (t)
y (t)
...

 : I → Rn,

where I ⊂ R is an interval. Such a curve might be constant, which is equivalent to
its velocity vanishing everywhere.

Definition 1.1.1. A curve is called regular if it is never stationary. In other
words, the speed is always positive, or the velocity never vanishes.

Occasionally curves are given to us in a more implicit form. They could come
as solutions to first order differential equations

d q

dt
= F (q (t) , t) .

In this case we obtain a unique solution (also called an integral curve) as long as
we have an initial position q (t0) = q0 at some initial time t0. In case the function
F (q) only depends on the position we can visualize it as a vector field as it gives
a vector at each position. The solutions are then seen as curves whose velocity at
each position q is the vector v = F (q).

Very often the types of differential equations are of second (or even higher
order)

d2 q

dt2
= F

(
q (t) ,

d q

dt
, t

)
.

In this case we have to prescribe both the initial position q (t0) = q0 and velocity
v (t0) = v0 in order to obtain a unique solution curve.

The next result shows how differential equations can be used to characterize
curves.

Proposition 1.1.2. The following conditions are equivalent for a regular curve
q (t):

(1) The curve travels along a line: q (t) = q0 +α (t) v0, where α (t) is a scalar
valued function and q0, v0 are fixed vectors.

(2) The velocities are all parallel to each other: v (t) = β (t) v0, where β (t) is
a scalar valued function and v0 is a fixed vector.
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(3) The velocity and acceleration at each point are parallel to each other:
a (t) = γ (t) v (t), where γ (t) is a scalar valued function.

Proof. (1)⇒ (2): Use β (t) = α̇ (t).
(2)⇒ (3): Since the curve is regular β (t) 6= 0. Thus we can use γ (t) = β̇(t)

β(t) .
(3) ⇒ (1): The equation a (t) = γ (t) v (t) can be written as a differential

equation
d v

dt
= γ (t) v .

This shows that

v (t) = v (t0) exp

(∫ t

t0

γ

)
,

since the right hand side solves the equation and has the same initial value at t0 as
the left hand side. Thus we obtain a new differential equation

d q

dt
= β (t) v0,

which shows that q (t) = q (t0) + v0

(∫ t
t0
β
)
, since the right hand side solves the

equation and has the same initial value at t0 as the left hand side. �

Proposition 1.1.3. Let c (t) , c∗ (t) : I → Rk be two vector valued curves.

(1) d(c|c∗)
dt =

(
dc
dt | c

∗)+
(
c | dc

∗

dt

)
.

(2) d
dt

(
1
2 |c|

2
)

= (c | ċ).

(3) d
dt (|c|) = (c|ċ)

|c| as long as c 6= 0.

(4) d
dt

(
1
|c|

)
= − (c|ċ)

|c|3 as long as c 6= 0.

Proof. (1) follows from the product rule for differentiation.
(2) follows by using (1) with c∗ = c and that |c|2 = (c | c).
(3) follows from (2) by observing that we also have d

dt

(
1
2 |c|

2
)

= |c| d|c|dt .

(4) follows from (3) by using d
dt

(
1
|c|

)
= −

d
dt (|c|)
|c|2 . �

Remark 1.1.4. The proposition will be used freely throughout the text. It is
important to observe that the curves c or c∗ could be the velocity or acceleration
of a curve q. For example, if a curve q has the property that its velocity always has
unit length, then |v| = 1 and (2) shows that (v, a) = 0.

Another very general method for generating curves is through equations. In
general, one function F (x, y) : R2 → R gives a collection of planar curves via the
level sets

F (x, y) = c.

The implicit function theorem guarantees us that we get a unique curve as a graph
over either x or y when the gradient of F doesn’t vanish. The gradient is the vector

∇F =

[ ∂F
∂x
∂F
∂y

]
.
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Geometrically the gradient is perpendicular to the level sets. This means that the
level sets themselves have tangents that are given by the directions[

−∂F∂y
∂F
∂x

]
as this vector is orthogonal to the gradient. This in turn offers us a different way of
finding these levels as they now also appear as solutions to the differential equation[

dx
dt
dy
dt

]
=

[
−∂F∂y (x (t) , y (t))
∂F
∂x (x (t) , y (t))

]
.

In three variables we need two functions as such functions have level sets that are
surfaces:

F1 (x, y, z) = c1,

F2 (x, y, z) = c2.

In this case we also have a differential equation approach. Both of the gradients∇F1

and ∇F2 are perpendicular to their level sets. Thus the cross product ∇F1 ×∇F2

is tangent to the intersection of these two surfaces and we can describe the curves
as solutions to

d q

dt
= (∇F1 ×∇F2) (q) .

It is important to realize that when we are looking for solutions to a first order
system

d q

dt
= F (q (t)) ,

then we geometrically obtain the same curves if we consider
d q

dt
= λ (q (t))F (q (t)) ,

where λ is some scalar function, as the directions of the velocities stay the same.
However, the parametrizations of the curves will change.

Classically curves were given descriptively in terms of geometric or even me-
chanical constructions. Thus a circle is the set of points in the plane that all have a
fixed distance R to a fixed center. It became more common starting with Descartes
to describe them by equations. Only about 1750 did Euler switch to considering
parametrized curves. It is also worth mentioning that what we call curves used
to be referred to as lines. This terminology still appears in certain concepts we
introduce later, such as lines of curvature on a surface. However, when we refer to
a line in these notes we mean a straight line.

We present a few classical examples of these constructions in the plane.

Example 1.1.5. Consider the equation

F (x, y) = x2 + y2 = c.

When c > 0 this describes a circle of radius
√
c. When c = 0 we only get the origin,

while when c < 0 there are no solutions. The gradient is given by (2x, 2y) and only
vanishes at the origin.

The differential equation describing the level sets is[
dx
dt
dy
dt

]
=

[
−2y
2x

]
.
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The solutions are given by q (t) = R (cos (2 (t+ ϕ)) , sin (2 (t+ ϕ))) where the con-
stants R and ϕ can be adjusted according to any given initial position. A more
convenient parametrization happens when we scale the system to become[

dx
dt
dy
dt

]
=

[
−y
x

]
so that the solutions are q (θ) = R (cos (θ + ϕ) , sin (θ + ϕ)) with θ being the angle
to the x-axis. Yet a further scaling is possible as long as we exclude the origin[

dx
dt
dy
dt

]
=

1√
x2 + y2

[
−y
x

]
.

This time the solutions are given by

q (θ) = R

(
cos

(
θ + ϕ

R

)
, sin

(
θ + ϕ

R

))
and we have to assume that R > 0.

Example 1.1.6. Consider

F (x, y) = x2 − y2 = c.

When c 6= 0 the solution set consists of two hyperbolas. They’ll be separated by
the y-axis when c > 0 and by the x-axis when c < 0. When c = 0 the solution set
consists of the two lines y = ±x. A tangent direction is given by (2y, 2x), which
we observe only vanishes at the origin. Unlike the above example we seem to have
a valid level set passing through the origin, however, it consists of two curves that
pass through the point of contention.

A nicely scaled differential equation describing these curves is given by[
dx
dt
dy
dt

]
=

[
y
x

]
and the solutions are given by[

x
y

]
=

[
aet + be−t

aet − be−t
]
,

where a, b can be adjusted according to the initial values. There are five separate
solutions that together give us the level set x2 − y2 = 0. We get the origin when
a = 0, b = 0. The two parts of y = x when b = 0 with the part in the first quadrant
when a > 0 and in the third quadrant when a < 0. The two parts of y = −x
similarly come from a = 0.
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Example 1.1.7. Consider the second order equation
d2 q

dt2
= 0.

The solutions are straight lines q (t) = q0 + v0 (t− t0).

The next two examples show that scaling second order equations can, in con-
trast to first order equations, change the solutions drastically.

Example 1.1.8. The first example is given by the harmonic oscillator
d2 q

dt2
= − q .

This is easy to solve if we look at each coordinate separately. The solutions are:

q (t) = q0 cos (t− t0) + v0 sin (t− t0) .

Example 1.1.9. A more subtle differential equation comes from Newton’s in-
verse square law:

d2 q

dt2
= −g q

|q|3
= −g 1

|q|2
q

|q|
.

The solutions are conic sections. This is discussed in section 1.4 and the conic
sections are defined in the next example.

Example 1.1.10 (Conic Sections). A conic section is the curve that results
from intersecting a cone with a plane. It can be a point, lines, circles, ellipses,
parabolas, or hyperbolas. Shining a flash light at a wall at different angles will
yield contour shapes that are conic sections. A point or two lines only occur when
the plane goes through the vertex of the cone. In all other cases we obtain the
non-degenerate conic sections that are ellipses, parabolas, or hyperbolas.

Here we offer another classical definition that is strictly planar. A conic section
is determined by a focal point f ∈ R2, a line l, and an eccentricity e ≥ 0. The curve
is defined as the points q whose distance to f is e times the distance to l. When
f = 0 is at the origin the curve is given by the equation

|q| = e ((q | n) + c) ,

where n is a unit normal to l and q ·n +c measures the distance from q to the line
l. We can rewrite this as

|q| = (q | k) + p.

Below is a picture of several conic sections with the same p. Note that the hyperbola
has both of its branches.
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To convince ourselves that this really yields conic sections we further assume
that the coordinate axes are rotated so that k = (e, 0). The line is then given by
x = −pe . The equation in Cartesian coordinates now becomes√

x2 + y2 = ex+ p.

This can be rewritten as (
1− e2

)
x2 − 2epx+ y2 = p2.

When e = 1 this gives a sideways parabola. When e 6= 1 we can further rewrite it
as (

x− ep
1−e2

)2

(
p

1−e2

)2 +
y2

p2

1−e2
= 1.

When e = 0, this is the equation for a circle centered at the origin with radius
p. When 0 < e < 1 it becomes an ellipse with major axis a = p

1−e2 , minor axis

b = p√
1−e2 , and center

(
ep

1−e2 , 0
)
. Finally when e > 1 it is a hyperbola as p2

1−e2 < 0.
In polar coordinates the equation takes the simple form

r = er cos θ + p

or
r (1− e cos θ) = p.

Example 1.1.11. Finally we mention a less well known ancient example. This
is the conchoid (shell-like) of Nicomedes. It is given by a quartic (degree 4) equation:(

x2 + y2
)

(y − b)2 −R2y2 = 0.

Descriptively it consists of two curves that are given as points (x, y) whose distance
along radial lines to the line y = b is R. The radial line is simply the line that
passes through the origin and (x, y). So we are measuring the distance from (x, y)
to the intersection of this radial line with the line y = b. As that intersection is(
x
y b, b

)
the condition is (

x− x

y
b

)2

+ (y − b)2
= R2,

which after multiplying both sides by y2 reduces to the above equation.
The two parts of the curve correspond to points that are either above or below

y = b. Note that no point on y = b solves the equation as long as b 6= 0.
A simpler formula appears if we use polar coordinates. The line y = b is

described as

(x, y) = (b cot θ, b) =
b

sin θ
(cos θ, sin θ)

and the point (x, y) by

(x, y) =

(
b

sin θ
±R

)
(cos θ, sin θ) .

This gives us a natural parametrization of these curves.
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y=b

R<b

R>b

Figure 1.1.1. Conchoids

Another parametrization is obtained if we intersect the curve with the lines
y = tx and use the slope t instead of the angle θ as the parameter. This corresponds
to t = tan θ in polar coordinates. Thus we obtain the parameterized form

(x, y) =

(
b

t
± R√

1 + t2

)
(1, t) .

As we have seen, what we consider the same curve might have several different
parametrizations.

There is also a way of characterizing curves that are radial lines. We offer
two proofs that highlight some of the characterizations of curves that we have seen
above.

Proposition 1.1.12. If the velocity is always radial relative to a point c, then
the curve lies on a line through c.

Proof. There is a particularly simple proof for curves in R2 that also intro-
duces a convenient notation for calculating in polar coordinates. The unit radial di-
rection is er (θ) = (cos θ, sin θ), the unit angular direction is ea (θ) = (− sin θ, cos θ).
These vectors form an orthonormal basis at every point and are further related by

der
dθ

= ea and
dea
dθ

= −er.

We can write the curve as

q (t)− c = r (t) er (θ (t)) = rer.

Thus
v = ṙer + rθ̇ea

and as the velocity is supposed to be radial it follows that θ̇ = 0 and in particular
that θ is constant. This proves the claim.
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In higher dimensions we can use a similar approach without explicitly using
polar coordinates. We start by writing

q (t)− c = |q (t)− c| q (t)− c

|q (t)− c|
,

and then defining r (t) = |q (t)− c| and the radial direction er (t) = q(t)−c
|q(t)−c| . As in

the planar case the condition that the curve is radial comes down to checking that
the derivative of this radial component vanishes:

v (t) =
d

dt
(q (t)− c) = ṙer + r

d

dt
(er) .

Note that the first term ṙer is radial. The derivative in the second term is fairly
complicated but it is perpendicular to the radial direction

0 =
d

dt
|er|2 = 2

(
er |

d

dt
(er)

)
.

Thus the velocity can only be radial when
d

dt
(er) = 0

which is turn tells us that er is a fixed radial direction. This shows that the curve
lies on a radial line.

Alternately we can use that the condition on the velocity is a differential equa-
tion

v (t) = α (t) (q (t)− c) .

A solution to the this equation with q (t0) = q0 is given by

q (t) = (q0−c) exp

(∫ t

t0

α

)
+ c.

By uniqueness of solutions this is also the only such solution. �

Definition 1.1.13. Two parametrized curves q (t) and q∗ (t∗) are reparametriza-
tions of each other if it is possible to write t = t (t∗) as a function of t∗ and t∗ = t∗ (t)
such that

q (t) = q∗ (t∗ (t)) and q (t (t∗)) = q∗ (t∗) .

If both of the functions t (t∗) and t∗ (t) are differentiable, then it follows from the
chain rule that

dt

dt∗
dt∗

dt
= 1.

In particular, these derivatives never vanish and have the same sign. We shall almost
exclusively consider such reparametrizations. In fact we shall usually assume that
these derivatives are positive so that the the direction of the curve is preserved
under the reparametrization.

Lemma 1.1.14. If q∗ (t∗) = q (t (t∗)) and t (t∗) is differentiable with positive
derivative, then q∗ is a reparametrization of q.

Proof. The missing piece in the definition of reparametrization is to show
that we can also write t∗ as a differentiable function of t. However, by assumption
dt
dt∗ > 0 so the function t (t∗) is strictly increasing. This means that for a given
value of the function there is at most one point in the domain yielding this value
(horizontal line test). This shows that we can find the inverse function t∗ (t).
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Graphically, simply take the graph of t (t∗) and consider its mirror image reflected
in the diagonal line t = t∗. This function is also differentiable with derivative at
t = t0 is given by

1
dt
dt∗ (t∗ (t0))

.

�

It is generally too cumbersome to use two names for curves that are reparametriza-
tions of each other. Thus we shall simply write q (t∗) for a reparametrization of
q (t) with the meaning being that

q (t) = q (t∗ (t)) and q (t (t∗)) = q (t∗) .

With that in mind we shall always think of two curves as being the same if
they are reparametrizations of each other.

Definition 1.1.15. We say that a curve q : I → Rk is closed if there is an
interval [a, b] ⊂ I such that q (a) = q (b) and q (I) = q ([a, b]). We say that a closed
curve is simple if it is regular and [a, b] can be chosen so that q : [a, b) → Rk is
one-to-one.

Example 1.1.16. A circle (cos t, sin t) is a simple closed curve where we can
use the interval [a, 2π + a] for any a.

Example 1.1.17. The figure “∞” is an example of a curve that is closed, but
not simple. It can be described by an equation(

1− x2
)
x2 = y2.

Note that as the right hand side is non-negative it follows that x2 ≤ 1. When
x = −1, 0, 1 we get that y = 0. For other values of x there are two possibilities for
y = ±

√
(1− x2)x2.

Exercises
(1) Show that if a curve q satisfies |q (t)| = R for all t and a constant R, then

q · v = 0.
(2) Show that the following properties for a regular curve are equivalent.

(a) The curve is part of a straight line
(b) All its tangent lines are parallel.
(c) All its tangent lines pass through a fixed point c.

(3) Show that lines in the plane satisfy equations of the form r cos (θ − θ0) = r0 in
polar coordinates. Describe what the two constants θ0, r0 mean.
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(4) Show that three points that don’t lie on a line determine a unique conic section
with focus at the origin.

(5) Show that a curve q (t) : I → R2 lies on a line if and only if there is a vector
n ∈ R2 such that q (t) · n is constant.

(6) Show that for a curve q (t) : I → R3 the following properties are equivalent:
(a) The curve lies in a plane.
(b) There is a vector n ∈ R3 such that (q (t) | n) is constant.
(c) There is a vector n ∈ R3 such that (v (t) | n) = 0 for all t.

(7) Show that a curve q (t) : I → R3 lies on a line if and only if there are two
linearly independent vectors n1,n2 ∈ R3 such that (q (t) | n1) and (q (t) | n2)
are constant.

(8) Show that if a curve q (t) : I → R3 satisfies ...
q = 0 on I, then it lies in a plane.

(9) Show that for a curve q (t) : I → Rn the following properties are equivalent.
(a) The curve lies on a circle (n = 2) or sphere (n > 2.)
(b) There is a vector c such that |q− c| is constant.
(c) There is a vector c such that ((q− c) | v) = 0.

(10) Consider a curve q (t) : I → Rn and fix t0 ∈ I. Show that the curve lies on a
circle (n = 2) or sphere (n > 2) if and only if the curve

q∗ (t) =
q (t)− q (t0)

|q (t)− q (t0)|2

lies on a line (n = 2) or hyperplane (n > 2). Hint. The hyperplane is given by
the points x that satisfy:

((q (t0)− c) | x) = −1

2
,

where c is the center of the sphere.
(11) Consider a curve of the form q (θ) = r (θ) (cos θ, sin θ) where r is a function of

both cos θ and sin θ

r (θ) = p (cos θ, sin θ) .

(a) Show that this curve is closed.
(b) Show that if r (θ) > 0, then it is a regular and simple curve.
(c) Let 0 ≤ θ1 < θ2 < 2π and θ2 6= π + θ1. Show that if r (θ1) = r (θ2) = 0,

ṙ (θ1) 6= 0 6= ṙ (θ2), then it is not simple. In case θ2 = π + θ1 the curve is
not simple as long as ṙ (θ1) 6= −ṙ (θ2).

(d) Show that if r (θ0) = ṙ (θ0) = 0, then its velocity vanishes at θ0.
(e) By adjusting a in r (θ) = 1 + a cos θ give examples of curves that satisfy

the conditions in (b), (c), and (d).
(12) Consider a curve of the form q (t) = x (t) (1, t).

(a) Show that v = (ẋ, x+ tẋ).
(b) Show that if x (t0) = ẋ (t0) = 0, then its velocity vanishes at t0.
(c) By adjusting a in

x (t) =
a+ t2

1 + t2

give examples of curves that are not regular.
(13) Show that if we parametrize the sphere

x2 + y2 + z2 = R2
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by

x = R sinφ cos θ,

y = R sinφ sin θ,

z = R cosφ,

then great circles satisfy tanφ cos (θ − θ0) = tanφ0. A great circle is the inter-
section of the sphere with a plane ax+ by + cz = 0 through the origin.

(14) Show that the two equations

x2 + y2 + z2 = 4R2,

(x−R)
2

+ y2 = R2

define a closed space curve that intersects itself at x = 2R by showing that it
can be parametrized as

q (t) = R

(
cos (t) + 1, sin (t) , 2 sin

(
t

2

))
.

(15) The cissoid (ivy-like) of Diocles is given by the equation

x
(
x2 + y2

)
= 2Ry2.

(a) Show that this can always be parametrized by y, but that this parametriza-
tion is not smooth at y = 0. Hint: A cubic equation ax3 + bx2 + cx+d = 0
has a unique root if the derivative of the left hand side is positive.

(b) Show that if y = tx, then we obtain a parametrization

(x, y) =
2Rt2

1 + t2
(1, t) .

(c) Show that in polar coordinates

r = 2R

(
1

cos θ
− cos θ

)
.

(16) The folium (leaf) of Descartes is given by the equation

x3 + y3 − 3Rxy = 0.

In this case the curve really does describe a leaf in the first quadrant.
(a) Show that it can not be parameterized by x or y near the origin.
(b) Show that if y = tx, then we obtain a parametrization

(x, y) =
3Rt

1 + t3
(1, t)

that is valid for t 6= −1. What happens when t = −1?
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(c) Show that in polar coordinates we have

r =
3R sin θ cos θ

sin3 θ + cos3 θ
.

(17) Given two planar curves q1 and q2 we can construct a cissoid q as follows: As-
sume that the line y = tx intersects the curves in q1 = (x1 (t) , tx1 (t)) and q2 =
(x2 (t) , tx2 (t)), then define q (t) = x (t) (1, t) so that |q (t)| = |q1 (t)− q2 (t)|.
(a) Show that x (t) = ± (x1 (t)− x2 (t)).
(b) Show that the conchoid of Nicomedes is a cissoid. Hint: q1 is a circle

of radius R centered at the origin and q2 the line y = b. However, the
parametrization of the circle is so that it is its lower half that gives the
upper part of the conchoid.

(c) Show that the folium of Descartes is a cissoid. Hint: Use an ellipse

x2 − xy + y2 = −R (x+ y)

and line

x+ y = −R.

(18) Let q be a cissoid where q1 is the circle of radius R centered at (R, 0) and q2

a vertical line x = b.
(a) Show that when b = 2R we obtain the cissoid of Diocles

x
(
x2 + y2

)
= 2Ry2.
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(b) Show that when b = R
2 we obtain the trisectrix (trisector) of Maclaurin

2x
(
x2 + y2

)
= −R

(
3x2 − y2

)
.

(c) Show that when b = R we obtain a strophoid

y2 (R− x) = x2 (x+R) .

(d) Show that the change of coordinates x = u + v, y =
√

3 (u− v) turns the
trisectrix of Maclaurin into Descartes’ folium.

1.2. Arclength and Linear Motion

The arclength is the distance traveled along the curve. One way of measuring
the arclength geometrically is by imagining the curve as a thread that can be
stretched out and measured. This, however, doesn’t really help in formulating how
it should be measured mathematically. Archimedes succeeded in understanding the
arclength of circles by relating it to the area of the circle. The idea of measuring
the length of general curves is relatively recent, going back only to about 1600.
Newton was the first to give the general definition that we shall use below. As we
shall quickly discover, it is generally impossible to calculate the arclength of a curve
as it involves finding anti-derivatives of fairly complicated functions.

From a dynamical perspective the change in arclength measures how fast the
motion is along the curve. So if there is no change in arclength, then the curve
is stationary, i.e., you stopped. More precisely, if the distance traveled is denoted
by s (we can’t use d for distance as it is used for differentiation), then the relative
change with respect to the general parameter is the speed

ds

dt
=

∣∣∣∣d q

dt

∣∣∣∣ = |v| .

This means that s is the anti-derivative of speed and is defined up to an additive
constant. The constant is determined by where we start measuring from. This
means that we should define the length of a curve on [a, b] as follows

L (q)
b
a =

∫ b

a

|v| dt = s (b)− s (a) .
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Using substitution this is easily shown to be independent of the parameter t as long
as the reparametrization is in the same direction. One also easily checks that a
curve on [a, b] is stationary if and only if its speed vanishes on [a, b]. We usually
suppress the interval and instead simply write L (q).

Example 1.2.1. If q (t) = q0 + v0 t is a straight line, then its speed is constant
|v0| and so the arclength over an interval [a, b] is |v0| (b− a).

Example 1.2.2. If q (t) = R (cos t, sin t) + c is a circle of radius R centered at
c, then the speed is the constant R and so again it becomes easy to calculate the
arclength.

Example 1.2.3. Consider the hyperbola x2 − y2 = 1. It consists of two com-
ponents separated by the y-axis. The component with x > 0 can be parametrized
using hyperbolic functions q (t) = (cosh t, sinh t). The speed is

ds

dt
=
√

sinh2 t+ cosh2 t =
√

2 sinh2 t+ 1 =
√

cosh 2t.

While this is both a fairly simple curve and a not terribly difficult expression for
the speed it does not appear in any way easy to find the arclength explicitly.

Example 1.2.4. Consider the curve x2 = y3. This curve has a cusp at the origin
were it appears that the tangent is vertical. Suppose (x (t) , y (t)) is a parametriza-
tion of this curve with x (0) = 0, y (0) = 0. We can expand these two function in
Taylor expansions:

x (t) = atk + · · · , y (t) = btl + · · ·
where a and b correspond to the first nonzero terms in the Taylor expansion. The
important issue for us is to check if the parametrization is regular at the origin,
i.e., is k or l = 1? Note that

(x (t))
2

= a2t2k + · · · , (y (t))
3

= b3t3l + · · ·

This shows that 2k = 3l and a2 = b3. This shows that 3l is even and hence that
l is even. In particular, l ≥ 2. This implies ẏ (0) = 0. Other the other hand if
l ≥ 2, then 2k ≥ 6 and k ≥ 3. Thus also ẋ (0) = 0. From this we conclude that no
parametrization of x2 = y3 can be regular at the origin.

Proposition 1.2.5. If F : Rk → Rk is of the form F (x) = Ox + c, where O is
an orthogonal transformation and c ∈ Rk, then L (q) = L (F ◦ q) for all curves.

Proof. An orthogonal transformation is by definition a linear map or matrix
that preserves dot products: (Ov) · (Ow) = v · w, for all v, w ∈ Rk. The proof
follows from the simple observation that the differential of F is given by DF = O.
Using the chain rule ∣∣∣∣dF ◦ q

dt

∣∣∣∣ = |DF (q̇)| = |O (q̇)| = |q̇|

it follows that F preserves the speed of q and hence also the length. �

Definition 1.2.6. A curve is said to be parametrized by arclength if its speed
is always 1. Such a parametrization is also called a unit speed parametrization.

Lemma 1.2.7. A regular curve q (t) can be reparametrized by arclength.
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Proof. If we have a unit speed reparametrization q (s) of q (t) with ds
dt > 0,

then

d q

ds

ds

dt
=
d q

dt
= v

so it follows that ∣∣∣∣d q

ds

∣∣∣∣ dsdt =
ds

dt
=

∣∣∣∣d q

dt

∣∣∣∣ = |v|

must be the speed of q (t).
This tells us that we should define the reparametrization s = s (t) as the anti-

derivative of the speed:

s (t1) = s (t0) +

∫ t1

t0

∣∣∣∣d q

dt

∣∣∣∣ dt.
It then follows that

ds

dt
=

∣∣∣∣d q

dt

∣∣∣∣ > 0.

Thus it is also possible to find the inverse relationship t = t (s) and we can define
the reparametrized curve as q (s) = q (s (t)) = q (t).

This reparametrization depends on specifying an initial value s (t0) at some
specific parameter t0. For simplicity one often uses s (0) = 0 if that is at all
reasonable. �

To see that arclength really is related to our usual concept of distance we show:

Theorem 1.2.8. The straight line is the shortest curve between any two points
in Euclidean space.

Proof. We shall give two almost identical proofs. Without loss of generality
assume that we have a curve q (t) : [a, b] → Rk where q (a) = 0 and q (b) = p. We
wish to show that L (q) ≥ |p| . To that end select a unit vector field X which is also
a gradient field X = ∇f. Two natural choices are possible: For the first, simply let
f (x) = x · p|p| , and for the second f (x) = |x| . In the first case the gradient is simply
a parallel field and defined everywhere, in the second case we obtain the radial field
which is not defined at the origin. When using the second field we need to restrict
the domain of the curve to [a0, b] such that q (a0) = 0 but q (t) 6= 0 for t > a0. This
is clearly possible as the set of points where q (t) = 0 is a closed subset of [a, b] , so
a0 is just the maximum value where q vanishes.

This allows us to perform the following calculation using Cauchy-Schwarz, the
chain rule, and the fundamental theorem of calculus. When we are in the second
case the integrals are possibly improper at t = a0, but clearly turn out to be
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perfectly well defined since the integrand has a continuous limit as t approaches a0:

L (q) =

∫ b

a

|v| dt

≥
∫ b

a0

|v| dt

=

∫ b

a0

|q̇| |∇f | dt

≥
∫ b

a0

|(q̇ | ∇f)| dt

=

∫ b

a0

∣∣∣∣d (f ◦ q)

dt

∣∣∣∣ dt
≥

∣∣∣∣∣
∫ b

a0

d (f ◦ q)

dt
dt

∣∣∣∣∣
= |f (q (b))− f (q (a0))|
= |f (p)− f (0)|
= |f (p)|
= |p| .

We can even go backwards and check what happens when L (q) = |p| . It appears
that we must have equality in the places where we had inequality. Thus we have
d(f◦q)
dt ≥ 0 everywhere and q̇ is proportional to ∇f everywhere. This implies that

q is a possibly singular reparametrization of the straight line from 0 to p. �

Corollary 1.2.9 (The Triangle Inequality). If p, q, r ∈ Rk, then |p− q| ≤
|p− r|+ |r − q| with equality holding only when the three points lie on a line.

Proof. Simply think of the right hand side as the length of the two line
segments from p to r and r to q. �

Proposition 1.2.10. The shortest distance from a point to a curve (if it exists)
is realized by a line segment that is perpendicular to the curve.

Proof. Let q : [a, b] → Rk be a curve and assume that there is a t0 ∈ (a, b)
such that

|q (t)− p| ≥ |q (t0)− p| for all t ∈ [a, b] .

This implies that
1

2
|q (t)− p|2 ≥ 1

2
|q (t0)− p|2 .

As the left hand side reaches a minimum at an interior point its derivative must
vanish at t0, i.e., (

q (t0)− p | d q

dt
(t0)

)
= 0.

As the vector q (t0)− p represents the segment from p to q (t0) we have shown that
it is perpendicular to the velocity of the curve. �

The next result is another interesting geometric consequence of the above the-
orem.
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Lemma 1.2.11. If q : [a, b] → Rk is a curve of length 2R, then it is contained
in a closed ball of radius R.

Proof. Consider the midpoint c = 1
2 (q (a) + q (b)) on the segment between

q (a) and q (b).

|q (t)− c| = 1

2
|q (t)− q (a) + q (t)− q (b)| ≤ 1

2
(|q (t)− q (a)|+ |q (t)− q (b)|) ≤ 1

2
2R = R.

�

With just a little more effort one can also find the shortest curves on spheres.

Theorem 1.2.12. The shortest curve between two points on a round sphere
S2 (R) =

{
q ∈ R3 | |q|2 = R2

}
is the shortest segment of the great circle through

the two points.

Proof. Great circles on spheres centered at the origin are given as the inter-
sections of the sphere with 2-dimensional planes through the origin. Note that if
two points are antipodal then there are infinitely many great circles passing through
them and all of the corresponding segments have length πR. If the two points are
not antipodal, then there is a unique great circle between them and the shortest
arc on this circle joining the points has length < πR.

Let us assume for simplicity that R = 1. The great circle that lies in the plane
span {q0, v0} where q0 ⊥ v0 and |q0| = |v0| = 1 can be parametrized as follows

q (t) = q0 cos t+ v0 sin t.

This curve passes through the point q0 ∈ S2 (1) at t = 0 and has velocity v0 at
that point. It also passes through the antipodal point − q0 at time t = π. Finally,
it is also parametrized by arclength.

To find the great circle that passes through two points q0, q1 ∈ S2 (1) that are
not antipodal we simply select the initial velocity v0 to be the vector in the plane
span {q0, q1} that is perpendicular to q0 and has length 1, i.e.,

v0 =
q1− (q1 | q0) q0

|q1− (q1 | q0) q0|

=
q1− (q1 | q0) q0√

1− (q1 | q0)
2
.

Then the great circle
q (t) = q0 cos t+ v0 sin t

passes through q1 when
t = arccos (q1 | q0) .

The velocity of this great circle at q1 is

v1 =
− q0 + (q0 | q1) q1

|− q0 + (q0 | q1) q1|

since it is the initial velocity of the great circle that starts at q1 and goes through
− q0.
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The goal now is to show that any curve q (t) : [0, L] → S2 (1) between q0 and
q1 has length ≥ arccos (q1 | q0). The proof of this follows the same pattern as the
proof for lines. We start by assuming that q (t) 6= q0, q1 when t ∈ (0, L) and define

v1 (t) =
− q0 + (q0 | q (t)) q (t)

|− q0 + (q0 | q (t)) q (t)|
.

Before the calculation note that since |q (t)|2 = 1 it follows that q ·d q
dt = 0. With

that in mind we obtain

L (q) =

∫ L

0

|v| dt

=

∫ L

0

|v1 (t)| |v| dt

≥
∫ L

0

∣∣∣∣(v1 (t) | d q

dt

)∣∣∣∣ dt
=

∫ L

0

∣∣∣∣( − q0 + (q0 | q (t)) q (t)

|− q0 + (q0 | q (t)) q (t)|
| d q

dt

)∣∣∣∣ dt
=

∫ L

0

∣∣∣∣∣∣
−
(

q0 |
d q
dt

)
√

1− (q0 | q (t))
2

∣∣∣∣∣∣ dt
=

∫ L

0

∣∣∣∣d arccos (q0 | q (t))

dt

∣∣∣∣ dt
≥

∣∣∣∣∣
∫ L

0

d arccos (q0 | q (t))

dt
dt

∣∣∣∣∣
= |arccos (q0 | q (L))− arccos (q0 | q (0))|
= |arccos (q0 | q1)− arccos (q0 | q0)|
= |arccos (q0 | q1)|
= arccos (q0 | q1)

This proves that the segment of the great circle always has the shortest length.
In case the original curve is parametrized by arclength and has minimal length

we can backtrack the argument and observe that this forces v = v1 or in other
words

d q

dt
=
− q0 + (q0 | q (t)) q (t)

|− q0 + (q0 | q (t)) q (t)|
.

This is a differential equation for the curve and we know that great circles solve
this equation as the right hand side is the velocity of the great circle at q (t). So
it follows from uniqueness of solutions to differential equations that any curve of
minimal length is part of a great circle. �

Remark 1.2.13. The spherical distance between two points q0, q1 on the unit
sphere is the angle: ∠ (q0, q1) = arccos (q0 | q1) ∈ [0, π] between the corresponding
unit vectors in Euclidean space. The previous theorem can now be restated to say
that the length of a curve on the unit sphere is always greater than the spherical
distance between its end points.
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Exercises
(1) Consider a curve q (t) : I → Rk and let s (t) be an antiderivative of the speed
|v|, i.e., the arclength parameter. It is not assumed that the curve is regular.
(a) Show that

|v (t0)| = lim
t→t0

|q (t)− q (t0)|
|t− t0|

.

(b) Show that

|v (t0)| = lim
t→t0

|s (t)− s (t0)|
|t− t0|

.

(c) Show that if |v (t0)| > 0, then q (t) 6= q (t0) for t near t0.
(d) Show that if |v (t0)| > 0, then

1 = lim
t→t0

|s (t)− s (t0)|
|q (t)− q (t0)|

.

(e) Assume that |q (t)| = 1 for all t. Show that if q (t) 6= q (t0), then

1 ≤ |s (t)− s (t0)|
arccos (q (t) | q (t0))

≤ |s (t)− s (t0)|
|q (t)− q (t0)|

.

(2) Compute the arclength parameter of y = x
3
2 .

(3) Compute the arclength parameter of the parabolas y =
√
x and y = x2.

(4) Redefine the concept of closed and simple curves using arclength parametriza-
tion.

(5) Compute the arclength parameter of q (t) = R (cosh t, sinh t, t).
(6) Compute the arclength of the logarithmic spiral

aebt (cos t, sin t) = aebter (t)

and explain why it is called logarithmic.
(7) Compute the arclength parameter of the spiral of Archimedes:

(a+ bt) (cos t, sin t) = (a+ bt) er (t) .

(8) Find the arclength parameter for the following twisted cubics

q (t) =
(
t, 3t2, 6t3

)
and q∗ (t) =

(
at, bt2, ct3

)
, when 3ac = ±2b2.

(9) Consider a curve in R2 whose velocity never vanishes and intersects radial lines
from the origin at a constant angle θ0. These are also called loxodromes or
logarithmic spirals.
(a) Show that the curves

q (t) = aebt (cos (t+ t0) , sin (t+ t0)) = r (t) er (t+ t0)

are loxodromes.
(b) Show that

q (t) = r (t) er (θ (t)) = rer

is a loxodrome when
ṙ = rθ̇ cot θ0.

(c) Show that when θ0 = 0, then the curve lies on a radial line.
(d) Show that if θ0 6= 0, then θ̇ 6= 0 and the curve can be reparametrized so

that θ̇ = 1. Conclude that it must be of the form

q (t) = aebt (cos (t+ t0) , sin (t+ t0)) = r (t) er (t+ t0) .
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(10) Loxodromes can also be thought of as solutions to a linear differential equation:
(a) Show that the curves that are solutions to the system[

ẋ
ẏ

]
=

[
α −β
β α

] [
x
y

]
,

where α, β ∈ R, are loxodromes.
(b) Show that the curves

q∗ (t∗) = Aeαt
∗

(cos (βt∗ +B) , sin (βt∗ +B))

are solutions to this system.
(c) Show that for suitable choices a, b, A,B, α, β the curves q (t), from the

previous exercise, and q∗ (t∗) are reparametrizations of each other.
(d) Show that any loxodrome can reparametrized be the curve q∗ for a suitable

choice of A,B, α, β.
(11) Let q : [a, b]→ Rk be a curve of length 2R. Show that it is either contained in

a ball of radius < R or is on the line passing through q (a) and q (b).
(12) Let q (t) : I → Rk be a closed piecewise smooth planar curve. Show that if

L (q) ≤ 4R, then q is contained in a ball of radius R. Hint: Cut the curve into
two pieces.

(13) Let q (s) : [a, b]→ S2 be a piecewise smooth curve.
(a) Show that if L = 2R ≤ π, then q is contained in a cap of spherical radius

R, i.e., there exists c ∈ S2 such that arccos (c | q (t)) ≤ R for all t. Hint:
The proof is similar to that of lemma 1.2.11 if we let c be the midpoint
on the shorter part of a great circle through q (a) and q (b) and use spher-
ical distances instead of Euclidean distances. Might need further hints on
spherical triangles.

(b) Show that if q is closed and L = 4R ≤ 2π, then q is contained in a cap of
spherical radius R.

(c) What goes wrong with the argument when R > π
2 ?

(14) (Spherical law of cosines) Consider three points qi, i = 1, 2, 3 on a unit sphere
centered at the origin. Join these points by great circle segments to obtain a
triangle. Let the side lengths be aij and the interior angle at qi be θi.
(a) Show that

cos aij =
(
qi | qj

)
and

cos θ1 =

q2− (q2 | q1) q1√
1− (q2 · q1)

2

 ·
q3− (q3 | q1) q1√

1− (q3 · q1)
2

 .

(b) Show that

cos a23 = cos a12 cos a13 + sin a12 sin a13 cos θ1.

(c) Show that on a sphere of radius R the law of cosines for a triangle with
sides aij and interior angle θR at q1 is given by

cos
a23

R
= cos

a12

R
cos

a13

R
+ sin

a12

R
sin

a13

R
cos θR.

Hint: If the triangle is radially projected to the unit sphere then its sides
are aij

R and the angles remain the same.
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(d) Show that if we fix aij , then θR → θ0 as R → ∞, where θ0 satisfies the
Euclidean law of cosines

a2
23 = a2

12 + a2
13 − 2a12a13 cos θ0.

One can in fact show that θR decreases and thus that θ1 > θ0.
(15) The astroid is given by the equation∣∣∣x

a

∣∣∣ 23 +
∣∣∣y
b

∣∣∣ 23 = 1.

(a) Draw a picture of this curve and show that the velocity of the curve must
vanish where it intersects the axes.

(b) Show that the coordinate axes are tangent to the curve at the points (±a, 0)
and (0,±b), i.e. each arc of the curve that lies in a quadrant can be given
a regular parametrization, where the curve is tangent to the axes at the
endpoints. The curve has cusps at these points.

(c) Show that when a = b the arclength of the arc in the first quadrant is 3
2a.

(d) Show that when a = b the line segment between the axes that is tangent
to the astroid has length a.

(e) Show that the entire curve has a smooth parametrization that is regular
except at the points where the curve intersects the axes. Hint: Write the
equation as (∣∣∣x

a

∣∣∣ 13)2

+

(∣∣∣y
b

∣∣∣ 13)2

= 1.

(16) Show that the parametrization of the folium of Descartes given by

(x, y) =
3Rt

1 + t3
(1, t)

is regular for t 6= −1.
(17) Show that it is not possible to parametrize the cissoid of Diocles

x
(
x2 + y2

)
= 2Ry2

so that it is regular at the origin.
(18) Consider the tractrix given by

x = ±
∫ R

y

√
R2 − t2
t

dt.

(a) Show that

x = ±

(
R log

R+
√
R2 − y2

y
−
√
R2 − y2

)

= ±
(
R cosh−1 R

y
−
√
R2 − y2

)
,

where cosh−1 : [R,∞)→ [0,∞) is the inverse function to cosh.
(b) Show that the segment of the tangent between the curve and the x-axis

always has length R.
(c) Show that the speed is R

y when we use y as the parameter.
(d) Show that it can be parametrized as

R

(
log cot

θ

2
− cos θ, sin θ

)
.
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(e) Show that it can also be parametrized as(
x−R

sinh x
R

cosh x
R

,
R

cosh x
R

)
.

(19) A cycloid is a planar curve that follows a point on a circle of radius R as it
rolls along a straight line without slipping.
(a) Show that

q (t) = tRe1 +Re2 −R (e2 cos t+ e1 sin t)

is a parametrization of a cycloid, when e1, e2 are orthonormal.
(b) Show that all cycloids can be parametrized to have the form

q (t) = tRe1 +Re2 −R (e2 cos t+ e1 sin t) + q0

where q (0) = q0.
(c) Show that any such cycloid stays on one side of the line q0 +tRe1 and has

zero velocity cusps when it hits this line.
(d) Show that a cycloid hits the line at points that are 2πR apart.

1.3. Curvature

We saw that arclength measures how far a curve is from being stationary. Our
preliminary concept of curvature is that it should measure how far a curve is from
being a line. For a planar curve the idea used to be to find a circle that best
approximates the curve at a point (just like a tangent line is the line that best
approximates the curve). The radius of this circle then gives a measure of how the
curve bends with larger radius implying less bending. Huygens did quite a lot to
clarify this idea for fairly general curves using purely geometric considerations (no
calculus) and applied it to the study of involutes and evolutes. Newton seems to
have been the first to take the reciprocal of this radius to create curvature as we
now define it. He also generated some of the formulas in both Cartesian and polar
coordinates that are still in use today.

To formalize the idea of how a curve deviates from being a line we define the
unit tangent vector of a regular curve q (t) : [a, b] → Rk as the direction T of the
velocity:

v = q̇ = |v|T =
ds

dt
T .

When the unit tangent vector T = v / |v| is stationary, then the curve is evidently
a straight line. So the degree to which the unit tangent is stationary is a measure
of how fast it changes and in turn how far the curve is from being a line. We let
θ be the arclength parameter for T. The relative change between the arclength
parameters for the unit tangent and the curve is by definition the curvature

κ =
dθ

ds
.

For a general parametrization we can use the chain rule to obtain the formula

κ =
dt

ds

dθ

dt
.

We shall see that the curvature is related to the part of the acceleration that is
orthogonal to the unit tangent vector. Note that κ ≥ 0 as θ increases with s.
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Proposition 1.3.1. A regular curve is part of a line if and only if its curvature
vanishes.

Proof. The unit tangent of a line is clearly stationary. Conversely if the
curvature vanishes, then the unit tangent is stationary. This means that when the
curve is parametrized by arclength, then it will be a straight line. �

Proposition 1.3.2. If F : Rk → Rk is of the form F (x) = Ox + c, where O
is an orthogonal transformation and c ∈ Rk and q a regular curve, then q∗ = F (q)
has unit tangent given by T∗ = OT and curvature κ∗ = κ.

Proof. As in proposition 1.2.5 we use that DF = O. The chain rule then
shows that

v∗ = O v, a∗ = O a .

This shows that

T∗ =
v∗

|v∗|
=

O v

|O v|
=
O v

|v|
= O

(
v

|v|

)
= O (T) .

We can now use proposition 1.2.5 again to see that q and q∗ have the same
arclength parameter. Similarly, T and T∗ have the same arclength parameter. Thus
κ = κ∗. �

Next we show how the curvature can be calculated for a general parametrization
using the velocity and acceleration.

Proposition 1.3.3. The curvature of a regular curve is given by

κ =
|v| |a− (a | T) T|

|v|3

=
area of parallelogram (v, a)

|v|3
.

Proof. We calculate

κ =
dθ

ds

=
dθ

dt

dt

ds

=

∣∣∣∣dT

dt

∣∣∣∣ |v|−1

=

∣∣∣∣ ddt v

|v|

∣∣∣∣ |v|−1

=

∣∣∣∣∣ a

|v|
− v (a | v)

|v|3

∣∣∣∣∣ 1

|v|

=
1

|v|2

∣∣∣∣∣a− (a | v) v

|v|2

∣∣∣∣∣
=

1

|v|2
|a− (a | T) T| .
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The area of the parallelogram spanned by v and a is given by the product of the
length of the base represented by v and the height represented by the component
of a that is normal to the base, i.e., a− (a ·T) T. Thus we obtain the formula

κ =
|v| |a− (a | T) T|

|v|3

=
area of parallelogram (v, a)

|v|3
.

�

Remark 1.3.4. For 3-dimensional curves the curvature can also be written as

κ =
|v× a|
|v|3

.

Further note that when the unit tangent vector is regular it too has a unit
tangent vector called the normal N to the curve. Specifically

dT

dθ
= N .

The unit normal is the unit tangent to the unit tangent. This vector is in fact
perpendicular to T as

0 =
d |T|2

dθ
= 2

(
T | dT

dθ

)
= 2 (T | N) .

This normal vector is also called the principal normal for q, when the curve is a
space curve, as there are also other vectors that are normal to the curve in that
case. The line through a point on a curve in the direction of the principal normal
is called the principal normal line.

In terms of the arclength parameter s for q we obtain

dT

ds
=
dθ

ds

dT

dθ
= κN

and

κ =

(
dT

ds
| N
)

= −
(

T | dN

ds

)
,

where the last equality follows from

0 =
d (T | N)

ds
=

(
dT

ds
| N
)

+

(
T | dN

ds

)
.

Proposition 1.3.5. For a regular curve we have

v = (v | T) T = |v|T,

a = (a | T) T + (a | N) N = (a | T) T +κ |v|2 N,

and

N =
a− (a | T) T

|a− (a | T) T|
.

Thus the unit normal is the direction of the part of the acceleration that is
perpendicular to the velocity.
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Proof. The first formula follows directly from the definition of the unit tan-
gent. For the second we note that

a =
d v

dt

=
d (|v|T)

dt

=

(
d |v|
dt

T + |v| dT

dt

)
=

(v | a)

|v|
T + |v| ds

dt

dθ

ds

dT

dθ

= (a | T) T + |v|2 κN .

This shows that a is a linear combination of T,N and establishes the formula. The
last formula follows by isolating N in the formula for a and using the formula for κ:

N =
a− (a | T) T

|v|2 κ
=

a− (a | T) T

|a− (a | T) T|
.

�

To get a more geometric feel for curvature we have the following result.

Proposition 1.3.6. Consider a regular curve q (t) : (a, b)→ Rn. If |q (t)| ≤ R
for all t and |q (t0)| = R, then κ (t0) ≥ 1

R .

Proof. Assume that the curve is unit speed. By assumption the function
φ (t) = |q (t)|2 has a maximum at t0 thus

0 =
dφ

dt
(t0) = 2 (q (t0) | q̇ (t0))

and

0 ≥ d2φ

dt2
(t0) = 2 (q (t0) | q̈ (t0)) + 2 |q̇ (t0)|2 .

Thus
1 = |q̇ (t0)|2 ≤ − q (t0) | q̈ (t0) ≤ |q (t0)| |q̈ (t0)| = R |q̈ (t0)| .

As the curve is unit speed we also have κ (t) = |q̈ (t0)| . This proves the claim. �

Definition 1.3.7. An involute of a curve q (t) is a curve q∗ (t) that lies on the
corresponding tangent lines to q (t) and intersects these tangent lines orthogonally.

We can always construct involutes to regular curves. First of all

q∗ (t) = q (t) + u (t) T (t)

as it is forced to lie on the tangent lines to q. Secondly, the velocity v∗ must be
parallel to N. Since

d q∗

dt
=
d q

dt
+
du

dt
T +uκ

ds

dt
N =

ds

dt
T +

du

dt
T +uκ

ds

dt
N

this forces us to select u so that
du

dt
= −ds

dt
.

Thus
q∗ (t) = q (t)− s (t) T (t) ,
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where s is any arclength parametrization of q. Note that s is only determined up
to a constant so we always get infinitely many involutes to a given curve.

Example 1.3.8. If we strip a length of masking tape glued to a curve keeping
it taut while doing so, then the end of the tape will trace an involute.

Assume that the original curve is a unit speed curve q (s). The process of
stripping the tape from the curve forces the endpoint of the tape to have an equation
of the form

q∗ (s) = q (s) + u (s) T (s)

since for each value of s the tape has two parts, the first being the curve up to q (s)
and the second the line segment from q (s) to q (s) + u (s) T (s). The length of this
is up to a constant given by

s+ u (s) .

As the piece of tape doesn’t change length this is constant. This shows that u = c−s
for some constant c and thus that the curve is an involute.

Example 1.3.9. Huygens designed pendulums using involutes. His idea was to
take two planar convex curves that are mirror images of each other in the y-axis and
are tangent to the y-axis with the unit tangent at this cusp pointing downwards.
Suspend a string from this cusp point of length L with a metal disc attached at the
bottom end to keep the string taut. Now displace the metal disc horizontally and
release it. Gravity will then force the disc to swing back and forth. The trajectory
will depend on the shape of the chosen convex curve and will be an involute of that
curve.

Huygens was interested in creating a pendulum with the property that its
period does not depend on the amplitude of the swing. Thus the period will remain
constant even though the pendulum slows down with time. A curve with this
property is called tautochronic and Huygens showed that it has to be a cycloid that
looks like

R (sin t, cos t) +R (t, 0) .

The involute is also a cycloid (see also exercises below).

Example 1.3.10. Consider the unit circle q (s) = (cos s, sin s). This parametriza-
tion is by arclength so we obtain the involutes

q∗ (s) = (cos s, sin s) + (c− s) (− sin s, cos s) .

In polar coordinates we have

r (s) = |q∗ (s)| =
√

1 + (c− s)2
.

When c = 0 we see that r increases with s and that the involute looks like a spiral.

Definition 1.3.11. An evolute of a curve q (t) is a curve q∗ (t) such that the
tangent lines to q∗ are orthogonal to q at corresponding values of t. Thus q∗ (t) lies
on the normal line to q that goes through q (t) and has velocity that is tangent to
this normal line.

Remark 1.3.12. Note that if q∗ is an involute to q, then conversely q is an
evolute to q∗. It is however quite complicated to construct evolutes in general, but,
as we shall see, there are formulas for both planar and space curves.
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Evolutes must look like

q∗ (t) = q (t) + V (t) ,

where V | T = 0 and also have the property that

0 =

(
T | d q∗

dt

)
=

(
T | d q

dt
+
dV

dt

)
,

which is equivalent to (
T | dV

dt

)
= −ds

dt
.

Exercises
(1) Show that a regular curve is part of a line if all its tangent lines pass through

a fixed point c. Hint: Show that T = ± q−c
|q−c| , differentiate this equation, and

show that κ = 0.
(2) Consider a regular curve q (t) with arclength parameter s. Show that if T is

regular at t0, then

1 = lim
t→t0

|θ (t)− θ (t0)|
arccos (T (t) | T (t0))

and

κ (t0) = lim
t→t0

arccos (T (t) | T (t0))

|s (t)− s (t0)|
.

Hint: Use exercise 1 from section 1.2.
(3) Show that for vectors v, w ∈ Rn we have

area of parallelogram (v, w) =

√
|v|2 |w|2 − (v | w)

2

= |v| |w| sin] (v, w) .

(4) Show that the curvature of a planar circle of radius R is 1
R by parametrizing

this curve in the following way q (t) = R (cos t, sin t) + c.
(5) Find the curvature for the twisted cubic

q (t) =
(
t, t2, t3

)
.

(6) Let q (t) be a regular curve with positive curvature. Define two vector fields
whose integral curves are involutes to q.

(7) Calculate the speed and curvature of the scaled curve R q (t), R 6= 0, in terms
of the speed and curvature of q (t).

(8) Given c ≥ 0 find a regular curve q (t) : (a, b) → Rn with |q (t)| ≥ R for all t,
|q (t0)| = R, and κ (t0) = c.

(9) If a curve in R2 is given as a graph y = f (x) show that the curvature is given
by

κ =
|f ′′|(

1 + (f ′)
2
) 3

2

.

(10) Let q (t) = r (t) (cos t, sin t) = rer. Show that the speed is given by(
ds

dt

)2

= ṙ2 + r2
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and the curvature

κ2 =

(
2ṙ2 + r2 − rr̈

)2
(ṙ2 + r2)

3 .

(11) Let q (t) : I → R3 be a regular curve with speed ds
dt =

∣∣∣d q
dt

∣∣∣ , where s is the
arclength parameter. Prove that

κ =

√
d2 q
dt2 |

d2 q
dt2 −

(
d2s
dt2

)2(
ds
dt

)2 .

(12) Compute the curvature of the logarithmic spiral

aebt (cos t, sin t) = r (t) ert.

(13) Compute the curvature of the spiral of Archimedes:

(a+ bt) (cos t, sin t) = r (t) er (t) .

(14) Consider the tractrix from section 1.2 exercise 18.
(a) Show that the curvature is κ = 1

R
y√

R2−y2
= 1

R tan θ.

(b) Show that the tractrix is the involute of y = R cosh x
R with c = 0.

(15) (Huygens, 1673) Consider the cycloid

q (t) = R (t+ sin t, 1 + cos t)

(see also section 1.2 exercise 19 and note that this cycloid comes with a different
parametrization and initial position).
(a) Show that the speed satisfies∣∣∣∣d q

dt

∣∣∣∣2 = 2R2 (1 + cos t) = 2R2 sin2 t

1− cos t
.

(b) Show that the arclength parameter s with initial value s (0) = 0 satisfies

s2 = 8R2 (1− cos t) .

(c) Show that the curvature satisfies

κ2 =
1

8R2 (1 + cos t)
.

(d) Show that for a general cycloid

q (t) = tRe1 +Re2 −R (e2 cos t+ e1 sin t) + q0

it is always possible to find a ∈ R such that

(s− a)
2

+
1

κ2
= 16R2.

(e) Show a = 4R for the cycloid

q (t) = R (t− sin t, 1− cos t)

if we assume that s (0) = 0.
(16) Show that the involute to a straight line is a point.
(17) Show that a planar circle has its center as an evolute.
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(18) The circular helix is given by

q (t) = R (cos t, sin t, 0) + h (0, 0, t) = Rer + he3,

where we use er = (cos t, sin t, 0) and e3 = (0, 0, 1). Reparametrize this curve
to be unit speed and show that its involutes lie in planes given by z = c for
some constant c.

(19) Let q (s) be a planar unit speed curve with positive curvature. Show that the
curvature of the involute

q∗ (s) = q (s) + (L− s) T (s)

satisfies
κ∗ =

1

|L− s|
and compute the evolute of q∗.

(20) For a regular curve q (t) : I → Rn we say that a field X is parallel along q if
X | T = 0 and dX

dt is parallel to T, i.e.,

dX

dt
=

(
dX

dt
| T
)

T = −
(
dT

dt
| X
)

T .

(a) Show that for a fixed t0 and X (t0) ⊥ T (s0) there is a unique parallel field
X that has the value X (t0) at t0.

(b) Show that if X1 and X2 are both parallel along q, then X1 | X2 is constant.
(c) A Bishop frame consists of an orthonormal frame T,N1,N2, ...,Nn−1 along

the curve so that all Ni are parallel along q. For such a frame show that
d

dt

[
T N1 N2 · · · Nn−1

]

=
ds

dt

[
T N1 N2 · · · Nn−1

]


0 κ1 κ2 · · · κn−1

−κ1 0 0 · · · 0
−κ2 0 0 · · · 0
...

...
...

. . .
...

−κn−1 0 0 · · · 0

 .
Note that such frames always exist, even when the curve doesn’t have
positive curvature everywhere.

(d) Show further for such a frame that

κ2 = κ2
1 + κ2

2 + · · ·+ κ2
n−1.

The collection (κ1, κ2, ..., κn−1) can in turn be thought of as a curve going
into Rn−1 and be investigated for higher order behavior of q. When κ > 0
one generally divides this curve by κ and considers the spherical curve into
Sn−2.

(e) Give an example of a closed space curve where the parallel fields don’t close
up.

1.4. Integral Curves

In this section we try to understand the curvature of curves that are solutions
to differential equations. As it is rarely possible to find explicit formulas for such
solutions the goal is to use the fact that we know they exist and calculate their
curvatures using only the data that the differential equation gives us. Recall that
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curves that are solutions to equations can also be considered as solutions to differ-
ential equations. We also explain how Kepler’s laws imply Newton’s gravitational
law. This involves an interesting blend of geometry and calculus that is relevant
for other concepts that will be developed throughout the notes.

We start by considering a solution to a first order equation

v =
d q

dt
= F (q (t)) .

The first observation is that the speed is given by

|v| =
∣∣∣∣d q

dt

∣∣∣∣ = |F (q (t))| .

The acceleration is computed using the chain rule

a =
d v

dt
=
dF (q (t))

dt
= DF

(
d q

dt

)
= DF (F (q (t))) .

The curvature is then given by

κ2 (t) =
|v|2 |a|2 − (v | a)

2

|v|6

=
|F (q (t))|2 |DF (F (q (t)))|2 − (F (q (t)) | DF (F (q (t))))

2

|F (q (t))|6
.

So if we wish to calculate the curvature for a solution that passes through a fixed
point q0 at time t = t0, then we have

κ2 (t0) =
|F (q0)|2 |DF (F (q0))|2 − (F (q0) | DF (F (q0)))

2

|F (q0)|6
.

This is a formula that does not require us to solve the equation.
For a second order equation

a =
d2 q

dt2
= G

(
q (t) ,

d q

dt

)
= G (q (t) , v (t))

there isn’t much to compute as we now have to be given both position q0 and
velocity v0 at time t0. The curvature is given by

κ2 (t) =
|v|2 |a|2 − (v | a)

2

|v|6

=
|v0|2 |G (q0, v0)|2 − (v0 | G (q0, v0))

2

|v0|6
.

However, note that we can also calculate the change in speed by observing that

d |v|2

dt
= 2 (v | a) = 2 (v | G (q, v)) .

A few examples will hopefully clarify this a little better.

Example 1.4.1. First an example where we know that the solutions are circles.

F (x, y) = (−y, x)
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and

DF (F (x, y)) =

[
∂(−y)
∂x

∂(−y)
∂y

∂(x)
∂x

∂(x)
∂y

] [
−y
x

]
=

[
0 −1
1 0

] [
−y
x

]
=

[
−x
−y

]
.

So at q0 = (x0, y0) we have

κ2 =

(
x2

0 + y2
0

)2 − (x0y0 − x0y0)
2

(x2
0 + y2

0)
3 =

1

|q0|2
,

which agrees with our knowledge that the curvature is the reciprocal of the radius.

Example 1.4.2. Next we look at the second order equation

a = −g q

|q|3
, g > 0.

The curvature is

κ2 =
|v|2

∣∣∣−g q
|q|3

∣∣∣2 − (−g q
|q|3 | v

)2

|v|6

= g2 |q|
2 |v|2 − (q | v)

2

|q|6 |v|6
.

Yielding

κ = g
area of parallelogram (q, v)

|q|3 |v|3
.

So the curvature vanishes when the velocity is radial (proportional to position), this
conforms with the fact that radial lines are solutions to this equation. Otherwise all
other solutions must have nowhere vanishing curvature. In general the numerator
is constant along solutions as

d

dt

(
|q|2 |v|2 − (q | v)

2
)

= 2 (q | v) |v|2 + 2 |q|2 (v | a)

−2 (q | v)
(
|v|2 + (q | a)

)
= 2 (q | v) |v|2 − 2g

1

|q|
(v | q)

−2 (q | v)

(
|v|2 − g 1

|q|

)
= 0.

This is better known as Kepler’s second law. The triangle with constant area in
Kepler’s second law has q and v as sides. Thus its area is half the area of the
parallelogram we just calculated to be constant.
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Below we show how Kepler’s laws imply Newton’s gravitational law. This
is exactly what Newton did in Principia. He also asserted that one had unique
solutions to the initial value problems

a = −g q

|q|3
, q (0) = q0, v (0) = v0,

and then concluded that the solutions have to be conic sections as asserted by
Kepler’s laws. This will be discussed in exercises to this section. We consider the
following mathematical version of Kepler’s laws. Concretely, one might think of
the orbits being the planetary orbits around the sun or the moons around a planet
such as Jupiter.

(1) All orbits are conic sections with the origin as a focal point.
(2) A given orbit sweeps out equal areas in equal time, i.e., A2 = |q|2 |v|2 −

(q | v)
2 is constant.

(3) The ratio a3

T 2 is the same for all elliptical orbits, where a is the major axis
and T is the period of the orbit.

To prove Newton’s law it is convenient to parametrize the Cartesian coordinates
using polar coordinates q (r, θ) = (r cos θ, r sin θ). We will use new notation but the
calculations are very similar to what would happen if we used er, ea. Write

q (t) =

[
r cos θ
r sin θ

]
= r

[
cos θ
sin θ

]
= rer = |q| q

|q|
.

By the chain rule the velocity becomes:

v = q̇ = ṙer + θ̇rea.

The acceleration has the formula:

a = q̈

= v̇

= r̈er + ṙθ̇ea + θ̈rea + θ̇ṙea − rθ̇2er

=
(
r̈ − rθ̇2

)
er +

(
rθ̈ + 2ṙθ̇

)
ea.

We start by proving two results that only depend on the properties of one orbit.

Proposition 1.4.3 (Newton). If an orbit satisfies the second law, then the
acceleration is always radial, i.e., rθ̈ + 2ṙθ̇ = 0 for all orbits.

Proof. We start by observing that

d
(
r2θ̇
)

dt
= r2θ̈ + 2rṙθ̇.

Next we note that the square of the area of the parallelogram spanned by the
position and velocity is

|q|2 |v|2 − (q | v)
2

= r2θ̇2

∣∣∣∣∂ q

∂θ

∣∣∣∣2 = r4θ̇2.

Thus the second law implies that r2θ̇ is constant, which in turn implies that the
acceleration is radial. �
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Having shown that the acceleration is radial we can now show that it must
satisfy the inverse square law if it travels along a conic section.

Lemma 1.4.4 (Newton). If an orbit satisfies the first and second law, then the
acceleration satisfies an inverse square law:

a = −g q

|q|3

for some gravitational constant g.

Proof. We can rotate the polar coordinates so that the equation for the orbit
is given by the equation

r (1− e cos θ) = p,

where e ≥ 0 and p > 0 (see example 1.1.10). We let A = r2θ̇ which we know is a
constant along the orbit. Differentiating the equation for the orbit yields:

0 = ṙ (1− e cos θ) + rθ̇e sin θ =
1

r
ṙp+

1

r
Ae sin θ.

Thus ṙp = −Ae sin θ, and we can differentiate to obtain

r̈p = −Aθ̇e cos θ = −A
2

r2
(e cos θ) =

A2

r2

(p
r
− 1
)
.

The radial part of the acceleration is then given by

r̈ − rθ̇2 =
A2

r2

(
1

r
− 1

p

)
− A2

r3
= −A

2

p

1

r2
.

This establishes the inverse square law with gravitational constant g = A2

p . �

Finally we must show that the gravitational constants g = A2

p are the same for
all orbits.

Proposition 1.4.5 (Newton). The gravitational constant for an elliptical orbit
satisfies

g =
A2

p
= 4π2 a

3

T 2
.

Proof. Recall from example 1.1.10 that we can write the equation of the
ellipse in suitable Cartesian coordinates as(

x− ep
1−e2

)2

(
p

1−e2

)2 +
y2

p2

1−e2
=

(x− ea)
2

a2
+
y2

pa
= 1.

If T is the period of the ellipse, then we have the formula for the area of the ellipse:

πa
√
pa = πab =

1

2

∫ 2π

0

r2dθ =
1

2

∫ T

0

Adt =
1

2
AT.

Consequently,
A2

p
=

4π2a2pa

pT 2
= 4π2 a

3

T 2
.

�
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Remark 1.4.6. There are similar formulas for parabolas and hyperbolas even
though they don’t have a period. Instead we can calculate the area of the region
bounded by the curve and the y-axis and relate this to the time T it takes to travel
this part of the orbit. However, it is clearly more reasonable to assume that g = A2

p

is the same for all orbits. This can be tested on an orbit when only a small part
of it is known. We already understand how to find A. To find p note that a conic
section with a focus at the origin is completely determined by 3 points on the curve.

Theorem 1.4.7 (Newton). If all orbits are conic sections with A being constant
along the orbit and A2

p being the same for all orbits, then the orbits satisfy

a = −g q

|q|3

for a gravitational constant g that does not depend on the orbits.

Remark 1.4.8. Newton took this a little further and showed that g = GM ,
where M is the mass of the central body (e.g., sun or Jupiter) and G is a universal
gravitational constant that is the same for all bodies.

Exercises
(1) Assume a planar curve is given as a level set F (x, y) = c, where ∇F 6= 0

everywhere along the curve. We orient and parametrize the curve so that
v =

(
−∂F∂y ,

∂F
∂x

)
. Use the chain rule to show that the acceleration is

a =

[
− ∂2F
∂x∂y −∂

2F
∂y2

∂2F
∂x2

∂2F
∂y∂x

] [
−∂F∂y
∂F
∂x

]
=

[
∂ v

∂ (x, y)

]
[v] .

(2) Consider the equation

a = −g q

|q|3
.

(a) Show that each solution lies in a plane. Hint: If n is a fixed vector, then

d (n | q)

dt
= α (t) (n | v) ,

d (n | v)

dt
= β (t) (n | q)

and use this to conclude that if n is perpendicular to q (t0) , v (t0), then n
is perpendicular to q (t) , v (t) for all t.

(b) Show that the total energy

E =
1

2
|v|2 − g 1

|q|
is constant along solutions.

(c) Show that the tangent line to a solution can be determined by the constants

A = |q| |v| sin (∠ (q, v)) ,

E =
1

2
|v|2 − g 1

|q|
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and a point on the solution. Here ∠ (q, v) ∈ [−π, π] and is positive when
v is to the left of q in a fixed orientation of the plane that contains the
solution.

(3) Consider an equation
a = f (|q|) q

coming from a radial force field.
(a) Show that

A2 = |q|2 |v|2 − (q | v)
2

is constant along solutions.
(b) Show that each solution lies in a plane.

(4) Define the positive perpendicular to a planar vector as

X̂ =

[̂
a
b

]
=

[
−b
a

]
.

(a) Show that

det
[
X X̂

]
= |X|2 ,

|X| =
∣∣∣X̂∣∣∣ ,

ˆ̂
X = −X,

̂αX + βY = αX̂ + βŶ .

(b) Show that when X = X (t), then

d̂X

dt
=
dX̂

dt
.

(5) Consider planar curves in R2 that satisfy the equation

a = −g q

|q|3
.

The goal is to give a direct proof that solutions are conic sections.
(a) Show that

det
[

q v
]

= − (q | v̂)

and
A2 = |q|2 |v|2 − (q | v)

2
= (q | v̂)

2
.

The quantity A = − (q | v̂) is called the signed area of the parallelogram
spanned by q, v.

(b) Show that the signed area A = − (q | v̂) is constant in time (see also exam-
ple 1.4.2). Note that this property only uses that the acceleration is radial
a = f (|q|) q.

(c) Use A2 = |q|2 |v|2 − (q | v)
2 6= 0 to show that if q | x = 0 and v | x = 0,

then x = 0. Hint: Write x = α q +β v and take dot products with the two
vectors q, v.

(d) For q 6= 0 define the vector

k =
A

g
v̂ +

q

|q|

and show that A2

g = |q| − (q | k).
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(e) Show that k is constant and conclude that the orbit is a conic section as
in example 1.1.10. Hint: Show that

q | d k

dt
= 0, v | d k

dt
= 0.

(6) Consider a curve with the property that q (t) and q̇ (t) are linearly independent
for all t. Show that for any constant A2 > 0, there is a reparametrization q (s)
such that

|q|2
∣∣∣∣d q

ds

∣∣∣∣2 − (q | d q

ds

)2

= A2

for all s.
(7) Fix g > 0. In this exercise you’ll see how Newton indicated that the solutions

to the inverse square law are conic sections. He was criticized for not solving
the equations directly.
(a) Show that any conic section that is an ellipse, parabola, or hyperbola with

focus at the origin can be parametrized so that |q|2
∣∣∣d q
ds

∣∣∣2−(q | d q
ds

)2

= pg.
(b) Show that any conic section can be parametrized so that it solves

a = −g q

|q|3
.

(c) Show that for each set of initial values q (0) and v (0), there is a conic
section with these initial values that solves

a = −g q

|q|3
.



CHAPTER 2

Planar Curves

2.1. The Fundamental Equations

Our approach to planar curves follows very closely the concepts that we shall
use for space curves. This is certainly not the way the subject developed historically,
but it has shown itself to be a very useful and general strategy.

For a planar regular curve q (t) : [a, b]→ R2 we have as for general curves

d q

dt
= |v| v

|v|
=
ds

dt
T .

Instead of the choice of normal that depended on the acceleration (see section 1.3)
we select an oriented normal N± such that T and N± are positively oriented, i.e.,
if T = (a, b), then N± = (−b, a). This orientation is set up so that N± points to
the left when facing in the direction of T. Note that N± can be either N or −N.

Definition 2.1.1. The signed curvature is defined by

κ± =

(
N± |

dT

ds

)
.

Proposition 2.1.2. If F : R2 → R2 is of the form F (x) = Ox + c, where O is
an orthogonal transformation, c ∈ R2, and q a regular curve, then q∗ = F (q) has
unit tangent given by T∗ = OT, signed normal N∗± = (detO)ON± and curvature
κ∗± = (detO)κ±.

Proof. We saw in proposition 1.3.2 that T∗ = OT. When detO = 1, then
O preserves the orientation of being on the lefthand side, so N∗± = ON±. While if
detO = −1, then N∗± = −ON± as this transformation reverses left and right. We
can now also calculate the curvature:

κ∗± = (detO)

(
ON | dOT

ds

)
= (detO)

(
N | dT

ds

)
= (detO)κ.

�

Proposition 2.1.3. The signed curvature can be calculated using the formula

κ± =
signed area of parallelogram (v, a)

|v|3
=

det
[

v a
]

|v|3
.

38
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Theorem 2.1.4. (Euler, 1736) The fundamental equations that govern planar
curves are

d q

dt
=

ds

dt
T,

dT

dt
= κ±

ds

dt
N±,

dN±
dt

= −κ±
ds

dt
T = −κ±

d q

dt
.

Moreover, given an initial position q (0) and unit direction T (0) the curve q (t) is
uniquely determined by its speed and signed curvature.

Proof. The first two equations follow from our definitions. The last equation
comes from observing that

dN±
dt

=

(
dN±
dt
| T
)

T +

(
dN±
dt
| N±

)
N±

where (
dN±
dt
| T
)

=
1

2

d

dt
|T|2 = 0

as |T| = 1 and

0 =
d

dt
(N | T) =

(
dN±
dt
| T
)

+

(
N± |

dT

dt

)
=

(
dN±
dt
| T
)

+ κ±
ds

dt
.

For fixed speed and signed curvature functions these equations form a differential
equation that has a unique solution given the initial values q (0), T (0) and N± (0).
The normal vector is determined by the unit tangent so we have all of that data. �

Geometrically we say that the planar curve q (t) is determined by the planar
curve

(
ds
dt , κ±

)
. If it is possible to find the arc-length parametrization, then the

data (s (t) , κ± (t)) can equally well be used to describe the geometry of a planar
curve. A more explicit relationship between a curve and its curvature can be found
in exercise 9 in this section.

We offer a combined characterization of lines and circles as the curves that are
horizontal lines in (s, κ±) coordinates, i.e., they have constant curvature.

Theorem 2.1.5. A planar curve is part of a line if and only if its signed
curvature vanishes. A planar curve is part of a circle if and only if its signed
curvature is non-zero and constant.

Proof. If the curvature vanishes, then we already know that it has to be a
straight line.

If the curve is a circle of radius R with center c, then

|q (s)− c|2 = R2.

Differentiating this yields
(T | q (s)− c) = 0.

Thus the unit tangent is perpendicular to the radius vector q (s)−c. Differentiating
again yields

κ± (N± | q (s)− c) + 1 = 0.
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However, the normal and radius vectors must be parallel so their inner product is
±R. This shows that the curvature is constant. We also obtain the equation

q = c− 1

κ±
N± .

This indicates that, if a curve has constant curvature, then we should attempt
to show that

c = q +
1

κ±
N±

is constant. Since κ± is constant the derivative of this curve is
d c

ds
= T +

1

κ±
(−κ± T) = 0.

So c is constant and

|q (s)− c|2 =

∣∣∣∣ 1

κ±
N±

∣∣∣∣2 =
1

κ2
±
.

thus showing that q is a circle of radius 1
|κ±| centered at c. �

Proposition 2.1.6. The evolute of a regular planar curve q (t) with non-zero
curvature is given by

q∗ = q +
1

κ±
N± = q +

1

κ
N .

Proof. This follows from remark 1.3.12 and

d q∗

dt
=
d q

dt
+

1

κ±

(
−κ±

d q

dt

)
+
d

dt

(
1

κ±

)
N± =

d

dt

(
1

κ±

)
N± .

�

Exercises
(1) Compute the signed curvature of q (t) =

(
t, t3

)
and show that it vanishes at

t = 0, is negative for t < 0, and positive for t > 0.
(2) Let q (s) = (x (s) , y (s)) : [0, L]→ R2 be a unit speed planar curve with signed

curvature κ± (s) and q∗ (s) = x (s) f1 + y (s) f2 + x another planar curve where
f1, f2 is a positively oriented orthonormal basis and x a point.
(a) Show that q∗ is a unit speed curve with curvature κ∗± (s) = κ± (s).
(b) Show that a planar unit speed curve with the same curvature as q is of the

form q∗.
(3) Compute the signed curvature of the logarithmic spiral

aebt (cos t, sin t) = aebter (t) .

(4) Compute the signed curvature of the spiral of Archimedes:

(a+ bt) (cos t, sin t) = (a+ bt) er (t) .

(5) Show that if a planar unit speed curve q (s) satisfies:

κ± (s) =
1

es+ f

for constants e, f > 0, then it is a logarithmic spiral.
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(6) Show that a planar curve is part of a circle if all its normal lines pass through
a fixed point.

(7) Show that κ± dsdt = det
[

T dT
dt

]
.

(8) Show that

q (t) =

(∫ t

0

cos

(
u2

2

)
du,

∫ t

0

sin

(
u2

2

)
du

)
=

∫ t

0

er

(
u2

2

)
du, t ∈ R

is parametrized by arclength and that κ± (t) = t.
(9) Show that

q (s) =

(∫ s

s0

cos (φ (u)) du,

∫ s

s0

sin (φ (u)) du

)
=

∫ s

s0

er (φ (u)) du,

is a unit speed curve with κ± = dφ
ds .

(10) Let q (t) = r (t) (cos t, sin t) = r (t) er (t). Show that the speed satisfies(
ds

dt

)2

= ṙ2 + r2

and the curvature

κ± =
2ṙ2 + r2 − rr̈

(ṙ2 + r2)
3
2

.

Parametrize the curve
(
1− x2

)
x2 = y2 in this way and compute its curvature.

Note that such a parametrization won’t be valid for all t.
(11) For a planar unit speed curve q (s) consider the parallel curve

qε = q +εN±

for some fixed ε.
(a) Show that this curve is regular as long as εκ± 6= 1.
(b) Show that the curvature is

κ±
|1− εκ±|

.

(12) If a curve in R2 is given as a graph y = f (x) show that the curvature is given
by

κ± =
f ′′(

1 + (f ′)
2
) 3

2

.

(13) Assume a planar curve is given as a level set F (x, y) = c where ∇F 6= 0
everywhere along the curve. We orient and parametrize the curve so that
v =

(
−∂F∂y ,

∂F
∂x

)
.

(a) Show that the signed normal is given by

N± = − ∇F
|∇F |

.

(b) Use the chain rule to show that the acceleration is

a =

[
− ∂2F
∂x∂y −∂

2F
∂y2

∂2F
∂x2

∂2F
∂y∂x

] [
−∂F∂y
∂F
∂x

]
=

[
∂ v

∂ (x, y)

]
[v] .
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(c) Show that

κ± =
1

|∇F |3
[
−∂F∂x −∂F∂y

] [ − ∂2F
∂x∂y −∂

2F
∂y2

∂2F
∂x2

∂2F
∂y∂x

] [
−∂F∂y
∂F
∂x

]

=
1

|∇F |3
[
−∂F∂y

∂F
∂x

] [ ∂2F
∂x2

∂2F
∂x∂y

∂2F
∂x∂y

∂2F
∂y2

] [
−∂F∂y
∂F
∂x

]

= − 1

|∇F |3
det


∂2F
∂x2

∂2F
∂y∂x

∂F
∂x

∂2F
∂x∂y

∂2F
∂y2

∂F
∂y

∂F
∂x

∂F
∂y 0

 .
(14) (Jerrard, 1961) With notation as in the previous exercise show that

κ± = div
∇F
|∇F |

.

(15) Compute the curvature of
(
1− x2

)
x2 = y2 at the points where the above

formula works. What can you say about the curvature at the origin where the
curve intersects itself.

(16) Consider a unit speed curve q. Show that if κ± (t0) = 0 and κ′± (t0) 6= 0, then
the curve crosses the tangent line at t0, i.e., the curve has an inflection point.
Hint: Calculate the first three derivatives of f (s) = (q (s) | N± (t0)).

(17) Consider a unit speed curve q. Show that if κ± (t0) 6= 0 and κ′± (t0) 6= 0, then
the curve crosses the osculating circle, i.e., the circle that at t0 has the same
unit tangent and signed curvature. Thus the curve is on the inside on one side
and the outside on the other. Hint: Calculate the first three derivatives of
f (s) = |q (s)− c|2, where c is the center of the circle.

(18) Compute the curvature of the cissoid of Diocles x
(
x2 + y2

)
= 2Ry2.

(19) Compute the curvature of the conchoid of Nicomedes
(
x2 + y2

)
(y − b)2−R2y2 =

0.
(20) Consider a unit speed curve q (s) with non-vanishing curvature and use the

notation df
ds = f ′. Show that q satisfies the third order equation

q′′′−
κ′±
κ±

q′′+κ2
± q′ = 0.

(21) Show that the curvature of the evolute q∗ of a unit speed curve q (s) satisfies

1

κ∗±
=

1

2

d

ds

(
1

κ2
±

)
.

(22) (Huygens, 1673) Consider the cycloid

q (t) = R (t+ sin t, 1 + cos t) = R (t, 1) +Rer.

It traces a point on a circle of radius R that rolls along the x-axis. Any curve
that is constructed by tracing a point on a circle rolling along a line is called a
cycloid (see also section 1.3 exercise 15).
(a) Show that the signed curvature is given by

κ± =
−1

2R
√

2 (1 + cos t)
.

(b) Show that the evolute is also a cycloid.
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(c) Show that any curve that satisfies

(s− a)
2

+
1

κ2
= 16R2

for a constant a ∈ R is a cycloid. In other words cycloids are circles centered
on the first axis in

(
s, 1
κ±

)
coordinates.

(d) Show that any cycloid is the involute of a cycloid.
(23) (Newton, 1671 and Huygens, 1673) Consider a regular planar curve q (t) with

κ± (t0) 6= 0. Let l (t) denote the normal line to q at q (t).
(a) Show that l (t) and l (t0) are not parallel for t near t0.
(b) Let x (t) denote the intersection of l (t) and l (t0). Show that limt→t0 x (t)

exists and denote this limit c (t0).
(c) Show that

(c (t0)− q (t0) | N (t0)) =
1

κ± (t0)
.

Note that the left hand side is the signed distance from c (t0) to q (t0)

along the normal through q (t0). The circle of radius
∣∣∣ 1
κ±(t0)

∣∣∣ centered at
c (t0) is the circle that best approximates the curve at q (t0), it is called the
osculating circle.

(d) Show that the curve c (t) is the evolute of q (t).
(24) Find the evolute of y = x2 and show that when x = 0 it is tangent to y-axis.
(25) Find the evolute of y = x3 and show that it is asymptotic to the y-axis as

x→ 0±.
(26) Show that the evolute of y2 = 2px is 27py2 = 8 (x− p)3.
(27) Show that evolute of the astroid (see also section 1.2 exercise 15) |x|

2
3 +|y|

2
3 = 1

is the astroid |x+ y|
2
3 + |x− y|

2
3 = 2.

(28) Show that the evolute of the ellipse (a cos t, b sin t) is the astroid
(
a2−b2
a cos3 t, b

2−a2
b sin3 t

)
.

(29) (Newton, 1671, but the idea is much older for specific curves. Kepler considered
it well-known.) Consider a regular planar curve q (t). For 3 “consecutive” values
t−ε < t < t+ε let c (t, ε) denote the center of the unique circle that goes through
the three points q (t− ε) , q (t) , q (t+ ε) with c (t, ε) = ∞ if the points lie on
a line.
(a) Show that c (t, ε) is the point of intersection between the two normal lines

to the segments between q (t) and q (t± ε) that pass through the midpoint
of these segments.

(b) Show that q (t− ε) , q (t) , q (t+ ε) do not lie on a line for small ε if κ± (t) 6=
0.

(c) Show that c (t, ε) lies on the normal line through some point q (t0) where
t0 ∈ (t− ε, t+ ε). Hint: Show that there is a point q (t0) on the curve
closest to c (t, ε) for some t0 ∈ (t− ε, t+ ε) and use that as the desired
point.

(d) Show that

lim
ε→0

(c (t, ε)− q (t)) = lim
ε→0

(c (t, ε)− q (t0)) =
1

κ± (t)
N± (t) .

(30) (Normal curves) Consider a family of lines in the (x, y)-plane parametrized by
t:

F (x, y, t) = a (t)x+ b (t) y + c (t) = 0.
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A normal curve or envelope to this family is a curve (x (t) , y (t)) such that its
tangent lines are precisely the lines of this family.
(a) Show that such a curve exists and can be determined by the equations:

F = a (t)x+ b (t) y + c (t) = 0,

∂F

∂t
= ȧ (t)x+ ḃ (t) y + ċ (t) = 0,

when the Wronskian

det

[
a b

ȧ ḃ

]
6= 0.

(b) Show that for fixed x0, y0 the number of solutions or roots to the equation
F (x0, y0, t) = 0 corresponds to the number of tangent lines to the normal
curve that pass through (x0, y0).

(c) Consider the cases where a = 1, b = t, c = tn, n = 2, 3, 4, ...
(i) Show that the normal curve satisfies:

D = (−1)
n

(n− 1)
n−1

yn − nnxn−1 = 0,

here D is the discriminant of the equation.
(ii) Determine the number of roots in relation to how (x0, y0) is placed

relative to the normal curve.
(iii) Show that roots with multiplicity only occur when (x0, y0) is on the

normal curve.

2.2. The Rotation Index

We now turn to a more geometric interpretation of the signed curvature.

Theorem 2.2.1. For a regular curve the angle between the unit tangent and
the x-axis is an anti-derivative of the signed curvature with respect to arclength.

Proof. We start with an analysis of the problem. Assume that we have a
parametrization of the unit tangent by using the angle to the first axis (we don’t
know yet that it is possible to select such a parametrization):

T (t) = (cos θ (t) , sin θ (t)) = er (θ (t)) ,

N± (t) = (− sin θ (t) , cos θ (t)) = ea (θ (t)) .

In this case
ds

dt
κ±N± =

dT

dt
=
dθ

dt
N± .

So we should be able to declare that θ is an antiderivative of dsdtκ±. Note that as long
as the signed curvature is non-negative this is consistent with the interpretation of
θ as an arclength parameter for T.

To verify that such a choice works, define

θ (t1) = θ0 +

∫ t1

a

ds

dt
κ±dt, where

T (a) = (cos θ0, sin θ0)

and consider the orthonormal unit fields

er = (cos θ (t) , sin θ (t)) ,

ea = (− sin θ (t) , cos θ (t)) .
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They are clearly related by
der
dt

= θ̇ea.

If we can show that (T | er) ≡ 1, then it follows that T = er. Our choice of θ0

forces the dot product to be 1 at t = a. To show that it is constant we show that
the derivative vanishes

d

dt
(T | er) =

(
dT

dt
| er
)

+

(
T | der

dt

)
=

ds

dt
κ± (N± | er) + θ̇ (T | ea)

=
ds

dt
κ± ((N± | er) + (T | ea))

= 0,

where the last equality follows by noting that if T = (a, b), then N± (−b, a) so

(N± | er) + (T | ea) = −b cos +a sin +− a sin +b cos = 0.

In other words, the two inner products define complementary angles. �

Definition 2.2.2. The total curvature of a curve q : [a, b]→ R2 is defined as∫ b

a

κ±
ds

dt
dt.

When we reparametrize the curve by arclength this simplifies to∫ L

0

κ±ds.

The total curvature measures the total change in the tangent since the curvature
measures the infinitesimal change of the tangent.

The ancient Greeks actually used a similar idea to calculate the angle sum in
a convex polygon. Specifically, the sum of the exterior angles in a polygon adds up
to 2π. This is because we can imagine the tangent line at each vertex jumping from
one side to the next and while turning measuring the angle it is turning. When
we return to the side we started with we have completed a full circle. When the
polygon has n vertices this gives us the formula (n− 2)π for the sum of the interior
angles.

A similar result holds for closed planar curves as T (a) = T (b) for such a curve.

Proposition 2.2.3. The total curvature of a planar closed curve is an integer
multiple of 2π.

The integer is called the rotation index of the curve:

iq =
1

2π

∫ b

a

κ±
ds

dt
dt.

We can more generally define the winding number of a closed unit speed curve
t : [a, b]→ S1 ⊂ R2. Being closed now simply means that t (a) = t (b). The idea is
to measure the number of times such a curve winds or rotates around the circle. The
specific formula is very similar. First construct the positively oriented normal n (t)
to t (t), i.e. the unit vector perpendicular to t (t) such that det

[
t (t) n (t)

]
= 1
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and then check the change of t against n. Note that as t is a unit vector its derivative
is proportional to n. The winding number is given by

wt =
1

2π

∫ b

a

(
dt

dt
| n
)
dt.

With this definition
iq = wT.

Proposition 2.2.4. The winding number of a closed unit speed curve is an
integer. Moreover, it doesn’t change under small changes in t.

Proof. The results holds for all continuous curves, but as we’ve used deriva-
tives to define the winding number we have to assume that it is smooth. However,
the proof works equally well if we assume that the curve is piecewise smooth.

As above define

θ (t0) = θ0 +

∫ t0

a

(
dt

dt
| n
)
dt,

where
t (a) = (cos θ0, sin θ0) .

We can now use the same argument to conclude that

t (t) = (cos θ (t) , sin θ (t)) .

Consequently,

wt =
1

2π

∫ b

a

(
dt

dt
| n
)
dt =

θ (b)− θ (a)

2π
.

So when the curve is closed it follows that θ (b) = θ (a) + 2πn for some n ∈ Z and
that wt = n is an integer.

Next suppose that we have two unit speed curves t1, t2 parametrized on the
same interval [a, b] such that

|t1 − t2| ≤ ε < 2.

If in addition their derivatives are also close and bounded then it is not hard to
see directly that the winding numbers are close. However, as they are integers, the
only way in which they can be close is if they agree.

To prove the result without assumptions about derivatives we start with the
crucial observation that if

|θ1 − θ2| < π,

then
|θ1 − θ2| <

π

2
|(cos θ1, sin θ1)− (cos θ2, sin θ2)| .

In other words, if the difference in angles between two points on the circle is less
that π then the difference in angles is bounded by a uniform multiple of the chord
length between the points.

Now assume that we have

t1 (t) = (cos θ1 (t) , sin θ1 (t)) ,

t2 (t) = (cos θ2 (t) , sin θ2 (t)) ,

with
|θ1 (a)− θ2 (a)| < π,
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then we claim that
|θ1 (t)− θ2 (t)| < π

2
|t1 (t)− t2 (t)|

for all t.
We know the claim holds for t = a and as all the functions are continuous

the set of parameters t that satisfy this condition is open (it is a strict inequality).
Next we can show that this set is also closed. To see this assume that the inequality
holds for tn and that tn → t. We have

|θ1 (tn)− θ2 (tn)| < π

2
|t1 (tn)− t2 (tn)| ≤ π

2
ε,

so it follows from continuity that

|θ1 (t)− θ2 (t)| ≤ π

2
ε < π.

This shows that
|θ1 (t)− θ2 (t)| < π

2
|t1 (t)− t2 (t)| .

It now follows that

|wt1 − wt2 | ≤
1

2π
|(θ1 (b)− θ1 (a))− (θ2 (b)− θ2 (a))|

≤ 1

2π
|(θ1 (b)− θ2 (b))− (θ1 (a)− θ2 (a))|

≤ 1

2π
|(θ1 (b)− θ2 (b))|+ 1

2π
|(θ1 (a)− θ2 (a))|

≤ 1

2
ε < 1.

This shows that the winding numbers are equal. �

The next theorem is often called the Umlaufsatz (going around theorem). It is
universally credited to H. Hopf, however, the name and theorem is due to A. Os-
trowski. Ostrowski’s papers were in fact published in the same journal in the same
year as Hopf’s paper. Hopf’s proof was meant as a shorter more elegant version
of Ostrowski’s far longer version. Ostrowski himself also refers to the theorem as
Rolle’s theorem.

Theorem 2.2.5 (Ostrowski, 1935). A simple closed curve has rotation index
±1.

Proof. (Hopf, 1935) We assume that we have a simple closed curve q (s) :
[0, l] → R2 that is parametrized by arclength. Moreover, after possibly rotating
and translating the curve we’ll assume that q (0) = (0, 0), T (0) = (±1, 0), and
y (s) ≥ 0 for all s. The idea is to create a family of unit vectors on a triangle where
0 ≤ s ≤ t ≤ l.

T (s, t) =


T (s) s = t,

−T (0) s = 0, t = l,
q(t)−q(s)
|q(t)−q(s)| for all other s < t.

Since the curve is simple, closed, and smooth this is a well-defined function whose
values are aways unit vectors. If we select any simple path in this triangle that
passes from (0, 0) to (l, l) then T will wind around the unit circle and end up where
it began as T (0, 0) = T (l, l). Moreover, if we make a slight change in this path
it will wind around the same number of times. Along the diagonal the number of



EXERCISES 48

windings is the rotation index of the curve. However, if we move up the y-axis and
then along the upper edge of the triangle, then we are first following T (0, t) = q(t)

|q(t)|

and then T (s, l) = q(l)−q(s)
|q(l)−q(s)| . Assume that T (0) = (1, 0), then T (0, t) rotates

precisely π from right to left while it points upwards as q lies in the upper half
plane, and T (s, l) rotates π from left to right while pointing downwards. Thus this
rotation is precisely 2π. This shows that q also has rotation index 1. When instead
T (0) = (−1, 0) the rotation index is −1. �

Definition 2.2.6. The total absolute curvature is defined as∫ b

a

κ
ds

dt
dt =

∫ b

a

|κ±|
ds

dt
dt.

Exercises
(1) Let q (t) = r (t) (cos (nt) , sin (nt)) where is t ∈ [0, 2π], n ∈ Z, and r (t) > 0 is

2π-periodic. Show that iq = n, by showing that its unit tangent has the same
winding number as the curve (− sin (nt) , cos (nt)).

(2) Draw a picture of the curve
(
1− x2

)
x2 = y2. Use this to show that the index

is zero and that the total absolute curvature is > 2π.
(3) Let q (s) : [0, L]→ R2 be a closed planar curve parametrized by arclength and

consider the parallel curves qε (s) = q (s)− εN± (s).
(a) Show that dsε

ds = 1 + εκ±, where sε is the arclength parameter for qε.
(b) Show that L (qε) = L (q) + ε2πiq.
(c) When q is simple and runs counterclockwise show that the area Aε enclosed

by qε is related the the area A enclosed by q by

Aε = A+ εL+ ε2π.

Hint: Use Green’s theorem as in exercise 12 from section 2.3.
(4) Let q (s) : [0, L]→ R2 be a unit speed curve that is piecewise smooth, i.e., the

domain can be subdivided

0 = a1 < a2 < · · · < ak+1 = L

such that the curve is smooth on each interval [ai, ai+1] , i = 1, ..., k. The
exterior angle θi ∈ [−π, π] at ai is defined by

cos θi =
(
T
(
a−i
)
| T
(
a+
i

))
,

sin θi =
(
N±

(
a−i
)
| T
(
a+
i

))
,

where

T
(
a±i
)

=
d q

ds±
(ai) = lim

h→0

q (ai ± h)− q (ai)

±h
and N± defined as the corresponding signed normal.
(a) If q is closed show that∫ L

0

κ±ds+

k∑
i=1

θi = iq2π

for some iq ∈ Z.
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(b) If q is both closed and simple show that iq = ±1. Hint: For each i replace
q on some small interval [ai − ε, ai + ε] with a smooth curve q∗ such that∫ ai+ε

ai−ε
κ∗±ds

∗ = θi +

∫ ai+ε

ai−ε
κ±ds.

(c) Show that the sum of the exterior angles in a polygon is 2π if the polygon
is oriented appropriately.

(5) Let
q (t) = (1 + a cos t) (cos t, sin t) , t ∈ [0, 2π] .

(a) Show that this is a simple curve when |a| < 1 and intersects it self once
when |a| > 1. Hint: Show that if r (t) > 0, then r (t) (cos t, sin t) defines a
simple curve. When r (t) changes sign investigate what happens when it
vanishes.

(b) Show that
dθ

dt
= 1 +

a (a+ cos t)

1 + a2 + 2a cos t
and conclude that∫ 2π

0

a (a+ cos t)

1 + a2 + 2a cos t
dt =

{
0 |a| < 1,

2π |a| > 1.

(6) Show that any closed planar curve satisfies∫ b

a

κ
ds

dt
dt ≥ 2π.

(7) Show that by selecting a very flat ∞ shape where the tangents at the intersec-
tion are close to the x-axis we obtain examples with rotation index 0 and total
absolute curvature close to 2π.

(8) Let q : [0, L] → R2 be a closed curve parametrized by arclength. Show that
if
∫ L

0
κds = 2π, then κ± cannot change sign and the rotation index is ±1. In

section 2.4 we will show that this implies that the curve is simple as well. Hint:
Show that for a general curve |iq| ≤ 1

2π

∫ L
0
κds with equality only when κ = κ±

or κ = −κ± everywhere.
(9) Let q (t), t ∈ [a, b] be a regular planar curve and θ (t) ∈ [θ0, θ1] an arclength

parameter for T. Define v (t) as the distance from the origin to the tangent line
through q (t).
(a) Show that

v (t) = − (q (t) | N± (t)) .

(b) Show by an example (e.g., a straight line) that q is not necessarily a function
of θ.

(c) Define the curve

q∗ (θ) =
dv

dθ
T−vN± =

dv

dθ
(cos θ, sin θ)− v (− sin θ, cos θ)

and show that
d q∗

dθ
=

(
d2v

dθ2
+ v

)
(cos θ, sin θ) .

(d) Show that when q∗ is a regular curve then it is a reparametrization of q.
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(e) Under that assumption show further that

v +
d2v

dθ2
=

1

κ
,

L (q) =

∫ θ1

θ0

v (θ) dθ.

2.3. Three Interesting Results

In this section we establish three interesting results for closed planar curves.
The only result that will be used again from time to time is the Jordan curve
theorem 2.3.1.

Theorem 2.3.1 (Jordan Curve Theorem). A simple, closed planar curve di-
vides the plane into two regions one that is bounded and one that is unbounded.

2.3.1. The Four Vertex Theorem.

Definition 2.3.2. A vertex of a curve is a point on the curve where the cur-
vature has a local maximum or a local minimum.

Theorem 2.3.3 (Mukhopadhyaya, 1909 and Kneser, 1912). A simple closed
curve has at least 4 vertices.

We start with the following observation.

Proposition 2.3.4. If a curve q is tangent to a circle with their unit tangents
being the same and lies inside (resp. outside) the circle, then its curvature is larger
(resp. smaller) than or equal to the curvature of the circle at the points where they
are tangent.

Proof. Compare also proposition 1.3.6 for the case when the curve q is tangent
to the circle of radius R centered at c at s = s0 and satisfies

|q (s)− c|2 ≤ R2 and |q (s0)− c|2 = R2.

Here we focus on the case where the curve lies outside the circle as it is unique
to planar curves: The function s 7→ |q (s)− c|2 has a (local) minimum at s = s0.
Thus its derivative at s0 vanishes. This is simply the fact that the curve is tangent
to the circle. Moreover, the second derivative is nonnegative. Both the circle and
the curve are parametrized to have the same unit tangents where they touch and
we can further assume that the circle is parametrized to run counterclockwise.
Consequently, their signed normals are equal and point inward. This normal is

N± (s0) = − q (s0)− c

|q (s0)− c|
= −q (s0)− c

R
.

The second derivative of s 7→ |q (s)− c|2 is

2 + 2 (q− c | q̈) = 2 + 2κ± (N± | q− c) .

Therefore, at s0 we have

0 ≤ 2 + 2κ± (s0) (N± (s0) | q (s0)− c)

= 2 + 2κ± (s0) (N± (s0) | (−RN± (s0)))

= 2− 2Rκ± (s0) .

This implies our claim. �
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We are now ready to prove the four vertex theorem. Mukhopadhyaya proved
this result for simple planar curves with strictly positive curvature and a few
years later Kneser proved the general version, apparently without knowledge of
Mukhopadhyaya’s earlier contribution. An excellent account of the history of this
fascinating result can be found here: Four Vertex Theorem

Proof. (Osserman, 1985) Select the circle of smallest radius R circumscribing
the simple closed curve. The points of contact between this circle and the curve
cannot lie on one side of a diagonal of the circle. If they did, then it’d be possible
to slide the circle in the orthogonal direction to the diagonal until it doesn’t hit the
curve. We could then find a circle of smaller radius that contains the curve. This
means that we can find points q1, ...., qk+1 of contact where qk+1 = q1 and either
k = 2 and q1 and q2 are antipodal, or k > 2 and any two consecutive points qi and
qi+1 lie one one side of a diagonal. Note there might be more points of contact.

Now orient both circle and curve so that their normals always point inside. At
points of contact where the tangent lines are equal, the normal vectors must then
also be equal, as the curve is inside the circle. This forces the unit tangent vectors
to be equal.

First observe that the curvature at these k points is ≥ R−1.
If the curve coincides with the circle between two consecutive points of contact

qi and qi+1, then the curvature is constant and we have infinitely many vertices.
Otherwise there will be a point q on the curve between qi and qi+1 that is inside
the circle. Then we can select a circle of radius > R that passes through qi and
qi+1 and still contains q in its interior. Now slide this new circle orthogonally to
the chord between qi and qi+1 until the part of the curve between qi and qi+1 lies
outside the circle but still touches it somewhere. At this place the curvature will
be < R−1.

This shows that we can find k points where the curvature is ≥ R−1 and k points
between these where the curvature is < R−1. This implies that there must be at
least k local maxima for κ where the curvature is ≥ R−1 and between each two
consecutive local maxima a minimum where the curvature is < R−1. Note that the
maxima and minima don’t have to be at the points of contact. Thus we have found
2k vertices. �

2.3.2. The Isoperimetric Inequality. The isoperimetric ratio of a simple
closed planar curve q is L2/A where L is the perimeter, i.e., length of q, and A is
the area of the interior. We say that q minimizes the isoperimetric ratio if L2/A is
as small as it can be.

The isomerimetric inequality asserts that the isoperimetric ratio always exceeds
4π and is only minimal for circles. This will be established in the next theorem using
a very elegant proof that does not assume the existence of a curve that realizes this
ratio. Steiner in the 1830s devised several descriptive proofs of the isoperimetric
inequality assuming that such minimizers exist. It is, however, not so simple to
show that such curves exist as Dirichlet repeatedly pointed out to Steiner. Some of
Steiner’s ideas will be explored in the exercises.

The isoperimetric inequality would seem almost obvious and has been investi-
gated for millennia. In fact a closely related problem, known as Dido’s problem,
appears in ancient legends. Dido founded Carthage and was faced with the problem
of enclosing the largest possible area for the city with a long string (called a length

http://www.ams.org/notices/200702/fea-gluck.pdf
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of hide as the string had to be cut from a cow hide). However, the city was to be
placed along the shoreline and so it was only necessary to enclose the city on the
land side. In mathematical terms we can let the shore line be a line, and the curve
that will enclose the city on the land side is a curve that begins and ends on the
line and otherwise stays on one side of the line. It is not hard to imagine that a
semicircle whose diameter is on the given line yields the largest area for a curve of
fixed length.

Theorem 2.3.5. The isoperimetric inequality states that if a simple closed
curve bounds an area A and has circumference L, then

L2 ≥ 4πA.

Moreover, equality can only happen when the curve is a circle.

Proof. (Knothe, 1957) We give a very direct proof using Green’s theorem in
the form of the divergence theorem. Unlike many other proofs, this one also easily
generalizes to higher dimensions.

Consider a simple closed curve q of length L that can be parametrized by
arclength. The domain of area A is then the interior of this curve. Let the domain
be denoted Ω. We wish to select a (Knothe) map F : Ω→ B (0, R) where B (0, R)
also has area A. More specifically we seek a map with the properties

F (u, v) = (x (u) , y (u, v))

and

detDF =
∂x

∂u

∂y

∂v
= 1.

Such a map can be constructed if we select x (u0) and y (u0, v0) for a specific
(u0, v0) ∈ Ω to satisfy

area ({u < u0} ∩ Ω) = area ({x < x (u0)} ∩B (0, R))

and

area ({u < u0} ∩ {v < v0} ∩ Ω) = area ({x < x (u0)} ∩ {y < y (u0, v0)} ∩B (0, R)) .

The choice of B (0, R) together with the intermediate value theorem guarantee that
we can construct this map. This map is area preserving as it is forced to map
any rectangle in Ω to a region of equal area in B (0, R). To see this note that it
preserves the area of sets {u0 ≤ u < u1} ∩Ω as they can be written as a difference
of sets whose areas are preserved by definition of the map:

{u0 ≤ u < u1} ∩ Ω = {u < u1} ∩ Ω− ({u < u0} ∩ Ω) .

We then obtain the rectangle [u0, u1) × [v0, v1) by intersecting this strip with the
set {v0 ≤ v < v1}∩Ω. This rectangle is in turn written as a difference between two
sets whose areas are preserved by the map:

[u0, u1)× [v0, v1) = ({u < u1} ∩ Ω− ({u < u0} ∩ Ω)) ∩ ({v < v1} ∩ Ω− ({v < v0} ∩ Ω))

= ({u < u1} ∩ Ω− ({u < u0} ∩ Ω)) ∩ ({v < v1} ∩ Ω)

− ({u < u1} ∩ Ω− ({u < u0} ∩ Ω)) ∩ ({v < v0} ∩ Ω) .

The two conditions additionally force ∂x
∂u > 0, ∂y

∂v > 0. To prove the isoperimetric
inequality we use Green’s theorem in the form of the divergence theorem in the
plane. The vector field is given by the map F . Note that the outward unit normal
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for Ω is the vector −N± if the curve q runs counter clockwise. Using that |F | ≤ R
we obtain: ∫

Ω

divFdudv = −
∫ L

0

(F | N±) ds

≤ RL.

On the other hand the geometric mean
√
ab is always smaller than the arithmetic

mean 1
2 (a+ b) so we also have:

divF =
∂x

∂u
+
∂y

∂v

≥ 2

√
∂x

∂u

∂y

∂v
= 2.

Consequently
2A ≤ RL,

which implies
4A2 ≤ R2L2.

Now we constructed B (0, R) so that A = πR2. So we obtain the isoperimetric
inequality

4πA ≤ L2.

The equality case can only occur when we have equality in all of the above
inequalities. In particular

∂x

∂u
=
∂y

∂v
everywhere, showing that

∂x

∂u
=
∂y

∂v
= 1.

This tells us that the function takes the form: F (u, v) = (u+ u0, v + g (u)). We
also used that |(F | N±)| ≤ |F | ≤ R when the function is restricted to the boundary
curve. Thus we also have F ◦ q = −RN±, i.e.,

q + (u0, g (u (s))) = −RN±,

where q (s) = (u (s) , v (s)). Differentiating with respect to s then implies that

(1−Rκ) T =

(
0,
∂g

∂u

du

ds

)
.

This means either that 1 = Rκ or that q is constant in the first coordinate. In the
latter case du

ds = 0, so it still follows that 1 = Rκ. Thus the curve has constant
non-zero curvature which shows that it must be a circle. �

Remark 2.3.6. We’ve used without justification that the Knothe map is smooth
so that we can take its divergence. This may however not be the case. The partial
derivative ∂x

∂u , when it exists, is equal to the sum of lengths of the intervals that
make up the set {u = u0} ∩ Ω. So if we assume that part of the boundary is a
vertical line at u = u0 and that the domain contains points both to the right and
left of this line, then ∂x

∂u is not continuous at u = u0.
To get around this issue one can assume that the domain is convex. Or in

general that the boundary curve has the property that its tangent lines at points
where the curvature vanishes are not parallel to the axes. The latter condition
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can generally be achieved by rotating the curve and appealing to Sard’s theorem.
Specifically, we wish to ensure that the normal N± is never parallel to the axes at
places where dN±

dt = 0.
Alternately it is also possible to prove the divergence theorem under fairly weak

assumptions about the derivatives of the function.

2.3.3. Counting Self Intersections.

Definition 2.3.7. For a line and a curve consider the points on the line where
the curve is tangent to the line. This set will generally be empty. We say that the
line is a double tangent if it is tangent to the curve in exactly two points.

When a curve is not too wild it is possible to relate double tangents and self
intersections.

A generic curve is defined as a regular curve such that:
(1) Tangent lines cannot be tangent to the curve at more than 2 points.
(2) At self-intersection points the curve intersects itself twice.
(3) The curve only has a finite number of inflection points where the curvature

changes sign.
(4) Finally, no point on the curve can belong to more than one of these cate-

gories of points.
For a generic curve T+ is the number of tangent lines that are tangent to the curve in
two places such that the curve lies on the same side of the tangent line at the points
of contact. T− is the number of tangent lines that are tangent to the curve in two
places such that the curve lies on opposite sides of the tangent line at the points
of contact. I is the number of inflection points, i.e., points where the curvature
changes sign. D is the number of self-intersections (double points).

Theorem 2.3.8 (Fabricius-Bjerre, 1962). For a generic closed curve we have

2T+ − 2T− − 2D − I = 0.

Proof. The proof proceeds by checking the number of intersections between
the positive tangent lines q (t) + r v (t) , r ≥ 0 and the curve as we move forwards
along the curve. As we move along the curve this number will change but ultimately
return to its initial value.

When we pass through an inflection point or a self-intersection this number
will decrease by 1. When we pass a point that corresponds to a double tangent T±
the change will be 0 or ±2 with the sign being consistent with the type of tangent.

To keep track of what happens we subdivide the two types of double tangents
into three categories denoted

→→

T± ,
→←

T± ,
←→

T± . Here
→→

T± indicates that the tangent
vectors at the double points have the same directions,

→←

T± indicate that the tangent
vectors at the double points have opposite directions but towards each other, and
←→

T± indicate that the tangent vectors at the double points have opposite directions
but away from each other.

For double tangents of the type
←→

T± no intersections will be gained or lost as
we pass through points of that type. For

→←

T± the change is always ±2 at both of
the points of contact. For

→→

T± the change is ±2 for one of the points and 0 for the
other. Thus as we complete one turn of the curve we must have

2
→→

T+ + 4
→←

T+ − 2
→→

T− − 4
→←

T− − I − 2D = 0.
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We now reverse the direction of the curve and repeat the counting procedure.
The points of type I,D,

→→

T± remain the same, while the points of types
→←

T± and
←→

T±
are interchanged. Thus we also have

2
→→

T+ + 4
←→

T+ − 2
→→

T− − 4
←→

T− − I − 2D = 0.

Adding these two equations and dividing by 2 now gives us the formula. �

Exercises
(1) Show that a vertex is a critical point for the curvature. Draw an example

where a critical point for the curvature does not correspond to a local maxi-
mum/minimum.

(2) Show that a simple closed planar curve q (t) has the property that its unit
tangent T is parallel to d2 T

ds2 at at least four points.
(3) Show that the concept of a vertex does not depend on the parametrization of

the curve.
(4) Show that an ellipse that is not a circle has 4 vertices.
(5) Find the vertices of the curve

x4 + y4 = 1.

(6) Show that the closed curve

(1− 2 sin θ) (cos θ, sin θ) , θ ∈ [0, 2π]

is not simple and has exactly two vertices.
(7) Show that a vertex for a curve given by a graph y = f (x) satisfies(

1 +

(
df

dx

)2
)
d3f

dx3
= 3

df

dx

(
d2f

dx2

)2

.

(8) Consider a curve
q (t) = r (t) (cos t, sin t)

where r > 0 and is 2π-periodic. Draw pictures where maxima/minima for r
correspond to vertices. Is it possible to find an example where the minimum for
r corresponds to a local maximum for κ± and the maximum for r corresponds
to a local minimum for κ±?

(9) Consider a unit speed curve q : [0, b]→ R2 with κ ≥ 1/R and assume that it is
tangent to a circle of radius 1/R at t = 0.
(a) Show that the curve lies inside the circle on a sufficiently small interval

[0, ε].
(b) Draw an example where the curve does not lie inside the circle on all of

[0, b]. Hint: The curve will not be simple.
(10) Consider a curve q : (a, b)→ R2 that lies inside a circle of radius R. Show that

if q touches the circle at t0 ∈ (a, b), then either κ (t0) > 1/R or κ has a critical
point at t0. Hint: Look at section 2.1 exercise 17.

(11) Show that for a domain Ω ⊂ R2 with smooth boundary curve q, the divergence
theorem ∫

Ω

divFdudv = −
∫ L

0

(F | N±) ds

follows from Green’s theorem.
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(12) Show that

A =

∫
Ω

dudv = −1

2

∫ L

0

(q | N±) ds.

(13) Compute the area in the leaf of the folium of Descartes (see section 1.1 exercise
16).

(14) We say that a simple closed planar curve q has convex interior if the domain Ω
bounded by q has the property that for any two points in Ω the line segments
between the points also lie in Ω.
(a) Show that if q minimizes the isoperimetric ratio, then its interior must be

convex.
(b) Show that if q minimizes the isoperimetric ratio and has perimeter L, then

any section of q that has length L/2 solves Dido’s problem.
(c) Show that the isoperimetric problem is equivalent to Dido’s problem.

(15) Consider all triangles where two side lengths a, b are fixed. Show that the
triangle of largest area is the right triangle where a and b are perpendicular.
Note that this triangle can be inscribed in a semicircle where the diameter is
the hypotenuse. Use this to solve Dido’s problem if we assume that there is a
curve that solves Dido’s problem.

(16) Show that among all quadrilaterals that have the same four side lengths a, b, c, d >
0 in order, the one with the largest area is the one that can be inscribed in a
circle so that all four vertices are on the circle. Use this to solve the isoperi-
metric problem assuming that there is a curve that minimizes the isoperimetric
ratio.

(17) Try to prove that the regular 2n-gon maximizes the area among all 2n-gons
with the same perimeter.

2.4. Convex Curves

Definition 2.4.1. We say that a regular planar curve is convex if it always lies
on one side of its tangent lines. We say that it is strictly convex if it only intersects
its tangent lines at the point of contact. A closed strictly convex curve is also called
an oval.

Note that we do not need to assume that the curve is closed for this definition to
make sense, but for convenience we do assume that it is defined on a closed interval.
The definition can also be extended to piecewise smooth curves by requiring that
it lies to one side of one or both tangent lines at points where the unit tangents
don’t agree.

Theorem 2.4.2. A planar convex curve is simple and the signed curvature
cannot change sign.

Proof. First we show that the curvature can’t change sign. Assume that the
curve q : [0, L]→ R2 has unit speed. Since the curve lies on one side of its tangent
at any point q (s0) it follows that

(q (s)− q (s0) | N± (s0))

is either nonnegative or nonpositive for all s. If it vanishes, then the curve must
be part of the tangent line through q (s0). In this case it is clearly simple and the
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curvature vanishes. Otherwise we have two disjoint sets I± ⊂ [0, L], where

I+ = {s0 ∈ [0, L] | (q (s)− q (s0) | N± (s0)) ≥ 0 for all s ∈ [0, L]}
I− = {s0 ∈ [0, L] | (q (s)− q (s0) | N± (s0)) ≤ 0 for all s ∈ [0, L]}

Both of these sets must be closed by the continuity of (q (s)− q (s0) | N± (s0)).
However, it is not possible to write an interval as the disjoint union of two closed
sets unless one of these sets is empty.

Now assume that I+ = [0, L] so that (q (s)− q (s0) | N± (s0)) ≥ 0 for all s, s0

with equality for s = s0. Thus the second derivative with respect to s is also
non-negative at s0:

0 ≤
(
d2 q

ds2
(s0) | N± (s0)

)
=

(
dT

ds
(s0) | N± (s0)

)
= κ± (s0) .

This shows that the signed curvature is always non-negative.
Assume for the remainder of the proof that the curve always lies to the left of its

oriented tangent lines so that κ± ≥ 0. In case the curve is one-to-one when restricted
to (0, L) one of two things can happen: Either q (0) 6= q (L) or q (0) = q (L) in which
case it is a convex loop that might not be smooth at q (0). In either case, the curve
is simple. We can therefore assume below that q : (0, L)→ R2 is not one-to-one.

First we claim that for every point q (a) of the curve there is a neighborhood
U 3 q (a) such that if q (s) ∈ U for some other parameter value, then there is a b ∈
[0, L] close to s such that q (b) = q (a). This uses compactness of [0, L]. Assume that
q (si) → q (a). By continuity q (b) = q (a) for any b that is an accumulation point
for the sequence si. Moreover, by compactness the sequence will have accumulation
points. The existence of U now follows from a simple contradiction argument.

Next we show that if a < b and q (a) = q (b), then T (a) = T (b). We exclude
the case where a = 0 and b = L. If the tangent lines do not agree, then the curve
crosses itself and cannot lie on one side of both tangent lines. The oriented tangent
lines must now also agree as the curve would otherwise be forced to lie on both
sides of the tangent line. This forces the curve to lie on the tangent line and that
prevents it from intersecting itself as it is has no stationary points.

Since we assumed that κ± ≥ 0 it follows that θ (t) is increasing. If we combine
that with the previous claim, then we see that if a0 < · · · < ak and q (a0) = · · · =
q (ak), then

2πk ≤
k∑
i=1

θ (ai)− θ (ai−1) = θ (ak)− θ (a0) ≤ θ (L)− θ (0) .

In particular, k ≤ 1
2π (θ (L)− θ (0)) showing that the curve can only return to the

same point a finite number of times.
After translating and rotating the curve assume that q (a) = 0 and T (a) =

(1, 0) and consider any b > a such that q (b) = q (a). Near a and b the parts of the
curve will be graphs over a small interval on the x-axis. These graphs lie above the
x-axis and are tangent to it at the origin. If the graphs do not coincide, then there
will be values on one that are below the other. But then the points that are below
must be to the right of the tangent lines through the points that are above. In case
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a = 0 or b = L, respectively, only the parts of the curve that are defined for x ≥ 0
or x ≤ 0, respectively, are shown to agree.

If we assemble all of these claims, it follows that for each q (a), a ∈ (0, L), there
is a neighborhood U 3 q (a) such that near a the part of the curve inside U is a
graph over the tangent line. Moreover, if there are other parameter values that get
mapped to U , then there are nearby parameter values that get mapped to q (a)
and near these parameter values the curve is a graph over the same tangent line
that coincides with the part of the curve near a. Finally as only a finite number
of parameter values get mapped to q (a) we can ensure that any part of the curve
that lies in a possibly smaller U is simply a reparameterized part of the curve near
a. This shows that the curve is simple. �

Lemma 2.4.3. If a curve has non-negative signed curvature and total curvature
≤ π, then it is convex.

Proof. Any curve with non-negative curvature always locally lies on the left
of its tangent lines. So if it comes back to intersect a tangent l after having travelled
to the left of l, then there will be a point of locally maximal distance to the left of
l. At this local maximum the tangent line l∗ must be parallel but not equal to l. If
they are oriented in the same direction, then the curve will locally be on the right
of l∗. As that does not happen they have opposite direction. This shows that the
total curvature is ≥ π. However, the curve will have strictly larger total curvature
as it still has to make its way back to intersect l. �

Theorem 2.4.4. If a closed curve has non-negative signed curvature and total
curvature ≤ 2π, then it is convex.

Proof. The argument is similar to the one above. Assume that we have a
tangent line l such that the curve lies on both sides of this line. As the curve is
closed there’ll be points one both sides of this tangent at maximal distance from
the tangent. The tangent lines l∗ and l∗∗ at these points are then parallel to l.
Thus we have three parallel tangent lines that are not equal. Two of these must
correspond to unit tangents that point in the same direction. As the curvature does
not change sign this implies that the total curvature of part of the curve is 2π. The
total curvature must then be > 2π as these two tangent lines are different and the
curve still has to return to both of the points of contact. �

Exercises
(1) Consider a convex curve q (s) : [0, L] → R2 and fix a tangent line l through

q (a). Show that

{s ∈ [0, L] | T (s) = T (a)} = {s ∈ [0, L] | q (s) ∈ l} .
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(2) Let q (θ) be a simple closed planar curve with κ > 0 parametrized by θ, where
θ is defined as the arclength parameter of the unit tangent field T. Show that

d q

dθ
=

1

κ
T,

dT

dθ
= N±,

dN±
dθ

= −T,

T (θ + π) = −T (θ) .

(3) Let q (θ) be a simple closed planar curve with κ > 0 parametrized by θ, where
θ is defined as the arclength parameter of the unit tangent field T. Define v (θ)
as the distance from the origin to the tangent line through q (θ).
(a) Show that

v (θ) = − (q (θ) | N± (θ)) .

(b) Show that the width (distance) between the parallel tangent lines through
q (θ) and q (θ + π) is

w (θ) = v (θ) + v (θ + π) = N± (θ) | (q (θ + π)− q (θ)) .

(c) Show that:

L (q) =

∫ 2π

0

v (θ) dθ.

(d) Show that
1

κ
= v +

d2v

dθ2
.

(e) Let A denote the area enclosed by the curve. Establish the following for-
mulas for A

A =
1

2

∫ L

0

vds =
1

2

∫ 2π

0

(
v2 + v

d2v

dθ2

)
dθ =

1

2

∫ 2π

0

(
v2 −

(
dv

dθ

)2
)
dθ.

(4) Let q (θ) be a simple closed planar curve with κ > 0 parametrized by θ, where
θ is defined as the arclength parameter of the unit tangent field T. Show that
the width from the previous problem satisfies:

d2w

dθ2
+ w =

1

κ (θ)
+

1

κ (θ + π)
.

(5) Let q (θ) be a simple closed planar curve with κ > 0 parametrized by θ, where
θ is defined as the arclength parameter of the unit tangent field T. With the
width defined as in the previous exercises show that:∫ 2π

0

wdθ = 2L (q) .

(6) Let q (θ) be a simple closed planar curve of constant width with κ > 0. The
curve is parametrized by θ, where θ is defined as the arclength parameter of
the unit tangent field T.
(a) Show that if θ corresponds to a local maximum for κ, then the opposite

point θ + π corresponds to a local minimum.
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(b) Assume for the remainder of the exercise that κ has a finite number of
critical points and that they are all local maxima or minima. Show that
the number of vertices is even and ≥ 6.

(c) Show that each point on the evolute corresponds to two points on the curve.
(d) Show that the evolute consists of n convex curves that are joined at n cusps

that correspond to pairs of vertices on the curve.
(e) Show that the evolute has no double tangents.

(7) (Euler) Reverse the construction in the previous exercise to create curves of
constant width by taking involutes of suitable curves.

(8) Let q be a closed convex curve and l a line.
(a) Show that l can only intersect q in one point, two points, or a line segment.
(b) Show that if l is also a tangent line then it cannot intersect q in only two

points.
(c) Show that the interior of q is convex, i.e., the segment between any two

points in the interior also lies in the interior.
(9) Let q be a planar curve with non-negative signed curvature. Show that if q has

a double tangent, then its total curvature is ≥ 2π. Note that it is possible for
the double tangent to have opposite directions at the points of tangency.

(10) Give an example of a planar curve (not closed) with positive curvature and no
double tangents that is not convex.

(11) Let q be a closed planar curve without double tangents. Show that q is convex.
Hint: Consider the set A of points (parameter values) on q where q lies on
one side of the tangent line. Show that A is closed and not empty. Show that
boundary points of A (i.e., points in A that are limit points of sequences in the
complement of A) correspond to double tangents.



CHAPTER 3

Space Curves

3.1. The Fundamental Equations

The theory of space curves dates back to Clairaut in 1731. He considered them
as the intersection of two surfaces given by equations. Clairaut showed that space
curves have two curvatures, but they did not correspond exactly to the curvature
and torsion we introduce below. The subject was later taken up by Euler who
was the first to work with parametrized curves and use arclength as a parame-
ter. Lancret in 1806 introduced the concepts of unit tangent, principal normal and
bi-normal and with those curvature and torsion as we now understand them. It
is possible that Monge had some inklings of what torsion was, but he never pre-
sented an explicit formula. Cauchy in 1826 considerably modernized the subject
and formulated some of the relations that later became part of the Serret and Frenet
equations that we shall introduce below.

In order to create a set of equations for space curves q (t) : [a, b] → R3 we
need to not only assume that the curve is regular but also that the velocity and
acceleration are linearly independent. In this case it is possible to define a suitable
positively oriented orthonormal frame T, N, and B by declaring

T =
v

|v|
,

N =
a− (a | T) T

|a− (a | T) T|
,

B = T×N .

The new normal vector B is called the bi-normal. We define the curvature and
torsion by

κ =

(
N | dT

ds

)
,

τ =

(
B | dN

ds

)
.

Proposition 3.1.1. If F : R3 → R3 is of the form F (x) = Ox + c, where O is
a rotation and c ∈ R3 and q a regular curve, then q∗ = F (q) has unit tangent given
by T∗ = OT, normal N∗ = ON, binormal B = (detO)OB, curvature κ∗ = κ, and
torsion τ∗ = (detO) τ .

Proof. We saw in proposition 1.3.2 that T∗ = OT and a∗ = O a. This shows
that

N∗ =
O a− (O a | OT)OT

|O a− (O a | OT)OT|
= O

(
a− (a | T) T

|a− (a | T) T|

)
= ON .

61
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Thus the curvature is preserved just as in the proof of proposition 2.1.2. The
binormal is created using the cross product and consequently uses the righthand
rule. Orthogonal transformations therefore preserve cross products when detO = 1,
while they reverse the sign when detO = −1, i.e., makes the righthand rule a
lefthand rule. This establishes the formulas for the binormal and torsion as in
proposition 2.1.2. �

In section 1.3 we started by defining θ as arclength parameter for T and then
proceeded to show that the above formulas for κ and N hold. After the next theorem
we use the above definitions of κ and N to derive the old definitions.

Theorem 3.1.2 (Serret, 1851 and Frenet, 1852). If q (t) is a regular space curve
with linearly independent velocity and acceleration, then

d q

dt
=

ds

dt
T,

dT

dt
= κ

ds

dt
N,

dN

dt
= −κds

dt
T +τ

ds

dt
B,

dB

dt
= −τ ds

dt
N,

or

d

dt

[
q T N B

]
=
ds

dt

[
q T N B

] 
0 0 0 0
1 0 −κ 0
0 κ 0 −τ
0 0 τ 0

 .
Moreover,

κ =
|v× a|
|v|3

=
|a− (a | T) T|

|v|2
,

τ =
det
[

v a j
]

|v× a|2
=

(v× a | j)
|v× a|2

,

N =
a− (a | T) T

|a− (a | T) T|
,

B =
v× a

|v× a|
.

Proof. The explicit formula for N is our explicit formula for the principal
normal. As T,N,B form an orthonormal basis we have

dT

dt
=

(
dT

dt
| T
)

T +

(
dT

dt
| N
)

N +

(
dT

dt
| B
)

B .

Here (
dT

dt
| T
)

=
1

2

d |T|2

dt
= 0,(

dT

dt
| N
)

=
ds

dt

(
dT

ds
| N
)

=
ds

dt
κ,(

dT

dt
| B
)

=
d

dt

(
v

|v|

)
| B =

(
a

|v|
− v

|v|2
d |v|
dt
| B

)
= 0,
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as B is perpendicular to T,N and thus also to v, a. This establishes

dT

dt
= κ

ds

dt
N .

Next note that

0 =

(
B | dT

dt

)
= −

(
dB

dt
| T
)
.

This together with (
B | dB

dt

)
= 0

shows that

dB

dt
=

(
dB

dt
| N
)

N .

However, we also have

0 =

(
dB

dt
| N
)

+

(
B | dN

dt

)
=

(
dB

dt
| N
)

+
ds

dt
τ.

This implies
dB

dt
= −τ ds

dt
N .

Finally the equation
dN

dt
= −κds

dt
T +τ

ds

dt
B .

is a direct consequence of the other two equations.
The formula for the curvature follows from observing that

dT

ds
| N =

(
d

ds

v

|v|
| N
)

=
dt

ds

(
d

dt

v

|v|
| N
)

=
1

|v|

(
a

|v|
− v

|v|2
d |v|
dt
| N

)

=
a

|v|2
| (a− (a | T) T)

|a− (a | T) T|

=
a | a− (a | T)

2

|v|2 |a− (a | T) T|

=
|a|2 |v|2 − (a | v)

2

|v|4 |a− (a | T) T|

=
|a− (a | T) T|

|v|2
,

where |v| |a− (a | T) T| =
√
|a|2 |v|2 − (a | v)

2.
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The formula for the binormal B follows directly from the calculation

T×N =
1

|v|
v×

(
a− (a | T) T

|a− (a | T) T|

)
=

1

|v|
v×

(
a

|a− (a | T) T|

)
=

v× a

|v| |a− (a | T) T|

=
v× a

|v× a|
.

In the last equality recall that the denominators are the areas of the same parallel-
ogram spanned by v and a.

To establish the general formula for τ we note(
B | dN

dt

)
=

(
v× a

|v× a|
| d
dt

(
a− (a | T) T

|a− (a | T) T|

))
=

(
v× a

|v× a|
| j

|a− (a | T) T|

)
(

v× a

|v× a|
| a
(
d

dt

1

|a− (a | T) T|

))
−
(

v× a

|v× a|
| T
(
d

dt

(a | T)

|a− (a | T) T|

))
−
(

v× a

|v× a|
| dT

dt

(
(a | T)

|a− (a | T) T|

))
=

(v× a | j)
|v× a|2

|v| .

The last line follows from our formulas for the area of the parallelogram spanned
by v and a. A different strategy works by first noticing that

v = (v | T) T,

a = (a | T) T + (a | N) N,

j = (j | T) T + (j | N) N + (j | B) B .

Thus
det
[

v a j
]

= (v | T) (a | N) (j | B) .

Next we recall that

v | T = |v| ,
a | N = |a− (a | T) T| ,

showing that
(v | T) (a | N) = |v| |a− (a | T) T| = |v× a| .

Finally we calculate (j | B). Keeping in mind that (a | B) = 0 we obtain

(j | B) = −
(

a | dB

dt

)
= τ |v| (a | N)

= τ |v× a|
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and
(v | T) (a | N) (j | B) = τ |v× a|2

which establishes the formula. �

The curvature and torsion can also be described by the formulas

κ =
area of parallelogram (v, a)

|v|3
,

τ =
signed volume of the parallepiped (v, a, j)

(area of the parallelogram (v, a))2
.

Corollary 3.1.3. If q (t) is a regular space curve with linearly independent
velocity and acceleration, then T is regular and if θ is its arclength parameter, then

dθ

ds
=

(
dT

ds
| N
)

and
dT

dθ
=

a− (a | T) T

|a− (a | T) T|
.

Proof. By assumption

0 < κ =

(
dT

ds
| N
)
.

This implies in particular that T is regular. We know from the chain rule that
dT

dθ
=
ds

dθ

dT

ds
=
ds

dθ
κN .

Here both sides are unit vectors that are perpendicular to T and by definition
ds
dθ > 0 and κ > 0. This forces

dθ

ds
= κ

and
dT

dθ
= N .

This establishes the formulas. �

There is a very elegant way of collecting the Serret-Frenet formulas.

Corollary 3.1.4 (Darboux). For a space curve as above define the Darboux
vector

D = τ T +κB .

The Darboux vector has the property that
d

dt

[
T N B

]
=
ds

dt
D×

[
T N B

]
.

Proof. We have

D× T = κN,

D×N = τ B−κT,

D× B = −τ N,

so the equation follows directly from the Serret-Frenet formulas. �
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Exercises
(1) Find the curvature, torsion, normal, and binormal for the twisted cubic

q (t) =
(
at, bt2, ct3

)
,

where a, b, c > 0.
(2) Show that for

q (t) =

(
t,

1 + t

t
,

1− t2

t

)
we have

κ2 =
3t6

2 (t4 + t2 + 1)
3 , τ = 0.

Show that this curve lies in the plane x− y + z = −1.
(3) Consider a cylindrical curve of the form

q (θ) = (cos θ, sin θ, z (θ)) = er (θ) + z (θ) e3.

Show that

κ =

(
1 + (z′)

2
+ (z′′)

2
) 1

2

(
1 + (z′)

2
) 3

2

,

τ =
z′ + z′′′

1 + (z′)
2

+ (z′′)
2 .

(4) For a unit speed curve q (s) with positive curvature and torsion define q∗ (s) =∫
B (s) ds. Show that q∗ is also unit speed and that T∗ = B, N∗ = −N, B∗ = T,

κ∗ = τ , and τ∗ = κ.
(5) Let q (t) : I → R3 be a regular curve such that its tangent field T (t) is also

regular. Let s be the arclength parameter for q and θ the arclength parameter
for T .
(a) Show that

det
[

T dT
ds

d2 T
ds2

]
= κ2τ.

(b) Show that
det
[

T dT
dθ

d2 T
dθ2

]
=
τ

κ
.

(c) Show that N×dN
ds = D and dT

ds ×
d2 T
ds2 = κ2D.

(6) Show that for a unit speed curve q (s) with positive curvature

det
[

d2 q
ds2

d3 q
ds3

d4 q
ds4

]
= κ5 d

ds

( τ
κ

)
.

(7) Let q (s) be a unit speed curve and define functions an (s), bn (s), and cn (s)
such that

q(n) =
dn q

dsn
= an T +bn N +cn B .

Show that

an+1 =
dan
ds
− κbn

bn+1 =
dbn
ds

+ κan − τcn

cn+1 =
dcn
ds

+ τbn.
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(8) Show that T is regular when κ > 0 and that in this case the curvature of T is
given by √

1 +
( τ
κ

)2

and the torsion by
1

κ
(

1 +
(
τ
κ

)2) d

ds

( τ
κ

)
.

(9) Show that the circular helix

(R cos t, R sin t, ht) = Rer (t) + he3

has constant curvature and torsion. Compute R, h in terms of the curvature
and torsion. Conversely show that any unit speed space curve with constant
curvature and torsion must look like

q (s) = R cos

(
s√

R2 + h2

)
f1 +R sin

(
s√

R2 + h2

)
f2 +

h√
R2 + h2

sf3 + q (0) ,

where f1, f2, f3 is an orthonormal basis.
(10) Let q (s) = (x (s) , y (s) , z (s)) : [0, L] → R3 be a unit speed space curve with

curvature κ (s) and torsion τ (s). Construct another space curve q∗ (s) =
x (s) f1 +y (s) f2 +z (s) f3 +x, where f1, f2, f3 is a positively oriented orthonor-
mal basis and x and point.
(a) Show that q∗ is a unit speed curve with curvature κ∗ (s) = κ (s) and torsion

τ∗ (s) = τ (s).
(b) Show that a unit speed space curve with the same curvature and torsion

as q is of the form q∗.
(11) Show that B is regular when |τ | > 0 and that in this case the curvature of B is

given by √
1 +

(κ
τ

)2

.

(12) Show that for a unit speed curve q (s) with positive curvature and non-zero
torsion

det
[

dB
ds

d2 B
ds2

d3 B
ds3

]
= τ5 d

ds

(κ
τ

)
.

(13) Show that N is regular when κ2 + τ2 > 0 and that in this case the curvature of
N is given by √√√√1 +

(
κdτds − τ

dκ
ds

)2
(κ2 + τ2)

3 .

(14) Show that any unit speed curve q (s) with constant nonzero torsion τ satisfies

q (s) = q (s0) +

∫ s

s0

1

τ
B×dB

dt
dt.

(15) Show a closed unit speed curve q (s) : [0, L] → R3 with positive curvature
satisfies ∫ L

0

(κ̇ q +τ B) ds = 0.

(16) Define ρ =
√
κ2 + τ2 and φ by

κ = ρ cosφ, τ = ρ sinφ.
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(a) Show that ρ = |D| and that φ is the natural arclength parameter for the
unit field 1

ρD.
(b) Show that if

P (s) = q (s) +
κ

ρ2
N,

then
dP

ds
=

τ

ρ2
D +

d

ds

(
κ

ρ2

)
N .

(17) Show that a space curve is part of a line if all its tangent lines pass through a
fixed point.

(18) Let Q (t) be a vector associated to a curve q (t) such that

d

dt

[
T N B

]
=
ds

dt
Q×

[
T N B

]
.

Show that Q = D.
(19) Let q (s) be a unit speed space curve with non-vanishing curvature and torsion.

Show that

d

ds

(
1

τ

d

ds

(
1

κ

d2 q

ds2

))
+

d

ds

(
κ

τ

d q

ds

)
+
τ

κ

d2 q

ds2
= 0.

(20) Consider a unit speed space curve q (s) with non-vanishing curvature and tor-
sion. Let k be a fixed vector and denote by φT, φN, φB the angles between
T, N, B and k. Show that

κ cosφN = −dφT

ds
sinφT,

κ cosφT − τ cosφB =
dφN

ds
sinφN,

τ cosφN =
dφB

ds
sinφB,

and
dφB

ds
sinφB = − τ

κ

dφT

ds
sinφT.

(21) For a regular space curve q (t) we say that a normal field X is parallel along q
if (X | T) = 0 and dX

dt is parallel to T.
(a) Show that for a fixed t0 and X (t0) ⊥ T (s0) there is a unique parallel field

X that is X (t0) at t0.
(b) A Bishop frame consists of an orthonormal frame T,N1,N2 along the curve

so that N1,N2 are both parallel along q. For such a frame show that

d

dt

[
T N1 N2

]
=
ds

dt

[
T N1 N2

]  0 κ1 κ2

−κ1 0 0
−κ2 0 0

 .
Note that such frames always exist, even when the space curve doesn’t have
positive curvature everywhere.

(c) Show further that for such a frame

κ2 = κ2
1 + κ2

2.
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(d) Show that if q has positive curvature so that N is well-defined, then

N = cosφN1 + sinφN2,

where
dφ

dt
=
ds

dt
τ,

κ1 = κ cosφ, κ2 = κ sinφ.

(e) Give an example of a closed space curve where the parallel curves don’t
close up.

3.2. Characterizations of Space Curves

We show that the tangent lines determine a space curve, but that the (principal)
normal lines do not necessarily characterize the curve. Unless otherwise stated we
assume that all curves are regular and have positive curvature.

Theorem 3.2.1. If q (t) and q∗ (t) are two regular curves that admit a common
parametrization such that their tangent lines agree at corresponding points, then
q (t) = q∗ (t) for all t where either κ (t) 6= 0 or κ∗ (t) 6= 0.

Proof. Note that the common parametrization is not necessarily the arclength
parametrization for either curve. These arclength parametrizations are denoted
s, s∗. The assumption implies that corresponding velocity vectors are always par-
allel and that

q∗ (t) = q (t) + u (t) T (t)

for some function u (t). We obtain by differentiation

d q∗

dt
=
d q

dt
+
du

dt
T +u

ds

dt
κN .

This forces

u
ds

dt
κ = 0

as N is perpendicular to the other vectors. So whenever κ 6= 0 it follows that u = 0.
This means that the curves agree on the set where κ 6= 0. Reversing the roles of
the curves we similarly obtain that the curves agree when κ∗ 6= 0. �

The analogous question for principal normal lines requires that these normal
lines are defined and thus that the curvatures never vanish. Nevertheless it is easy to
find examples of pairs of curves that have the same normal lines without being the
same curve. The double helix is in fact a great example of this. This corresponds
to the two pairs of circular helices

q = (R cos t, R sin t, ht) and q∗ = (−R cos t,−R sin t, ht)

More generally for fixed h > 0 the curves

(R cos t, R sin t, ht)

have the same normal lines for all R ∈ R.

Definition 3.2.2. We say that two curves q and q∗ are Bertrand mates if it is
possible to find a common parametrization of both curves such that their principal
normal lines agree at corresponding points.
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Theorem 3.2.3. Let q and q∗ be Bertrand mates with non-zero curvatures and
torsion. Either the curves agree or there are linear relationships

aκ+ bτ = 1, aκ∗ − bτ∗ = 1

between curvature and torsion. Conversely, any curve with non-zero curvature and
torsion such that aκ+ bτ = 1 for constants a, b has a Bertrand mate.

Proof. We’ll use s, s∗ for the arclength of the two curves. That two curves
are Bertrand mates is equivalent to

N (t) = ±N∗ (t)

and
q∗ (t) = q (t) + r (t) N (t)

for some function r (t).
The first condition implies

d

dt
(T | T∗) =

ds

dt
κ (N | T∗) +

ds∗

dt
κ∗ (T | N∗) = 0.

Thus (T | T∗) = cos θ for a fixed angle θ and

T∗ (t) = T (t) cos θ + B (t) sin θ.

Differentiating the second condition implies
ds∗

dt
T∗ =

ds

dt
T +

dr

dt
N +r

ds

dt
(−κT +τ B)

=

(
ds

dt
− r ds

dt
κ

)
T +

dr

dt
N +r

ds

dt
τ B .

If we combine this with T∗ (t) = T (t) cos θ + B (t) sin θ, then it follows that
dr

dt
= 0,

ds∗

dt
cos θ =

ds

dt
− r ds

dt
κ,

ds∗

dt
sin θ = r

ds

dt
τ.

In particular, r is constant,
ds∗

ds
cos θ = (1− rκ) ,

and
ds∗

ds
sin θ = rτ.

When r 6= 0 the fact that τ 6= 0 implies

− (1− rκ) sin θ + rτ cos θ = 0,

which shows
κr + τr cot θ = 1.

Switching the roles of the curve forces us to change the sign of θ. Thus

T (t) = T∗ (t) cos θ − B∗ (t) sin θ

and
κ∗r − τ∗r cot θ = 1.
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Conversely, assume that we have a regular curve q (s) parametrized by arclength
so that

κr + τr cot θ = 1.

Inspired by our conclusions from the first part of the proof we define

q∗ (s) = q (s) + rN (s)

and note that
d q∗

ds
= T +r (−κT +τ B) = τr (cot θT + B) .

Thus T∗ = ± (cos θT + sin θB). This shows that

dT∗

ds
= ± (κ cos θ − τ sin θ) N

and in particular that N∗ = ±N. �

Exercises
(1) A curve is planar if there is a vector k such that (q (t) | k) is constant.

(a) Show that this is equivalent to saying that the unit tangent T is always
perpendicular to k and implies that all derivatives dk q

dtk
, k ≥ 1 are perpen-

dicular to k.
(b) Show that a curve is planar if and only if τ vanishes.

(2) Show that a curve q (t) is planar if and only if j ∈ span {v, a} for all t.
(3) Consider solutions to the second order equation

a = F (q, v) .

Show that all solutions are planar if F (q, v) ∈ span {q, v} for all vectors q, v.
This happens, e.g., when the force field F is radial, i.e., F is proportional to
position q.

(4) Show that a curve q is planar if and only if there is a point c such that q (s)−c ∈
span {T (s) ,N (s)} for all s.

(5) Let q (t) and q∗ (t) be two regular curves that admit a common parametrization
such that their unit tangents are equal at corresponding points.
(a) Show that their normals and binormals are also equal.
(b) Show that

κ∗

κ
=

ds

ds∗
=
τ∗

τ
.

(6) (Lancret, 1806) A generalized helix is a curve such that (T | k) is constant for
some fixed vector k, i.e., T is planar. Note that since the unit tangent traces a
curve on the unit sphere it has to lie in the intersection of the unit sphere and
a plane, i.e., a latitude, and must in particular be a circle.
(a) Show that this is equivalent to the normal N always being perpendicular

to k.
(b) Show that a curve is a generalized helix if and only if the ratio τ/κ is

constant. Hint: Show that k = (k | T) T + (k | B) B and calculate the
derivative.

(c) Show that this is equivalent to assuming that the curvature of the unit
tangent T is constant. Hint: Use and exercise from section 3.1.
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(d) Show that this is equivalent to the torsion of T vanishing. Hint: Use a
previous exercise in this section.

(7) Show that

(r (t) cos t, r (t) sin t, h (t)) = r (t) er (t) + h (t) e3

is a generalized helix if and only if

ḣ2

r2 + ṙ2 + ḣ2

is constant.
(8) Show that

(
at, bt2, ct3

)
is a generalized helix when 3ac = ±2b2.

(9) Show that
(
3t− t3, 3t2, 3t+ t3

)
is a generalized helix.

(10) Show that
(

(1+s)
3
2

3 , (1−s)
3
2

3 , s√
2

)
is unit speed and a generalized helix.

(11) Show that (cosh t, sinh t, t) is a generalized helix.
(12) Let q be a unit speed curve with positive curvature.

(a) Show that the Darboux vector D is constant if and only if κ and τ are
constant.

(b) Show that D
|D| is constant if and only if τκ is constant.

(13) Show that a unit speed curve q has the property that τ
κ = as+ b for constants

a, b if and only if there is a point c such that q (s)− c ∈ span {T (s) ,B (s)} for
all s. Hint: Try c = q− (s+ e) T−f B where as+ b = s+e

f .
(14) Show that a curve lies on a sphere if and only if all its normal planes all pass

through a fixed point c.
(15) Show that a curve q lies on a sphere if and only if there is a point c such that

q (s)− c ∈ span {N (s) ,B (s)} for all s.
(16) Show that a unit speed curve on a sphere of radius R satisfies

κ ≥ 1

R
.

(17) Show that if a curve with constant curvature lies on a sphere, then it is part of
a circle, i.e., it is forced to be planar.

(18) Assume we have a unit speed curve q (s) on a sphere. If the center of the sphere
is c and the radius R, then the curve must satisfy

|q (s)− c|2 = R2.

(a) Show that if κ > 0, then

(q− c | T) = 0,

(q− c | N) = − 1

κ
,

τ (q− c | B) = − d

ds

(
1

κ

)
.

(b) Show that if both curvature and torsion are nowhere vanishing, then

1

κ2
+

(
1

τ

d

ds

(
1

κ

))2

= R2

and
τ

κ
+

d

ds

(
1

τ

d

ds

(
1

κ

))
= 0.
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(19) Conversely, show that if a unit speed curve q with nowhere vanishing curvature
and torsion satisfies

τ

κ
+

d

ds

(
1

τ

d

ds

(
1

κ

))
= 0,

then
1

κ2
+

(
1

τ

d

ds

(
1

κ

))2

= R2

for some constant R. Furthermore show that

c (s) = q +
1

κ
N +

1

τ

d

ds

(
1

κ

)
B

is constant and conclude that q lies on the sphere with center c and radius R.
(20) Prove that a unit speed curve q with non-zero curvature and torsion lies on a

sphere if there are constants a, b such that

κ

(
a cos

(∫
τds

)
+ b sin

(∫
τds

))
= 1.

Hint: Show
1

τ

d

ds

(
1

κ

)
= −a sin

(∫
τds

)
+ b cos

(∫
τds

)
and

τ

κ
= − d

ds

(
−a sin

(∫
τds

)
+ b cos

(∫
τds

))
and use the previous exercise.

(21) Let q (t) = (x (t) , y (t) , z (t)) be a generalized helix that lies on the cylinder
x2 + y2 = 1.
(a) Show that as long as (x (t) , y (t)) is not stationary, then the curve can be

parametrized as

q (φ) = (cosφ, sinφ, z (φ)) .

(b) Use that parametrization to compute the normal component of the accel-
eration

a− (a | v)

|v|2
v

and show that this vector can only stay perpendicular to vectors k = (0, 0, c)
and in this case only when z′′ = 0.

(c) Show that (x (t) , y (t)) is never stationary. Hint: First show that it can’t
be stationary everywhere as it can’t be a line parallel to the z-axis.

(d) Conclude that the original curve is a circular helix.
(22) Let q (t) = (x (t) , y (t) , z (t)) be a generalized helix that lies on the cone x2 +

y2 = z2 with z > 0. Show that the planar curve (x (t) , y (t)) forms a constant
angle with the radial lines and conclude that it is either a radial line or can be
reparametrized as a logarithmic spiral

(x (φ) , y (φ)) = aebφ (cosφ, sinφ) .

Hint: Look at the previous exercise, but the calculations are more involved.
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(23) Show that

q∗ (s) = q +
1

κ
N +

1

κ
cot

(∫
τds

)
B

defines an evolute for q. Hint: See remark 1.3.12.
(24) Show that a planar curve has infinitely many Bertrand mates.
(25) Let q, q∗ be two Bertrand mates.

(a) (Schell) Show that

ττ∗ =
sin2 θ

r2
.

(b) (Mannheim) Show that

(1− rκ) (1 + rκ∗) = cos2 θ.

(26) Consider a curve q (s) parametrized by arclength with positive curvature and
non-vanishing torsion such that

κr + τr cot θ = 1,

i.e., there is a Bertrand mate.
(a) Show that the Bertrand mate is uniquely determined by r.
(b) Show that if q has two different Bertrand mates then it must be a general-

ized helix.
(c) Show that if a generalized helix has a Bertrand mate, then its curvature

and torsion are constant, consequently it is a circular helix.
(27) Investigate properties of a pair of curves that have the same normal planes at

corresponding points, i.e., their tangent lines are parallel.
(28) Investigate properties of a pair of curves that have the same binormal lines at

corresponding points.

3.3. Closed Space Curves

This section discusses various aspects of surface theory. It can be used as
motivation for what is to come in chapters 4 and 5, or it can be covered later and
treated as a culmination of those same chapters.

We start by studying spherical curves. In fact any regular space curve generates
a natural spherical curve, the unit tangent. This was studied for planar curves in
section 2.2 where the unit tangent became a curve on a circle. In that case the
length of the unit tangent curve could be interpreted as an integral of the curvature
that measured how much the curve turns. When the planar curve was closed this
turning necessarily had to be a multiple of 2π.

A regular spherical curve q (t) : I → S2 (1) has an alternate set of equations
that describe its properties. Instead of the principal normal it has a signed normal
that is tangent to the sphere. If we note that q is also normal to the sphere, then
the signed normal can be defined as the vector

S = q×T .
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This leads to the a new set of equations

dT

dt
=

ds

dt
(κgS− q) ,

dS

dt
=

ds

dt
(−κg T) ,

d q

dt
=

ds

dt
T,

where the geodesic curvature κg is defined as κg =
(
dT
ds | S

)
. The geodesic curvature

measures how far a curve is from being a great circle as those curves have the
property that

(
dT
ds | S

)
= 0. The last equation is obvious by now. The first follows

from the definition of κg and the second from the other two.
It’ll be convenient to develop a new formula that calculates the length of a

spherical curve by counting the number of great circles that it intersects. There is
a similar formula for planar curves, Crofton’s formula, that uses how many times
the curve intersects lines. An oriented great circle, thought of as an equator, is
uniquely determined by its corresponding North pole if we think in terms of the
right hand rule. Thus intersections with the oriented great circle with pole x can
be counted as

nq (x) = |{t | (x | q (t)) = 0}|

and Crofton’s formula becomes

1

4

∫
S2

nq (x) dx = L (q) ,

where the integral on the left is a surface integral over the unit sphere.
A point q (t) on the curve intersects the great circles going through that point.

These great circles are described by their poles which in turn lie on the great circle
with pole q (t). This great circle can be parametrized by

x (θ, t) = cos (θ) T (t) + sin (θ) S (t) .
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Thus the surface integral becomes∫ b

a

∫ 2π

0

∣∣∣∣dx

dθ
× dx

dt

∣∣∣∣ dθdt
=

∫ b

a

∫ 2π

0

|(− sin (θ) T + cos (θ) S)× ((κgS− q) cos (θ)− κg T sin (θ))| ds
dt
dθdt

=

∫ b

a

∫ 2π

0

|(− sin (θ) T + cos (θ) S)× (κg (− sin (θ) T + cos (θ) S)− cos (θ) q)| ds
dt
dθdt

=

∫ b

a

∫ 2π

0

|(− sin (θ) T + cos (θ) S)× (− cos (θ) q)| ds
dt
dθdt

=

∫ L(q)

0

∫ 2π

0

|(− sin (θ) T + cos (θ) S)× (− cos (θ) q)| dθds

=

∫ L(q)

0

∫ 2π

0

∣∣(sin (θ) cos (θ) T (t)× q− cos2 (θ) S× q
)∣∣ dθds

=

∫ L(q)

0

∫ 2π

0

√
sin2 (θ) cos2 (θ) + cos4 (θ)dθds

=

∫ L(q)

0

∫ 2π

0

|cos (θ)| dθds

=

∫ L(q)

0

4ds

= 4L (q) .

Theorem 3.3.1 (Fenchel, 1929). If q is a closed space curve with nonvanishing
curvature, then ∫

κds ≥ 2π.

Proof. If the unit tangent field lies in a hemisphere with pole x, i.e., (T | x) ≥
0 for all s, then after integration we obtain

(q (L)− q (0) | x) ≥ 0.

However, q (L) = q (0) as the curve is closed. So it follows that (T | x) = 0 for all
s, i.e., the unit tangent is always perpendicular to x and hence the curve is planar.

This in turn implies that the unit tangent must intersect all great circles in at
least two points. In fact if it does not intersect a certain great circle, then it must
lie in an open hemisphere. If it intersects a great circle exactly once, then it must
lie on one side of it and be tangent to the great circle. By moving the great circle
slightly away from the point of tangency we obtain a new great circle that does not
intersect the unit tangent, another contradiction. Having shown that T intersects
all great circles at least twice it follows from Crofton’s formula that∫

κds = L (T) =
1

4

∫
S2

nT (x) dx ≥ 2

4
· 4π = 2π.

�

Remark 3.3.2. There is an alternate proof of this theorem which also addresses
what happens when the total curvature is 2π. Exercise 13 in section 1.2 shows that
if L (T) ≤ 2π, then T must lie in a closed hemisphere. Consequently, it is a great
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circle. This shows that q is planar with nonvanishing curvature and total curvature
2π. The results in section 2.4 can then be used to show that the curve is convex.

Definition 3.3.3. A simple closed curve q is called an unknot or said to be
unknotted if there is a one-to-one map from the disc to R3 such that boundary of
the disc is q.

Theorem 3.3.4 (Fary, 1949 and Milnor, 1950). If a simple closed space curve
is knotted, then ∫

κds ≥ 4π.

Proof. We assume that
∫
κds < 4π and show that the curve is not knotted.

Crofton’s formula implies that
1

4

∫
S2

nT (x) dx =

∫
κds < 4π.

As the sphere has area 4π this can only happen if we can find x such that nT (x) ≤ 3.
Now observe that

d (q | x)

ds
= (T (s) | x) .

So the function (q | x) has at most three critical points. Since q is closed there
will be a maximum and a minimum. The third critical point, should it exist, can
consequently only be an inflection point. Assume that the minimum is obtained at
s = 0 and the maximum at s0 ∈ (0, L). The third critical point can be assumed
to be in (0, s0). This implies that the function q (s) | x is strictly increasing on
(0, s0) and strictly decreasing on (s0, L). For each t ∈ (0, s0) we can then find a
unique s (t) ∈ (s0, L) such that (q (t) | x) = (q (s (t)) | x). Join the two points q (t)
and q (s (t)) by a segment. These segments will sweep out an area whose boundary
is the curve and no two of the segments intersect as they belong to parallel planes
orthogonal to x. This shows that the curve is the unknot. �

Exercises
(1) Let q be a unit speed spherical curve.

(a) Show that

κ2 = 1 + κ2
g,

N =
1

κ
(− q +κgS) ,

B =
1

κ
(κg q +S) ,

τ =
1

1 + κ2
g

dκg
ds

.

(b) Show that q is planar if and only if the curvature is constant.
(c) Show that L (T) ≥ L (q) with equality only holding for great circles.

(2) Show that for a regular spherical curve q (t) we have

κg =
det
[

q d q
dt

d2 q
dt2

]
(
ds
dt

)3 .
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(3) (Jacobi) Let q (s) : [0, L] → R3 be a closed unit speed curve with positive
curvature and consider the unit normal N as a closed curve on S2.
(a) Show that if sN denotes the arclength parameter of N, then(

dsN

ds

)2

= κ2
q + τ2

q ,

where κq and τq are the curvature and torsion of q.
(b) Show that the geodesic curvature κg of N is given by

κg =
κq

dτq
ds − τq

dκq

ds(
κ2

q + τ2
q

) 3
2

.

(c) Show that ∫ L

0

κg (s)
dsN

ds
ds = 0.

(4) Let q(t) be a regular closed space curve with positive curvature. Show that if
its curvature is ≤ R−1, then its length is ≥ 2πR.

(5) (Curvature characterization of great circles) Show that great circles q (t) =
a cos (t) + b sin (t), where a, b are orthonormal, are unit speed spherical curves
with vanishing geodesic curvature. Conversely show that any spherical unit
speed curve with vanishing geodesic curvature is a great circle.

(6) Show that the curve

q (t) = (cos (t) cos (at) , sin (t) cos (at) , sin (at))

lies on the unit sphere. Compute its curvature.
(7) Show that a simple closed planar curve is unknotted. Show similarly that a

simple closed spherical curve is unknotted. Hint: Use the Jordan curve theorem
and note that it also holds for spherical curves.

(8) The trefoil curve is given by

q (t) = ((a+R cos (3t)) cos (2t) , (a+R cos (3t)) sin (2t) , R sin (3t)) ,

where a > b > 0 and t ∈ [0, 2π]. Sketch this curve (it lies on a torus which is
created by rotating the circle in the x, z-plane of radius R centered at (a, 0, 0)
around the z-axis) and try to prove that it is knotted.

(9) (Segre, 1947) Let q (s) : [0, L]→ R3 be a closed unit speed curve. Show that if∫
|τ | ds = 4R ≤ 2π, then the binormal is contained in a spherical cap of radius
≤ R.

(10) Show that if C (σ) is a unit speed curve on the unit sphere, then for all r, θ the
curve

q = r

∫
Cdσ + r cot θ

∫
C× dC

dσ
dσ

has a Bertrand mate. Hint: Start by establishing the formulas

T = sin θC + cos θC× dC

dσ
,

N = ±dC

dσ
,

B = ±
(
− cos θC + sin θC× dC

dσ

)
.
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Conversely show that any curve that has a Bertrand mate can be written in
this way.

(11) Let q (s) : [0, L]→ S2 be a closed unit speed spherical curve. Show that∫ L

0

τ

κ
ds = 0.

Hint: Use that for a spherical curve τ
κ = df

ds for a suitable function f .
(12) Let q (s) : [0, L]→ S2 be a unit speed spherical curve and write

q = α (s) T +β (s) N +γ (s) B .

(a) Show that

α = 0, β = − 1

κ
,
dβ

ds
= τγ.

(b) When κ > 1 show that

τ =
df

ds
for a suitable function f (s) that only depends on κ and κ′.

(c) When κ > 1 and q is closed show that∫ L

0

τds = 0.

(d) When κ (s) = 1 for s = 0, L and κ > 1 for s ∈ (0, L) show that∫ L

0

τds = 0.

Note this does not rely on q being closed.
(e) Show that if κ = 1 at only finitely many points and q is closed then∫ L

0

τds = 0.

This result holds for all closed spherical curves. Segre has also shown that
a closed space curve with

∫ L
0
τds = 0 must be spherical.



CHAPTER 4

Basic Surface Theory

In this chapter we define some of the fundamental concepts for surfaces, such
as parametrizations, tangents spaces, the first fundamental form, and maps.

4.1. Surfaces

Definition 4.1.1. A parametrized surface is defined as a map q (u, v) : U ⊂
R2 → R3 where ∂ q

∂u and ∂ q
∂v are linearly independent everywhere on U .

For parametrized surfaces we generally do not worry about self-intersections or
other topological pathologies. For example one can parametrize all but the North
and South pole of a sphere S2 (R) =

{
q ∈ R3 | |q| = R > 0

}
using latitudes and

meridians:

q (µ, φ) = R

 cosµ cosφ
sinµ cosφ

sinφ

 = R (cosφ) er (µ) +R (sinφ) e3,

where φ ∈
(
−π2 ,

π
2

)
denotes the latitude and µ the meridian/longitude. This is a

valid parametrization of a surface as long as cosφ 6= 0. This parametrization is
called the equi-rectangular parametrization and is the most common way of coordi-
natizing Earth and the sky. Curiously, it predates Cartesian coordinates by about
1500 years and is very likely the oldest parametrization of a surface that is still in
use.

Definition 4.1.2. A reparametrization of a parametrized surface q (u, v) :
U ⊂ R2 → R3 is a parametrized surface q (s, t) : O ⊂ R2 → R3 such that
the parameters are smooth functions of each other on their respective domains:
(u, v) = (u (s, t) , v (s, t)) for all (s, t) ∈ O, (s, t) = (s (u, v) , t (u, v)) for u, v ∈ U ,
and finally that with these changes we still obtain the same surface q (u, v) = q (s, t).

Definition 4.1.3. A map F : O → U between open sets O,U ⊂ R2 is called
a diffeomorphism if it is one-to-one, onto and both F and the inverse map F−1 :
U → O are smooth. Thus a reparametrization is a diffeomorphism between the
domains.

When we wish to avoid self-intersections on the surface, then we resort to a
more restrictive class of surfaces that come from the next two general constructions.
For curves this corresponds to the notion of being simple and in that case we could
have used the approach we shall take for surfaces.

The first construction uses a particularly nice way of parametrizing surfaces
without self-intersections or other nasty topological problems. These are the three
different types of parametrizations where the surface is represented as a smooth

80
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graph:

q (u, v) = (u, v, f (u, v)) ,

q (u, v) = (u, f (u, v) , v) ,

q (u, v) = (f (u, v) , u, v) .

They are also known as Monge patches.

Example 4.1.4. The western hemisphere on S2 (1) can be parametrized using
the y, z coordinates

q (u, v) =

 −√1− u2 − v2

u
v

 ,
where (u, v) ∈ U =

{
u2 + v2 < 1

}
. Using latitudes/meridians the parametrization

is instead

q (µ, φ) =

 cosµ cosφ
sinµ cosφ

sinφ

 ,
with (µ, φ) ∈

(
π
2 ,

3π
2

)
×
(
−π2 ,

π
2

)
. Setting these two expressions equal to each other

tells us that [
u
v

]
= G (µ, φ) =

[
sinµ cosφ

sinφ

]
.

This map is smooth and it is not hard to check that as a map from
(
π
2 ,

3π
2

)
×
(
−π2 ,

π
2

)
to U it is one-to-one and onto. The differential is

DG =
∂ (u, v)

∂ (µ, φ)
=

[
∂u
∂µ

∂u
∂φ

∂v
∂µ

∂v
∂φ

]
=

[
cosµ cosφ − sinµ sinφ

0 cosφ

]
.

The determinant is cosµ cos2 φ which is always negative on our domain. The inverse
function theorem then guarantees us that G is indeed a diffeomorphism. In this
case it is also possible to construct the inverse using inverse trigonometric functions.

Theorem 4.1.5. Let q (u, v) : U ⊂ R2 → R3 be a parametrized surface. For
every (u0, v0) ∈ U there exists a neighborhood (u0, v0) ∈ V ⊂ U such that the
smaller parametrized surface q (u, v) : V → R3 can be represented as a Monge
patch.

Proof. By assumption the matrix

[
∂ q
∂u

∂ q
∂v

]
=

 ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∂z
∂u

∂z
∂v


always has rank 2. Assume for the sake of argument that at (u0, v0) the middle
row is a linear combination of the other two rows. Then the matrix[

∂x
∂u

∂x
∂v

∂z
∂u

∂z
∂v

]
is nonsingular at (u0, v0). Thus the map (x, z) = (x (u, v) , z (u, v)) : U → R2 has
nonsingular differential at (u0, v0). The inverse function theorem then tells us that
there must exist neighborhoods (u0, v0) ∈ V ⊂ U and (x (u0, v0) , x (u0, v0)) ∈ O ⊂
R2 such that the function (x, z) = (x (u, v) , z (u, v)) : V → O can be smoothly
inverted, i.e., there is a smooth inverse (u, v) = (u (x, z) , v (x, z)) : O → V that
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allows us to smoothly solve for (u, v) in terms of (x, z). This gives us the desired
reparametrization to a Monge patch x (u, v)

y (u, v)
z (u, v)

 = q (u, v) = q (x, z) =

 x
y (u (x, z) , v (x, z))

z

 .
�

Definition 4.1.6. A surface is a subset M ⊂ R3 with the property that any
q ∈M is contained in an open set O ⊂ R3 such that O ∩M can be represented as
a Monge patch, i.e., it is locally a smooth graph over one of the three coordinate
planes.

A parametrization q (u, v) : U ⊂ R2 → R3 is called a coordinate system if the
map is one-to-one and the image q (U) is a surface.

Example 4.1.7. Despite the above theorem not all parametrized surfaces are
surfaces in this restrictive sense. Let q (u) = (x (u) , y (u)) be a regular planar curve
and consider the parametrized surface q (u, v) = (x (u) , y (u) , v). This might not
be a surface if the planar curve looks like a figure 8. We could also take something
like a figure 6 but parametrize it so that the loop gets arbitrarily close without
intersecting. In the latter case we simply parametrize the figure 6 using an open
interval (0, 1).

The second construction comes from considering level sets. A level set is a set
of the form

{(x, y, z) ∈ O | F (x, y, x) = c} ,
where c is a fixed constant and O ⊂ R3 is an open set.

Example 4.1.8. For example

x2 + y2 + z2 = R2

describes the sphere as a level set. Depending on where we are on the sphere
different parametrizations are possible. At points where, say, y < 0 we can use

q (u, v) =
(
u,−

√
R2 − u2 − v2, v

)
This will in fact parametrize all points where y < 0 if we use all (u, v) with u2+v2 <
R2.

The implicit function theorem tells us when level sets are surfaces.

Theorem 4.1.9. Let F : O → R be a smooth function and c ∈ R a constant.
The level set

M = {(x, y, z) ∈ O | F (x, y, x) = c}
is a smooth surface if it is not empty and for all q ∈M the gradient

∇F (q) =

 ∂F
∂x (q)
∂F
∂y (q)
∂F
∂z (q)

 6= 0.

Proof. Fix q = (x0, y0, z0) ∈ M and assume for the sake of argument that
∂F
∂y (q) 6= 0. The implicit function theorem tells us that there are neighborhoods



EXERCISES 83

q ∈ O1 ⊂ O and (x0, z0) ∈ U ⊂ R2 as well as a smooth function f (u, v) : U → R
such that for all (u, v) ∈ U we have (u, f (u, v) , v) ∈ O1 and

M ∩O1 = {(x, y, z) ∈ O1 | F (x, y, x) = c} = {(u, f (u, v) , v) | (u, v) ∈ U} .
Thus M ∩O1 can be written as a graph over the (x, z)-plane. �

Example 4.1.10. A generalized helicoid is a surface of the form

q (u, v) = (u cos v, u sin v, f (u) + cv)

= uer (v) + (f (u) + cv) e3

Note that the v-curves given by holding u constant are helices. In case c = 0 we
obtain surfaces of revolution as the v-curves revolve in circles around the z-axis.
To check when this is a parametrized surface we calculate

∂ q

∂u
= er + f ′e3,

∂ q

∂v
= uea + ce3.

When c 6= 0 these two vectors are always non-zero and linearly independent. More-
over, if q (u1, v1) = q (u, v), then we see by looking at the x- and y-coordinates that
either u1 = u and v1 = v + 2nπ or u1 = −u and v1 = v + (2n+ 1)π. In the first
case the z-coordinates will be different. In the second case the z-coordinates can
be equal if there are u values where

f (u) = f (−u) + (2n+ 1) c.

When c = 0 we obtain a parametrized surface as long as u 6= 0. Thus we might
as well assume that u > 0 in this case. The parametrization is never one-to-one as
the v-curves form circles. In the special case where c = 0 and f ′ = 0 the surface is
a plane perpendicular to the z-axis that is parametrized using polar coordinates.

Exercises
(1) A generalized cylinder is determined by a regular curve c (t) and a vector X

that is never tangent to the curve. It consists of the lines that are parallel to
the vector and pass through the curve.
(a) Show that

q (s, t) = c (t) + sX

is a natural parametrization and show that it gives a parametrized surface.
(b) Show that we can reconstruct the cylinder so that the curve lies in the plane

perpendicular to the vector X. Hint: Try the case where X = (0, 0, 1) and
the plane is the (x, y)-plane and make sure your new parametrization is a
valid parametrization precisely when the old parametrization was valid.

(c) Find the equation for a generalized cylinder when the curve c in the (x, y)-
plane is given by F (x, y) = C and X = (0, 0, 1).

(2) A generalized cone is generated by a regular curve c (t) and a point p not on
the curve. It consists of the lines that pass through the point and the curve.
(a) Show that

q (s, t) = s (c (t)− p) + p

is a natural parametrization and determine when/where it yields a parametrized
surface.

(b) Show that we can replace c (t) by a curve c∗ (t) that lies on a unit sphere
centered at the vertex p of the cone.
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(c) Show that the level set F (x, y, z) = 0 is a cone through the origin when
F is homogeneous, i.e., there is an α 6= 0 such that F (λx, λy, λz) =
λαF (x, y, z).

(d) Further show that the condition for the cone in (c) to be a smooth surface
away from the origin is that∇F (q) is not proportional to q, when F (q) = 0.

(3) A ruled surface is given by a parametrization of the form

q (s, t) = c (t) + sX (t) .

It is evidently a surface that is a union of lines (rulers) and generalizes the con-
structions in the previous exercises. Give conditions on c,X and the parameter
s that guarantee we get a parametrized surface. A special case occurs when X
is tangent to c. These are also called tangent developables.

(4) A surface of revolution is determined by a planar regular curve and a line in
the same plane. The surface is generated by rotating the curve around the line.
(a) Show that for a regular curve (r (t) , z (t)) in the (x, z)- plane that is rotated

around the z-axis the parametrization is

q (t, µ) = (r (t) cosµ, r (t) sinµ, z (t))

= r (t) er (µ) + z (t) e3

and show that it is a parametrized surface.
(b) Show that the equation for the surface is F

(√
x2 + y2, z

)
= c when the

curve is given by F (r, z) = c with x > 0.
(c) Show that the equation for the surface is given by R2 (z) = x2 + y2, when

the curve can be written as r = R (z).
(5) Let q (z, µ) =

(√
1− z2 cosµ,

√
1− z2 sinµ, z

)
with −1 < z < 1 and −π < µ <

π. Show that q defines a surface. What is the surface?
(6) Consider a regular curve c (t) with non-vanishing curvature and construct the

tube of radius R around it

q (t, φ) = c (t) +R (Nc cosφ+ Bc sinφ) ,

where Nc, Bc are the normal and binormal to the curve.
(a) Show that this defines a parametrized surface as long as κc < R−1.
(b) Show by example that this surface might intersect itself if there is a chord

of length < 2R that is normal to the curve at both end points.
(c) Show that when c is a circle, then we obtain a surface of revolution that

looks like a torus.
(7) Consider the level set:

z
(
x2 + y2

)
− 2xy = R.

(a) Show that this defines a surface when R 6= 0.
(b) When R = 0 show that we get a surface as long as (x, y) 6= (0, 0). This is

called Plücker’s conoid.
(c) When R = 0 show that it is a ruled surface. Hint: Use polar coordinates

x = t cos θ and y = t sin θ.
(8) Show that (

x2 + y2 + z2 +R2 − r2
)2

= 4R2
(
x2 + y2

)
defines a surface when R > r > 0. Show that it is rotationally symmetric and
a torus, i.e., it is a parametrized circle rotated around the z-axis.
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(9) The helicoid is given by the equation

tan
z

h
=
y

x

where h 6= 0 is a fixed constant.
(a) Show that this defines a surface for suitable (x, y, z).
(b) Show that the surface can be parametrized by

q (r, θ) = (r cos θ, r sin θ, hθ)

= rer (θ) + he3

and determine for which r, θ this defines a parametrized surface. Note that
for fixed r we obtain helices.

(10) Enneper’s surface is defined by the parametrization

q (u, v) =

(
u− 1

3
u3 + uv2, v − 1

3
v3 + vu2, u2 − v2

)
.

(a) For which u, v does this define a parametrization?
(b) Show that Enneper’s surface satisfies the equation(

y2 − x2

2z
+

2z2

9
+

2

3

)3

= 6

(
y2 − x2

4z
− 1

4

(
x2 + y2 +

8

9
z2

)
+

2

9

)2

.

(11) Show that there exists a parametrization q : U → S2 ⊂ R3 that covers the
entire sphere. Hint: If U is the disjoint union of two discs, then this can be
done using two maps that each cover a region slightly larger than a hemisphere.
Now connect these discs by a band in R2 and similarly in the sphere to obtain
a parametrization from a domain U that is diffeomorphic to R2.

(12) Many classical surfaces are of the form

F (x, y, z) = ax2 + by2 + cz2 + dx+ ey + fz + g = 0.

These are called quadratic surfaces if one of a, b, or c 6= 0.
(a) Show that it is either empty or defines a surface at points (x, y, z) ∈ R3−C,

where C is the closed set defined by

C = {(x, y, z) | 2ax = −d, 2by = −e, 2cz = −f} .
(b) Show that C is either empty, a point, a line, or a plane.
(c) Under what conditions does it become a surface of revolution around the

z-axis?
(d) Show that when the equation does not depend on one of the coordinates,

then we obtain a generalized cylinder.
(e) When, say c = 0, but abf 6= 0 we obtain a paraboloid. It is elliptic when

a, b have the same sign and otherwise hyperbolic. Draw pictures of these
two situations.

(f) When abc 6= 0 show that it can be rewritten in the form

F (x, y, z) = a (x− x0)
2

+ b (y − y0)
2

+ c (z − z0)
2

+ h = 0.

(g) When all three a, b, c have the same sign show that it is either empty or an
ellipsoid.

(h) When not all of a, b, c have the same sign and h 6= 0 we obtain a hyperboloid.
Show that it might be connected or have two components (called sheets)
depending of the signs of all four constants.
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(i) When not all of a, b, c have the same sign and h = 0 we obtain a cone.
(j) Given constants ax, ay, az determine when

q (u, v) = (ax cosu cos v, ay cosu sin v, az sinu) ,

q (u, v) = (ax sinhu cos v, ay sinhu sin v, az coshu) ,

q (u, v) = (ax coshu cos v, ay coshu sin v, az sinhu) ,

q (u, v) =
(
axu cos v, ayu sin v, azu

2
)
,

q (u, v) =
(
axu cosh v, ayu sinh v, azu

2
)
,

yield parametrizations and identify them with the appropriate quadratics.

4.2. Tangent Spaces and Maps

Definition 4.2.1. The tangent space at q ∈ M of a (parametrized) surface is
defined as

TqM = span

{
∂ q

∂u
,
∂ q

∂v

}
,

and normal space is the orthogonal complement

NqM = (TqM)
⊥
.

Remark 4.2.2. For a parametrized surface with self-intersections this is a bit
ambivalent as the tangent space in that case depends on the parameter values (u, v)
and not just the point q = q (u, v). This is just as for curves where the tangent line
at a point really is the tangent line at a point with respect to a specific parameter
value.

Remark 4.2.3. Note that the tangent and normal spaces are subspaces. We can
also define the tangent plane at q ∈M , as the plane parallel to TqM that contains
q. The tangent plane is then similar to the tangent line for a curve. Similarly, the
normal line to q ∈ M is the line through q that is parallel to NqM . A normal to
M at q is a choice of a unit vector in n ∈ NqM . There are two normals at each
point. In the rest of these notes n will always denote a unit normal to a surface.
The principal normal to a curve c will be denoted Nc.

Example 4.2.4. A parametrized surface q (u, v) : U → R3 always has a natural
normal n (u, v) defined by

n (u, v) =
∂ q
∂u ×

∂ q
∂v∣∣∣∂ q

∂u ×
∂ q
∂v

∣∣∣
However, it is possible (as well shall see in the exercises) that there are parameter
values that give the same points and tangent spaces to the surface without giving
the same normal vectors.

Example 4.2.5 (Example 4.1.10 continued). The normal of the generalized
helicoid is given by

n (u, v) =
∂ q
∂u ×

∂ q
∂v∣∣∣∂ q

∂u ×
∂ q
∂v

∣∣∣ =
−uf ′er − cea + ue3√
c2 + u2

(
1 + (f ′)

2
) .

Proposition 4.2.6. Both tangent and normal spaces are subspaces that do not
change under reparametrization.
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Proof. This would seem intuitively clear, just as with curves, where the tan-
gent line does not depend on parametrizations. For curves it boils down to the
simple fact that velocities for different parametrizations are proportional. With
surfaces something similar happens, but it is a bit more involved. Suppose we have
two different parametrizations of the same surface:

q (s, t) = q (u, v) .

This tells us that the parameters are functions of each other

u = u (s, t) , v = v (s, t) ,

s = s (u, v) , t = t (u, v) .

The chain rule then gives us
∂ q

∂u
=
∂ q

∂s

∂s

∂u
+
∂ q

∂t

∂t

∂u
∈ span

{
∂ q

∂s
,
∂ q

∂t

}
,

and
∂ q

∂v
∈ span

{
∂ q

∂s
,
∂ q

∂t

}
.

In the other direction we similarly have
∂ q

∂s
,
∂ q

∂t
∈ span

{
∂ q

∂u
,
∂ q

∂v

}
.

This shows that at a fixed point q on a surface, the tangent space does not depend
on how the surface is parametrized. The normal space is then also well-defined. �

Note that the chain rule shows in matrix notation that[
∂ q
∂u

∂ q
∂v

]
=

[
∂ q
∂s

∂ q
∂t

] [ ∂s
∂u

∂s
∂v

∂t
∂u

∂t
∂v

]
,

[
∂ q
∂s

∂ q
∂t

]
=

[
∂ q
∂u

∂ q
∂v

] [ ∂u
∂s

∂u
∂t

∂v
∂s

∂v
∂t

]
with [

∂s
∂u

∂s
∂v

∂t
∂u

∂t
∂v

]−1

=

[
∂u
∂s

∂u
∂t

∂v
∂s

∂v
∂t

]
.

A better way of defining the tangent space that also shows that it is independent
of parametrizations comes from the next result.

Proposition 4.2.7. The tangent space at q = q (u0, v0) for a (parametrized)
surface is given by

TqM =

{
v ∈ R3 | v =

d q

dt
(0) for a smooth curve q (t) : I →M with q (0) = q

}
.

Proof. Any curve q (t) on the surface that passes through q at t = 0 can be
written as

q (t) = q (u (t) , v (t))

for smooth functions u (t) and v (t) with u (0) = u0 and v (0) = v0 as long as t is
sufficiently small. This is because the parametrization is locally one-to-one. If we
write the curve this way, then

d q

dt
=
∂ q

∂u

du

dt
+
∂ q

∂v

dv

dt
.
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Thus showing that velocities of curves on the surface are always tangent vectors.
Conversely by using u (t) = at+ u0 and v (t) = bt+ v0 we obtain all possible linear
combinations of tangent vectors as

d q

dt
(0) =

∂ q

∂u
a+

∂ q

∂v
b.

�

Corollary 4.2.8. Let M = {(x, y, z) ∈ O | F (x, y, z) = c} be a level set as in
theorem 4.1.9. The normal space is spanned by

∇F (q) =

 ∂F
∂x (q)
∂F
∂y (q)
∂F
∂z (q)

 .
Proof. We saw in proposition 4.2.7 that any tangent vector in TqM can be

represented as a velocity vector q̇ (0). Since q (t) ∈ M it follows that F (q (t)) = c
for all t. The chain rule then implies that

0 = (∇F (q (0)) | q̇ (0)) = (∇F (q) | q̇ (0)) .

This shows that the gradient is perpendicular to all tangent vectors and hence is a
normal vector. �

Example 4.2.9. The sphere of radius R centered at the origin has a unit normal
given by the unit radial vector at q = (x, y, z) ∈ S2 (R)

n =
1

R
q =

1

R

 x
y
z

 .
The basis for the tangent space with respect to the meridian/latitude parametriza-
tion is

∂ q

∂µ
= R (cosφ) ea,

∂ q

∂φ
= −R (sinφ) er +R (cosφ) e3.

It is often useful to find coordinates suited to a particular situation. However,
unlike for curves, it isn’t always possible to parametrize a surface such that the
coordinate curves are unit speed and orthogonal to each other. But there is one
general construction we can do.

Theorem 4.2.10. Assume that we have linearly independent tangent vector
fields X,Y defined on a surface M. Then it is possible to find a parametrization
q (u, v) in a neighborhood of any point such that ∂ q

∂u is proportional to X and ∂ q
∂v is

proportional to Y.

Proof. The vector fields have integral curves forming a net on the surface.
Apparently the goal is to reparametrize the curves in this net in some fashion. The
difficulty lies in ensuring that the levels where u is constant correspond to the v-
curves, and vice versa. We proceed as with the classical construction of Cartesian
coordinates. Select a point p and let the u-axis be the integral curve for X through
p, similarly let the v-axis be the integral curve for Y through p. Both of these curves
retain the parametrizations that make them integral curves forX and Y. Thus p will
naturally correspond to (u, v) = (0, 0) . We now wish to assign (u, v) coordinates
to a point q near p. There are also unique integral curves for X and Y through
q. These will be our way of projecting onto the chosen axes and will in this way
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yield the desired coordinates. Specifically, u (q) is the parameter where the integral
curve for Y through q intersects the u-axis, and similarly with v (q) . In general,
integral curves can intersect axes in several places or might not intersect them at
all. However, a continuity argument offers some justification when we consider that
the axes themselves are the proper integral curves for the qs that lie on these axes
and so when q sufficiently close to both axes it should have a well-defined set of
coordinates. We also note that as the projection happens along integral curves
we have ensured that coordinate curves are simply reparametrizations of integral
curves. To completely justify this construction we need to know quite a bit about
the existence, uniqueness and smoothness of solutions to differential equations and
the inverse function theorem. �

Remark 4.2.11. Note that this proof gives us a little more information. Specif-
ically, we obtain a parametrization where the parameter curves through (0, 0) are
the integral curves for X and Y .

Definition 4.2.12. A map between surfaces F : M1 → M2 is an assignment
of points in the first surface to points in the second. The map is smooth if around
every point q ∈ M1 we can find a parametrization q1 (u, v) where q = q1 (u0, v0)
such that the composition F ◦ q1 : U → R3 is a smooth map as a map from the
space of parameters to the ambient space that contains the target M2.

We can also define maps between parametrized surfaces in a similar way.
Clearly parametrizations are themselves smooth maps. It is also often the case
that the compositions F ◦ q1 are themselves parametrizations for M2.

Example 4.2.13. Two classical examples of maps are the Archimedes and Mer-
cator projections from the sphere to the cylinder of the same radius placed to touch
the sphere at the equator. We give the formulas for the unit sphere and note that
neither map is defined at the poles.

The Archimedes map is simply a horizontal projection that preserves the z-
coordinate

A

 x
y
z

 =


x√
x2+y2
y√
x2+y2

z

 .
In the meridian/latitude parametrization it looks particularly nice:

A

 cosµ cosφ
sinµ cosφ

sinφ

 =

 cosµ
sinµ
sinφ


or

A ((cosφ) er + (sinφ) e3) = er + (sinφ) e3.

Note that what is here referred to as the Archimedes map is often called the Lambert
projection. However, Archimedes was the first to discover that the areas of the
sphere and cylinder are equal. This will be discussed in greater detail in section
4.4.

The Mercator projection (1569) differs in that the z-coordinate is not preserved:

M

 x
y
z

 =


x√
x2+y2
y√
x2+y2

1
2 log 1+z

1−z
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or

M

 cosµ cosφ
sinµ cosφ

sinφ

 =

 cosµ
sinµ

1
2 log 1+sinφ

1−sinφ


or

M ((cosφ) er + (sinφ) e3) = er +
1

2
log

1 + sinφ

1− sinφ
e3.

Both of these maps really are maps in the traditional sense that they can be
used to picture the Earth on a flat piece of paper by cutting the cylinder vertically
and unfolding it. This unfolding is done along a meridian. For Eurocentric people
it is along the date line. In the Americas one also sees maps cut along a meridian
that bisects Asia so as to place the Americas in the center.

Definition 4.2.14. The differential of a smooth map F : M1 →M2 at q ∈M1

is the map
DFq : TqM1 → TF (q)M2

defined by

DFq (v) =
d (F ◦ q)

dt
(0)

if q (t) is a curve (in M1) with q = q (0) and v = d q
dt (0).

Proposition 4.2.15. When v = d q
dt (0) = ∂ q

∂u vu +∂ q
∂v vv we have

DFq (v) =
[

∂(F◦q)
∂u

∂(F◦q)
∂v

] [
vu

vv

]
.

In particular, the differential is a linear map and is completely determined by the
two partial derivatives ∂(F◦q)

∂u , ∂(F◦q)
∂v .

Proof. This follows from the chain rule:
d (F ◦ q)

dt
(t) =

dF (q (t))

dt

=
dF (q (u (t) , v (t)))

dt

=
∂ (F ◦ q)

∂u

du

dt
+
∂ (F ◦ q)

∂v

dv

dt

=
[

∂(F◦q)
∂u

∂(F◦q)
∂v

] [ du
dt
dv
dt

]
.

�

Example 4.2.16. The Archimedes map satisfies

∂ (A ◦ q)

∂µ
=

 − sinµ
cosµ

0

 = ee,
∂ (A ◦ q)

∂φ
=

 0
0

− cosφ


and the Mercator map

∂ (M ◦ q)

∂µ
=

 − sinµ
cosµ

0

 = ea,
∂ (M ◦ q)

∂φ
=

 0
0
1

cosφ

 .
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Definition 4.2.17. A surfaceM is orientable if we can select a smooth normal
field. Thus we require a smooth function

n : M → S2 (1) ⊂ R3

such that for all q ∈M the vector n (q) is perpendicular to the tangent space TqM .
The map n : M → S2 (1) is called the Gauss map.

Proposition 4.2.18. A surface which is given as a level set is orientable.

Proof. Form corollary 4.2.8 we know that the normal can be given by

n =
∇F
|∇F |

if M = {q ∈ O | F (q) = c}. �

Remark 4.2.19. The parameters u, v on a parameterized surface q (u, v) define
two differentials du and dv. These are not mysterious infinitesimals, but linear
functions on tangent vectors to the surface that compute the coefficients of the
vector with respect to the basis ∂ q

∂u ,
∂ q
∂v . Thus

du (v) = du

(
∂ q

∂u
vu +

∂ q

∂v
vv
)

= vu,

dv (v) = dv

(
∂ q

∂u
vu +

∂ q

∂v
vv
)

= vv,

and

v =
[
∂ q
∂u

∂ q
∂v

] [ du
dv

]
(v) =

[
∂ q
∂u

∂ q
∂v

] [ vu

vv

]
.

From the chain rule we obtain the very natural transformation laws for differentials

du =
∂u

∂s
ds+

∂u

∂t
dt,

dv =
∂v

∂s
ds+

∂v

∂t
dt,

or [
du
dv

]
=

[
∂u
∂s

∂u
∂t

∂v
∂s

∂v
∂t

] [
ds
dt

]
.

Exercises
(1) Show that the following conditions for a surface are equivalent:

(a) It is part of a plane.
(b) The normal vector is constant.
(c) All the tangent planes are parallel.

(2) Show that the following conditions for a surface are equivalent:
(a) It is part of a sphere.
(b) All normal lines pass through a fixed point.
(c) n = λ (q−c) for some function λ and point c.
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(3) Show that the ruled surface

q (t, φ) = (cosφ, sinφ, 0) + t

(
sin

φ

2
cosφ, sin

φ

2
sinφ, cos

φ

2

)
= er (φ) + t sin

φ

2
er (φ) + t cos

φ

2
e3.

defines a parametrized surface. It is called the Möbius band. Show that it is
not orientable by showing that when t = 0 and φ = ±π we obtain the same
point and tangent space on the surface, but the normals

n (t, φ) =

∂ q
∂t ×

∂ q
∂φ∣∣∣∂ q

∂t ×
∂ q
∂φ

∣∣∣
are not the same.

(4) Show that q (t, φ) = t (cosφ, sinφ, 1) defines a parametrization for (t, φ) ∈
(0,∞)×R. Show that the corresponding surface is x2+y2−z2 = 0, z > 0. Show
that this parametrization is not one-to-one. Find a different parametrization
of the entire surface that is one-to-one.

(5) Consider the two surfaces M1 and M2 defined by the parametrizations:

q1 (t, φ) = (sinhφ cos t, sinhφ sin t, t)

= te3 + (sinhφ) er (t) ,

q2 (t, φ) = (cosh t cosφ, cosh t sinφ, t) .

= (cosh t) er (φ) + te3.

(a) Show that q1 : R × R → M1 is a one-to-one parametrization of a helicoid
(see section 4.1 exercise 9).

(b) Show that q2 is a parametrization that is not one-to-one. Show that M2 is
rotationally symmetric (see section 4.1 exercise 4) and can also be described
by the equation

x2 + y2 = cosh2 z.

Show further that this equation defines a surface. It is called the catenoid.
(c) Define a map F : M1 →M2 by F ◦q1 (t, φ) = q2 (t, φ). Show that this map

is smooth, not one-to-one, but locally a diffeomorphism.
(6) Show that a parametrized surface

q (z, θ) =

 r (z, θ) cos θ
r (z, θ) sin θ

z

 = r (z, θ) er (θ) + ze3

is rotationally symmetric, i.e., ∂r∂θ = 0, if all its normal lines pass through the
z-axis.

(7) The inversion in the unit sphere or circle is defined as

F (q) =
q

|q|2
.

(a) Show that this is a diffeomorphism of Rn − 0 to it self with the property
that (q | F (q)) = 1.

(b) Show that F preserves the unit sphere, but reverses the unit normal direc-
tions.
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(c) LetM be a surface. Show thatM∗ = F (M) defines another surface. Show
that DF : TqM → Tq∗M

∗ satisfies

DF (v) =
|q|2 v − 2(q | v)q

|q|4
.

(d) Show that if n is a unit normal to M , then the unit normal to M∗ is given
by

n∗ = ±

(
n−q 2 (q | n)

|q|2

)
.

(8) A perspective projection is defined as a radial projection along lines emanating
from a fixed point c ∈ Rn to a hyper-plane H ⊂ Rn.
(a) Let c = (0, 0, c) ∈ R3 and H be the (x, y)-plane. Show that the projection

is given by (x, y, z) 7→
(
cx
c−z ,

cy
c−z , 0

)
.

(b) Let c = (0, 0, 0) ∈ R3 andH be the {z = 1}-plane. Show that the projection
is given by (x, y, z) 7→

(
x
z ,

y
z , 1
)
.

(c) Let c = (0, 0, 1) ∈ R3 and H be the {z = −1}-plane. Show that the pro-
jection is given by (x, y, z) 7→

(
2x

1−z ,
2y

1−z ,−1
)
.

(9) Consider the two maps q± : Rn → Rn × R = Rn+1

q± (q) = (q, 0) +
1− |q|2

1 + |q|2
(q,±1) .

These two maps are inverses of perspective projections to the unit sphere. They
are also called stereographic projections.
(a) Show that these maps are one-to-one, map into the unit sphere, and that

together they cover the unit sphere.
(b) Show that they are the inverse maps of the perspective projections from

(0,∓1) ∈ Rn × R to the Rn ⊂ Rn × R plane where the last coordinate
vanishes.

(c) Show that q+
(

q
|q|2

)
= q− (q) and q+ (q) = q−

(
q
|q|2

)
.

4.3. The First Fundamental Form

Let q (u, v) : U → R3 be a parametrized surface. At each point of this surface
we have a basis

∂ q

∂u
(u, v) ,

∂ q

∂v
(u, v) ,

n (u, v) =
∂ q
∂u ×

∂ q
∂v∣∣∣∂ q

∂u ×
∂ q
∂v

∣∣∣ .
These vectors are again parametrized by u, v. The first two vectors are tangent
to the surface and give us an unnormalized version of the tangent vector for a
curve, while the third is the normal and is naturally normalized just as the normal
vector is for a curve. One of the issues that make surface theory more difficult than
curve theory is that there is no canonical parametrization such as the arclength
parametrization for curves.
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The first fundamental form is the symmetric positive definite form that comes
from the matrix

[I] =
[
∂ q
∂u

∂ q
∂v

]t [ ∂ q
∂u

∂ q
∂v

]
=

 (∂ q
∂u |

∂ q
∂u

) (
∂ q
∂u |

∂ q
∂v

)(
∂ q
∂v |

∂ q
∂u

) (
∂ q
∂v |

∂ q
∂v

) 
=

[
guu guv
gvu gvv

]
.

For a curve the analogous term would simply be the square of the speed(
d q

dt

)t
d q

dt
=

(
d q

dt
| d q

dt

)
.

The first fundamental form dictates how one computes dot products of vectors
tangent to the surface assuming they are expanded according to the basis ∂ q

∂u ,
∂ q
∂v .

If

X = Xu ∂ q

∂u
+Xv ∂ q

∂v
=
[
∂ q
∂u

∂ q
∂v

] [ Xu

Xv

]
,

Y = Y u
∂ q

∂u
+ Y v

∂ q

∂v
=
[
∂ q
∂u

∂ q
∂v

] [ Y u

Y v

]
,

then

I (X,Y ) =
[
Xu Xv

] [ guu guv
gvu gvv

] [
Y u

Y v

]
=

[
Xu Xv

] [
∂ q
∂u

∂ q
∂v

]t [ ∂ q
∂u

∂ q
∂v

] [ Y u

Y v

]
=

([
∂ q
∂u

∂ q
∂v

] [ Xu

Xv

])t([
∂ q
∂u

∂ q
∂v

] [ Y u

Y v

])
= XtY

= (X | Y ) .

In particular, we see that while themetric coefficients gw1w2 depend on our parametriza-
tion, the dot product I (X,Y ) of two tangent vectors remains the same if we change
parameters. Note that I stands for the bilinear form I (X,Y ) which does not de-
pend on parametrizations, while [I] is the matrix representation with respect to a
parametrization.

Our first observation is that the normalization factor
∣∣∣∂ q
∂u ×

∂ q
∂v

∣∣∣ can be com-
puted from [I] .

Definition 4.3.1. The area form of a parametrized surface is given by√
det [I].

The next lemma shows that this is given by the area of the parallelogram
spanned by ∂ q

∂u ,
∂ q
∂v .
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Lemma 4.3.2. We have∣∣∣∣∂ q

∂u
× ∂ q

∂v

∣∣∣∣2 = det [I] = guugvv − (guv)
2
.

Proof. This is simply the observation that both sides of the equation are
formulas for the square of the area of the parallelogram spanned by ∂ q

∂u ,
∂ q
∂v , i.e.,∣∣∣∣∂ q

∂u
× ∂ q

∂v

∣∣∣∣2 =

∣∣∣∣∂ q

∂u

∣∣∣∣2 ∣∣∣∣∂ q

∂v

∣∣∣∣2 − (∂ q

∂u
| ∂ q

∂v

)2

.

�

Example 4.3.3 (Example 4.1.10 continued). The first fundamental form and
area form of the generalized helicoid are given by

[I] =

[
1 + (f ′)

2
cf ′

cf ′ u2 + c2

]
, det [I] = c2 + u2

(
1 + (f ′)

2
)
.

Example 4.3.4. We also need to know how the first fundamental form changes
under a reparametrization. Consider for example (u, v) = er (cos θ, sin θ) so that

∂ q

∂r
=
∂ q

∂u

∂u

∂r
+
∂ q

∂v

∂v

∂r
=
∂ q

∂u
er cos θ +

∂ q

∂v
er sin θ,

∂ q

∂θ
=
∂ q

∂u

∂u

∂θ
+
∂ q

∂v

∂v

∂θ
= −∂ q

∂u
er sin θ +

∂ q

∂v
er cos θ.

Thus

grr =

(
∂ q

∂u

∂u

∂r
+
∂ q

∂v

∂v

∂r
| ∂ q

∂u

∂u

∂r
+
∂ q

∂v

∂v

∂r

)
= guu

∂u

∂r

∂u

∂r
+ 2guv

∂u

∂r

∂v

∂r
+ gvv

∂v

∂r

∂v

∂r

= e2r
(
guu cos2 θ + 2guv cos θ sin θ + gvv sin2 θ

)
,

grθ =

(
∂ q

∂u

∂u

∂r
+
∂ q

∂v

∂v

∂r
| ∂ q

∂u

∂u

∂θ
+
∂ q

∂v

∂v

∂θ

)
= guu

∂u

∂r

∂u

∂θ
+ guv

(
∂u

∂r

∂v

∂θ
+
∂u

∂θ

∂v

∂r

)
+ gvv

∂v

∂r

∂v

∂θ

= e2r
(
−guu cos θ sin θ + guv

(
cos2 θ − sin2 θ

)
+ gvv cos θ sin θ

)
,

gθθ =

(
∂ q

∂u

∂u

∂θ
+
∂ q

∂v

∂v

∂θ
| ∂ q

∂u

∂u

∂θ
+
∂ q

∂v

∂v

∂θ

)
= guu

∂u

∂θ

∂u

∂θ
+ 2guv

∂u

∂θ

∂v

∂θ
+ gvv

∂v

∂θ

∂v

∂θ

= e2r
(
guu sin2 θ − 2guv sin θ cos θ + gvv cos2 θ

)
.

In matrix notation[
grr grθ
gθr gθθ

]
=

[
∂u
∂r

∂u
∂θ

∂v
∂r

∂v
∂θ

]t [
guu guv
gvu gvv

] [
∂u
∂r

∂u
∂θ

∂v
∂r

∂v
∂θ

]
=

[
∂u
∂r

∂v
∂r

∂u
∂θ

∂v
∂θ

] [
guu guv
gvu gvv

] [
∂u
∂r

∂u
∂θ

∂v
∂r

∂v
∂θ

]
.
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The inverse matrix

[I]
−1

=

[
guu guv
gvu gvv

]−1

=

[
guu guv

gvu gvv

]
can be used to find the expansion of a tangent vector by computing its dot products
with the basis:

Proposition 4.3.5. If X ∈ TqM, then

X =

(
guu

(
X | ∂ q

∂u

)
+ guv

(
X | ∂ q

∂v

))
∂ q

∂u

+

(
gvu

(
X | ∂ q

∂u

)
+ gvv

(
X | ∂ q

∂v

))
∂ q

∂v

=
[
∂ q
∂u

∂ q
∂v

]
[I]
−1 [ ∂ q

∂u
∂ q
∂v

]t
X.

More generally, for any Z ∈ R3

Z =

(
guu

(
Z | ∂ q

∂u

)
+ guv

(
Z | ∂ q

∂v

))
∂ q

∂u

+

(
gvu

(
Z | ∂ q

∂u

)
+ gvv

(
Z | ∂ q

∂v

))
∂ q

∂v
+ (Z | n) n

=
[
∂ q
∂u

∂ q
∂v

]
[I]
−1 [ ∂ q

∂u
∂ q
∂v

]t
Z + (Z | n) n .

Proof. This formula works for X ∈ TqM by writing

X =
[
∂ q
∂u

∂ q
∂v

] [ Xu

Xv

]
= Xu ∂ q

∂u
+Xv ∂ q

∂v

and then observing that[
∂ q
∂u

∂ q
∂v

]
[I]
−1 [ ∂ q

∂u
∂ q
∂v

]t
X =

[
∂ q
∂u

∂ q
∂v

]
[I]
−1 [ ∂ q

∂u
∂ q
∂v

]t [ ∂ q
∂u

∂ q
∂v

] [ Xu

Xv

]
=

[
∂ q
∂u

∂ q
∂v

]
[I]
−1

[I]

[
Xu

Xv

]
=

[
∂ q
∂u

∂ q
∂v

] [ Xu

Xv

]
= X.

For a general vector Z ∈ R3 the result follows by using the orthogonal decomposition

Z = X + (Z | n) n,

where X = Z − (Z | n) n ∈ TqM and observing that the operation

Z 7→
[
∂ q
∂u

∂ q
∂v

]
[I]
−1 [ ∂ q

∂u
∂ q
∂v

]t
Z

is a linear map defined for all Z ∈ R3 with kernel spanned by n. In fact, it
orthogonally projects Z to TqM . �

Defining the gradient of a function is another important use of the first funda-
mental form as well as its inverse. Let f (u, v) be viewed as a function on the surface



EXERCISES 97

q (u, v) . Our definition of the gradient should definitely be so that it conforms with
the chain rule for a curve q (t) = q (u (t) , v (t)) . Thus on one hand we want

d (f ◦ q)

dt
= (∇f | q̇)

=
[

(∇f)
u

(∇f)
v ]

[I]

[
du
dt
dv
dt

]
while the chain rule also dictates

d (f ◦ q)

dt
=
[
∂f
∂u

∂f
∂v

] [ du
dt
dv
dt

]
.

This indicates that [
(∇f)

u
(∇f)

v ]
=
[
∂f
∂u

∂f
∂v

]
[I]
−1

or

∇f =
[
∂ q
∂u

∂ q
∂v

] [ (∇f)
u

(∇f)
v

]
=

[
∂ q
∂u

∂ q
∂v

] ([
∂f
∂u

∂f
∂v

]
[I]
−1
)t

=
[
∂ q
∂u

∂ q
∂v

]
[I]
−1 [ ∂f

∂u
∂f
∂v

]t
=

(
guu

∂f

∂u
+ guv

∂f

∂v

)
∂ q

∂u
+

(
gvu

∂f

∂u
+ gvv

∂f

∂v

)
∂ q

∂v
.

In particular, we see that changing coordinates changes the gradient in such a way
that it isn’t simply the vector corresponding to the partial derivatives! The other
nice feature is that we now have a concept of the gradient that gives a vector field
independently of parametrizations. The defining equation

d (f ◦ q)

dt
= (∇f | q̇) = I (∇f, q̇)

gives an implicit definition of∇f that makes sense without reference to parametriza-
tions of the surface.

Exercises
(1) For a surface of revolution q (t, µ) = r (t) er (µ)+z (t) e3 (see section 4.1 exercise

4) show that the first fundamental form is given by[
gtt gtµ
gµt gµµ

]
=

[
ṙ2 + ż2 0

0 r2

]
.

A special and important case of this occurs when z = 0 and r = t as that
corresponds to polar coordinates in the (x, y)-plane.

(2) Assume that we have a cone (see section 4.1 exercise 2) given by

q (r, φ) = rc (φ) ,

where c is a space curve with |c| = 1 and
∣∣∣ dcdφ ∣∣∣ = 1. Show that the first

fundamental form is given by[
grr grφ
gφr gφφ

]
=

[
1 0
0 r2

]
and compare this to polar coordinates in the plane.
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(3) Assume that we have a generalized cylinder (see section 4.1 exercise 1) given
by

q (s, t) = (x (s) , y (s) , t) ,

where (x (s) , y (s)) is unit speed. Show that the first fundamental form is given
by [

gss gst
gts gtt

]
=

[
1 0
0 1

]
.

(4) Assume that we have a ruled surface (see section 4.1 exercise 3) given by

q (s, t) = c (t) + sX (t) ,

where c is a space curve and X is a unit vector for each t. Show that the first
fundamental form is given by[

gss gst
gts gtt

]
=

[
1

(
dc
dt | X

)(
dc
dt | X

) ∣∣dc
dt + sdXdt

∣∣2
]
.

(5) Show that if we have a parametrized surface q (r, θ) such that the first funda-
mental form is given by[

grr grθ
gθr gθθ

]
=

[
1 0
0 r2

]
,

then we can locally reparametrize the surface to q (u, v) where the new first
fundamental form is [

guu guv
gvu gvv

]
=

[
1 0
0 1

]
.

Hint: Let u = r cos θ and v = r sin θ.
(6) Let c (s) be a unit speed curve with non-zero curvature, binormal Bc and torsion

τ . Show that the first fundamental form for the ruled surface

q (s, t) = c (s) + tBc (s)

is given by [
gss gst
gts gtt

]
=

[
1 + t2τ2 0

0 1

]
.

(7) Consider a unit speed curve c (s) with non-vanishing curvature and the tube
(see section 4.1 exercise 6) of radius R around it

q (s, φ) = c (s) +R (Nc cosφ+ Bc sinφ) ,

where Tc,Nc,Bc are the unit tangent, normal, and binormal to the curve.
(a) Show that Tc and −Nc sinφ+Bc cosφ are an orthonormal basis for the tan-

gent space and that the normal to the tube is n = − (Nc cosφ+ Bc sinφ).
(b) Show that[

gss gsφ
gφs gφφ

]
=

[
(1− κR cosφ)

2
+ (τR)

2
τR2

τR2 R2

]
.

(8) Compute the first fundamental form of the Möbius band

q (t, φ) = (cosφ, sinφ, 0) + t

(
sin

φ

2
cosφ, sin

φ

2
sinφ, cos

φ

2

)
= er (φ) + t sin

φ

2
er (φ) + t cos

φ

2
e3.
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(9) For a parametrized surface q (u, v) show that

n×∂ q

∂u
=
guu

∂ q
∂v − guv

∂ q
∂u∣∣∣∂ q

∂u ×
∂ q
∂v

∣∣∣ ,

n×∂ q

∂v
=
guv

∂ q
∂v − gvv

∂ q
∂u∣∣∣∂ q

∂u ×
∂ q
∂v

∣∣∣ .

(10) Assume a surface has a parametrization q (s, µ) where[
gss gsµ
gµs gµµ

]
=

[
1 0
0 r2

]
,

where r (s) is only a function of s.
(a) Show that if 0 < dr

ds < 1, then there is a function z (s) so that (r (s) , 0, z (s))
is a unit speed curve.

(b) Conclude that there is a surface of revolution with the same first funda-
mental form.

(11) Assume a surface has a parametrization q (u, v) where[
guu guv
gvu gvv

]
=

[
r2 0
0 r2

]
,

where r (u) > 0 is only a function of u. Show that there is a reparametrization
u = u (s) such that the first fundamental form becomes[

gss gsv
gvs gvv

]
=

[
1 0
0 r2

]
.

(12) Show that if we have a parametrization where

[I] =

[
1 0
0 gvv

]
,

then the coordinate function f (u, v) = u has

∇u =
∂ q

∂u
.

(13) Show that it is always possible to find an orthogonal parametrization, i.e., guv
vanishes. Hint: Use theorem 4.2.10.

(14) Show that if
∂guu
∂v

=
∂gvv
∂u

= guv = 0,

then we can reparametrize u and v separately, i.e., u = u (s) and v = v (t) , in
such a way that we obtain Cartesian coordinates:

gss = gtt = 1,

gst = 0.

(15) Show that if
∂2 q

∂u∂v
= 0,

then
q (u, v) = F (u) +G (v) ,
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and conclude that
∂guu
∂v

=
∂gvv
∂u

= 0.

Give an example where guv 6= 0.

4.4. Special Maps and Parametrizations

Definition 4.4.1. We call a map F : M1 →M2 between surfaces an isometry
if its differential preserves the first fundamental form

I1 (X,Y ) = I2 (DF (X) , DF (Y )) .

We call the map area preserving if it preserves the areas of parallelograms
spanned by vectors:

det

[
I1 (X,X) I1 (X,Y )
I1 (X,Y ) I1 (Y, Y )

]
= det

[
I2 (DF (X) , DF (X)) I2 (DF (X) , DF (Y ))
I2 (DF (X) , DF (Y )) I2 (DF (Y ) , DF (Y ))

]
.

We call the map conformal if it preserves angles between vectors:

cos∠ (X,Y ) =
I1 (X,Y )

|X|1 |Y |1
=

I2 (DF (X) , DF (Y ))

|DF (X)|2 |DF (Y )|2
.

When the first surface is given as a parametrized surface these conditions can
be checked as follows.

Proposition 4.4.2. Let q : U → M1 be a parametrization and F : M1 → M2

a map. The map is an isometry if

[I1] = [I2] ,

area preserving if
det [I1] = det [I2] ,

and conformal if
[I1] = λ2 [I2]

for some non-zero function λ.

Proof. Note that it is not necessary to first check that F◦q is also a parametriza-
tion as that will be a consequence of any one of the three conditions if we define

[I2] =

 (∂(F◦q)
∂u | ∂(F◦q)

∂u

) (
∂(F◦q)
∂u | ∂(F◦q)

∂v

)(
∂(F◦q)
∂v | ∂(F◦q)

∂u

) (
∂(F◦q)
∂v | ∂(F◦q)

∂v

) 
and observe that ∂(F◦q)

∂v , ∂(F◦q)
∂u are linearly independent if and only if the matrix

[I2] has nonzero determinant.
Next note that the chain rule implies that

DF

(
∂ q

∂u

)
=
∂ (F ◦ q)

∂u
, DF

(
∂ q

∂v

)
=
∂ (F ◦ q)

∂v

So the three conditions are necessarily true if the map is an isometry, area preserv-
ing, or conformal respectively. More generally, we see that

DF (X) = DF

(
Xu ∂ q

∂u
+Xv ∂ q

∂v

)
= Xu ∂ (F ◦ q)

∂u
+Xv ∂ (F ◦ q)

∂v
.
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So if [I1] = [I2], then

I2 (DF (X) , DF (Y )) =
[
Xu Xv

] [
∂(F◦q)
∂u

∂(F◦q)
∂v

]t [
∂(F◦q)
∂u

∂(F◦q)
∂v

] [
Y u

Y v

]
=

[
Xu Xv

]
[I2]

[
Y u

Y v

]
=

[
Xu Xv

]
[I1]

[
Y u

Y v

]
= I1 (X,Y ) .

A similar calculation with the assumption that [I1] = λ2 [I2] gives us

I1 (X,Y ) = λ2 I2 (X,Y ) ,

|X|2 = I1 (X,X) = λ2 I2 (X,X) ,

|Y |2 = I1 (Y, Y ) = λ2 I2 (Y, Y ) .

As angles are given by

cos∠ (X,Y ) =
(X | Y )

|X| |Y |
this establishes the last claim.

Finally, if∣∣∣∣∂ q

∂u
× ∂ q

∂v

∣∣∣∣2 = det [I1] = det [I2] =

∣∣∣∣∂ (F ◦ q)

∂u
× ∂ (F ◦ q)

∂v

∣∣∣∣2 ,
then the observation that

X × Y =

(
Xu ∂ q

∂u
+Xv ∂ q

∂v

)
×
(
Y u

∂ q

∂u
+ Y v

∂ q

∂v

)
= (XuY v −XvY u)

∂ q

∂u
× ∂ q

∂v
,

DF (X)×DF (Y ) =

(
Xu ∂ (F ◦ q)

∂u
+Xv ∂ (F ◦ q)

∂v

)
×
(
Y u

∂ (F ◦ q)

∂u
+ Y v

∂ (F ◦ q)

∂v

)
= (XuY v −XvY u)

∂ (F ◦ q)

∂u
× ∂ (F ◦ q)

∂v
,

shows that
|X × Y |2 = |DF (X)×DF (Y )|2 .

The last statement can also be rephrased without the use of λ by checking that(
∂(F◦q)
∂u | ∂(F◦q)

∂u

)
(
∂ q
∂u |

∂ q
∂u

) =

(
∂(F◦q)
∂v | ∂(F◦q)

∂v

)
(
∂ q
∂v |

∂ q
∂v

)
and (

∂F ◦ q

∂v
| ∂F ◦ q

∂u

)
=

(
∂F◦q
∂u |

∂F◦q
∂u

)
(
∂ q
∂u |

∂ q
∂u

) (
∂ q

∂v
| ∂ q

∂u

)
�
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Definition 4.4.3. In case the map is a parametrization q : U → M then we
always use the Cartesian metric on U given by[

1 0
0 1

]
.

So the parametrization is an isometry or Cartesian when

[I] =

[
1 0
0 1

]
,

area preserving when
det [I] = 1,

and conformal or isothermal when

guu = gvv,

guv = 0.

Example 4.4.4. It follows from proposition 4.4.2 and example 4.2.16 that the
Archimedes map is area preserving and the Mercator map is conformal.

Example 4.4.5. Consider the reparametrization (u, v) = er (cos θ, sin θ) from
example 4.3.4. If q (u, v) is conformal, then guu = gvv = λ2 and guv = 0. Thus the
reparametrized surface q (r, θ) = q (er cos θ, er sin θ) has

grr = e2rλ2,

grθ = 0,

gθθ = e2rλ2.

In particular, this gives a conformal reparametrization of the Cartesian plane. This
example is part of a much broader class of conformal maps. If we write w =
u +
√
−1v and z = x +

√
−1y, then the transformation w = F (z) is conformal

when F is holomorphic. This follows from the fact that the linear map given by
the matrix [

a −b
b a

]
preserves angles and that F (z) is holomorphic when it satisfies the Cauchy-Riemann
equations

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x

i.e.,

DF =

[
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]
=

[
∂u
∂x − ∂v

∂x
∂v
∂x

∂u
∂x

]
.

The above reparametrization is simply complex exponentiation: w = ez.

Definition 4.4.6. The area of a parametrized surface q (u, v) : U →M over a
region R ⊂ U where q is one-to-one is defined by the integral

Area (q (R)) =

∫
R

√
det [I]dudv.

Proposition 4.4.7. The area is independent under reparametrization.
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Proof. Assume we have a different parametrization q (s, t) : V → M and a
new region T ⊂ V with q (R) = q (T ) and the property that the reparametrization
(u (s, t) , v (s, t)) : T → R is a diffeomorphism. Then

Area (q (R)) =

∫
R

√
det [I]dudv

=

∫
R

√
det
([

∂ q
∂u

∂ q
∂v

]t [ ∂ q
∂u

∂ q
∂v

])
dudv

=

∫
R

√√√√det

(([
∂ q
∂s

∂ q
∂t

] [ ∂s
∂u

∂s
∂v

∂t
∂u

∂t
∂v

])t [
∂ q
∂s

∂ q
∂t

] [ ∂s
∂u

∂s
∂v

∂t
∂u

∂t
∂v

])
dudv

=

∫
R

√√√√det

([
∂s
∂u

∂s
∂v

∂t
∂u

∂t
∂v

]t [
∂ q
∂s

∂ q
∂t

]t [ ∂ q
∂s

∂ q
∂t

] [ ∂s
∂u

∂s
∂v

∂t
∂u

∂t
∂v

])
dudv

=

∫
R

√
det

[
∂s
∂u

∂s
∂v

∂t
∂u

∂t
∂v

]t
det

√[
∂ q
∂s

∂ q
∂t

]t [ ∂ q
∂s

∂ q
∂t

]√
det

[
∂s
∂u

∂s
∂v

∂t
∂u

∂t
∂v

]
dudv

=

∫
R

det

√[
∂ q
∂s

∂ q
∂t

]t [ ∂ q
∂s

∂ q
∂t

] ∣∣∣∣det

[
∂s
∂u

∂s
∂v

∂t
∂u

∂t
∂v

]∣∣∣∣ dudv
=

∫
R

det

√[
∂ q
∂s

∂ q
∂t

]t [ ∂ q
∂s

∂ q
∂t

]
dsdt,

where the last equality follows from the change of variables formula for integrals. �

Finally we show that general maps that are not conformal are related to certain
nice parametrizations. This depends on a more general result that we will use in
several situations.

Definition 4.4.8. A symmetric bilinear form Q on a surface, is a symmetric
bilinear form Q (X,Y ) on each of the tangent spaces that varies smoothly, i.e.,
Q (X,Y ) is linear in each of the two variables separately, Q (X,Y ) = Q (Y,X), and
when X and Y are smooth vector fields then Q (X,Y ) is also smooth.

The first fundamental form is an example of a symmetric bilinear form on a
surface.

Theorem 4.4.9. Let Q be a symmetric bilinear form on a surface. If Q is not
a multiple of I at p, then there is a parametrization q (u, v) around p such that

I

(
∂ q

∂u
,
∂ q

∂v

)
= Q

(
∂ q

∂u
,
∂ q

∂v

)
= 0.

Proof. By theorem 4.2.10 it suffices to find orthogonal unit vector fields E1

and E2 near p such that Q (E1, E2) = 0.
At a point q consider Q (E,E) for all unit vectors E ∈ TqM . This function

will have a maximum at some vector E1 ∈ TqM . Let E2 ∈ TqM be a unit vector
orthogonal to E1. It follows that E (θ) = cos θE1 + sin θE2 ∈ TqM is also a unit
vector. Now consider

Q (E (θ) , E (θ)) = cos2 θQ (E1, E1) + 2 cos θ sin θQ (E1, E2) + sin2 θQ (E2, E2) .
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By construction this is a function of θ that has a maximum at θ = 0. The derivative
at θ = 0 is 2Q (E1, E2). Therefore, Q (E1, E2) = 0 and

Q (E (θ) , E (θ)) = cos2 θQ (E1, E1) + sin2 θQ (E2, E2) .

If Q = λ I, then Q (E (θ) , E (θ)) = λ for all θ. Otherwise,

Q (E1, E1) > Q (E2, E2)

and Q (E (θ) , E (θ)) will only have a maximum when θ = 0, π and a minimum when
θ = ±π2 .

Since Q is not a multiple of I at p it follows by continuity that it won’t be a
multiple of I for q near p. This means that E1 is well-defined up to a choice of
sign. If we fix a choice at p, then we can uniquely extend this to a unit vector field
E1 in a neighborhood of p. Similarly for E2. This finishes the construction of the
orthonormal frame E1, E2. �

Corollary 4.4.10. Let F : M1 →M2 be a map between surfaces. If F is not
conformal near p ∈ M1, then there is a parametrization q (u, v) of a neighborhood
of p such that

0 = I1

(
∂ q

∂u
,
∂ q

∂v

)
= I2

(
∂ (F ◦ q)

∂u
,
∂ (F ◦ q)

∂v

)
= 0.

Proof. We can simply use Q (X,Y ) = I2 (DF (X) , DF (Y )) as our symmetric
bilinear form on M1. The fact that F is not conformal at p shows that Q is not a
multiple of I1. �

Exercises
(1) Check if the parameterization q (t, φ) = t (cosφ, sinφ, 1) for the cone is an

isometry, area preserving, or conformal? Can the surface be reparametrized to
have any of these properties? Hint: See section 4.3 exercise 2.

(2) Show that the two surfaces defined by z = x2 − y2 and z = 2xy are isometric.
(3) Compute the areas of the following surfaces by integrating the area form for a

suitable parametrization.
(a) Show that the sphere of radius R has area 4πR2.
(b) Show that the circular cylinder of radius R and height h has area 2πRh.
(c) Show that the torus from section 4.1 exercise 8 has area 4π2Rr.

(4) Consider a ruled surface

q (s, t) = c (s) + tX (s)

where c is unit speed and X is a unit field. Show that it is conformal if and
only if it is Cartesian (in which case X is constant and normal to c for all s.)
Hint: See section 4.2 exercise 4.

(5) Show that there is a map from a surface of revolution q1 (r, µ) = rer (µ) +
z1 (r) e3 to a circular cylinder q2 (r, µ) = er (µ) + z2 (r) e3 that is either
(a) conformal or
(b) area preserving.
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(6) Show that the curve (r (u) , z (u)) can be reparametrized so that the new parametriza-
tion

q (t, µ) = (r (t) cosµ, r (t) sinµ, z (t))

= rer + ze3

is either
(a) conformal or
(b) area preserving.

(7) Show that a Monge patch z = f (x, y) becomes:
(a) area preserving if and only if f is constant;
(b) conformal if and only if f is constant.

(8) Show that the equation
ax+ by + cz = d

defines a surface if and only if (a, b, c) 6= (0, 0, 0). Show that this surface has a
parametrization that is Cartesian.

(9) The conoid is a special type of ruled surface where c is a straight line and X
always lies in a fixed plane. The simplest case is when c is the z-axis and X
lies in the (x, y)-plane

q (s, t) = (tx (s) , ty (s) , z (s))

= (0, 0, z (s)) + t (x (s) , y (s) , 0)

(a) Compute its first fundamental form when |X| = 1.
(b) Show that this parametrization is conformal (or area preserving) if and

only if the surface is a plane.
(c) Show that this surface is a helicoid when both X and z have constant

speed.
(d) Show that such a helicoid can be reparametrized using t = t (v) so as to

obtain either a conformal or an area preserving parametrization.
(10) Consider the two parametrized surfaces given by

q1 (φ, t) = (sinhφ cos t, sinhφ sin t, t)

= te3 + (sinhφ) er (t)

q2 (s, µ) = (cosh s cosµ, cosh s sinµ, s)

= se3 + (cosh s) er (µ)

Compute the first fundamental forms for both surfaces and construct a local
isometry from the first surface to the second. (The first surface is a ruled surface
with a one-to-one parametrization called the helicoid, the second surface is a
surface of revolution called the catenoid.) Hint: See section 4.2 exercise 5.

(11) Consider the tube from section 4.3 exercise 7 with s ∈ [0, L] and φ ∈ [0, 2π].
(a) Show that the area is given by 2πRL.
(b) Find an area preserving map from this tube to a cylinder of the form

F (q (s, φ)) = (R cosφ,R sinφ, h (s, φ))

= Rer (φ) + h (s, φ) e3.

(12) Consider a generalized cylinder parametrized as in section 4.3 exercise 3 with
s ∈ [0, L] and t ∈ [a, b]. Show that its area is L (b− a).

(13) Consider a generalized cone parametrized as in section 4.3 exercise 2 with φ ∈
[0, L] and r ∈ [a, b]. Show that its area is 1

2L
(
b2 − a2

)
.
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(14) Show that Enneper’s surface

q (u, v) =

 u− 1
3u

3 + uv2

v − 1
3v

3 + vu2

u2 − v2


defines a conformal parametrization.

(15) Show that Catalan’s surface

q (u, v) =

 u− sinu cosh v
1− cosu cosh v
4 sin u

2 sinh v
2


defines a conformal parametrization. Hint: Start by showing that: 2 sin2 u

2 =
1− cosu etc.

(16) Show that the parametrization

q (t, µ) =

(
cosµ

cosh t
,

sinµ

cosh t
, tanh t

)
=

1

cosh t
er (µ) + tanh te3

is a conformal parametrization of the unit sphere.
(17) Show that the following two parametrizations of the unit sphere are area pre-

serving:
(a) (Lambert, 1772)

q (µ, z) =
√

1− z2er (µ) + ze3, |µ| < π, |z| < 1.

(b) (Sinusoidal projection, Cossin, 1570)

q (s, t) = (cos s) er

(
t

cos s

)
+ (sin s) e3, |s| < π

2 , t < π cos s.

(c) Relate the Lambert parametrization to the Archimedes map.
(18) (Stabius-Werner, c. 1500, Sylvanus, 1511, Bonne, c. 1780) Show that the

Bonne parametrizations

q (r, θ) = (cos (r − r0)) er

(
r (θ − π/2)

cos (r − r0)

)
+ (sin (r − r0)) e3,

have the property that det [I] = r2. Conclude that they are area preserving
when (r, θ) correspond to polar coordinates

x = r cos θ, y = r sin θ.

For r0 = 0 this is a sinusoidal projection, for r0 = π/2 the Stabius-Werner
projection, and for 0 < r0 < π/2 the Sylvanus projection. The planar shape of
these maps is bordered on the outside by an implicitly given curve

|r|
∣∣θ − π

2

∣∣ = cos (r − r0)

as r → π/2 this looks like a heart shaped region.
(19) Show that the inversion map

F (q) =
q

|q|2
.

is a conformal map of Rn − 0 to it self. Hint: See section 4.2 exercise 7.
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(20) Show that the inverse stereographic projections q± : Rn → Rn × R = Rn+1

defined by

q± (q) = (q, 0) +
1− |q|2

1 + |q|2
(q,±1)

are conformal parametrizations of the unit sphere. Hint: See section 4.2 exercise
9. More specifically when n = 2 it is given by

q± (u, v) =

(
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,∓u

2 + v2 − 1

u2 + v2 + 1

)
.

(21) Consider the map F : H → R2 defined by

F (x, y) =
1

x2 + (y + 1)
2 (2x, 2 (y + 1)) + (0,−1)

=
1

x2 + (y + 1)
2

(
2x, 1− x2 − y2

)
,

where H = {(x, y) | y > 0}.
(a) Show that F is one-to-one and that the image isD =

{
(x, y) | x2 + y2 < 1

}
.

Hint: Show that

|F (x, y)|2 = 1− 4y

x2 + (y + 1)
2 .

(b) Show that the inverse is given by

F−1 (u, v) =
1

u2 + (v + 1)
2 (2u, 2 (v + 1)) + (0,−1)

=
1

u2 + (v + 1)
2

(
2u, 1− u2 − v2

)
.

(c) Show that F and F−1 are conformal.
(d) Show that F can be interpreted as an inversion in the circle of radius

√
2

centered at (0,−1).
(22) Consider a map F : S2 → P , where P = {z = 1} is the plane tangent to the

North Pole, that takes each meridian to the radial line that is tangent to the
meridian at the North Pole. Sometimes the map might only be defined on part
of the sphere such as the upper hemisphere.
(a) Show that such a map has a parametrization of the form

F ((cosφ) er (µ) + (sinφ) e3) = r (φ) er (µ) + e3

for some function r, where r
(
π
2

)
= 0.

(b) Show that when r =
√

2 (1− sinφ), then we obtain an area preserving map
on the upper hemisphere.

(c) Show that when the map projects a point on the upper hemisphere along
the radial line through the origin, then r = cotφ. Show that this map takes
all great circles (not just meridians) to straight lines. This is also called
the Beltrami projection and is an example of a perspective projection (see
section 4.2 exercise 8).
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(d) Show that the inverse of the Beltrami projection from (c) onto the upper
hemisphere is given by

B−1 (s, t, 1) =

(
s√

1 + s2 + t2
,

t√
1 + s2 + t2

,
1√

1 + s2 + t2

)
.

(23) Show that a map F : M → M∗ that is both conformal and area preserving is
an isometry.

(24) (Girard, 1626) A hemisphere on the unit sphere S2 is the part that lies on
one side of a great circle. A lune is the intersection of two hemispheres. It
has two antipodal vertices. A spherical triangle is the region bounded by three
hemispheres.
(a) Show that the area of a hemisphere is 2π.
(b) Use the Archimedes map to show that the area of a lune where the great

circles meet at an angle of α is 2α.
(c) If A (H) denotes the area of a region on S2 use a Venn type diagram to

show that

A (H1 ∪H2 ∪H3) = A (H1) +A (H2) +A (H3)

−A (H1 ∩H3)−A (H2 ∩H3)−A (H1 ∩H2)

+A (H1 ∩H2 ∩H3) .

(d) Let H1, H2, H3 be hemispheres and H ′i = S2 − Hi the complementary
hemispheres. Show that

H ′1 ∩H ′2 ∩H ′3 = S2 −H1 ∪H2 ∪H3.

And further show that the spherical triangle H1 ∩H2 ∩H3 is congruent to
the spherical triangle H ′1 ∩H ′2 ∩H ′3 via the antipodal map.

(e) Show that the area A of a spherical triangle is given by

A = α+ β + γ − π,
where α, β, γ are the interior angles at the vertices of the triangle.



CHAPTER 5

Curvature of Surfaces

The goal of this chapter is to understand curvature of surfaces. This is quite a
bit more complicated than for curves. There are two curvatures and they are defined
as extrinsic invariants, i.e., they depend on how the normal to the surface changes.
This is analogous to the curvature of curves. One of the surprising discoveries by
Gauss was that one of these curvatures is an intrinsic invariant. This means that
it can be calculated knowing only the first fundamental form. Another old problem
we investigate is that of understanding which surfaces admit Cartesian coordinates.

5.1. Curves on Surfaces

In this section the second fundamental form is introduced as the normal part
of the acceleration of a curve. This is used to find its matrix representation. In
section 5.2 a more algebraic definition is offered.

We start with the observation that for a surfaceM ⊂ R3 and a point p ∈M the
tangent space TpM and normal space NpM = (TpM)

⊥ are defined independently
of parametrizations (see proposition 4.2.6). Thus the projections of a vector Z ∈ R3

onto both the tangent space and the normal space are well-defined without reference
to parametrizations.

Consider a curve q (t) on the surface. The velocity q̇ and acceleration q̈ can be
calculated in R3 without reference to the surface. The velocity will be tangent to the
surface, but the acceleration rarely is. The projections of q̈ onto the normal space,
q̈II = (q̈ | n) n, and the tangent space, q̈I = q̈− (q̈ | n) n, can be computed without
parametrizing the surface. This shows that tangential and normal accelerations are
well-defined.

To ease writing equations involving partial derivatives and multiple indices we
will use some simplifying notation for partial derivatives, e.g.,

∂u =
∂

∂u
, ∂uv =

∂2

∂u∂v

and ∂i, ∂ij when the variables u or v are not specified. Here indices such as i, j, k
can be either of the variables and one can conveniently think of them as numerical
indices 1 or 2 denoting the first or second variable, e.g., ∂x = ∂1, ∂y = ∂2. This
notation carries over to other indices such as gij etc.

Theorem 5.1.1 ((Euler, 1760 and Meusnier, 1776)). The normal component
of the acceleration only depends on the surface and the velocity of the curve. In
particular, two curves with the same velocity at a point have the same normal
acceleration components at that point.

109
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Proof. Select a parametrization and write q (t) = q (u (t) , v (t)). Then

q̇ =
[
∂u q ∂v q

] [ u̇
v̇

]
and

q̈ =

(
d

dt

[
∂u q ∂v q

]) [ u̇
v̇

]
+
[
∂u q ∂v q

] [ ü
v̈

]
=

[
u̇ v̇

] [ ∂2
uu q ∂2

uv q
∂2
vu q ∂2

vv q

] [
u̇
v̇

]
+
[
∂u q ∂v q

] [ ü
v̈

]
.

Taking inner products with the normal will eliminate the second term as it is a
tangent vector. So we obtain

(n | q̈) =
[
u̇ v̇

] [ (n | ∂2
uu q

) (
n | ∂2

uv q
)(

n | ∂2
vu q

) (
n | ∂2

vv q
) ] [ u̇

v̇

]
.

This establishes the result since the velocity of a curve is determined by (u̇, v̇) and
the parametrization of the surface. �

To define the second fundamental form we use the velocity characterization of
the tangent space from proposition 4.2.7.

Definition 5.1.2. The second fundamental form II (Z,Z) is defined as the
normal component of q̈, II (q̇, q̇) = (q̈ | n), where q (t) is a curve with q̇ (0) = Z. To
compute II (X,Y ) we can use polarization:

II (X,Y ) =
1

2
(II (X + Y,X + Y )− II (X,X)− II (Y, Y )) .

The general matrix representation is given by

II (X,Y ) =
[
Xu Xv

]
[II]

[
Y u

Y v

]
=

[
Xu Xv

] [ Luu Luv
Lvu Lvv

] [
Y u

Y v

]
,

=
[
Xu Xv

] [ (n | ∂2
uu q

) (
n | ∂2

uv q
)(

n | ∂2
vu q

) (
n | ∂2

vv q
) ] [ Y u

Y v

]
.

Since there are two choices for the normal we also write IIn should we wish to
specify the normal.

Example 5.1.3 (Examples 4.1.10 and 4.2.5 continued). The second fundamen-
tal form of the generalized helicoid is computed by first noting that

∂2
uu q = f ′′ (u) e3, ∂

2
vu q = ea (v) , ∂2

vv q = −uer (v) .

We then take inner products with the normal

n (u, v) =
−uf ′er − cea + ue3√
c2 + u2

(
1 + (f ′)

2
)

to obtain

[II] =
1√

c2 + u2
(

1 + (f ′)
2
) [ uf ′′ −c

−c u2f ′

]
.
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As with space curves a regular curve q (t) on a surface has a unit tangent T. To
use that the curve is on the surface we choose the normal n to the surface instead of
the principal normal component Nq(t) to the curve. From these two vectors we can
define S = n×T as the (oriented) normal to the curve that is tangent to the surface.
In this way curve theory on surfaces is closer to the theory of planar curves, as we
can think of S as the signed normal to the curve in the surface (see also section
3.3 for the special case of curves on spheres). Using an arclength parameter s we
define the normal curvature

κn = II (T,T) =

(
n | dT

ds

)
= −

(
dn

ds
| T
)
,

the geodesic curvature

κg =

(
S | dT

ds

)
= −

(
dS

ds
| T
)
,

and the geodesic torsion

τg =

(
n | dS

ds

)
= −

(
dn

ds
| S
)
.

Note that the geodesic curvature of curves on the sphere from section 3.3 is
consistent with the above definition.

Example 5.1.4. A plane always has vanishing second fundamental form as its
normal is constant

II (q̇, q̇) = (q̈ | n)

=
d

dt
(q̇ | n)− (q̇ | ṅ)

= − (q̇ | ṅ)

= 0.

This means that any curve in this plane has vanishing normal curvature and geo-
desic torsion. The geodesic curvature is the signed curvature κ±.

Example 5.1.5. A sphere of radius R centered at c is given by the equation

F (x, y, z) = |q− c|2 = R2 > 0.

The gradient is

∇F = 2 (q− c) = 2 (x− a, y − b, z − c) ,

which cannot vanish unless q = c. This shows that the sphere is a surface and also
computes the two normals

n = ± 1

R
(q− c) .

as |q− c| = R (see theorem 4.1.9 and corollary 4.2.8). The + gives us an outward
pointing normal. Since n is perpendicular to all tangent vectors this shows that for
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a curve we have

II (q̇, q̇) = (q̈ | n)

=
d

dt
(q̇ | n)− (q̇ | ṅ)

= −
(

q̇ | d
dt

(
± 1

R
(q− c)

))
= ∓ 1

R
(q̇ | q̇)

= ∓ 1

R
I (q̇, q̇) .

Thus II = ∓ 1
R I and the normal curvature of any curve on the sphere is ∓ 1

R .

Example 5.1.6. We can also relate normal curvature of certain special curves
to the curvature of the curve as follows: For each unit vector X ∈ TpM to a surface
with normal n consider the plane through p that is spanned by X, n (p). This plane
has Y = X × n (p) as a unit normal and intersects the surface in a unit speed
curve q (s) with velocity q̇ = n×Y , i.e., it is the integral curve for n×Y that passes
through p = q (0) (see section 1.1). Note that at p we have q̇ (0) = X, while at
other points it changes with the change in the normal to the surface. The principal
normal as well as the acceleration of this curve at s = 0 must be parallel to n (p)
as it is a unit speed curve lies in the plane spanned by X, n. It now follows that

κ (0) = |q̈ (0)| = ± (q̈ (0) | n (p)) = ±κn (0) = ± II (X,X) .

We shall show below that only planes and spheres have the property that
the normal curvature is the same for all curves on a surface. Another interesting
consequence is the important theorem, first noted by Euler and later in greater
generality by Gauss (see theorem 5.3.6), that it is not possible to draws maps of
the Earth with the property that all distances and angles are preserved.

We start by showing that if a surface admits a Cartesian parametrization, then
the tangential part of the acceleration is calculated as in the plane.

Proposition 5.1.7. Consider a Cartesian parametrization q (u, v) and a curve
q (t) = q (u (t) , v (t)). The tangential and normal components of the acceleration
are given by

q̈I =
[
∂u q ∂v q

] [ ü
v̈

]
= ü∂u q +v̈∂v q,

q̈II =
[
u̇ v̇

] [ ∂2
uu q ∂2

uv q
∂2
vu q ∂2

vv q

] [
u̇
v̇

]
= u̇2∂2

uu q +2u̇v̇∂2
uv q +v̇2∂2

vv q .

Proof. We saw above that

q̈ =
[
u̇ v̇

] [ ∂2
uu q ∂2

uv q
∂2
vu q ∂2

vv q

] [
u̇
v̇

]
+
[
∂u q ∂v q

] [ ü
v̈

]
.

To prove the proposition we need to show that the three vectors ∂2
uu q, ∂2

vv q, and
∂2
uv q are normal to the surface. This is equivalent to showing that(

∂2
uu q | ∂i q

)
= 0,(

∂2
uv q | ∂i q

)
= 0,(

∂2
vv q | ∂i q

)
= 0.
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Note that as i represents both u and v there are 6 identities. Using that ∂u q, ∂v q
are unit vectors we obtain

0 = ∂i (∂u q | ∂u q) = 2
(
∂2
iu q | ∂u q

)
= 2

(
∂2
ui q | ∂u q

)
and similarly

0 = ∂i (∂v q | ∂v q) = 2
(
∂2
iv q | ∂v q

)
= 2

(
∂2
vi q | ∂v q

)
.

This shows that four of the identities hold. Next we use that ∂u q, ∂v q are perpen-
dicular to conclude

0 = ∂i (∂u q | ∂v q) =
(
∂2
iu q | ∂v q

)
+
(
∂u q | ∂2

iv q
)
.

Depending on whether i is u or v the second or first term on the right vanishes
from what we just did. Thus the remaining term also vanishes. This takes care of
the last two identities. �

Theorem 5.1.8 (Euler, 1775). A sphere does not admit a Cartesian parametriza-
tion.

Proof. Assume for simplicity that the surface is a sphere of radius 1 centered
at the origin and that part of the sphere admits a Cartesian parametrization q (u, v).

It follows from proposition 5.1.7 that curves of the form q (a+ αt, b+ βt) have
acceleration that is normal to the sphere. In particular, q̈ and q are proportional.
If we identify q with the unit normal to the sphere then it follows from example
5.1.5 that

(q̈ | n) = II (q̇, q̇) = −1

and q̈ = − q. This shows that q is a great circle

q = q0 cos (At) + v0 sin (At) ,

where q0 = q (a, b), A2 = α2 + β2, and v0 = A−1q̇ (a, b). Thus q0 and v0 are
orthogonal unit vectors.

Consequently, if we select a small triangle in the u, v plane, then it is mapped to
a congruent spherical triangle whose sides are parts of great circles. This, however,
violates the spherical law of cosines as well as Girard’s theorem (see section 4.4
exercise 24). To give a self contained argument here, select an equilateral triangle
in the plane with side lengths ε. Then we obtain an equilateral triangle on the
sphere with side lengths ε and interior angles π

3 . As the sides are parts of great
circles we can check explicitly if this is possible with the use of theorem 1.2.12 and
its proof. Let the vertices be qi, i = 1, 2, 3, then

(
qi | qj

)
= cos ε, when i 6= j. The

unit directions of the great circles at q1 are given by

v12 =
q2− (q2 | q1) q1√

1− (q2 | q1)
2

=
q2− cos ε q1√

1− cos2 ε
,

v13 =
q3− cos ε q1√

1− cos2 ε
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and consequently,
1

2
= (v12 | v13)

=

(
q2− cos ε q1√

1− cos2 ε
| q3− cos ε q1√

1− cos2 ε

)
=

cos ε− 2 cos2 ε+ cos2 ε

1− cos2 ε

=
cos ε− cos2 ε

1− cos2 ε

=
cos ε

1 + cos ε

<
1

2

since cos ε < 1. So we have arrived at a contradiction. �

Exercises
(1) Show that ∂k n is always tangent to the surface.
(2) Show that

Lij =
(
∂2
ij q | n

)
= − (∂j q | ∂i n) .

This shows that the derivatives of the normal can be computed knowing the
first and second fundamental forms.

(3) Show that the unit normal is constant if and only if the surface is part of a
plane.

(4) Show that [II] vanishes if and only if the normal vector is constant. (Hint: use
exercise (2))

(5) Consider a parametrized surface q (u, v).
(a) Show that ∂2

uv q is normal to the surface if and only if ∂vguu = ∂ugvv = 0.
(b) Show that ∂2

uu q is normal to the surface when ∂uguu = ∂vguu = ∂uguv = 0.
(c) Show that ∂2

uu q +∂2
vv q is normal to the surface when guu = gvv and guv =

0, i.e., the parametrization is conformal or isothermal.
(6) A curve q (t) on a surface is called an asymptotic curve if II (q̇, q̇) = 0, i.e., κn

vanishes.
(a) Show that a curve is asymptotic if and only if its acceleration is tangent to

the surface.
(b) Show that the binormal to an asymptotic curve is normal to the surface.

(7) Let c (s) be a unit speed curve with non-vanishing curvature. Show that c is
an asymptotic curve on the ruled surface

q (s, t) = c (s) + tNc (s) ,

where Nc is the principal normal to c as a space curve.
(8) Let q (s) be a unit speed curve on a surface with normal n. Show that κg = 0

if and only if
det [q̇, q̈,n] = 0.

(9) Consider the parabolic surface z = x2

a2 + y2

b2 where a, b > 0.
(a) Show that q (t) =

(
at cos θ, bt sin θ, t2

)
is a regular curve on this surface.

(b) Show that when a = b (surface of revolution), then κg = 0 for all θ.
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(c) Show that when a 6= b, then κg = 0 if and only if sin 2θ = 0.
(10) Show that latitudes on a sphere have constant κg.
(11) Let q (s) be a unit speed curve on a surface and let n be the normal to the

surface. Show that

d

ds

[
T S n

]
=
[

T S n
]  0 −κg −κn

κg 0 −τg
κn τg 0

 .
(12) For a curve on the unit sphere (see also exercise (1) in section 3.3) show that

(a) τg = 0.
(b) κg = 0 if and only if it is a great circle.
(c) κg is constant if and only if it is a circle.

(13) Let q (t) be a regular curve on a surface with n being the normal to the surface.
Show that

κn =
II (q̇, q̇)

I (q̇, q̇)
, κg =

det (q̇, q̈,n)

(I (q̇, q̇))
3/2

.

(14) Let q (u, v) be a parametrization such that guu = 1 and guv = 0. Prove that the
u-curves are unit speed with acceleration that is perpendicular to the surface.
Hint: The u-curves are given by q (u) = q (u, v) where v is fixed.

(15) Consider a surface of revolution

q (s, θ) = r (s) er (θ) + z (s) e3,

where, r > 0, ż > 0, and (r (s) , 0, z (s)) is unit speed.
(a) Compute the second fundamental form.
(b) Compute κg, κn, τg for the meridians q (s) = q (s, θ). Conclude that their

acceleration is perpendicular to the surface
(c) Compute κg, κn, τg for the latitudes q (θ) = q (s, θ). Hint: The latitudes

are not necessarily unit speed, but they do have constant speed.
(16) Show that if a sphere of radius R centered at c admits a Cartesian parametriza-

tion, then the unit sphere centered at the origin also admits a Cartesian parametriza-
tion.

(17) Let M be a surface with normal n and X,Y ∈ TpM . Show that if q (t) is a
curve with velocity X at t = 0 and Y (t) is an extension of the vector Y to a
vector field along q, then

II (X,Y ) =

(
n | dY

dt
(0)

)
.

(18) Let q (s) be a unit speed curve on a surface with normal n. Show that the space
curvature κ is related to the geodesic and normal curvatures as follows

κ2 = κ2
g + κ2

n

and that the torsion is given by

τ = τg +
κgκ̇n − κnκ̇g
κ2
g + κ2

n

.

Hint: Start by showing that

q̈ = κgS + κn n,
...
q = −

(
κ2
g + κ2

n

)
T + (κ̇g − κnτg) S + (κ̇n + κgτg) n .

(19) Let M be a surface given by an equation F (x, y, z) = R.
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(a) If q (t) is a curve on M show that

(q̈ | ∇F ) = −q̇t

 ∂2
xxF ∂2

yxF ∂2
zxF

∂2
xyF ∂2

yyF ∂2
zyF

∂2
xzF ∂2

yzF ∂2
zzF

 q̇

= −q̇t
[

∂∇F
∂ (x, y, z)

]
q̇.

(b) Show that

II (X,Y ) = −
Xt
[

∂∇F
∂(x,y,z)

]
Y

|∇F |
.

(20) Assume that a unit speed curve q (s) = q (u (s) , v (s)) on a parametrized surface
satisfies an equation F (u, v) = R.
(a) If we use ∂wF = ∂F

∂w show that u̇∂uF + v̇∂vF = 0.
(b) Show that

q̇ = u̇∂u q +v̇∂v q

=
±1√

guu∂vF∂vF − 2guv∂uF∂vF + gvv∂uF∂uF
(−∂vF∂u q +∂uF∂v q) .

This means that the unit tangent can be calculated without reference to
the parametrization of the curve.

(c) Show that if we use this formula for the velocity, then the geodesic curvature
can be computed as

κg =
∂u (q̇ | ∂v q)− ∂v (q̇ | ∂u q)√

det [I]
.

(d) Generalize this to the situation where a unit speed curve satisfies a differ-
ential relation

Pu̇+Qv̇ = 0,

where P = P (u, v) and Q = Q (u, v).

5.2. The Gauss and Weingarten Maps and Equations

In the last section we calculated the normal part of the acceleration of a curve.
To gain a better understanding of the tangential component we need to further
analyze the second partial derivatives of a parametrized surface.

We use proposition 4.3.5 to decompose these derivatives into tangential and
normal components

∂2
ij q =

[
∂u q ∂v q

]
[I]
−1 [ ∂u q ∂v q

]t
∂2
ij q +

(
∂2
ij q | n

)
n,

where i, j can be either u or v. In the previous section the normal component was
identified as an entry in the matrix representation of the second fundamental form.
The tangential part is denoted by

Γij =
[
∂u q ∂v q

]
[I]
−1 [ ∂u q ∂v q

]t
∂2
ij q .

Definition 5.2.1. The Christoffel symbols of the first kind are defined as

Γijk =
(
∂2
ij q | ∂k q

)
,[

Γiju Γijv
]

=
[ (

∂u q | ∂2
ij q
) (

∂v q | ∂2
ij q
) ]

=
[
∂u q ∂v q

]t
∂2
ij q
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and the Christoffel symbols of the second kind are defined as

Γkij = gkuΓiju + gkvΓijv,[
Γuij
Γvij

]
=

[
guu guv

gvu gvv

] [
Γiju
Γijv

]
= [I]

−1 [ ∂u q ∂v q
]t
∂2
ij q,

where the entries in [I]
−1 are denoted by[

guu guv

gvu gvv

]
=

[
guu guv
gvu gvv

]−1

=
1

guugvv − g2
uv

[
gvv −guv
−gvu guu

]
.

This gives us the tangential component as

Γij =
[
∂u q ∂v q

]
[I]
−1 [ ∂u q ∂v q

]t
∂2
ij q

=
[
∂u q ∂v q

]
[I]
−1

[
Γiju
Γijv

]
= Γuij∂u q +Γvij∂v q .

The second derivatives of q (u, v) can now be expressed as follows in terms of
the Christoffel symbols of the second kind and the second fundamental form. These
are often called the Gauss formulas or equations:

∂2
uu q = Γuuu∂u q +Γvuu∂v q +Luu n,

∂2
uv q = Γuuv∂u q +Γvuv∂v q +Luv n = ∂2

vu q,

∂2
vv q = Γuvv∂u q +Γvvv∂v q +Lvv n,

or
∂2
ij q = Γuij∂u q +Γvij∂v q +Lij n,

or

∂k
[
∂u q ∂v q

]
=
[
∂u q ∂v q n

]  Γuku Γukv
Γvku Γvkv
Lku Lkv

 .
Example 5.2.2. Consider a Cartesian parametrization. We saw in the proof of

proposition 5.1.7 that the second derivatives ∂2
ij q are normal to the surface. This

implies that the Christoffel symbols vanish.

As we shall see, and indeed already saw in section 1.4 when considering polar
coordinates in the plane, these formulas are important for defining accelerations of
curves. They are also important for giving a proper definition of the Hessian or
second derivative matrix of a function on a surface. This will be explored in an
exercise later.

For now we note that this gives us a formula for the acceleration of a curve:

Corollary 5.2.3. The acceleration of a curve can be calculated as

q̈ =
[
∂u q ∂v q n

]  ü+ Γu (q̇, q̇)
v̈ + Γv (q̇, q̇)

II (q̇, q̇)


= (ü+ Γu (q̇, q̇)) ∂u q + (v̈ + Γv (q̇, q̇)) ∂v q + II (q̇, q̇) n,

where
Γk (q̇, q̇) =

[
u̇ v̇

] [ Γkuu Γkuv
Γkvu Γkvv

] [
u̇
v̇

]
.
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Proof. This follows directly from

q̈ =
[
u̇ v̇

] [ ∂2
uu q ∂2

uv q
∂2
vu q ∂2

vv q

] [
u̇
v̇

]
+
[
∂u q ∂v q

] [ ü
v̈

]
.

and the Gauss formulas above. �

Note that the tangential component is quite complicated[
∂u q ∂v q

]
[I]
−1 [ ∂u q ∂v q

]t
q̈ = q̈I = ∂u q (ü+ Γu (q̇, q̇))+∂v q (v̈ + Γv (q̇, q̇)) .

But it seems to be a more genuine acceleration as it includes second derivatives. It
tells us what acceleration we feel on the surface.

To complete the Gauss formulas it is natural to also include the derivatives of
the normal vector.

Definition 5.2.4. The Gauss map for an orientable surface M with normal
n is the map n : M → S2 (1) that takes each point to the chosen normal at that
point. The Weingarten map at a point p ∈ M is the linear map L : TpM → TpM
defined as the negative of the differential of n:

L = −D n .

Remark 5.2.5. The definition of the Weingarten map requires some explana-
tion as the differential should be a linear map

D n : TpM → Tn(p)S
2 (1) .

However, the normal vector to any point x ∈ S2 (1) is simply n = ±x. As the
tangent space is the orthogonal complement to the normal vector it follows that

TpM = Tn(p)S
2 (1) .

For a parametrized surface this tells us.

Proposition 5.2.6 (The Weingarten Equations). For a parametrized surface
q (u, v) we have

−∂u n = L (∂u q) ,

−∂v n = L (∂v q) .

More generally, for a curve q (t) on the surface

−dn ◦ q

dt
= L

(
d q

dt

)
.

Proof. The equations simply follow from the chain rule and the first two are
special cases of the last. If we write the curve q (t) = q (u (t) , v (t)), then

L

(
d q

dt

)
= −D n

(
d q

dt

)
= −dn ◦ q

dt

= −
(
∂ n

∂u

du

dt
+
∂ n

∂v

dv

dt

)
.

This proves the claim �

Next we show that the Weingarten map L is a self-adjoint map with respect to
the first fundamental form.
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Proposition 5.2.7. The Weingarten map is abstractly related to the second
fundamental form through the first fundamental form by the formula:

I (L (X) , Y ) = II (X,Y ) = I (X,L (Y ))

In particular, L is self-adjoint as II is symmetric.

Proof. Since the second fundamental form is symmetric II (X,Y ) = II (Y,X),
it follows that we only need to show that I (L (X) , Y ) = II (X,Y ), as we have

I (X,L (Y )) = I (L (Y ) , X)

= II (Y,X)

= II (X,Y ) .

Next observe that since L is linear it suffices to prove that

II (∂i q, ∂j q) = I (L (∂i q) , ∂j q)

for all choices i, j ∈ {u, v} where q (u, v) is a parametrization. Using that ∂j q and
n are perpendicular it follows that

0 = ∂i (∂j q | n)

=
(
∂2
ij q | n

)
+ (∂j q | ∂i n ◦ q)

= II (∂i q, ∂j q)− (∂j q | L (∂i q))

= II (∂i q, ∂j q)− I (L (∂i q) , ∂j q) .

This proves the claim. �

All in all this is still a bit abstract, but the relationship between the Weingarten
map and the first and second fundamental forms allow us to obtain explicit formulas
for a parametrized surface.

Given a parametrized surface q (u, v) the entries in the matrix representation
of the Weingarten map are defined as[

L (∂u q) L (∂v q)
]

=
[
∂u q ∂v q

]
[L]

=
[
∂u q ∂v q

] [ Luu Luv
Lvu Lvv

]
.

This matrix representation can be calculated as follows.

Proposition 5.2.8. The matrix representations of the Weingarten map and
the second fundamental form satisfy:

[L] = [I]
−1

[II]

and

[II] = −
[
∂u n ∂v n

]t [
∂u q ∂v q

]
= −

[
(∂u n | ∂u q) (∂u n | ∂v q)
(∂v n | ∂u q) (∂v n | ∂v q)

]
= −

[
∂u q ∂v q

]t [
∂u n ∂v n

]
.
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Proof. To establish the formula for [II] use that n is perpendicular to ∂j q
and note that

Lij =
(
n | ∂2

ij q
)

= (n | ∂i (∂j q))

= ∂i (n | ∂j q)− (∂j q | ∂i n)

= − (∂j q | ∂i n) .

It now follows that

[II] =
[
∂u q ∂v q

]t [ −∂u n −∂v n
]

=
[
∂u q ∂v q

]t [
L (∂u q) L (∂v q)

]
=

[
∂u q ∂v q

]t [
∂u q ∂v q

]
[L]

= [I] [L] .

�

Remark 5.2.9. It is important to realize that while L is self-adjoint its matrix
representation

[L] = [I]
−1

[II]

need not be symmetric. In fact, as [I] and [II] are symmetric it follows that

[L]
t

= [II] [I]
−1
.

So [L] is only symmetric if [I] and [II] commute.

The Weingarten equations are the formulas for the derivatives of the normal:

∂k n = −Luk∂u q−Lvk∂v q = −L (∂k q) .

Together the Gauss formulas and Weingarten equations tell us how the deriva-
tives of our basis ∂u q, ∂v q,n relate back to the basis. They can be collected as
follows:

Corollary 5.2.10 (The Gauss and Weingarten Formulas).

∂k
[
∂u q ∂v q n

]
=

[
∂u q ∂v q n

]
[Dk]

=
[
∂u q ∂v q n

]  Γuku Γukv −Luk
Γvku Γvkv −Lvk
Lku Lkv 0

 .
Finally we show how the Christoffel symbols can be calculated directly from

the first fundamental form without knowing the second derivatives ∂2
ij q.
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Proposition 5.2.11. The Christoffel symbols of the first kind satisfy

Γuuu =
1

2
∂uguu,

Γuvu =
1

2
∂vguu = Γvuu,

Γvvv =
1

2
∂vgvv,

Γuvv =
1

2
∂ugvv = Γvuv,

Γuuv = ∂uguv −
1

2
∂vguu,

Γvvu = ∂vguv −
1

2
∂ugvv.

Proof. We establish only two of these formulas as the proofs are all similar.
First use the product rule to see

Γuvu =
(
∂2
uv q | ∂u q

)
= (∂v (∂u q) | ∂u q) =

1

2
∂v (∂u q | ∂u q) =

1

2
∂vguu.

Now use this together with the product rule to see that

Γuuv =
(
∂2
uu q | ∂v q

)
= (∂u (∂u q) | ∂v q)

= ∂u (∂u q | ∂v q)−
(
∂u q | ∂2

uv q
)

= ∂uguv −
(
∂u q | ∂2

vu q
)

= ∂uguv −
1

2
∂vguu.

�

Example 5.2.12. While these formulas for the Christoffel symbols can’t be
made simpler as such, it is possible to be a bit more efficient in several concrete
situations. Specifically, we often do calculations in orthogonal coordinates, i.e.,
guv ≡ 0. In such coordinates

guv = 0,

guu = (guu)
−1
,

gvv = (gvv)
−1
,

Γuuu =
1

2
∂uguu,

Γuvu =
1

2
∂vguu = Γvuu,

Γvvv =
1

2
∂vgvv,

Γuvv =
1

2
∂ugvv = Γvuv,

Γuuv = −1

2
∂vguu,

Γvvu = −1

2
∂ugvv.
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and

Γuuu =
1

2
guu∂uguu =

1

2

1

guu
∂uguu = ∂u ln

√
guu,

Γvuu = −1

2
gvv∂vguu = −1

2

1

gvv
∂vguu,

Γvvv =
1

2
gvv∂vgvv =

1

2

1

gvv
∂vgvv = ∂v ln

√
gvv,

Γuvv = −1

2
guu∂ugvv = −1

2

1

guu
∂ugvv,

Γuuv =
1

2
guu∂vguu =

1

2

1

guu
∂vguu = ∂v ln

√
guu,

Γvuv =
1

2
gvv∂ugvv =

1

2

1

gvv
∂ugvv = ∂u ln

√
gvv.

Often there might be even more specific information. This could be that the
metric coefficients only depend on one of the parameters, or that guu = 1. In such
circumstances it is quite manageable to calculate the Christoffel symbols. What is
more, we show in proposition 7.4.1 that it is always possible to find parametrizations
where guu ≡ 1 and guv ≡ 0. In this case:

Γuuu = Γvuu = Γuuv = Γuvu = Γuuu = Γuuv = Γuvu = Γvuu = 0.

Example 5.2.13. Consider a Cartesian parametrization. We saw in the proof
of proposition 5.1.7 that the second derivatives ∂2

ij q are normal to the surface. This
fact now also follows from the fact that the Christoffel symbols vanish.

Exercises
(1) For a surface of revolution

q (t, θ) = r (t) er (θ) + z (t) e3

compute the first and second fundamental forms and the Weingarten map.
(2) Compute the matrix representation of the Weingarten map for a Monge patch

q (x, y) = (x, y, f (x, y)) with respect to the basis ∂x q, ∂y q.
(3) Show that if a surface satisfies II = ± 1

R I, then it is part of a sphere of radius
R. Hint: Show that n± 1

R q is constant and use that to find the center of the
sphere.

(4) Let M be a surface with normal n and X,Y ∈ TpM . Show that if q (t) is a
curve with velocity X at t = 0 , then

II (X,Y ) = −
(
Y | dn ◦ q

dt
(0)

)
.

(5) Show that for a curve on a surface the geodesic torsion satisfies

τg = II (T,S) .

(6) Show that guu, guv, and gvv are constant if and only if the Christoffel symbols
of the first kind vanish.

(7) Show that
∂kgij = Γkij + Γkji
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and use these equations to show that

2Γijk = ∂igkj + ∂jgki − ∂kgij .
(8) Show that

Γijk = gkuΓuij + gkvΓ
v
ij .

(9) Show that

∂k det [I] =
2

det [I]
(Γuku + Γvkv) ,

∂k
√

det [I] =
√

det [I] (Γuku + Γvkv) ,

and
∂k log

√
det [I] = Γuku + Γvkv.

(10) Let θ be the angle between ∂u q and ∂v q. Show that

log sin θ = log
√

det [I]− 1

2
log guu −

1

2
log gvv,

cot θ =
guv√
det [I]

,

and

∂kθ = −
√

det [I]

guu
Γvku −

√
det [I]

gvv
Γukv.

(11) Show that

I (Γij ,Γkl) =
[

Γuij Γvij
]

[I]

[
Γukl
Γvkl

]
=

[
Γiju Γijv

] [ Γukl
Γvkl

]
=

[
Γiju Γijv

]
[I]
−1

[
Γklu
Γklv

]
.

(12) Show directly from the formulas for the Christoffel symbols in terms of the first
fundamental form that

∂vΓuuv − ∂uΓuvv = ∂uΓvvu − ∂vΓuvu
and

∂vΓuuv − ∂uΓuvv = −1

2
∂2
vvguu + ∂2

uvguv −
1

2
∂2
uugvv.

(13) (Surface of revolution) Find the Christoffel symbols of the first and second kind
when the first fundamental form is given by

[I] =

[
1 0
0 r2

]
,

where r = r (u) > 0.
(14) (Polar and Fermi coordinates) Find the Christoffel symbols of the first and

second kind when the first fundamental form is given by

[I] =

[
1 0
0 r2

]
,

where r = r (u, v) > 0. Gauss showed that such coordinates exist around any
point in a surface with r denoting the “intrinsic” distance to the point. Fermi
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created such coordinates in a neighborhood of a geodesic with r denoting the
“intrinsic” distance to the geodesic. The terminology will be explained later.

(15) Find the Christoffel symbols of the first and second kind when the first funda-
mental form is given by

[I] =

[
r2 0
0 r2

]
,

where r = r (u) > 0.
(16) (Isothermal coordinates) Find the Christoffel symbols of the first and second

kind when the first fundamental form is given by

[I] =

[
r2 0
0 r2

]
,

where r = r (u, v) > 0.
(17) (Liouville surfaces) Find the Christoffel symbols of the first and second kind

when the first fundamental form is given by

[I] =

[
r2 0
0 r2

]
,

where r2 = f (u) + g (v) > 0.
(18) (Monge patch) Find the Christoffel symbols of the first and second kind when

the first fundamental form is given by

[I] =

[
1 + p2 pq
pq 1 + q2

]
,

where p = ∂uF, q = ∂vF and F = F (u, v).

5.3. The Gauss and Mean Curvatures

We are now finally ready to define the varius curvatures of a surface. Histori-
cally the principal curvatures defined in section 5.4 came first, but it seems equally
natural to start with the Gauss and mean curvatures.

Definition 5.3.1. The Gauss curvature is defined as the determinant of the
Weingarten map

K = detL.

The mean curvature is related to the trace as follows

H =
1

2
trL.

To calculate these quantities we have:

Proposition 5.3.2. The Gauss and mean curvatures of a parametrized surface
q (u, v) can be computed as

K =
det [II]

det [I]
=
LuuLvv − (Luv)

2

guugvv − (guv)
2

and

H =
1

2

gvvLuu + guuLvv − 2guvLuv

guugvv − (guv)
2 .
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Proof. To calculate the Gauss and mean curvatures we use the formulas for
determinant and trace of a matrix representation:

K = det [L] = LuuL
v
v − LvuLuv ,

H =
1

2
tr [L] =

1

2
(Luu + Lvv) ,

and [L] = [I]
−1

[II] (see proposition 5.2.8). The formula for K now follows from
standard determinant rules.

For H we use that

Luu = guuLuu + guvLvu and Lvv = gvuLuv + gvvLvv

together with [
guu guv

gvu gvv

]
=

1

det [I]

[
gvv −guv
−gvu guu

]
to get the desired formula. �

Example 5.3.3. For a sphere of radius R we have that II = ± 1
R I. Thus

K = 1
R2 and H = ± 1

R . For a plane II = 0 and K = H = 0.

Example 5.3.4 (Examples 4.3.3 and 5.1.3 continued). We can now calculate
the Gauss and mean curvatures of the generalized helicoids

K =
det [II]

det [I]
=

u3f ′f ′′ − c2(
c2 + u2

(
1 + (f ′)

2
))2 ,

H =
1

2

(
1 + (f ′)

2
)
u2f ′ +

(
u2 + c2

)
uf ′′ + 2c2f ′(

c2 + u2
(

1 + (f ′)
2
)) 3

2

.

Remark 5.3.5. It is often convenient to calculate the mean curvature using
the formula

H =
1

2

(
gvv∂

2
uu q +guu∂

2
vv q−2guv∂

2
uv q | n

)
guugvv − (guv)

2 ,

which follows directly from the above proposition and the definition of the entries
in the second fundamental form.

We can now significantly improve theorem 5.1.8 as was first done by Gauss.
This result is also a corollary of the next theorem.

Theorem 5.3.6 (Gauss). If a surface in R3 admits Cartesian coordinates, then
the Gauss curvature vanishes.

Proof. We saw in the proof of proposition 5.1.7 that when a parametrization
of a surface q (u, v) is Cartesian, then the second derivatives ∂2

uv q, ∂2
uu q, and ∂2

vv q
are all normal to the surface. This explains the second line in (lines 3 and 5 are
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explained below)

det [II] =
(
n | ∂2

uu q
) (

n | ∂2
vv q

)
−
(
n | ∂2

uv q
)2

=
(
∂2
uu q | ∂2

vv q
)
−
(
∂2
uv q | ∂2

uv q
)

=
(
∂2
uu q | ∂2

vv q
)

+
(
∂3
uuv q | ∂v q

)
=

(
∂2
uu q | ∂2

vv q
)

+
(
∂3
vuu q | ∂v q

)
=

(
∂2
uu q | ∂2

vv q
)
−
(
∂2
uu q | ∂2

vv q
)

= 0.

Lines 3 and 5 follow from

0 = ∂u
(
∂2
uv q | ∂v q

)
=
(
∂3
uuv q | ∂v q

)
+
(
∂2
uv q | ∂2

uv q
)

and

0 = ∂v
(
∂2
uu q | ∂v q

)
=
(
∂3
vuu q | ∂v q

)
+
(
∂2
uu q | ∂2

vv q
)
.

This shows that the Gauss curvature vanishes. �

The converse is also true and is covered in section 6.3 exercise 9 and theorem
7.7.1. Section 5.5 contains a more detailed discussion of what surfaces with zero
Gauss curvature look like.

Remark 5.3.7. Given that planes, generalized cylinders, and generalized cones
all admit Cartesian coordinates it is easy to come up with examples showing that
the mean curvature cannot be calculated from the first fundamental form. In fact
only planes have the property that the Gauss and mean curvatures both vanish.

We can use our knowledge of Christoffel symbols to improve the theorem for
Cartesian coordinates to the general result that the Gauss curvature can always
be computed from the first fundamental form. Given the definition of K this is
certainly a big surprise.

Theorem 5.3.8 (Theorema Egregium, Gauss, 1827 ). The Gauss curvature can
be computed knowing only the first fundamental form.

Proof. Assume that we have a parametrized surface q (u, v). The calculations
are similar to what we just did for a Cartesian parametrization. First we observe
that it suffices to show that det [II] can be calculated from the first fundamental
form since

K = detL = det [I]
−1

det [II] ,

det [I] = guugvv − (guv)
2
.

We use the Gauss formulas

∂2
ij q = Γuij∂u q +Γvij∂v q +

(
n | ∂2

ij q
)

n

with i, j ∈ {u, v} to see that for k, l ∈ {u, v}:(
∂2
ij q | ∂2

kl q
)

=
(
Γuij∂u q +Γvij∂v q | Γukl∂u q +Γvkl∂v q

)
+
(
n | ∂2

ij q
) (

n | ∂2
kl q
)
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This can be used to compute

det [II] = det

[
Luu Luv
Lvu Lvv

]
= det

[ (
n | ∂2

uu q
) (

n | ∂2
uv q

)(
n | ∂2

vu q
) (

n | ∂2
vv q

) ]
=

(
n | ∂2

uu q
) (

n | ∂2
vv q

)
−
(
n | ∂2

uv q
) (

n | ∂2
uv q

)
=

(
∂2
uu q | ∂2

vv q
)
− (Γuuu∂u q +Γvuu∂v q | Γuvv∂u q +Γvvv∂v q)

−∂2
uv q | ∂2

uv q + |Γuuv∂u q +Γvuv∂v q|2

Here the inner products

(Γuuu∂u q +Γvuu∂v q | Γuvv∂u q +Γvvv∂v q)

and
|Γuuv∂u q +Γvuv∂v q|2

can be calculated from the first fundamental form as we proved in proposition 5.2.11
that the inner products

Γijk =
(
∂k q | ∂2

ij q
)

have formulas that only use the derivatives of guu, guv, and gvv (see also section
5.2 exercise 11).

To finish the proof it simply remains to observe that(
∂2
uu q | ∂2

vv q
)
−
(
∂2
uv q | ∂2

uv q
)

= ∂v
(
∂2
uu q | ∂v q

)
−
(
∂3
vuu q | ∂v q

)
−∂u

(
∂2
uv q | ∂v q

)
+
(
∂3
uuv q | ∂v q

)
=

∂

∂v
Γuuv −

∂

∂u
Γvuv.

(See also section 5.2 exercise 12 for a nice formula of this combination of derivatives.)
The complete formula for the Gauss curvature in terms of the first fundamental
form and the Christoffel symbols of the first kind is given in exercise 13 to this
section. �

Example 5.3.9. Assume that guu = 1 and guv = 0 as in the end of example
5.2.12. In this case the above proof reduces the Gauss curvature to:

K =
1

gvv

(
−∂uΓvuv + (Γvuv)

2
gvv

)
=

1

gvv

(
−1

2
∂2
uugvv +

(
1

gvv

1

2
∂ugvv

)2

gvv

)

= −1

2

1

gvv
∂2
uugvv +

1

4

(
1

gvv
∂ugvv

)2

= − 1
√
gvv

∂2
uu

√
gvv.

The Gauss curvature can also be expressed more directly in terms of the unit
normal.
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Proposition 5.3.10 (Gauss). The Gauss curvature satisfies

K =
(∂u n×∂v n | n)

(∂u q×∂v q | n)
.

Proof. Simply use the Weingarten equations to calculate

∂u n×∂v n = (−Luu∂u q−Lvu∂v q)× (−Luv∂u q−Lvv∂v q)

= LuuL
v
v∂u q×∂v q +LvuL

u
v∂v q×∂u q

= (LuuL
v
v − LvuLuv ) ∂u q×∂v q

= K∂u q×∂v q .

�

Note that the denominator in

K =
(∂u n×∂v n | n)

(∂u q×∂v q | n)

is already computed in terms of the first fundamental form

(∂u q×∂v q | n)
2

= |∂u q×∂v q|2 = guugvv − (guv)
2
.

The numerator is the signed volume of the parallelepiped ∂u n, ∂v n,n corresponding
to the Gauss map n (u, v) : U → S2 (1) ⊂ R3 of the surface. Thus it can be
computed from the first fundamental form of n (u, v). However, there is a sign that
depends on whether n and ∂u n×∂v n point in the same direction or not. Recall
from curve theory that the tangent spherical image was also related to curvature
in a similar way. Here the formulas are a bit more complicated as we use arbitrary
parameters.

Definition 5.3.11. The third fundamental form III on TpM is defined as the
first fundamental form for S2 (1) on Tn(p)S

2 (1). If we use the Gauss map n (u, v) =
n ◦ q (u, v) as the parametrization, then the matrix representation is given by

[III] =
[
∂u n ∂v n

]t [
∂u n ∂v n

]
=

[
(∂u n | ∂u n) (∂u n | ∂v n)
(∂v n | ∂u n) (∂v n | ∂v n)

]
.

This always defines a quadratic from, but n might not be a genuine parametriza-
tion if the Gauss curvature vanishes. Nevertheless, we always have the relationship

∂u n×∂v n = K (∂u q×∂v q) .

The three fundamental forms and two curvatures are related by a very interest-
ing formula which also shows that the third fundamental form is almost redundant.

Theorem 5.3.12. All three fundamental forms are related by

III−2H II +K I = 0.

Proof. We prove this for the matrix representations

[III]− 2H [II] +K [I] = 0

by reducing it to the Cayley-Hamilton theorem for [L]

[L]
2 − (trL) [L] + (detL) I2 = 0,
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where I2 is the 2 × 2 identity matrix. This relies on showing: [I] [L] = [II] and
[I] [L]

2
= [III]. The first identity has already been established. The second likewise

follows from the Weingarten equations:

[III] =
[
L (∂u q) L (∂v q)

]t [
L (∂u q) L (∂v q)

]
= [L]

t [ ∂u q ∂v q
]t [

∂u q ∂v q
]

[L]

= [L]
t
[I] [L]

= [II]
t
(

[I]
−1
)t

[I] [L]

= [II] [I]
−1

[I] [L]

= [II] [L]

= [I] [L] [L]

= [I] [L]
2
.

Finally, if [L] =

[
a c
b d

]
, then the Cayley-Hamilton theorem follows by a direct

calculation:

[L]
2 − (trL) [L] + (detL) I2

=

[
a c
b d

]2

− (a+ d)

[
a c
b d

]
+ (ad− bc)

[
1 0
0 1

]
=

[
a2 + bc ac+ dc
ab+ db bc+ d2

]
− (a+ d)

[
a c
b d

]
+ (ad− bc)

[
1 0
0 1

]
=

[
bc− ad 0

0 bc− ad

]
+ (ad− bc)

[
1 0
0 1

]
= 0.

�

Definition 5.3.13. A surface is called minimal if its mean curvature vanishes.

Proposition 5.3.14. A minimal surface has conformal Gauss map.

Proof. Let q (u, v) be a parametrization of the surface, then n (u, v) is a poten-
tial parametrization of the unit sphere via the Gauss map. The first fundamental
form with respect to this parametrization is the third fundamental form. Using
H = 0 we obtain

[III] +K [I] = 0,

which implies that the Gauss map is conformal. �

Example 5.3.15. Note that the Gauss map for the unit sphere centered at the
origin is simply the identity map on the sphere. Thus its Gauss map is an isometry
and in particular conformal. However, the sphere is not a minimal surface. More
generally, the Gauss map

n (q) = ±q− c

R
for a sphere of radius R centered at c is also conformal as its derivative is given by
D n = ± 1

RI, where I is the identity map/matrix.
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The name for minimal surfaces is justified by the next result. Meusnier in
1785 was the first to consider such surfaces and he also indicated with a geometric
argument that their areas should be minimal. In fact Lagrange in 1761 had already
come up with an (Euler-Lagrange) equation for surfaces that minimize area, but
it was not until the mid 19th century with Bonnet and Beltrami that this was
definitively connected to the condition that the mean curvature should vanish.

Example 5.3.16 (Example 5.3.4 continued). We note that the generalized he-
licoids are minimal when f ′ = 0, i.e., when they are regular helicoids. In the rota-
tionally symmetric case where c = 0, they are minimal when f = a cosh−1

(
u
a

)
+ b,

for constants a, b. These are all catenoids.
Finally, we also obtain a more complicated family by using

f ′ =
c

u

√
u2 + c2

u2 − c2
.

To see this first note that

1 + (f ′)
2

=
u4 + c4

u2 (u2 − c2)
, f ′′ = −f ′

(
1

u
+

2c2u

(u2 − c2) (u2 + c2)

)
.

The numerator in the formula for H then becomes
u4 + c4

u2 (u2 − c2)
u2f ′ −

(
u2 + c2

)
uf ′

(
1

u
+

2c2u

(u2 − c2) (u2 + c2)

)
+ 2c2f ′

after eliminating f ′ and multiplying through by u2 − c2 this expression becomes

u4 + c4 −
(
u4 − c4 + 2c2u2

)
+ 2c2

(
u2 − c2

)
= 0.

Theorem 5.3.17. A surface whose area is minimal among nearby surfaces is
a minimal surface.

Proof. We assume that the surface is given by a parametrization q (u, v) and
only consider nearby surfaces that are graphs over the given surface, i.e.,

q∗ = q +φn

for some function φ (u, v). From such a surface we can then create a family of
surfaces

qε = q +εφn

that interpolates between these two surfaces. To calculate the area density as a
function of ε we first note that

∂k qε = ∂k q +ε ((∂kφ) n +φ∂k n) .

Then the first fundamental form becomes

gεkk = gkk + 2εφ (∂k q | ∂k n) + ε2
(

(∂kφ)
2

+ φ2 |∂k n|2
)

= gkk − 2εφLkk + ε2
(

(∂kφ)
2 −Kφ2gkk + 2Hφ2Lkk

)
,

gεuv = guv + εφ ((∂u q | ∂v n) + (∂v q | ∂u n)) + ε2
(
∂uφ | ∂vφ+ φ2 (∂u n | ∂v n)

)
= guv − 2εφLuv + ε2

(
∂uφ∂vφ−Kφ2guv + 2Hφ2Luv

)
,

and the square of the area density

gεuug
ε
vv − (gεuv)

2
= guugvv − (guv)

2 − 2ε (guuLvv + gvvLuu − 2guvLuv) +O
(
ε2
)

=
(
guugvv − (guv)

2
)

(1− 4εφH) +O
(
ε2
)
.
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This shows that if H 6= 0 somewhere then we can select φ such that the area
density will decrease for nearby surfaces. �

Remark 5.3.18. Conversely note that when H = 0 everywhere, then the area
density is critical. The term that involves ε2 has a coefficient that looks like

guu

(
(∂vφ)

2 − φ2Kgvv

)
+ gvv

(
(∂uφ)

2 − φ2Kguu

)
−2guv

(
∂uφ · ∂vφ− φ2Kguv

)
+ 4φ2

(
LuuLvv − L2

uv

)
= |−∂vφ∂u q +∂v q ∂uφ|2 − 2φ2K

(
guugvv − g2

uv

)
+ 4φ2

(
LuuLvv − L2

uv

)
= |−∂vφ∂u q +∂v q ∂uφ|2 + 2φ2K

(
guugvv − g2

uv

)
and it is not clear that this is positive. In fact, minimal surfaces have K ≤ 0 so
when φ is constant the area decreases!

Exercises
(1) Let X,Y ∈ TpM be an orthonormal basis for the tangent space at p to the

surface M . Prove that the mean and Gauss curvatures can be computed as
follows:

H =
1

2
(II (X,X) + II (Y, Y )) ,

K = II (X,X) II (Y, Y )− (II (X,Y ))
2
.

(2) Show that ifK = 0 and H = 0, then the Weingarten map L = 0 and the normal
is constant. Hint: First show that the third fundamental form vanishes. Give
an example of a 2× 2 matrix A 6= 0 such that A2 = 0 and trA = 0 = detA.

(3) Assume that K = H = 0 and use the equations

LuuLvv − (Luv)
2

= 0,

gvvLuu + guuLvv − 2guvLuv = 0,

to show that II = 0. Hint: First show that if Luv = 0, then Luu = Lvv = 0.
Second, if Luv 6= 0, then use guugvv > (guv)

2 and LuuLvv = (Luv)
2 to show

that the last equation can’t be satisfied.
(4) Show that if K = 1

R2 and H = ± 1
R , then the Weingarten map L = ∓ 1

RI, where
I is the identity operator. Use this to show that the surface is part of a sphere
of radius R.

(5) For a surface of revolution

q (t, µ) = r (t) er (µ) + z (t) e3

compute the first and second fundamental forms as well as the Gauss and mean
curvatures. Show that if (r (t) , z (t)) is unit speed, then K = − r̈r .

(6) Compute the second fundamental form of a tangent developable q (s, t) = c (t)+
sdcdt of a unit speed curve c (t). Show that the Gauss curvature vanishes. Show
that the mean curvature vanishes if and only if the second fundamental form
vanishes.

(7) Show that the surface of revolution

q (s, θ) = R (cos (as)) er (θ) +

(∫ s

0

√
1− a2R2 sin2 (at)dt

)
e3
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has constant Gauss curvature a2. Show that this is a sphere centered at the
origin if and only if R = 1

a . Hint: When s = 0 this is a circle of radius R.
(8) Show that a Monge patch z = F (x, y) is minimal if and only if Lagrange’s

equation holds:(
1 + (∂yF )

2
)
∂2
xxF − 2∂xF∂yF∂

2
xyF +

(
1 + (∂xF )

2
)
∂2
yyF = 0.

Use this to show that Scherk’s surface ecz cos cx = cos cy is minimal. In fact
Scherk’s surface is the only minimal surface of the form z = F (x, y) = f (x) +
h (y).

(9) Let q (t) be a curve on a surface with normal n. Denote the Gauss image of the
curve by n (t) = n ◦ q (t). Show that the velocities of these curves are related
by ∣∣∣∣dn

dt

∣∣∣∣2 + 2H

(
dn

dt
| d q

dt

)
+K

∣∣∣∣d q

dt

∣∣∣∣2 = 0.

(10) Let q (t) = q (u (t) , v (t)) be an asymptotic curve on a surface, i.e., κn = 0.
(a) Show that K ≤ 0 along the curve.
(b) (Beltrami-Enneper) If τ is the torsion of the curve as a space curve, then

τ2 = −K.

Hint: Use the previous exercise.
(11) Show that a minimal surface satisfies K ≤ 0.
(12) Show that if a parametrized surface has the property that guu, gvv, and guv are

constant, then the second derivatives ∂2
uv q, ∂2

uu q, and ∂2
vv q are all normal to

the surface. Use this to conclude that the Gauss curvature vanishes.
(13) Show that

K =
1

det [I]
(∂vΓuuv − ∂uΓuvv)

− 1

det [I]

[
Γuuu Γuuv

]
[I]
−1

[
Γvvu
Γvvv

]
+

1

det [I]

[
Γuvu Γuvv

]
[I]
−1

[
Γuvu
Γuvv

]
.

Hint: See section 5.2 exercise 11.
(14) Compute the Gauss curvatures of the generalized cones (section 4.1 exercise 2),

generalized cylinders (section 4.1 exercise 1), and tangent developables (section
4.1 exercise 3). We shall offer several proofs below that these are essentially the
only surfaces with vanishing Gauss curvature (see 29 below and section 5.5).
Hint: In each case the normal vector is constant along the lines in the ruled
surface.

(15) Show that

∂u q×∂v n +∂u n×∂v q = −2H∂u q×∂v q,

and more generally that

∂u q×∂k n = −Lvk∂u q×∂v q,

∂k n×∂v q = −Luk∂u q×∂v q .
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(16) Show that

2K
√

det [I] n = ∂u (n× ∂v n)− ∂v (n× ∂u n) ,√
det [I] n×∂u n = Luv∂u q−Luu∂v q,√
det [I] n×∂v n = Lvv∂u q−Luv∂v q .

Hint: For the last two formulas it might be useful to use section 4.3 exercise 9
and [II] = [I] [L].

(17) Compute the first and second fundamental forms as well as the Gauss and mean
curvatures for the conoid

q (s, t) = (sx (t) , sy (t) , z (t))

= (0, 0, z (t)) + s (x (t) , y (t) , 0)

when X = (x (t) , y (t) , 0) is a unit field.
(18) Show that a conformally parametrized (isothermal) surface q (u, v) is minimal

if and only if
∆ q = ∂2

uu q +∂2
vv q = 0.

Hint: Use section 5.1 exercise 5c.
(19) Show that Enneper’s surface

q (u, v) =

(
u− 1

3
u3 + uv2, v − 1

3
v3 + vu2, u2 − v2

)
is minimal. Hint: Do section 4.4 exercise 14 first.

(20) Show that Catalan’s surface

q (u, v) =
(
u− sinu cosh v, 1− cosu cosh v,−4 sin

u

2
sinh

v

2

)
is minimal. Hint: Do section 4.4 exercise 15 first.

(21) Show that for a fixed θ ∈ R the parametrized surface

q (u, v) = (u cos θ ± sinu cosh v, v ± cos θ cosu sinh v,± sin θ cosu cosh v)

is isothermal and minimal.
(22) Consider a unit speed curve c (s) : [0, L] → R3 with non-vanishing curvature

and the tube of radius R around it

q (s, φ) = c (s) +R (Nc cosφ+ Bc sinφ)

(see section 4.1 exercise 6 and section 4.3 exercise 7).
(a) Use the formula for n together with Gauss’ formula for K to show that

K =
−κ cosφ

R (1− κR cosφ)
.

(b) Show that ∫ 2π

0

∫ L

0

K
√

det [I]dsdφ = 0

and ∫ 2π

0

∫ L

0

|K|
√

det [I]dsdφ = 4

∫ L

0

κds.

(23) Consider a surface with negative Gauss curvature.
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(a) Show that locally it admits a parametrization q (s, t) where the parameter
curves are asymptotic curves, i.e., the second fundamental form looks like

[II] =

[
0 Lst
Lst 0

]
.

(b) Show that this implies

[III] = −K
[

gss −gst
−gst gtt

]
.

(24) (Meusnier, 1785) Consider a surface of revolution of the form

q (t, µ) = r (t) er (µ) + te3.

(a) Show that if the surface of revolution is minimal then

r̈

ṙ2 + 1
=

1

r
.

(b) Show that the catenoids

q (t, µ) =

(
1

a
cosh (at+ b) cosµ,

1

a
cosh (at+ b) sinµ, t

)
,

a > 0 and b ∈ R are minimal.
(c) Show that the functions

r (t) =
1

a
cosh (at+ b)

solve the initial value problems:
r̈

ṙ2 + 1
=

1

r
, r (0) = r0 > 0, ṙ (0) = ṙ0 ∈ R.

(d) Conclude that the catenoids are the only surfaces of revolution that are
minimal.

(25) (Meusnier, 1785) Show that the helicoid

q (r, θ) = rer (θ) + θe3

is minimal. Conversely, show that if a conoid

q (r, θ) = rer (θ) + z (θ) e3

is minimal, then z = aθ + b, for constants a, b.
(26) Consider a parametrized surface q (u, v) with normal n (u, v) and let f (u, v) be

a function.
(a) Show that

K =
det (∂u (f n) , ∂v (f n) , f n)

f2 det (∂u q, ∂v q, f n)
.

(b) Show that

H = −1

2

det (∂u q, ∂v (f n) , f n) + det (∂u (f n) , ∂v q, f n)

f det (∂u q, ∂v q, f n)
.

Hint: When f = 1 this follows from 15.
(c) Show that if the surface satisfies F (x, y, z) = C, then there is a function f

such that ∇F = f n.
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(27) Consider a surface that satisfies the equation F (x, y, z) = C and use n = ∇F
|∇F | .

(In section 2.1 exercise 13 there is a similar problem for planar curves given by
equations.)
(a) Assume that ∂zF 6= 0 and use x, y as parameters for a Monge patch. Show

that

∂x q =
1

∂zF

 ∂zF
0

−∂xF

 , ∂y q =
1

∂zF

 0
∂zF
−∂yF


and

∂∇F
∂x

=

 ∂2
xxF
∂2
xyF
∂2
xzF

− ∂xF

∂zF

 ∂2
zxF
∂2
zyF
∂2
zzF

 , ∂∇F
∂y

=

 ∂2
yxF
∂2
yyF
∂2
yzF

− ∂yF

∂zF

 ∂2
zxF
∂2
zyF
∂2
zzF

 .
Hint: Keep in mind that z = z (x, y) and that its derivatives can be calcu-
lated using implicit differentiation.

(b) Use (a) and exercise 26 to show that

K = − 1

|∇F |4
det


∂2
xxF ∂2

yxF ∂2
zxF ∂xF

∂2
xyF ∂2

yyF ∂2
zyF ∂yF

∂2
xzF ∂2

yzF ∂2
zzF ∂zF

∂xF ∂yF ∂zF 0

 .
Hint: Use a Laplace expansion along the bottom row.

(c) Why is the formula in (b) valid at all points where ∇F 6= 0?
(d) Show that the surfaces

x2

a2
+
y2

b2
+
z2

c2
= 1,

x2

a2
+
y2

b2
− z2

c2
= −1

have

K =
1

a2b2c2
1(

x2

a4 + y2

b4 + z2

c4

)2 .

(e) Show that the surface

x2

a2
+
y2

b2
− z2

c2
= 1

has

K = − 1

a2b2c2
1(

x2

a4 + y2

b4 + z2

c4

)2 .

(f) Show that the surface

x2

a2
+
y2

b2
= z,

has

K =
1

4a2b2
1(

x2

a4 + y2

b4 + 1
4

)2 .
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(g) Show that the surface
x2

a2
− y2

b2
= z

has
K = − 1

4a2b2
1(

x2

a4 + y2

b4 + 1
4

)2 .

(28) Consider a surface that satisfies the equation F (x, y, z) = C and use n =
∇F
|∇F | . (In section 2.1 exercise 14 a similar problem for planar curves given by
equations.)
(a) Assume that ∂zF 6= 0 and use x, y as parameters for a Monge patch. Show

that

∂x q =
1

∂zF

 ∂zF
0

−∂xF

 , ∂y q =
1

∂zF

 0
∂zF
−∂yF


and

∂∇F
∂x

=

 ∂2
xxF
∂2
xyF
∂2
xzF

− ∂xF

∂zF

 ∂2
zxF
∂2
zyF
∂2
zzF

 , ∂∇F
∂y

=

 ∂2
yxF
∂2
yyF
∂2
yzF

− ∂yF

∂zF

 ∂2
zxF
∂2
zyF
∂2
zzF

 .
Hint: Keep in mind that z = z (x, y) and that its derivatives can be calcu-
lated using implicit differentiation.

(b) Using part (a) and exercise 26 show that

H = −1

2
div
∇F
|∇F |

,

where

div

 P
Q
R

 = ∂xP + ∂yQ+ ∂zR.

Hint: It might help to first show that

div
∇F
|∇F |

=
∆F

|∇F |
− (∇F )

t
D2F∇F
|∇F |3

,

where
∆F = ∂2

xxF + ∂2
yyF + ∂2

zzF

and

(∇F )
t
D2F∇F =

[
∂xF ∂yF ∂zF

]  ∂2
xxF ∂2

yxF ∂2
zxF

∂2
xyF ∂2

yyF ∂2
zyF

∂2
xzF ∂2

yzF ∂2
zzF

 ∂xF
∂yF
∂zF

 .
(c) Show that Scherk’s surface ez cosx = cos y is minimal.
(d) Show that sin az = sinh ax sinh ay defines a minimal surface.
(e) Can you find other minimal surfaces of the form F (x)G (y)H (z) = 1?

(29) (Monge 1775) Consider a Monge patch z = F (x, y). Define the two functions
p = ∂xF and q = ∂yF .
(a) Show that the Gauss curvature vanishes if and only if

∂2
xxF∂

2
yyF −

(
∂2
xyF

)2
= 0.

(b) Assume that ∂2
xyF = 0 on an open set.
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(i) Show that F = f (x) + h (y).
(ii) Show that the Gauss curvature vanishes if and only if f ′′ = 0 or

h′′ = 0.
(iii) Show that if, say, h′′ = 0, then it is a generalized cylinder.

(c) Assume that ∂2
xyF 6= 0 and that the Gauss curvature vanishes.

(i) Show that we can locally reparametrize the surface using the reparametriza-
tion (u, q) = (x, q (x, y)).

(ii) Show that p = f (q) for some function f . Hint: In the (u, q)-
coordinates ∂p

∂u = 0. When doing this calculation keep in mind that
y depends on u in (u, q)-coordinates as q depends on both x and y.

(iii) Show in the same way that F (x, y)− (px+ qy) = h (q).
(iv) Show that in the new parametrization:

y = −h′ (q)− uf ′ (q)

and

z = xp+ qy + h (q)

= h (q)− qh′ (q) + (f (q)− qf ′ (q))u.

(v) Show that this is a ruled surface.
(vi) Show that this ruled surface is a generalized cylinder when f ′′ van-

ishes.
(vii) Show that it is a generalized cone when h′′ = af ′′ for some constant

a.
(viii) Show that otherwise it is a tangent developable by showing that the

lines in the ruling are all tangent to the curve that corresponds to

u = −h
′′

f ′′
.

(30) Show that

K =

det

[ (
∂2
uu q | ∂u q×∂v q

) (
∂2
uv q | ∂u q×∂v q

)(
∂2
vu q | ∂u q×∂v q

) (
∂2
vv q | ∂u q×∂v q

) ]
(det [I])

2

=
(∂vΓuuv − ∂uΓuvv)

det [I]

+

det

 0 Γvvu Γvvv
Γuuu guu guv
Γuuv gvu gvv

− det

 0 Γuvu Γuvv
Γuvu guu guv
Γuvv gvu gvv


(det [I])

2 .

(31) (Gauss) Show that if we define |g|2 = det [I], then

4 |g|4K = guu

(
∂vguu∂vgvv − 2∂uguv∂vgvv + (∂ugvv)

2
)

+guv (∂uguu∂vgvv − ∂ugvv∂vguu − 2∂vguu∂vguv − 2∂ugvv∂uguv + 4∂uguv∂vguv)

+gvv

(
∂uguu∂ugvv − 2∂uguu∂vguv + (∂vguu)

2
)

−2 |g|2
(
∂2
vvguu − 2∂2

uvguv + ∂2
uugvv

)
.
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(32) (Frobenius) Show that if we define |g|2 = det [I], then

K = − 1

4 |g|2
det

 guu guv gvv
∂uguu ∂uguv ∂ugvv
∂vguu ∂vguv ∂vgvv


− 1

2 |g|

(
∂u

(
∂ugvv − ∂vguv

|g|

)
+ ∂v

(
∂vguu − ∂uguv

|g|

))
.

(33) (Liouville) Show that if we define |g|2 = det [I], then

K =
1

|g|

(
∂v

(
|g|
guu

Γvuu

)
− ∂u

(
|g|
guu

Γvuv

))
=

1

|g|

(
∂v

(
|g|
gvv

Γuvv

)
+ ∂u

(
|g|
gvv

Γuuv

))
.

5.4. Principal Curvatures

Definition 5.4.1. The principal curvatures at a point q on a surface are

κ1 = max {II (X,X) | X ∈ TqM and |X| = 1} ,
κ2 = min {II (X,X) | X ∈ TqM and |X| = 1} .

We say that q is umbilic if the principal curvatures coincide, i.e., II is a multiple of
I at q.

Theorem 5.4.2 (Euler, 1760). Let E ∈ TqM be a unit vector and κ1, κ2 the
principal curvatures, then

II (E,E) = κ1 cos2 θ + κ2 sin2 θ.

Moreover, the principal curvatures are eigenvalues for the Weingarten map.

Proof. We argue as in the proof of theorem 4.4.9 with Q = II. Let II (E,E)
have a maximum at E1 with E2 ∈ TqM a unit vector orthogonal to E1. It follows
that all unit vectors at q have the form E (θ) = cos θE1 + sin θE2 ∈ TqM . Now
consider

II (E (θ) , E (θ)) = cos2 θ II (E1, E1) + 2 cos θ sin θ II (E1, E2) + sin2 θ II (E2, E2) .

By construction this is a function of θ that has a maximum at θ = 0. The derivative
at θ = 0 is 2 II (E1, E2). Therefore, II (E1, E2) = 0 and

II (E (θ) , E (θ)) = cos2 θ II (E1, E1) + sin2 θ II (E2, E2) .

We claim that L (Ei) = κiEi for i = 1, 2. To see this note that

L (E1) = I (L (E1) , E1)E1 + I (L (E1) , E2)E2

= II (E1, E1)E1 + II (E1, E2)E2

= κ1E1.

A similar argument works for E2. �

Definition 5.4.3. A vector that is an eigenvector for the Weingarten map is
called a principal direction. A curve on a surface with the property that its velocity
is always an eigenvector for the Weingarten map, i.e., a principal direction, is called
a line of curvature.

By using II = Q in theorem 4.4.9 we obtain:
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Corollary 5.4.4. If a point q on a surface is not umbilic, then there is a
parametrization q (u, v) such that the coordinate curves are lines of curvature:

L (∂u q) = κ1∂u q, L (∂v q) = κ2∂v q,

and
I (∂u q, ∂v q) = Q (∂u q, ∂v q) = 0.

Example 5.4.5. The height function that measures the distance from a point
on the surface to the tangent space TpM is given by

f (q) = (q−p | n (p)) .

Its partial derivatives with respect to a parametrization of the surface are

∂kf = (∂k q | n (p)) ,

∂2
ijf =

(
∂2
ij q | n (p)

)
.

Thus f has a critical point at p, and the second derivative matrix at q is simply [II] .
The second derivative test then tells us something about how the surface is placed
in relation to TqM. Specifically we see that if both principal curvatures have the
same sign, or K > 0, then the surface must locally be on one side of the tangent
plane, while if the principal curvatures have opposite signs, or K < 0, then the
surface lies on both sides. In that case it’ll look like a saddle.

We can now give a rather surprising characterization of planes and spheres.

Theorem 5.4.6 (Meusnier, 1776). If a surface has the property that κ1 = κ2

at all points, then κ1 = κ2 = H is constant and the surface is part of a plane or
sphere.

Proof. Since the principal curvatures are the eigenvalues of L it follows that
H = κ1+κ2

2 = κ1 = κ2.
Assume we have a parametrization q (u, v) of part of the surface. Since the

principal curvatures agree at all points it follows that all directions are principal
directions. In particular:

−∂k n = L (∂k q) = H∂k q .

By letting k = u, v and taking partial derivatives of this equation we obtain

−∂2
uv n = ∂uH∂v q +H∂2

uv q,

−∂2
vu n = ∂vH∂u q +H∂2

vu q .

As partial derivatives commute it follows that

∂uH∂v q = ∂vH∂u q .

Since ∂u q, ∂v q are linearly independent this forces ∂uH = ∂vH = 0. Thus H is
constant.

Returning to the equation

−∂k n = H∂k q

we see that
∂k (n +H q) = 0.
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This implies that n +H q is constant. When H = 0 this shows that n is constant
and consequently the surface lies in a plane orthogonal to n. When H does not
vanish we can assume that H = ± 1

R , R > 0. We then have that

±R n + q = c

for some c ∈ R3. This shows that

|q− c|2 = R2.

Hence q lies on the sphere of radius R centered at c. �

Exercises
(1) Show that if two nonzero tangent vectors X,Y to a surface satisfy I (X,Y ) =

0 = II (X,Y ), then they are principal directions.
(2) Show that the principal curvatures for a parametrized surface are the roots to

the equation
det ([II]− κ [I]) = 0.

(3) Show that the principal curvatures are given by

κ1 = H +
√
H2 −K and κ2 = H −

√
H2 −K.

(4) Show that if H ≤ H0 and K ≥ K0, then κ1 ≤ H0 +
√
H2

0 −K0 and κ2 ≥
H0 −

√
H2

0 −K0.
(5) Show that following conditions are equivalent:

(a) The principal curvatures at a point are equal.
(b) The mean and Gauss curvatures at the point are related by H2 = K.
(c) L = HI, where I is the identity map on the tangent spaces.
(d) (L−HI)

2
= 0.

(e) The characteristic polynomial for L is a perfect square.
(6) Let q (u, v) be a parametrized surface without umbilics. Show that ∂u q and

∂v q are the principal directions if and only if guv = 0 = Luv.
(7) Consider

z
(
x2 + y2

)
= κ1x

2 + κ2y
2.

(a) Show that this defines a surface when x2 + y2 > 0.
(b) Show that it is a ruled surface where the lines go through the z-axis and

are perpendicular to the z-axis.
(c) Show that if a general surface has principal curvatures κ1, κ2 at a point,

then z corresponds to the possible values of the normal curvature at that
point.

(8) (Rodrigues) Show that a curve q (t) on a surface with normal n is a line of
curvature if and only if there is a function λ (t) such that

−λ (t)
d q

dt
=
d (n ◦ q)

dt
.

(9) Show that the principal curvatures are constant if and only if the Gauss and
mean curvatures are constant.

(10) Consider the pseudo-sphere

q (t, µ) =
1

cosh t
er (µ) + (t− tanh t) e3.
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This is a model for a surface with constant negative Gauss curvature. Note
that the surface

q (t, µ) =
1

cosh t
er (µ) + (tanh t) e3

is the sphere with a conformal (Mercator) parametrization.
(a) Compute the first and second fundamental forms
(b) Compute the principal curvatures, Gauss curvature, and mean curvature.

(11) A ruled surface q (u, v) = c (v)+uX (v) is called developable if all of the u-curves
q (u) = q (u, v) for fixed v are lines of curvature with κ = 0, i.e., ∂u n = 0. Show
that ruled surfaces are developable if and only if they have vanishing Gauss
curvature.

(12) (Monge) Show that a curve q (t) on a surface with normal n is a line of curvature
if and only if the ruled surface q∗ (s, t) = q (t) + sn ◦ q (t) is developable. Hint:
Note that the normal to q∗ (s, t) = q (t) + sn ◦ q (t) at s = 0 is S (t). So this
surface is developable if and only if S (t0) is the normal to q∗ (s, t0) for all s.

(13) Show that if a surface has conformal Gauss map, then it is either minimal or
part of a sphere.

(14) Show that if III = λ II for some function λ on the surface, then either K = 0
or the surface is part of a sphere.

(15) Show that all curves on a sphere or plane are lines of curvature. Use this to
show that if two spheres; a plane and a sphere; or two planes intersect in a
curve, then they intersect at a constant angle along this curve.

(16) Consider a surface of revolution

q (r, µ) = rer (µ) + h (r) e3.

Show that κ1 = d
dr (rκ2).

(17) Consider a unit speed curve c (s) : [0, L] → R3 with non-vanishing curvature
and the tube of radius R around it

q (s, φ) = c (s) +R (Nc cosφ+ Bc sinφ)

(see section 4.1 exercise 6 and section 4.3 exercise 7). Show that the principal
directions are −Nc sinφ + Bc cosφ and Tc with principal curvatures 1/R and
− κ cosφ

1−κR cosφ .
(18) Show that Enneper’s surface

q (u, v) =

(
u− 1

3
u3 + uv2, v − 1

3
v3 + vu2, u2 − v2

)
has the property that guv = Luv = 0 and that the u- and v-curves are planar.
Hint: A curve is planar if det

[
v a j

]
= 0.

(19) Show that

q (u, v) = (u cos θ ± sinu cosh v, v ± cos θ cosu sinh v,± sin θ cosu cosh v)

has the property that guv = Luv = 0 and that the u- and v-curves are planar.
Hint: A curve is planar if det

[
v a j

]
= 0.

(20) Consider a parametrized surface q (t, φ) where the t- and φ-curves correspond
to the principal directions. Assume that the principal curvatures are κ2 < κ1

and κ1 = 1/R is constant.
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(a) Consider c (t, φ) = q (t, φ) +R n (t, φ) and show that
∂ c

∂φ
= 0,

∂ c

∂t
6= 0.

(b) Conclude that q is a tube of radius R (see section 4.1 exercise 6).
(c) Show that a surface without umbilics where one of the principal curvatures

is a positive constant is a tube.
(d) Is it necessary to assume that the surface has no umbilics?

(21) Show that the geodesic torsion of a curve on a surface satisfies

τg = (κ2 − κ1) sinφ cosφ,

where φ is the angle between the tangent to the curve and the principal direction
corresponding to κ1.

(22) (Rodrigues) Show that a unit speed curve on a surface is a line of curvature if
and only if its geodesic torsion vanishes.

(23) (Joachimsthal) Let q (t) be a curve that lies on two surfaces M1 and M2 that
have normals n1 and n2 respectively. Define

θ (t) = ∠ (n1 ◦ q (t) ,n2 ◦ q (t))

and assume that 0 < θ (t) < π, in other words the surfaces are not tangent to
each other along the curve.
(a) Show that if q (t) is a line of curvature on both surfaces, then θ (t) is

constant.
(b) Show that if q (t) is a line of curvature on one of the surfaces and θ (t) is

constant, then q (t) is also a line of curvature on the other surface.
(24) Let q (u, v) be a parametrized surface and qR = q +R n the parallel surface at

distance R from q.
(a) Show that

∂k qR = ∂k q +R∂k n = (I −RL) (∂k q) ,

where I is the identity map I (v) = v.
(b) Show that qR is a parametrized surface with normal n provided R 6= 1

κ1
, 1
κ2
.

(c) Show that
LR = L ◦ (I −RL)

−1

by using that

L (∂k q) = −∂k n = LR
(
∂k qR

)
.

(d) Show that these surfaces all have the same principal directions with prin-
cipal curvatures

κRi =
κi

1−Rκi
.

(25) Let q (u, v) be a parametrized surface and qR = q +R n the parallel surface at
distance ε from q.
(a) Show that

IR = I−2R II +R2 III .

(b) Show that
IIR = II−R III .

(c) Show that
IIIR = III .
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(d) How do you reconcile these relations with the formula

LR = L ◦ (I −RL)
−1

from the previous exercise?
(e) Show that

KR =
K

1− 2RH +R2K
and

HR =
H −RK

1− 2RH +R2K
.

(f) Show that if K = 1
R2 , then H±R = 1

2R . Conversely, if H = 1
2R , then

KR = 1
R2 .

(g) Show that

det
[
IR
]

=
(
1− 2RH +R2K

)2
det [I] .

5.5. Ruled Surfaces

A ruled surface comes about by selecting a curve c (v) and then considering the
surface one obtains by adding a line through each of the points on the curve. If the
directions of those lines are given by X (v), then the surface can be parametrized
by q (u, v) = c (v) + uX (v). We can without loss of generality assume that X is a
unit field, however, in many concrete examples throughout the exercises X might
not be given as a unit vector. The condition for obtaining a parametrized surface
is that ∂ q

∂u = X and ∂ q
∂v = dc

dv + udXdv are linearly independent. Even though we
don’t always obtain a surface for all parameter values it is important to consider
the extended lines in the rulings for all values of u.

Example 5.5.1. A generalized cylinder is a ruled surface where X is constant,
i.e., dXdv = 0. This will be a parametrized surface everywhere if X is never tangent
to c.

Example 5.5.2. A generalized cone is a ruled surface where c can be chosen
to be constant, i.e., dc

dv = 0. This will clearly not be a parametrized surface when
u = 0.

Example 5.5.3. A tangent developable, is a ruled surface where X is always
tangent to c, i.e., X and dc

dv are always proportional. This is also not a surface when
u = 0. Note that generalized cones can be considered a special case of tangent
developables. It is not unusual to also assume that that a tangent developable has
the property that c is regular so as to avoid this overlap in definitions.

Example 5.5.4. An example of a cone that is not rotationally symmetric is
the elliptic cone

x2

a2
+
y2

b2
= z2.

The elliptic hyperboloid
x2

a2
+
y2

b2
= z2 + 1

is an example of a surface that is ruled in two different ways, but which does not
have zero Gauss curvature. We can let

c (t) = (a cos (t) , b sin (t) , 0)
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be the ellipse where z = 0. The fields generating the lines are given by

X =
dc

dt
+ (0, 0,±1)

and it is not difficult to check that

q (s, t) = c (t) + s

(
dc

dt
+ (0, 0,±1)

)
are both rulings of the elliptic hyperboloid.

Proposition 5.5.5. Ruled surfaces have non-positive Gauss curvature and the
Gauss curvature vanishes if and only if(

X × dc

dv
| dX
dv

)
= 0.

In particular, generalized cylinders, generalized cones, and tangent developables
have vanishing Gauss curvature.

Proof. Since ∂2
uu q = 0 it follows that Luu = 0 and

K =
−L2

uv

guugvv − g2
uv

≤ 0.

Moreover, K vanishes precisely when

Luv =

(
∂2 q

∂u∂v
| n
)

=

(
dX

dv
| n
)

= 0.

Since the normal is given by

n =
X ×

(
dc
dv + udXdv

)∣∣X × ( dcdv + udXdv
)∣∣

this translates to

0 =

(
X ×

(
dc

dv
+ u

dX

dv

)
| dX
dv

)
=

(
X × dc

dv
| dX
dv

)
,

which is what we wanted to prove. �

Definition 5.5.6. A ruled surface with the property that the normal is con-
stant in the direction of the ruling, i.e.,

∂ n

∂u
= 0,

is called a developable or developable surface.

Example 5.5.7. Generalized cylinders, cones, and tangent developables are all
developables. In general the normal is given by

n =
X ×

(
dc
dv + udXdv

)∣∣X × ( dcdv + udXdv
)∣∣ .

For a generalized cylinder this specializes to

n =
X × dc

dv∣∣X × dc
dv

∣∣
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while for cones and tangent developables

n =
X × udXdv∣∣X × udXdv ∣∣ = ±

X × dX
dv∣∣X × dX
dv

∣∣ .
In each case the normal is independent of u.

We start with a characterization of developables in terms of Gauss curvature.
Euler was the the first to suggest this result and used it to show that spheres can’t
admit Cartesian parametrizations. Monge clarified the statement and gave the first
proof.

Lemma 5.5.8 (Monge, 1775). A surface with vanishing Gauss curvature and no
umbilics is a developable surface. Conversely any developable has vanishing Gauss
curvature.

Proof. First note that a developable has the property that the lines in the
ruling are lines of curvature and that the principal value vanishes in the direction
of the lines. This establishes the second claim and also guides us as to how to find
the lines in a ruling.

Assume now that the surface has zero Gauss curvature. We shall show that
the principal directions that correspond to the principal value 0 generate lines of
curvature that are straight lines. This will create a ruling. The normal is by
definition constant along these lines as they are lines of curvature for the principal
value 0.

Since the surface has no umbilics we can use corollary 5.4.4 to select a parametriza-
tion where ∂u q, ∂v q are principal directions and guv = Luv = 0. Using that the
Gauss curvature vanishes allows us to assume that

−∂u n = L (∂u q) = 0,

−∂v n = L (∂v q) = κ∂v q, κ 6= 0.

Combining these two equations we obtain

0 = ∂2
uv n = κ∂2

uv q +∂uκ∂v q .

This shows that(
∂2
uu q | ∂v q

)
= ∂u (∂u q | ∂v q)−

(
∂2
uv q | ∂u q

)
= 0 +

(
1

κ
∂uκ

)
(∂v q | ∂u q)

= 0.

By assumption we also have (
∂2
uu q | n

)
= Luu = 0.

Thus ∂2
uu q must be parallel to ∂u q and consequently the u-curves on the surface

have zero curvature as curves in R3. This shows that they are straight lines. �

The next result shows that ruled surfaces admit a standard set of parameters
that make it easier to recognize the three different types of developables.

Proposition 5.5.9. A ruled surface q (u, v) = c (v)+uX (v) can be reparametrized
as q (s, v) = c∗ (v) + sX (v), where dc∗

dv ⊥
dX
dv .
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The ruled surface is a generalized cone if and only if c∗ is constant. The ruled
surface is a tangent developable if and only if dc

∗

dv and X are proportional for all v.

Proof. Note that no change in the parametrization is necessary if X is con-
stant. When dX

dv 6= 0 define

c∗ = c−
(
dc
dv |

dX
dv

)∣∣dX
dv

∣∣2 X

and

s = u+

(
dc
dv |

dX
dv

)∣∣dX
dv

∣∣2 .

Here ∂s
∂u = 1, so (s (u, v) , v) is locally a valid reparametrization of the surface. It is

also clear that q (u, v) = c∗ (v) + sX (v) = q (s, v). Moreover, as X is a unit field it
is perpendicular to its derivative it follows that(

dc∗

dv
| dX
dv

)
=

(
dc

dv
− d

dv

((
dc
dv |

dX
dv

)∣∣dX
dv

∣∣2
)
X −

((
dc
dv |

dX
dv

)∣∣dX
dv

∣∣2
)
dX

dv
| dX
dv

)

=

(
dc

dv
| dX
dv

)
−
(
dc
dv |

dX
dv

)∣∣dX
dv

∣∣2
(
dX

dv
| dX
dv

)
=

(
dc

dv
| dX
dv

)
−
(
dc

dv
| dX
dv

)
= 0.

It is clear that we obtain a generalized cone when c∗ is constant and a tangent
developable if dc

∗

dv and X are parallel to each other.
Conversely if the ruled surface q (u, v) is a generalized cone, then there is a

unique function u = u (v) such that q (u (v) , v) is constant. Thus

0 =
dc

dv
+ u (v)

dX

dv
+
du (v)

dv
X.

If we multiply by dX
dv , then we obtain

u (v) = −
(
dc
dv |

dX
dv

)∣∣dX
dv

∣∣2 .

This corresponds exactly to s = 0 in the parametrization q (s, v) = c∗ (v) + sX (v).
So it follows that c∗ (v) is constant.

When the ruled surface is a tangent developable it is possible to find u = u (v)
such that the curve β (v) = q (u (v) , v) is tangent to the extended lines in the ruling,
i.e., dβdv and X are proportional. In particular,

0 =

(
dβ

dv
| dX
dv

)
=

(
dc

dv
+ u (v)

dX

dv
+
du (v)

dv
X | dX

dv

)
=

(
dc

dv
| dX
dv

)
+ u (v)

∣∣∣∣dXdv
∣∣∣∣2 .

It follows again that u (v) corresponds exactly to s = 0, which forces β to be c∗. �
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We are now ready to explain the possible shapes of surfaces with zero Gauss
curvature. This gives us a partial answer to the converse of theorem 5.3.6, where
it was shown that a surface with a Cartesian parametrization has vanishing Gauss
curvature.

Theorem 5.5.10 (Monge, 1775). A developable surface is a generalized cylin-
der, generalized cone, or a tangent developable at almost all points of the surface.

Proof. We can assume that the surface is given by

q (s, v) = c (v) + sX (v) ,

where
(
dc
dv ⊥

dX
dv

)
. The Gauss curvature vanishes precisely when(

X × dc

dv
| dX
dv

)
= 0.

If dXdv = 0 on an interval, then the surface is a generalized cylinder. So we can
assume that dX

dv 6= 0. This implies that X and dX
dv are linearly independent as they

are orthogonal. The condition (
X × dc

dv
| dX
dv

)
= 0

on the other hand implies that the three vectors are linearly dependent. We already
know that dc

dv ⊥
dX
dv , so this forces

dc

dv
=

(
dc

dv
| X
)
X.

When dc
dv 6= 0, then X is tangent to c and so we have a tangent developable. On

the other hand, if dc
ds = 0 on an interval, then the surface must be a generalized

cone on that interval.
Thus the surface is divided into regions each of which can be identified with

our three basic types of ruled surfaces and then glued together along lines that go
through parameter values where either dX

dv = 0 or dc
dv = 0. �

There is also a similar and very interesting result for ruled minimal surfaces.

Theorem 5.5.11 (Catalan). Any ruled surface that is minimal is planar or a
helicoid at almost all points of the surface.

Proof. Assume that we have a parametrization q (s, v) = c (v)+sX (v), where(
dc
dv |

dX
dv

)
= 0. In case the surface also has vanishing Gauss curvature it follows that

it is planar as the second fundamental form vanishes. Therefore, we can assume
that both c and X are regular curves and additionally that dc

dv is not parallel to X.
The mean curvature is given by the general formula

H =
Lssgvv − 2Lsvgsv + Lvvgss

2 (gssgvv − g2
sv)

,

where

gss = 1,

gsv =

(
dc

dv
| X
)
,

gvv =

∣∣∣∣ dcdv
∣∣∣∣2 + s2,
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n =
X ×

(
dc
dv + sdXdv

)∣∣X × ( dcdv + sdXdv
)∣∣ ,

Lss = 0,

Lsv = −
(
dX

dv
| n
)
,

Lvv = −
(
d2c

dv2
+ s

d2X

dv2
| n
)
.

Thus H = 0 precisely when

−2

(
dc

dv
| X
)(

dX

dv
| n
)

= −
(
d2c

dv2
+ s

d2X

dv2

)
| n,

which implies

2

(
dc

dv
| X
)(

dX

dv
|
(
X ×

(
dc

dv
+ s

dX

dv

)))
=

(
d2c

dv2
+ s

d2X

dv2
| X ×

(
dc

dv
+ s

dX

dv

))
.

The left hand side can be simplified to be independent of s:

2

(
dc

dv
| X
)(

dX

dv
|
(
X ×

(
dc

dv
+ s

dX

dv

)))
= 2

(
dc

dv
| X
)(

dX

dv
|
(
X × dc

dv

))
.

The right hand side can be expanded in terms of s as follows(
d2c

dv2
+ s

d2X

dv2
| X ×

(
dc

dv
+ s

dX

dv

))
=

(
d2c

dv2
| dc
dv
×X

)
+s

((
d2c

dv2
| X × dX

dv

)
+

(
d2X

dv2
| X × dc

dv

))
+s2

(
d2X

dv2
| X × dX

dv

)
.

This leads us to 3 identities depending on the powers of s. From the s2-term we
have (

d2X

dv2
| X × dX

dv

)
= 0.

In other words:
d2X

dv2
∈ span

{
X,

dX

dv

}
.

At this point it is convenient to assume that v is the arclength parameter for X.
With that in mind we have

d2X

dv2
=

(
d2X

dv2
| X
)
X +

(
d2X

dv2
| dX
dv

)
dX

dv

= −
(
dX

dv
| dX
dv

)
X

= −X.

This implies that X is in fact a planar circle of radius 1. For simplicity let us further
assume that it is the unit circle in the (x, y)-plane, i.e.,

X (v) = (cos v, sin v, 0) .
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From the s-term we obtain

0 =

(
d2c

dv2
| X × dX

dv

)
+

(
d2X

dv2
| X × dc

dv

)
=

(
d2c

dv2
| X × dX

dv

)
−
(
X | X × dc

dv

)
=

(
d2c

dv2
| X × dX

dv

)

=

 d2c

dv2
|

 0
0
1


showing that d2c

dv2 also lies in the (x, y)-plane. In particular, dc

dv
|

 0
0
1

 = h

is constant. Since dc
dv ⊥

dX
dv we obtain

dc

dv
=

(
dc

dv
| X
)
X +

 0
0
h


and

dc

dv
×X =

 0
0
h

×X = h
dX

dv
.

This considerably simplifies the terms that are independent of s in the mean cur-
vature equation

2

(
dc

dv
| X
)(

dX

dv
| X × dc

dv

)
=

(
d2c

dv2
| X × dc

dv

)
as we now obtain

2h

(
dc

dv
| X
)

= h

(
d2c

dv2
| dX
dv

)
= −h

(
dc

dv
| d

2X

dv2

)
= h

(
dc

dv
| X
)
.

When h = 0 the curve c also lies in the (x, y)-plane and the surface is planar.
Otherwise

(
dc
dv | X

)
= 0 which implies that

dc

dv
=

(
dc

dv
| X
)
X +

 0
0
h

 =

 0
0
h


and

c =

 0
0

hv + v0
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for a constant v0.
The surface is then given by

q (s, v) =

 s cos v
s sin v
hv + v0

 ,
which shows explicitly that it is a helicoid. �

Exercises
(1) Show that a generalized cylinder q (u, v) = c (v) + uX where X is a fixed unit

vector admits a parametrization q (s, t) = c∗ (t)+sX, where c∗ is parametrized
by arclength and lies a plane orthogonal to X.

(2) Does the equation (
α2 − y2

)
(β − z)2

= αβ2x2

define a ruled surface? Hint: A ruled surface contains a straight line through
every point.

(3) Let q (u, v) be a parametrized surface and q (t) = q (u (t) , v (t)) a curve with
q̇ (0) 6= 0 and q̈ (0) =

...
q (0) = 0 as a curve in R3. Show that q̇ (0) is a principal

direction with principal curvature 0.
(4) Consider the surface q (u, v) = c (v) + uDc (v), where Dc = τ Tc +κBc is the

Darboux vector for the unit speed curve c. Keep in mind that the Darboux
vector is not necessarily a unit vector so the properties developed in this section
don’t apply directly.
(a) Show that this is a ruled surface that is developable.
(b) Show that this is a generalized cylinder precisely when d

dv
τ
κ = 0. Hint. See

section 3.2 exercise 12.
(c) Show that this is a generalized cone precisely when d2

dv2
τ
κ = 0 and d

dv
τ
κ 6= 0.

Hint: If it is a generalized cone then there is a function u (v) so that
q (u (v) , v) is constant. Show that this implies that u (v)κ (v) is constant
and u (v) τ (v) has constant derivative.

(d) Show that this is a tangent developable when d2

dv2
τ
κ 6= 0.

(5) Consider a parameterized surface q (u, v). Show that the Gauss curvature van-
ishes if and only if ∂u n, ∂v n are linearly dependent everywhere.

(6) Consider
q (u, v) =

(
u+ v, u2 + 2uv, u3 + 3u2v

)
.

(a) Determine where it defines a surface.
(b) Show that the Gauss curvature vanishes.
(c) What type of ruled surface is it?

(7) Consider the Monge patch

z =

n∑
k=2

(ax+ by)
k

+ cx+ dy + f.

(a) Show that the Gauss curvature vanishes.
(b) Show that it defines a generalized cylinder.

(8) Consider the equation
xy = (z − α)

2
.

(a) Show that this defines a surface when (x, y, z) 6= (0, 0, α).



EXERCISES 151

(b) Show that it defines a generalized cone.
(9) Consider the equation

4
(
y − x2

) (
xz − y2

)
= (xy − z)2

.

(a) Show that this defines a surface when (x, y, z) 6=
(
x, x2, x3

)
.

(b) Show that it defines a tangent developable.
(10) (Euler, 1775) Let c (t) be a unit speed space curve with curvature κ (t) > 0.

Show that the tangent developable

q (s, t) = c (t) + s
dc

dt

admits Cartesian coordinates. Hint: There is a unit speed planar curve c∗ (t)
whose curvature is κ (t). Show that there is a natural isometry between the
part of the plane parametrized by

q∗ (s, t) = c∗ (t) + s
dc∗

dt

and the tangent developable q (s, t).
(11) Use the previous exercise to show that a surface with K = 0 and no umbilics

locally admits Cartesian coordinates at almost all points.
(12) Show that a surface given by an equation

F (x, y, z) = R

has vanishing Gauss curvature if and only if

det


∂2
xxF ∂2

yxF ∂2
zxF ∂xF

∂2
xyF ∂2

yyF ∂2
zyF ∂yF

∂2
xzF ∂2

yzF ∂2
zzF ∂zF

∂xF ∂yF ∂zF 0

 = 0.

Hint: Locally represent this surface as a Monge patch and use implicit differ-
entiation.

(13) Show that a ruled surface with constant and non-zero mean curvature is a
generalized cylinder.

(14) Show directly that if a minimal surface has vanishing Gauss curvature, then it
is part of a plane.

(15) Assume that we have a ruled surface

q (u, v) = c (v) + uX (v)

where |X| = 1.
(a) Show that if we use

c∗ = c+

(
a−

∫ (
dc

dv
| X
)
dv

)
X

and

w = u+

∫ (
dc

dv
| X
)
dv − a

for some constant a, then

q (w, v) = c∗ (v) + wX (v)

parametrizes the same surface and has the property that all v-curves are
orthogonal to X and thus to the lines in the ruling.
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(b) Show that if dXdv 6= 0, then we can reparametrize X by arclength and thus
obtain a parametrization

q (w, t) = c∗ (t) + wX (t) ,

where the t-curves are orthogonal to the ruling and X is a unit field
parametrized by arclength.

(c) Show that if c∗ is regular and has positive curvature and s denotes the ar-
clength parameter for c∗ we obtain X (s) = cos (φ (s)) Nc∗ + sin (φ (s)) Bc∗

for some function φ (s).
(16) Assume that we have a minimal ruled surface

q (w, t) = c (t) + wX (t)

parametrized as in the previous exercise with t-curves perpendicular to X and
X a unit field parametrized by arclength. Reprove Catalan’s theorem using this
parametrization. Hint: One strategy is to first show that X is a unit circle,
then show that c̈ is proportional to X, and finally conclude that the t-curves
are all Bertrand mates to each other (see section 3.2).

(17) Let q (s) be a unit speed asymptotic line (see section 5.1 exercise 6) of a ruled
surface q (u, v) = c (v) + uX (v). Note that u-curves are asymptotic lines.
(a) Show that

det
[

q̈, X, dc
dv + udXdv

]
= 0.

(b) Assume for the remainder of the exercise that K < 0. Show that there is
a unique asymptotic line through every point that is not tangent to X.

(c) Show that this asymptotic line can locally be reparametrized as

c (v) + u (v)X (v) ,

where

du

dv
=

det
[
X, dc

dv + u (v) dXdv ,
d2c
dv2 + u (v) d

2X
dv2

]
2 det

[
dc
dv , X, dX

dv

] .

(18) Consider the cubic equation with variable t:

x+ yt+ zt2 + t3 = 0

and discriminant:

D = z2y2 − 4z3x+ 18xyz − 4y3 − 27x2.

Show thatD = 0 corresponds to the tangent developable of the curve
(
t3, 3t2, 3t

)
.

Hint: Show that if

(x, y, z) =
(
t3, 3t2, 3t

)
+ s

(
3t2, 6t, 3

)
,

then

z2y2 − 4z3x = −27t3 (t+ s)
(
t2 + 5st+ 4s2

)
,

18xyz = 27t3 (t+ s)
(
6t2 + 30st+ 36s2

)
,

−4y3 − 27x2 = −27t3 (t+ s)
(
5t2 + 25st+ 32s2

)
.

(19) Consider the reduced quartic equation with variable t:

x+ yt+ zt2 + t4 = 0
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and discriminant:

D =

(
x+

z2

12

)3

− 33

(
xz

6
− y2

16
− z3

63

)2

.

Show thatD = 0 corresponds to the tangent developable of the curve
(
−3t4, 8t3,−6t2

)
.

Hint: Show that if

(x, y, z) =
(
−3t4, 8t3,−6t2

)
+ s

(
−12t3, 24t2,−12t

)
,

then

x+
z2

12
= 12s2t2,

xz

6
− y2

16
− z3

63
= 8s3t3.

(20) Consider a family of planes in (x, y, z)-space parametrized by t:

F (x, y, z, t) = a (t)x+ b (t) y + c (t) z + d (t) = 0.

An envelope to this family is a surface with the property that these planes are
precisely the tangent planes to the surface.
(a) Show that an envelope exists and can be determined by the equations:

F = a (t)x+ b (t) y + c (t) z + d (t) = 0

∂F

∂t
= ȧ (t)x+ ḃ (t) y + ċ (t) z + ḋ (t) = 0

when [
a b c

ȧ ḃ ċ

]
has rank 2. Hint: use t and one of the coordinates x, y, z as parame-
ters. The parametrization might be singular for some parameter values.
Specifically assume that

det

[
a b

ȧ ḃ

]
6= 0,

so that the surface can be parametrized as q (t, z) = (x (t, z) , y (t, z) , z)
and show that the tangent vectors

X =
∂ q

∂t
,
∂ q

∂z

satisfy the equation: [
a b c

]
X = 0.

Finally show that the points in the tangent plane all have the form

q +α
∂ q

∂t
+ β

∂ q

∂z
, α, β ∈ R2

and satisfy

F

(
q +α

∂ q

∂t
+ β

∂ q

∂z
, t

)
= 0.
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(b) Show that the envelope is a ruled surface. Hint: Assume that

det

[
a b

ȧ ḃ

]
6= 0,

and show that ∂2 q
∂z2 = 0.

(c) Show that the envelope is a generalized cylinder when the three functions
a, b, and c are linearly dependent. Hint: show that the tangent vectors ∂ q

∂z
are all parallel.

(d) Show that the envelope is a generalized cone when the function d is a linear
combination of a, b, and c and the Wronskian

det

 a b c

ȧ ḃ ċ

ä b̈ c̈

 6= 0.

Hint: If d+α0a+ β0b+ γ0c = 0, then (α0, β0, γ0) is the vertex of the cone.
(e) Show that the envelope is a tangent developable when the Wronskian

det


a b c d

ȧ ḃ ċ ḋ

ä b̈ c̈ d̈
...
a

...
b

...
c

...
d

 6= 0.

Note that the two previous exercises are concrete examples of this. Hint:
Show that the equations:

F = a (t)x+ b (t) y + c (t) z + d (t) = 0

∂F

∂t
= ȧ (t)x+ ḃ (t) y + ċ (t) z + ḋ (t) = 0

∂2F

∂t2
= ä (t)x+ b̈ (t) y + c̈ (t) z + d̈ (t) = 0

determine the curve that generates the tangent developable.
(f) Show that for fixed (x0, y0, z0) the solutions or roots to the equation F (x0, y0, z0, t) =

0 correspond to the tangent planes to the envelope that pass through
(x0, y0, z0).

(21) Let q (u, v) = c (v) + uX (v) be a developable surface. Show that there exist
functions α (v) , β (v) , γ (v) , and δ (v) such that the surface is an envelope of
the planes

α (v)x+ β (v) y + γ (v) z + δ (v) = 0.



CHAPTER 6

Surface Theory

In this chapter we continue the study of curvature with the aim of proving
several profound results for surfaces that also involve more global considerations.
The highlight being the local and global Gauss-Bonnet theorems. This chapter also
introduces abstract surfaces that might not come with a suitable second fundamen-
tal form. We also explain the Codazzi equations and establish the fundamental
theorem for surfaces.

6.1. Generalized and Abstract Surfaces

It is possible to work with generalized surfaces in Euclidean spaces of arbitrary
dimension: q (u, v) : U → Rk for any k ≥ 2.What changes is that we no longer have
a single normal vector n . In fact for k ≥ 4 there will be a whole family of normal
vectors, not unlike what happened for space curves. What all of these surfaces do
have in common is that we can define the first fundamental form. Thus we can also
calculate the Christoffel symbols using the formulas in terms of derivatives of the
first fundamental form. This leads us to the possibility of an abstract definition of
a surface that is independent of a particular map into a coordinate space Rk.

One of the simplest examples of a generalized surface is the flat torus in R4. It
is parametrized by

q (u, v) = (cosu, sinu, cos v, sin v)

and its first fundamental form is

I =

[
1 0
0 1

]
.

So this yields a Cartesian parametrization of the entire torus. This is why it is
called the flat torus. It is in fact not possible for a closed surface in R3 to be flat
everywhere (see section 6.6).

An abstract parametrized surface consists of a domain U ⊂ R2 and a first
fundamental form

[I] =

[
guu guv
guv gvv

]
,

where guu, gvv, and guv are functions on U . The inner product of vectors X =
(Xu, Xv) and Y = (Y u, Y v) thought of as having the same base point p ∈ U is
defined as

I (X,Y ) =
[
Xu Xv

] [ guu (p) guv (p)
gvu (p) gvv (p)

] [
Y u

Y v

]
.

155



6.1. GENERALIZED AND ABSTRACT SURFACES 156

For this to give us an inner product we also have to make sure that it is positive
definite, i.e., for X 6= 0

0 < I (X,X)

=
[
Xu Xv

] [ guu guv
guv gvv

] [
Xu

Xv

]
= XuXuguu + 2XuXvguv +XvXvgvv.

Proposition 6.1.1. I is positive definite if and only if tr [I] = guu + gvv > 0

and det [I] = guugvv − (guv)
2
> 0.

Proof. If I is positive definite, then it follows that guu and gvv are positive by
letting X = (1, 0) and (0, 1). Next use X =

(√
gvv,±

√
guu
)
to get

0 < I (X,X) = 2guugvv ± 2
√
guu
√
gvvguv.

Thus
±guv <

√
guu
√
gvv

showing that
guugvv > (guv)

2
.

To check that I is positive definite when guu + gvv, and guugvv − (guv)
2 are

positive we start by observing that

guugvv > g2
uv ≥ 0.

Thus guu and gvv have the same sign. As their sum is positive both terms are
positive. It then follows that

I (X,X) = XuXuguu + 2XuXvguv +XvXvgvv

≥ XuXuguu − 2 |Xu| |Xv|√guugvv +XvXvgvv

= (|Xu|√guu − |Xv|√gvv)2

≥ 0.

Here first inequality is in fact > unless Xu = 0 or Xv = 0. In case Xu = 0 we
obtain

I (X,X) = (Xv)
2
gvv > 0

unless also Xv = 0. �

Example 6.1.2. The hyperbolic space H ⊂ R2,1 is defined as the imaginary
unit sphere with z > 0, specifically it is the rotationally symmetric surface

x2 + y2 − z2 = −1, z ≥ 1

or equivalently the Monge patch

z =
√

1 + x2 + y2.

The metric on this surface, however, is inherited from a different inner product
structure on R3 which is why we use the notation R2,1. Specifically:

(X | Y ) = XxY x +XyY y −XzY z.

The x- and y-coordinates are the “space” part and the z-coordinate the “time” part.
We say that a vector is space-like, null, or time-like if |X|2 = (X | X) is positive,



6.1. GENERALIZED AND ABSTRACT SURFACES 157

zero, or negative. Thus (x, y, 0) is space-like while (0, 0, z) is time-like. Null vectors
satisfy the equation

XxXx +XyXy −XzXz = 0.

This describes a cone. The two insides of this cone consist of the time-like vectors,
while the outside contains the space-like vectors.

Our surface H given by the equation

F (x, y, z) = x2 + y2 − z2 = −1, z ≥ 1

therefore consists of time-like points. However, all of the tangent spaces consist of
space-like vectors. This means that we obtain a surface with a valid first funda-
mental form. In the Monge patch representation we have

∂z

∂x
=

x√
1 + x2 + y2

=
x

z
,
∂z

∂y
=

y√
1 + x2 + y2

=
y

z
.

Thus the tangent space at q = (x, y, z) =
(
x, y,

√
1 + x2 + y2

)
is given by

TqH = span
{(

1, 0,
x

z

)
,
(

0, 1,
y

z

)}
=

{
Xx
(

1, 0,
x

z

)
+Xy

(
0, 1,

y

z

)
| Xx, Xy ∈ R

}
.

Consequently

(X | X) = (Xx)
2

+ (Xy)
2 −

(
Xxx

z
+Xy y

z

)2

= (Xx)
2

(
1− x2

z2

)
+ (Xy)

2

(
1− y2

z2

)
−2XxXy xy

z2

= (Xx)
2 1 + y2

z2
+ (Xy)

2 1 + x2

z2
− 2XxXy xy

z2

=
1

z2

(
(Xx)

2
+ (Xy)

2
+ (yXx − xXy)

2
)
.

This is clearly positive unless X = 0. The first fundamental form is[
1− x2

z2 −xyz2
−xyz2 1− y2

z2

]
which is also easily checked to be positive using proposition 6.1.1.

In order to find a nicer expression of the first fundamental form we switch to a
surface of revolution parametrization

q (φ, µ) =

 cosµ sinhφ
sinµ sinhφ

coshφ

 , µ ∈ R, φ > 0,

where φ = 0 corresponds to the point (0, 0, 1) which we can think of as a pole. In
this parametrization we obtain

∂φ q =
∂ q

∂φ
=

 cosµ coshφ
sinµ coshφ

sinhφ

 , ∂µ q =
∂ q

∂µ
=

 sinµ sinhφ
− cosµ sinhφ

0
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which gives us the first fundamental form[
(∂φ q | ∂φ q) (∂φ q | ∂µ q)
(∂µ q | ∂φ q) (∂µ q | ∂µ q)

]
=

[
1 0

0 sinh2 φ

]
.

Remark 6.1.3. It is not possible for a surface of revolution to have this first
fundamental form in R3. But we shall see later that the pseudo-sphere from section
5.4 exercise 10 is a local Euclidean model that is locally isometric to H.

On the other hand a theorem of Hilbert (see theorem 6.3.6) shows that one
cannot represent the entire surfaceH in R3, i.e., there is no parametrization q (x, y) :
H → R3 defined for all (x, y) ∈ R2 such that[
∂x q ∂y q

]t [
∂x q ∂y q

]
=

[
(∂x q | ∂x q) (∂x q | ∂y q)
(∂y q | ∂x q) (∂y q | ∂y q)

]
=

[
1− x2

z2 −xyz2
−xyz2 1− y2

z2

]
.

Janet showed that if the metric coefficients of an abstract surface are analytic,
then one can always locally represent the abstract surface in R3. Nash showed that
any abstract surface can be represented by a map q (u, v) : U → Rk on the entire
domain, but only at the expense of making k very large. Based in part on Nash’s
work Greene and Gromov both showed that one can always locally represent an
abstract surface in R5. It is still unknown if there exists an abstract surface that
cannot be locally realized as a surface in R3.

Definition 6.1.4. We say that a surface M ⊂ R2,1 is space-like if all tangent
vectors are space-like. This means that if we use the first fundamental form that
comes from the inner product in R2,1, then we obtain an abstract surface.

Remark 6.1.5. Space-like surfaces q (u, v) : U → R2,1 also have a normal n,
but it has the property that |n|2 = (n | n) = −1 as well as the usual conditions:(

n | ∂ q
∂u

)
= 0 =

(
n | ∂ q

∂v

)
. However, n cannot be calculated as easily from the

standard vector calculus cross product ∂ q
∂u ×

∂ q
∂v . The projection formulas will also

look a little different. If we focus on a curve q (t) in this surface, then we still have

q̇ =
d q

dt
=
d q

dt
= ∂u q

du

dt
+ ∂v q

dv

dt
=
[
∂u q ∂v q

] [ du
dt
dv
dt

]
since this doesn’t depend on any geometric structure. The acceleration however,
now decomposes as

q̈ = q̈I + q̈II

=
[
∂u q ∂v q

]
[I]
−1 [ ∂u q ∂v q

]t
q̈− (q̈ | n) n,

where q̈I is tangent to the surface and q̈II proportional to n. Note that all products
are space-time inner products. The negative sign on the normal component is
easier to understand if we remember that the formula for projecting a vector X
onto another vector N is given by

(X | N)

(N | N)
N.

This formula remains valid in space-time. The tangential part of the acceleration
can also be calculated intrinsically with the same formula as before:

q̈I =
[
∂u q ∂v q

]
[I]
−1 [ ∂u q ∂v q

]t
q̈ = ∂u q

(
d2u

dt2
+ Γu (q̇, q̇)

)
+∂v q

(
d2v

dt2
+ Γv (q̇, q̇)

)
.
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Finally, we also have to define what we mean by an abstract surface. There are
several competing definitions. The more general and abstract ones unfortunately
also have a very steep learning curve before a metric can be introduced. So we stay
with the more classical context. Essentially we define a surface as a set of points
where we can use the language of first fundamental form, convergence etc. This
is generally too vague for modern mathematicians but at least allows us to move
on to the issues that are relevant in differential geometry. There are several other
standard concepts included in this definition so as to have everything in one place

Definition 6.1.6. A surface with a first fundamental form is a spaceM where
we can work locally as if it is an abstract parametrized surface, i.e., every point is
included in a parametrization q : U ⊂ R2 →M . When a point q ∈M is covered by
more than one parametrization, then they are pairwise reparametrizations of each
other near q and the first fundamental forms are the same via this reparametriza-
tion. Globally we are allowed to talk about convergence of sequences as we do in
R2. A sequence converges to q if eventually it lies in a parametrization around
q and converges to q in that parametrization. Moreover, if the sequence eventu-
ally lies in more than one parametrization then its limit will be q in each of these
parametrizations. This allows us to talk about continuous maps F : M → Rk and
F : Rl →M . Such a map is smooth if it smooth within the given parametrizations.
Finally we want the surface to be path connected in the sense that any two points
are joined by a piecewise smooth curve.

A surface is said to be closed if it is compact, i.e., any sequence has a convergent
subsequence.

A surface M is said to be orientable if the parametrizations can be chosen so
that the differentials of all the reparametrizations have positive determinant, e.g.,
if q (u, v) = q (u (s, t) , v (s, t)) = q (s, t), then

det

[
∂u
∂s

∂u
∂t

∂v
∂s

∂v
∂t

]
> 0, det

[
∂s
∂u

∂s
∂v

∂t
∂u

∂t
∂v

]
> 0.

Such a choice of parametrizations that cover all of M will be called an orientation
for M . Note that this tells us that if we have tangent vectors v, w ∈ TpM that are
not proportional, then w either lies to the right or left of v.

The tangent space TqM at a point q ∈ M in a parametrization is defined as
TqM = span {∂u q, ∂v q}. In a different parametrization the two bases are related
by

[
∂u q ∂v q

]
=

[
∂s q ∂t q

] [ ∂s
∂u

∂s
∂v

∂t
∂u

∂t
∂v

]
,

[
∂s q ∂t q

]
=

[
∂u q ∂v q

] [ ∂u
∂s

∂u
∂t

∂v
∂s

∂v
∂t

]
.
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A tangent vector X ∈ TqM can thus be written

X = Xu∂u q +Xv∂v q

=
[
∂u q ∂v q

] [ Xu

Xv

]
=

[
∂s q ∂t q

] [ ∂s
∂u

∂s
∂v

∂t
∂u

∂t
∂v

] [
Xu

Xv

]
=

[
∂s q ∂t q

] [ Xu ∂s
∂u +Xv ∂s

∂v

Xu ∂t
∂u +Xv ∂t

∂v

]
=

(
Xu ∂s

∂u
+Xv ∂s

∂v

)
∂s q +

(
Xu ∂t

∂u
+Xv ∂t

∂v

)
∂t q

= Xs∂s q +Xt∂t q .

A surface is said to be isometrically embedded in R3 if it can be represented
as a surface M ⊂ R3 in such a way that that the induced first fundamental
form agrees with the abstract one on M . Specifically, we seek a map F : M →
F (M) ⊂ R3 such that F is a diffeomorphism from M to F (M) and IM (X,Y ) =
IF (M) (DF (X) , DF (Y )).

A surface is said to be isometrically immersed in R3 if there is a map F : M →
R3 such that IM (X,Y ) = IF (M) (DF (X) , DF (Y )). In this case F will be a local
diffeomorphism onto its image, but globally it might not be one-to-one (see also
4.1.5).

Remark 6.1.7. In modern usage a surface does not necessarily come with a
first fundamental form. We could have called our surfaces Riemannian surfaces
(Riemannian manifolds are their higher dimensional analogues), but that too can
be confused with Riemann surfaces which are surfaces where the reparametrizations
are holomorphic, i.e., satisfy the Cauchy-Riemann equations.

Exercises
(1) Assume that guu = gvv = 1 on a domain U ⊂ R2. Show that the corresponding

first fundamental form represents an abstract surface if |guv| < 1 on U .
(2) Show that it is possible to define S and κg for unit speed curves in oriented

abstract surfaces.
(3) Consider a regular space-like curve q (t) = (r (t) , 0, z (t)) : I → R2,1, i.e., q̇ is

non-zero and space-like everywhere.
(a) Show that ṙ2 > ż2 along q.
(b) Show that

q (t, µ) = (r (t) cosµ, r (t) sinµ, z (t))

defines a space-like surface of revolution with

[I] =

[
ṙ2 − ż2 0

0 r2

]
.

(c) Show that when r = R cosh t and z = R sinh t, then we obtain the surface
described in exercise 3.



6.2. CURVATURE ON ABSTRACT SURFACES 161

(d) Show that q (t) = (r (t) , 0, z (t)) : I → R2,1 can be reparametrized to have
unit speed, i.e., (

dr

ds

)2

−
(
dz

ds

)2

= 1.

(4) Consider the space-like surface of revolution from exercise 3.
(a) Show that

n = ± (ż cosµ, ż sinµ, ṙ)√
ṙ2 − ż2

.

(b) Show that a curve q (t (s) , µ (s)) on this surface has constant speed when(
ṙ2 − ż2

) (
dt
ds

)2
+ r2

(
dµ
ds

)2

is constant.
(c) Show that if ṙ2 − ż2 = 1, then a curve q (t (s) , µ (s)) satisfies:

q̈I =

(
d2t

ds2
− rṙ

(
dµ

ds

)2
) ṙ cosµ

ṙ sinµ
ż

+

(
d2µ

ds2
+ 2

ṙ

r

dt

ds

dµ

ds

) −r sinµ
r cosµ

0

 .

6.2. Curvature on Abstract Surfaces

The goal of this section is to define Christoffel symbols and curvature on ab-
stract surfaces. We assume throughout that we have an abstract parametrized
surface on a domain U ⊂ R2 with first fundamental form:

[I] =

[
guu gvu
guv gvv

]
.

It will be convenient to use indices i, j, k, l, s, t, r to denote the two specific indices
u, v. Thus we can write gij for a generic entry in [I]. This notation can conveniently
be extended to partial derivatives

∂iF =
∂F

∂i
,

where again i can be u or v.

Definition 6.2.1. The Christoffel symbols of the first and second kind are
defined as follows:

Γijk =
1

2
(∂igjk + ∂jgik − ∂kgij) ,

Γkij = Γijug
uk + Γijvg

vk =
∑
s=u,v

Γijsg
sk.

It is not immediately clear that this definition agrees with with proposition
5.2.11.
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Proposition 6.2.2. The Christoffel symbols of the first kind satisfy

Γuuu =
1

2

∂guu
∂u

,

Γuvu =
1

2

∂guu
∂v

= Γvuu,

Γvvv =
1

2

∂gvv
∂v

,

Γuvv =
1

2

∂gvv
∂u

= Γvuv,

Γuuv =
∂guv
∂u
− 1

2

∂guu
∂v

,

Γvvu =
∂guv
∂v
− 1

2

∂gvv
∂u

as well as the “product” rule

∂kgij = Γkij + Γkji.

Proof. First observe that as gij = gji we have that

Γijk =
1

2
(∂igjk + ∂jgik − ∂kgij) =

1

2
(∂jgik + ∂igjk − ∂kgji) = Γjik.

Next note that, e.g.,

Γuuu =
1

2
(∂uguu + ∂uguu − ∂uguu) =

1

2
∂uguu,

Γuvu = Γvuu =
1

2
(∂vguu + ∂uguv − ∂ugvu) =

1

2
∂vguu,

and
Γuuv =

1

2
(∂uguv + ∂uguv − ∂vguu) = ∂uguv −

1

2
∂vguu.

The proofs of the other 4 equations are identical if we replace u by v and v by u.
Finally, note that the equations that define the Christoffel symbols are linear

combinations of the derivatives of the entries in the first fundamental form. The
last claim says that we can solve for these derivatives in terms of the Christoffel
symbols:

Γkij + Γkji =
1

2
(∂kgij + ∂igkj − ∂jgik) +

1

2
(∂kgji + ∂jgki − ∂igjk)

=
1

2
(∂kgij + ∂igkj − ∂jgik) +

1

2
(∂kgij + ∂jgik − ∂igkj)

= ∂kgij .

�

The next goal is to define the Gauss curvature. Recall from the proof of theorem
5.3.8 that

K =
∂vΓuuv − ∂uΓvuv +

(
Γuuu

∂ q
∂u + Γvuu

∂ q
∂v | Γ

u
vv
∂ q
∂u + Γvvv

∂ q
∂v

)
−
∣∣∣Γuuv ∂ q

∂u + Γvuv
∂ q
∂v

∣∣∣2
det [I]

.

By using that gij = (∂i q | ∂j q) this can be compressed to the formula

K =
∂vΓuuv − ∂uΓvuv +

∑
s,t=u,v gst (ΓsuuΓtvv − ΓsuvΓ

t
uv)

det [I]
.
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Definition 6.2.3. The Riemann curvature tensors are defined as

Rijkl = ∂iΓjkl − ∂jΓikl +
∑

s,t=u,v

gst
(
ΓsikΓtjl − ΓsilΓ

t
jk

)
and

Rlijk =
∑
s=u,v

Rijksg
sl.

In particular,

K =
Rvuuv
det [I]

.

Proposition 6.2.4. The Riemann curvature tensors satisfy the symmetry prop-
erties

Rijkl = −Rjikl = Rjilk,

in particular
Riikl = Rijkk = 0,

and the possibly nontrivial terms

Ruvvu = −Rvuvu = Rvuuv = −Ruvuv = K det [I] .

All in all
Rijkl = K (gilgjk − gikgjl) ,

and
Rlijk = K

(
δligjk − δljgik

)
.

Proof. First note that

Rijkl = ∂iΓjkl − ∂jΓikl +
∑

s,t=u,v

gst
(
ΓsikΓtjl − ΓsilΓ

t
jk

)
= − (∂jΓikl − ∂iΓjkl)−

∑
s,t=u,v

gst
(
ΓsjkΓtil − ΓsjlΓ

t
ik

)
= −Rjikl.

Next we have

Rijkl +Rijlk = ∂iΓjkl − ∂jΓikl + ∂iΓjlk − ∂jΓilk
+
∑

s,t=u,v

gst
(
ΓsikΓtjl − ΓsilΓ

t
jk

)
−

∑
s,t=u,v

gst
(
ΓsilΓ

t
jk − ΓsikΓtjl

)
= ∂iΓjkl − ∂jΓikl + ∂iΓjlk − ∂jΓilk
= ∂i (Γjkl + Γjlk)− ∂j (Γikl + Γilk)

= ∂i∂jgkl − ∂j∂igkl
= 0.

To establish the penultimate claim note that the expression on the right hand
side has the same skew-symmetry properties we just established for Rijkl. Thus it
suffices to check these equations in case, say, v = i = l and u = j = k. In this case
this simply becomes our new definition for the Gauss curvature.

To prove the last claim first note that the matrix identity[
guu gvu
guv gvv

] [
guu gvu

guv gvv

]
=

[
1 0
0 1

]
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is equivalent to saying

∑
gisg

sj = δji =

{
1 when i = j,

0 when i 6= j.

With that in mind we obtain

Rlijk =
∑
s=u,v

K (gisgjk − gikgjs) gsl

= K
(
δligjk − gikδlj

)
.

�

The curvature terms Rlijk will appear again in the next section in the form
presented in the next proposition.

Proposition 6.2.5. We have that

Rlijk = ∂iΓ
l
jk − ∂jΓlik +

[
Γliu Γliv

] [ Γujk
Γvjk

]
−
[

Γlju Γljv
] [ Γuik

Γvik

]
= ∂iΓ

l
jk − ∂jΓlik +

∑
s=u,v

(
ΓlisΓ

s
jk − ΓljsΓ

s
ik

)
.

Proof. We first differentiate the equation
∑
s=u,v gisg

sj = δji to obtain

∑
s=u,v

(
gsj∂kgis + gis∂kg

sj
)

= 0.

This is used to obtain the fifth equality below:
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Rlijk =
∑
r=u,v

grlRijkr

=
∑
r=u,v

grl (∂iΓjkr − ∂jΓikr) +
∑

r,s,t=u,v

grlgst
(
ΓsikΓtjr − ΓsjkΓtir

)
=

∑
r=u,v

(
∂i
(
grlΓjkr

)
− ∂j

(
grlΓikr

))
+

∑
r,s=u,v

grl
(
ΓsikΓjrs − ΓsjkΓirs

)
−
∑
r=u,v

(
Γjkr∂i

(
grl
)
− Γikr∂j

(
grl
))

= ∂iΓ
l
jk − ∂jΓlik +

∑
r,s=u,v

grl
(
ΓsikΓjrs − ΓsjkΓirs

)
−
∑

r,s=u,v

(
Γsjkgsr∂i

(
grl
)
− Γsikgsr∂j

(
grl
))

= ∂iΓ
l
jk − ∂jΓlik +

∑
r,s=u,v

grl
(
ΓsikΓjrs − ΓsjkΓirs

)
+
∑

r,s=u,v

grl
(
Γsjk∂igsr − Γsik∂jgsr

)
= ∂iΓ

l
jk − ∂jΓlik +

∑
r,s=u,v

grl
(
ΓsikΓjrs − ΓsjkΓirs

)
+
∑

r,s=u,v

grl
(
Γsjk (Γisr + Γirs)− Γsik (Γjsr + Γjrs)

)
= ∂iΓ

l
jk − ∂jΓlik +

∑
r,s=u,v

grl
(
ΓsjkΓisr − ΓsikΓjsr

)
= ∂iΓ

l
jk − ∂jΓlik +

∑
s=u,v

(
ΓsjkΓlis − ΓsikΓljs

)
.

�

Exercises
(1) Show that

Rijkl =
∑
s=u,v

Rsijkgsl,

Γijk =
∑
s=u,v

Γsijgsk.

(2) Show that

∂kg
ij = −

∑
s,t=u,v

gsigtj∂kgst

= −
∑
s=u,v

gsiΓjks −
∑
t=u,v

gtjΓikt.

(3) Show that the surfaces in R2,1 given by the equation

x2 + y2 − z2 = −R2
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have constant Gauss curvature −R−2.
(4) This is an extension of exercise 3 from section 6.1. Show that when q (t) has

been reparametrized to have unit speed then the Gauss curvature is given by

K = −
d2r
ds2

r
.

(5) Assume the first fundamental form is given by the conditions that guu = gvv = 1
and guv = cos θ, where θ : U → R. Show that

Γuvw = Γuuu = Γvvv = 0,

Γuuv = −∂θ
∂u

sin θ,

Γvvu = −∂θ
∂v

sin θ,

∂2θ

∂u∂v
= −K sin θ.

(6) Show for a generalized parametrized surface q (u, v) : U → Rn the Christoffel
symbols can be defined as in section5.2

Γijk =
(
∂2
ij q | ∂k q

)
.

(7) Assume that a parametrized surface q : U → Rn has a first fundamental form
where guu = gvv = 1 on U . Show that ∂2

uv q = ∂2 q
∂u∂v is perpendicular to the

surface. Hint: Use the previous exercise.
(8) Assume that an abstract parametrized surface q (u, v) has first fundamental

form

[I] =

[
λ2 0
0 λ2

]
.

(a) Show that the Gauss curvature satisfies

K = −∆ lnλ

λ2
= −

∂2 lnλ
∂u2 + ∂2 lnλ

∂v2

λ2
.

(b) Show that if

λ =
1

a (u2 + v2) + buu+ bvv + c

for constants a, bu, bv, c, then

K = 4ac− b2u − b2v.

(c) Consider the reparametrization

(u, v) = er (cos θ, sin θ)

and show that in (r, θ) parameters the first fundamental form looks like

[I] =

[
e2rλ2 0

0 e2rλ2

]
.

Thus this is a conformal reparametrization.
(d) With λ as in (b) show that in (r, θ) parameters the conformal factor is

given by

erλ =
1

aer + bu cos θ + bv sin θ + e−rc
.
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6.3. The Gauss and Codazzi Equations

The goal in this section is to establish the classical Gauss equation and the
accompanying Codazzi equations from the Gauss formulas and Weingarten equa-
tions. The Codazzi equations were historically first discovered by K.M. Peterson in
1853, then rediscovered by G. Mainardi in 1856, and then finally by D. Codazzi in
1867.

Recall from section 5.2 the Gauss formulas and Weingarten equations in com-
bined form:

∂

∂w

[
∂ q
∂u

∂ q
∂v n

]
=
[
∂ q
∂u

∂ q
∂v n

]
[Dw] .

Taking one more derivative on both sides yields

∂2

∂u∂v

[
∂ q
∂u

∂ q
∂v n

]
=

(
∂

∂u

[
∂ q
∂u

∂ q
∂v n

])
[Dv]

+
[
∂ q
∂u

∂ q
∂v n

]( ∂

∂u
[Dv]

)
=

[
∂ q
∂u

∂ q
∂v n

]
[Du] [Dv]

+
[
∂ q
∂u

∂ q
∂v n

]( ∂

∂u
[Dv]

)
and similarly

∂2

∂v∂u

[
∂ q
∂u

∂ q
∂v n

]
=
[
∂ q
∂u

∂ q
∂v n

](
[Dv] [Du] +

∂

∂v
[Du]

)
.

Using that
∂2

∂u∂v

[
∂ q
∂u

∂ q
∂v n

]
=

∂2

∂v∂u

[
∂ q
∂u

∂ q
∂v n

]
we obtain

∂

∂u
[Dv] + [Du] [Dv] =

∂

∂v
[Du] + [Dv] [Du] .

Writing out the entries in the matrices this becomes ∂uΓuvu ∂uΓuvv −∂uLuv
∂uΓvvu ∂uΓvvv −∂uLvv
∂uLvu ∂uLvv 0

+

 Γuuu Γuuv −Luu
Γvuu Γvuv −Lvu
Luu Luv 0

 Γuvu Γuvv −Luv
Γvvu Γvvv −Lvv
Lvu Lvv 0


=

 ∂vΓ
u
uu ∂vΓ

u
uv −∂vLuu

∂vΓ
v
uu ∂vΓ

v
uv −∂vLvu

∂vLuu ∂vLuv 0

+

 Γuvu Γuvv −Luv
Γvvu Γvvv −Lvv
Lvu Lvv 0

 Γuuu Γuuv −Luu
Γvuu Γvuv −Lvu
Luu Luv 0

 .
When restricting attention to the general terms of the entries in the first two

columns and rows we obtain 4 equations for the partial derivatives of Γkij where
each i, j, k can be u, v:

∂iΓ
l
jk +

[
Γliu Γliv −Lli

]  Γujk
Γvjk
Ljk

 = ∂jΓ
l
ik +

[
Γlju Γljv −Llj

]  Γuik
Γvik
Lik


which can further be rearranged by isolating Γs on one side:

∂iΓ
l
jk−∂jΓlik+

[
Γliu Γliv

] [ Γujk
Γvjk

]
−
[

Γlju Γljv
] [ Γuik

Γvik

]
= Rlijk = LliLjk−LljLik.
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These are called theGauss Equations. Note that we only established these equations
when i = u and j = v. Clearly they also hold when u = j and v = i as both sides
just change sign. They also hold trivially when i = j as both sides vanish in that
case. This means that the 4 original equations can be expanded to 16 equations
where each of the 4 indices i, j, k, l can be both u, v.

Example 6.3.1. It might be instructive to see what happens when q (u, v) :
U → R2 is simply a reparametrization of the plane. In this case the derivatives
have no normal component and we obtain

∂

∂w

[
∂ q
∂u

∂ q
∂v

]
=
[
∂ q
∂u

∂ q
∂v

] [ Γuwu Γuwv
Γvwu Γvwv

]
=
[
∂ q
∂u

∂ q
∂v

]
[Dw] .

The Christoffel symbols tell us how the tangent fields change with respect to
themselves. A good example comes from considering polar coordinates q (r, θ) =
(r cos θ, r sin θ) as in section 1.4. We have

∂

∂r

[
∂ q
∂r

∂ q
∂θ

]
=

[
∂2 q
∂r∂r

∂2 q
∂r∂θ

]
=
[
∂ q
∂r

∂ q
∂θ

] [ 0 0
0 1

r

]
,

∂

∂θ

[
∂ q
∂r

∂ q
∂θ

]
=

[
∂2 q
∂θ∂r

∂2 q
∂θ∂θ

]
=
[
∂ q
∂r

∂ q
∂θ

] [ 0 −r
1
r 0

]
.

Taking one more derivative in the Gauss formulas shows that:

[Dv] [Du] +

[
∂Du

∂v

]
= [Du] [Dv] +

[
∂Dv

∂u

]
or [

∂Dv

∂u

]
−
[
∂Du

∂v

]
+ [Du] [Dv]− [Dv] [Du] = 0.

These are in fact the integrability conditions for admitting Cartesian coordinates
and, as we shall see, equivalent to saying that the the Gauss curvature vanishes.
For polar coordinates the integrability conditions can be verified directly:[

∂Dr

∂θ

]
−
[
∂Dθ

∂r

]
= 0−

[
0 −1
− 1
r2 0

]
=

[
0 1
1
r2 0

]
,

[Dr] [Dθ]− [Dθ] [Dr] =

[
0 0
0 1

r

] [
0 −r
1
r 0

]
−
[

0 −r
1
r 0

] [
0 0
0 1

r

]
=

[
0 1
1
r2 0

]
.

All of the 16 Gauss equations can be reduced to a single equation.

Theorem 6.3.2 (Theorema Egregium). The Gauss equations are equivalent to
the single equation:

K det [I] = Ruvvu.

Proof. We start by showing that the Gauss equations

Rlijk = LliLjk − LljLik
are equivalent to the equations

Rijkl = LilLjk − LjlLik.
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To see we simply use the relations

Lli =
∑
s=u,v

glsLsi and Lij =
∑
s=u,v

gisL
s
j

Rlijk =
∑
s=u,v

glsRijks and Rijkl =
∑
s=u,v

gslR
l
ijk

to note that first of all∑
s=u,v

gslRijks = Rlijk

= LliLjk − LljLik
=

∑
s=u,v

gls (LsiLjk − LsjLik)

and secondly

LilLjk − LjlLik =
∑
s=u,v

gls
(
LsiLjk − LsjLik

)
=

∑
s=u,v

glsR
s
ijk

= Rijkl.

Next we observe that the expressions LilLjk − LjlLik are, like the curvature
tensors, skew-symmetric in i, j and k, l. Thus it suffices to check the single equation

Rvuuv = K det [I] = LvvLuu − L2
uv = det [II]

which is simply the definition of the Gauss curvature. �

The two entries in the bottom row in the matrices above reduce to the Codazzi
Equations

∂iLjk +
[
Liu Liv 0

]  Γujk
Γvjk
Ljk

 = ∂jLik +
[
Lju Ljv 0

]  Γuik
Γvik
Lik


or rearranged

∂iLjk − ∂jLik =
[
Lju Ljv

] [ Γuik
Γvik

]
−
[
Liu Liv

] [ Γujk
Γvjk

]
.

Note again that while we only established these for u = i and j = v, they also hold
when u, v are switched and that both sides vanish when i = j. These 8 equations
can be reduced to only two Codazzi equations:

∂uLvu − ∂vLuu = LvuΓuuu + LvvΓ
v
uu − LuuΓuvu − LuvΓvvu,

∂uLvv − ∂vLuv = LvuΓuuv + LvvΓ
v
uv − LuuΓuvv − LuvΓvvv.

The last column yields a similar set of equations

∂iL
k
j − ∂jLki =

[
Γkju Γkjv

] [ Lui
Lvi

]
−
[

Γkiu Γkiv
] [ Luj

Lvj

]
These can, however, be derived from the above Codazzi equations using the rela-
tionship between the Weingarten map and the second fundamental form.

We are now ready to present the fundamental theorem of surface theory. It is
analogous to theorem 2.1.4 for planar curves.
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Theorem 6.3.3. (Fundamental Theorem of Surface Theory, Bonnet, 1848) A
surface is uniquely determined by its first and second fundamental forms if its po-
sition and tangent space space are known at just one point. Conversely, any choice
of abstract first and second fundamental forms that are related by the Gauss and
Codazzi equations are locally the first and second fundamental forms of a surface.

Proof. We start by observing that the matrices [Dw] can be defined as long as
we are given [I] and [II]. The problem then depends on understanding the solutions
to the following big system:

∂ q

∂u
= U,

∂ q

∂v
= V,

∂

∂u

[
U V n

]
=

[
U V n

]
[Du] ,

∂

∂v

[
U V n

]
=

[
U V n

]
[Dv] ,

with initial conditions

q (0, 0) = q0 ∈ R3,

U (0, 0) = U0 ∈ R3,

V (0, 0) = V0 ∈ R3,

n (0, 0) = n0 ∈ R3,

where we additionally require that

(U0 | U0) = guu (0, 0) ,

(U0 | V0) = guv (0, 0) ,

(V0 | V0) = gvv (0, 0) ,

n0 =
U0 × V0

|U0 × V0|
.

It is clear that this big system has a unique solution given the initial values.
To solve it we must check that the necessary integrability conditions are satisfied.
We can separate the problem into first solving

∂

∂u

[
U V n

]
=

[
U V n

]
[Du] ,

∂

∂v

[
U V n

]
=

[
U V n

]
[Dv] .

Here the integrability conditions are satisfied as we assumed that

[Du] [Dv] +
∂

∂u
[Dv] = [Dv] [Du] +

∂

∂v
[Du] .

Having solved this system with the given initial values it remains to find the
surface by solving

∂ q

∂u
= U,

∂ q

∂v
= V.



6.3. THE GAUSS AND CODAZZI EQUATIONS 171

Here the right hand side does not depend on q so the integrability conditions are
simply

∂U

∂v
=
∂V

∂u
.

However, we know that

∂U

∂v
=

[
U V n

]  Γuvu
Γvvu
Lvu

 ,
∂V

∂u
=

[
U V n

]  Γuuv
Γvuv
Luv

 .
Here the right-hand sides are equal as Luv = Lvu and Γwuv = Γwvu.

Having solved the equations it then remains to show that the surface we have
constructed has the correct first and second fundamental forms. This will of course
depend on the extra conditions that we imposed:

(U0 | U0) = guu (0, 0) ,

(U0 | V0) = guv (0, 0) ,

(V0 | V0) = gvv (0, 0) ,

n0 =
U0 × V0

|U0 × V0|
.

In fact they show that at (0, 0) the surface has the correct first fundamental form
and normal vector. More generally consider the 3× 3 matrix of inner products[

U V n
]t [

U V n
]
,

where the block consisting of [
U V

]t [
U V

]
corresponds to the first fundamental form of the surface we have constructed. The
derivative of this 3× 3 matrix satisfies
∂

∂w

([
U V n

]t [
U V n

])
=

(
∂

∂w

[
U V n

])t [
U V n

]
+
[
U V n

]t ∂

∂w

[
U V n

]
=

([
U V n

]
[Dw]

)t [
U V n

]
+
[
U V n

]t [
U V n

]
[Dw]

= [Dw]
t [ U V n

]t [
U V n

]
+
[
U V n

]t [
U V n

]
[Dw] .

This is a differential equation of the type
∂X

∂w
= [Dw]

t
X +X [Dw] ,

where X is a 3× 3 matrix. Now

X =

 guu guv 0
gvu gvv 0
0 0 1


also satisfies this equation as we constructed [Dw] directly from the given first and
second fundamental forms. However, these two solutions have the same initial value
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at (0, 0) so they must be equal. This shows that our surface has the correct first
fundamental form and also that n is a unit normal to the surface. This in turn
implies that we also obtain the correct second fundamental form since we now also
know that[

U V n
]t ∂

∂w

[
U V n

]
=
[
U V n

]t [
U V n

]
[Dw] .

Here the right hand side is known and the left hand side contains all of the terms we
need for calculating the second fundamental form of the constructed surface. �

This theorem allows us to give a complete local characterization of abstract
surfaces with constant non-negative Gauss curvature. In fact such surfaces are
forced to be locally isometric to the plane or a sphere.

Theorem 6.3.4. An abstract surface of constant Gauss curvature K ≥ 0, can
locally be represented as part of a plane when K = 0 and part of a sphere of radius
1/
√
K when K > 0.

Proof. We are given I and have to guess II. The natural choice is II =√
K I, i.e., Lij =

√
Kδij and Lij =

√
Kgij . This allows us to calculate [Di] in a

specific parametrization. We are then left with the goal of checking the integrability
conditions, i.e., the Gauss and Codazzi equations. The Codazzi equations are
obviously satisfied when II = 0, and follow from the formula for the Christoffel
symbols when K > 0. More precisely we start with the right hand side of the
Codazzi equations and use the intrinsic formulas for the Christoffel symbols to
show that they hold:[

Lju Ljv
] [ Γuik

Γvik

]
−
[
Liu Liv

] [ Γujk
Γvjk

]
=
√
K
[
gju gjv

] [ Γuik
Γvik

]
−
√
K
[
giu giv

] [ Γujk
Γvjk

]
=
√
K (Γuikguj + Γvikgvj)−

√
K
(
Γujkgui + Γvjkgvi

)
=
√
K (Γikj − Γjki)

=

√
K

2
((∂igkj + ∂kgij − ∂jgik)− (∂jgik + ∂kgji − ∂igjk))

=

√
K

2
((∂igkj − ∂jgik)− (∂jgik − ∂igjk))

=
√
K (∂igkj − ∂jgik)

= ∂iLjk − ∂jLik.

Our assumptions about the the second fundamental form imply

LliLjk − LljLik = Kδligjk −Kδljgik
and proposition 6.2.4 shows that this gives us the Gauss equations:

Rlijk = LliLjk − LljLik.

Now that we have a local representation of the abstract surface as a parametrized
surface in R3 with II =

√
K I we can finish the proof in the way we finished the

proof of theorem 5.4.6. �
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Remark 6.3.5. It is possible to develop a theory for space-like surfaces in
R2,1 that mirrors the theory for surfaces in R3. This includes new versions of the
Gauss and Codazzi equations that also lead to exact analogies of theorems 6.3.3
and 6.3.4. Thus abstract surfaces of constant negative curvature −R−2 can locally
be represented as part of the surface in R2,1 given by the equation

x2 + y2 − z2 = −R2.

We end this long section with a profound theorem that relates to the concepts
discussed here. In essence it shows that while it is occasionally possible to choose
a second fundamental form locally so that it satisfies the Gauss and Codazzi equa-
tions, it might not be possible to extend it to be defined on the entire abstract
surface. The result also indicates that in order to characterize hyperbolic space in
a way that is similar to theorem 6.3.4 it is more natural to use R2,1 as the ambient
space.

Theorem 6.3.6. (Hilbert, 1901) It is not possible to select a second fundamental
form II on all of hyperbolic space H such that I and II satisfy the Gauss and Codazzi
equations.

Proof. We argue by contradiction and assume that such a second fundamental
form exists. The Gauss equations imply that at each point there is a positive and
negative principal direction for II. This in turn implies that there are two linearly
independent asymptotic directions at each point, i.e., directions where II (X,X) =
0. Specifically, if L (E1) = κE1 and L (E2) = − 1

κE2, where κ > 0, then we can
use X = 1√

κ
E1 ±

√
κE2. Fix a parametrization (x, y) of H, e.g., the one that

makes hyperbolic space a Monge patch. At (0, 0) make a choice of unit asymptotic
directions P, Q. Extend this choice to be consistent along the x-axis, and then
finally along vertical lines to obtain a consistent choice on all ofH. This gives us two
unit vector fields P , Q that form an angle θ ∈ (0, π) with II (P, P ) = II (Q,Q) = 0.
We claim that there is a global parametrization where these are the coordinate
vector fields. This would follow directly from the global version of theorem A.5.3
if we could check the integrability conditions

∂P

∂x
Qx +

∂P

∂y
Qy =

∂Q

∂x
P x +

∂Q

∂y
P y

and find M,C such that√
(P x)

2
+ (P y)

2
,

√
(Qx)

2
+ (Qy)

2 ≤M + C
√
x2 + y2.

Note that in this case P,Q are independent of (u, v). To prove the bounds for P,Q
we note that if |X|2 = 1, then example 6.1.2 implies

1 = (X | X)

=
1

z2

(
(Xx)

2
+ (Xy)

2
+ (yXx − xXy)

2
)
.

Since z2 = 1 + x2 + y2 this shows that

(Xx)
2

+ (Xy)
2 ≤ 1 + x2 + y2

which implies the desired bounds on P and Q.
The integrability conditions are bit more tricky. They are in fact a consequence

of the Codazzi equations. We do the calculation by an indirect method where
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we show that there are local parametrizations q (u, v) of H where ∂u q = P and
∂v q = Q, i.e., it is possible to locally find the desired parametrizations.

By appealing to remark 4.2.11 we can for any q ∈ H find a local parametrization
q (u, v) with q (0, 0) = q, where ∂u q = λP and ∂v q = µQ for some functions λ, µ
with λ (u, 0) = 1 and µ (0, v) = 1. The Codazzi equations for a parametrization
with Luu = Lvv = 0 reduce to:

∂Lvu
∂u

+ Luv (Γvvu − Γuuu) = 0,

−∂Luv
∂v

+ Luv (Γvvv − Γuuv) = 0.

If we combine these equations with the formula from section 5.2 exercise 9:

∂
√

det [I]

∂w
=
√

det [I] (Γuuw + Γvvw)

and the curvature assumption:

K = − L2
uv

det [I]
= −1,

then it follows that Luv = ±
√

det [I] and

Γuuu − Γvvu = Γuuu + Γvvu,

Γvvv − Γuuv = Γuuv + Γvvv.

This in turn implies
Γuuv = 0 = Γvuv

which is equivalent to

1

2
∂vguu = Γuvu = 0 and

1

2
∂ugvv = Γuvv = 0.

In our case guu = λ2 and gvv = µ2 so that the conditions λ (u, 0) = 1 and µ (0, v) = 1
now imply that guu = gvv = 1.

All in all this gives us the desired global parametrization q (u, v) where

[I] =

[
1 cos θ

cos θ 1

]
, θ ∈ (0, π) .

The formula for the Gauss curvature in such coordinates reduces to (see section 6.1
exercise 5)

∂2
stθ = −K sin θ = sin θ.

Here sin θ =
√
guugvv − g2

uv is also the area element so it follows that

(θ (b, t)− θ (a, t))|t=dt=c =

∫ d

c

∫ b

a

∂stθdsdt

=

∫ d

c

∫ b

a

sin θdsdt

= area q ([a, b]× [c, d]) .
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In particular area q ≤ 2π. On the other hand the area of H can be calculated in
the Monge patch representation to be∫

R2

dxdy√
1 + x2 + y2

=∞.

Thus the parametrization q (s, t) cannot cover all of H. �

Corollary 6.3.7. There is no Riemannian immersion from hyperbolic space
H into R3.

Remark 6.3.8. Elie Cartan developed an approach to the Gauss and Co-
dazzi equations that uses orthonormal bases. Thus he chose an orthonormal frame
E1, E2, E3 along part of a surface with the property that E3 = n is normal to the
surface. Consequently, E1, E2 form an orthonormal basis for the tangent space.
The goal is again to take derivatives. For that purpose we can still use parameters

∂

∂w

[
E1 E2 E3

]
=
[
∂E1

∂w
∂E2

∂w
∂E3

∂w

]
=
[
E1 E2 E3

]
[Dw] .

The first observation is that [Dw] is skew-symmetric since we used an orthonormal
basis: [

E1 E2 E3

]t [
E1 E2 E3

]
=

 1 0 0
0 1 0
0 0 1


so

0 =
∂

∂w

([
E1 E2 E3

]t [
E1 E2 E3

])
=

(
∂

∂w

[
E1 E2 E3

])t [
E1 E2 E3

]
+
[
E1 E2 E3

]t ∂

∂w

[
E1 E2 E3

]
=

([
E1 E2 E3

]
[Dw]

)t [
E1 E2 E3

]
+
[
E1 E2 E3

]t [
E1 E2 E3

]
[Dw]

= [Dw]
t

+ [Dw] .

In particular, there will only be 3 entries to sort out. This is a significant reduction
from what we had to deal with above. What is more, the entries can easily be
found by computing the dot products(

Ei |
∂Ej
∂w

)
.

This is also in sharp contrast to what happens in the above situation as we shall
see. Taking one more derivative will again yield a formula[

∂Dw2

∂w1

]
−
[
∂Dw1

∂w2

]
= [Dw2

] [Dw1
]− [Dw1

] [Dw2
] ,

where both sides are skew symmetric.

Given the simplicity of using orthonormal frames it is perhaps puzzling why
one would bother developing the more cumbersome approach that uses coordinate
fields. The answer lies, as with curves, in the unfortunate fact that it is often
easier to find coordinate fields than orthonormal bases that are easy to work with.



EXERCISES 176

Monge patches are prime examples. For specific examples and many theoretical
developments, however, Cartan’s approach has many advantages.

Exercises
(1) Is it possible for a parametrized surface q (u, v) : U → R3 to have:

(a) I =

[
1 0
0 1

]
and II =

[
0 0
0 f (u)

]
?

(b) I =

[
1 0
0 1

]
and II =

[
0 0
0 f (v)

]
?

(c) I =

[
1 0
0 cos2 u

]
and II =

[
1 0
0 sin2 u

]
?

(d) I =

[
1 0
0 f (u)

]
and II =

[
1 0
0 f (u)

]
?

(e) I =

[
1 0
0 f (u)

]
and II =

[
f (u) 0

0 1

]
?

(2) If the principal curvatures are not equal on some part of the surface, then we
can use corollary 5.4.4 to find an orthogonal parametrization q (u, v) where the
tangent fields are principal directions, i.e., Luv = guv = 0. Show that in this
case the Codazzi equations can be written as

∂Luu
∂v

= H
∂guu
∂v

,

∂Lvv
∂u

= H
∂gvv
∂u

.

(3) Show that a minimal surface admits an orthogonal parametrization where
Luu = −Lvv = 1 and Luv = 0. Show further that such a parametrization
is conformal (isothermal).

(4) Use the Codazzi equations to show that if the principal curvatures κ1 = κ2

are equal on a surface, then they are constant. Hint: In this case Lij = Hgij ,
where H is the mean curvature.

(5) Show that the equations

∂iL
k
j − ∂jLki =

[
Γkju Γkjv

] [ Lui
Lvi

]
−
[

Γkiu Γkiv
] [ Luj

Lvj

]
follow from the Codazzi equations.

(6) If the principal curvatures κ1 and κ2 are not equal on some part of the surface,
then we can use corollary 5.4.4 to find an orthogonal parametrization where
the tangent fields are principal directions. Show that in this case the Codazzi
equations can be written as

∂κ1

∂v
=

1

2
(κ2 − κ1)

∂ ln guu
∂v

,

∂κ2

∂u
=

1

2
(κ1 − κ2)

∂ ln gvv
∂u

.

(7) (Hilbert, 1901) The goal is to show: If there is a point p on a surface, whereK is
positive, κ1 has a maximum, and κ2 a minimum, then the principal curvatures
are equal and constant. More specifically, we show that if

supκ1 = κ1 (p) > κ2 (p) = inf κ2,
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then K ≤ 0. Select a parametrization around p, as in exercise 6, where the
coordinate curves are lines of curvature.
(a) Show that at p

∂κ1

∂u
=

∂κ1

∂v
= 0,

∂2κ1

∂v2
≤ 0,

∂κ2

∂u
=

∂κ2

∂v
= 0,

∂2κ2

∂u2
≥ 0.

(b) Using the Codazzi equations from the previous exercise to show that at p

∂ ln guu
∂v

= 0 =
∂ ln gvv
∂u

and after differentiation also at p that

∂2 ln guu
∂v2

≥ 0,
∂2 ln gvv
∂u2

≥ 0.

(c) Next show that at p

K = −1

2

(
1

gvv

∂2 ln guu
∂v2

+
1

guu

∂2 ln gvv
∂u2

)
≤ 0.

(d) Finally establish the first statement.
(8) Show that a surface with constant principal curvatures must be part of a plane,

sphere, or right circular cylinder. Note that the two former cases happen when
the principal curvatures are equal.

(9) Show that having zero Gauss curvature is the integrability condition for ad-
mitting Cartesian coordinates on an abstract surface. Hint: Think of U, V as
2-dimensional vectors and consider the system

∂w
[
U V

]
=

[
U V

] [ Γuwu Γuwv
Γvwu Γvwv

]
,

∂u q = U,

∂v q = V.

These are simply the Gauss formulas with the last columns and rows erased.
Show that the integrability equations for U, V are K = 0. Then use the last
equations to find q : U → R2 after having checked the integrability conditions
are satisfied. Finally, show that (x, y) = q (u, v) is a Cartesian parametrization
provided the correct initial conditions for U, V have be specified.

(10) Consider potential surfaces q (u, v) where

[I] =

[
λ2 0
0 λ2

]
, [II] =

[
λ2κ 0

0 −λ
2

κ

]
.

See also section 6.1 exercise 8.
(a) Show that

K = −1

and

∆ lnλ =
∂2 lnλ

∂u2
+
∂2 lnλ

∂v2
= λ2.

Hint: The first is easy and to do the second use section 5.3 exercise 32.
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(b) Show that if we choose

λ =
1

a (u2 + v2) + buu+ bvv + c
,

where a, bu, bv, c are constants such that

4ac− b2u − b2v = −1,

then the first fundamental form

[I] =

[
λ2 0
0 λ2

]
has K = −1.

(c) Show that when a = 0 and either bu = 0 or bv = 0, i.e., λ must be a
function of either u or v, then it is possible to find κ so that the Codazzi
equations are satisfied. Thus we obtain a surface in space.

(d) Show that the pseudo-sphere (see section 5.4 exercise 10) is an example of
such a surface with λ = 1

v , v > 0.
(e) When λ = 1

v show that κ2 + 1 = ev2 for some constant e > 0 and conclude
that κ is not defined for all v.

(f) Show that if a 6= 0 or bubv 6= 0, then it is not possible to find κ so that
the Codazzi equations are satisfied. Hint: The Codazzi equations yield
formulas

∂κ

∂u
= P

(
κ,
∂ lnλ

∂u

)
and

∂κ

∂v
= Q

(
κ,
∂ lnλ

∂v

)
.

So it comes down to checking the integrability conditions when both ∂ lnλ
∂u 6=

0 and ∂ lnλ
∂v 6= 0.

(11) Consider a space-like parametrized surface q (u, v) : U → R2,1 and define the
Weingarten map

L

(
d q

dt

)
= −dn ◦ q

dt

and second fundamental form II (X,Y ) = I (L (X) , Y ) as for surfaces in R3.
(a) Show that the Gauss-Weingarten equations are given by

∂

∂w

[
∂ q
∂u

∂ q
∂v n

]
=

[
∂ q
∂u

∂ q
∂v n

]
[Dw]

=
[
∂ q
∂u

∂ q
∂v n

]  Γuwu Γuwv −Luw
Γvwu Γvwv −Lvw
−Lwu −Lwv 0

 .
Note the change in signs in the last column when compared to surfaces in
R3.

(b) Show that the Codazzi equations are the same as above.
(c) Show that the Gauss equations are now given by

Rlijk = −
(
LliLjk − LljLik

)
.

(d) Show that these Codazzi and Gauss equations are the integrability equa-
tions for a space-like surface in R2,1.
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(12) Let q (u, v) be a parametrized surface in R3. Assume E1 and E2 are tangent
vector fields forming an orthonormal basis for the tangent space everywhere
and

E1 × E2 = n =
∂ q
∂u ×

∂ q
∂v∣∣∣∂ q

∂u ×
∂ q
∂v

∣∣∣ .
(a) Show that

∂

∂w

[
E1 E2 n

]
=

[
E1 E2 n

]
[Dw] ,

[Dw] =

 0 −φw −φw1

φw 0 −φw2

φw1 φw2 0

 ,
where

φw =

(
∂E1

∂w
| E2

)
= −

(
∂E2

∂w
| E1

)
,

φw1 =

(
∂E1

∂w
| n
)

= − I

(
∂ n

∂w
,E1

)
,

φw2 =

(
∂E2

∂w
| n
)

= − I

(
∂ n

∂w
,E2

)
.

(b) Show that

φw1 = II (∂w q, E1) = I (∂w q, L (E1)) ,

φw2 = II (∂w q, E2) = I (∂w q, L (E2)) .

(c) Use the Weingarten equations and [L] as the matrix of the Weingarten map
with respect to E1, E2 to show that

[L]
[
E1 E2

]t [ ∂ q
∂u

∂ q
∂v

]
=

[
φu1 φv1

φu2 φv2

]
and

K
√

det [I] = φu1φv2 − φu2φv1.

(d) Show that the integrability conditions

∂

∂u
[Dv]−

∂

∂v
[Du] + [Du] [Dv]− [Dv] [Du] = 0

can be reduced to the three equations:
∂φv
∂u
− ∂φu

∂v
= φu2φv1 − φv2φu1,

∂φv1

∂u
− ∂φu1

∂v
= φv2φu − φu2φv,

∂φv2

∂u
− ∂φu2

∂v
= −φv1φu + φu1φv.

(e) Show that
∂φv
∂u
− ∂φu

∂v
= φu2φv1 − φv2φu1

corresponds to the Gauss equation.
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(f) Show that
∂φv1

∂u
− ∂φu1

∂v
= φv2φu − φu2φv,

∂φv2

∂u
− ∂φu2

∂v
= −φv1φu + φu1φv

correspond to the Codazzi equations.

6.4. The Gauss-Bonnet Theorem

Recall from section 2.2 that the integral of the curvature of a planar curve is
related to how the tangent moves. In this section we shall prove a similar result for
curves on abstract surfaces. To check that we cannot expect the same statement
to hold, consider the equator on a sphere. This curve has acceleration normal to
itself and lies in the (x, y)-plane, in particular, the acceleration is also normal to
the sphere and so has no geodesic curvature. On the other hand the tangent field
clearly turns around 360 degrees.

Throughout this section we assume that a parametrized abstract surface is
given with a rectangular parameter domain U = (au, bu)× (av, bv). The key is that
the domain should not have any holes in it. We further assume that we have a
smaller domain R ⊂ U that is bounded by a piecewise smooth curve

(u (s) , v (s)) : [0, L]→ (au, bu)× (av, bv)

running counter clockwise in the plane and such that q (s) = q (u (s) , v (s)) is unit
speed with respect to the given first fundamental form [I] on the abstract surface.

Integration of functions on the surface is done by defining a suitable integral
using the parametrization. To make this invariant under parametrizations we define∫

q(R)

fdA =

∫
R

f (u, v)
√

det [I]dudv =

∫
R

f (u, v)

∣∣∣∣∂ q

∂u
× ∂ q

∂v

∣∣∣∣ dudv.
This ensures that if we use a different parametrization (s, t) where q (Q) = q (R) ,
then ∫

R

f (u, v)
√

det [I]dudv =

∫
Q

f (s, t)
√

det [I]dsdt.

We start by calculating the geodesic curvature of q assuming further that

[I] =

[
1 0
0 r2

]
.

The existence of such coordinate systems will be established in proposition 7.4.1.
The formulas for the Christoffel symbols and Gauss curvature in such coordinates
are given in section B.5.

Lemma 6.4.1. Let θ be the angle between q and the u-curves, then

κg =
dθ

ds
+
∂r

∂u

1

r
sin θ.

Proof. Given the specific form of [I] and that the velocity has unit length we
have

d q

ds
=

du

ds

∂ q

∂u
+
dv

ds

∂ q

∂v

= cos θ
∂ q

∂u
+

1

r
sin θ

∂ q

∂v
.
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The natural unit normal field to q in the surface is

S = − sin θ
∂ q

∂u
+

1

r
cos θ

∂ q

∂v
.

The geodesic curvature is then given by

κg = I
(
S, q̈I

)
=

(
S |
(
d2u

ds2
+ Γu

(
d q

ds
,
d q

ds

))
∂ q

∂u
+

(
d2v

ds2
+ Γv

(
d q

ds
,
d q

ds

))
∂ q

∂v

)
= − sin θ

(
d2u

ds2
+ Γu

(
d q

ds
,
d q

ds

))
+ r2 1

r
cos θ

(
d2v

ds2
+ Γv

(
d q

ds
,
d q

ds

))
= − sin θ

(
d2u

ds2
+ Γu

(
d q

ds
,
d q

ds

))
+ r cos θ

(
d2v

ds2
+ Γv

(
d q

ds
,
d q

ds

))
.

We further have
d2u

ds2
=

d cos θ

ds
= − sin θ

dθ

ds
,

d2v

ds2
=

d 1
r sin θ

ds

=
−1

r2

dr

ds
sin θ +

1

r
cos θ

dθ

ds

=
−1

r2

(
∂r

∂u

du

ds
+
∂r

∂v

dv

ds

)
sin θ +

1

r
cos θ

dθ

ds

=
−1

r2

∂r

∂u
cos θ sin θ +

−1

r3

∂r

∂v
sin2 θ +

1

r
cos θ

dθ

ds
.

And using example 5.2.12 the Christoffel symbols are

Γu
(
d q

ds
,
d q

ds

)
= Γuvv

(
dv

ds

)2

= −r ∂r
∂u

1

r2
sin2 θ

=
−1

r

∂r

∂u
sin2 θ,

Γv
(
d q

ds
,
d q

ds

)
= 2Γvuv

du

ds

dv

ds
+ Γvvv

(
dv

ds

)2

=
2

r

∂r

∂u

du

ds

dv

ds
+

1

r

∂r

∂v

(
dv

ds

)2

=
2

r2

∂r

∂u
sin θ cos θ +

1

r3

∂r

∂v
sin2 θ.

Thus

κg = − sin θ

(
− sin θ

dθ

ds
− 1

r

∂r

∂u
sin2 θ

)
+ r cos θ

(
1

r
cos θ

dθ

ds
+

1

r2

∂r

∂u
sin θ cos θ

)
=

dθ

ds
+

1

r

∂r

∂u
sin3 θ +

1

r

∂r

∂u
sin θ cos2 θ

=
dθ

ds
+
∂r

∂u

1

r
sin θ.
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�

We first prove the local Gauss-Bonnet theorem. It is stated in the way that
Gauss and Bonnet proved it. Gauss considered regions bounded by geodesics thus
eliminating the geodesic curvature, while Bonnet presented the version given below.

Theorem 6.4.2 (Gauss, 1825 and Bonnet, 1848 ). The surface and curve are
as above. Let θi be the exterior angles at the points where q (s) has vertices. Then∫

q(R)

KdA+

∫ L

0

κgds = 2π −
∑

θi.

Proof. It follows from example 5.3.9 that∫
q(R)

KdA =

∫
R

K
√

det [I]dudv

= −
∫
R

∂2r
∂u2

r
rdudv

= −
∫
R

∂2r

∂u2
dudv.

The last integral can be turned into a line integral if we use Green’s theorem∫
R

∂2r

∂u2
dudv =

∫
∂R

∂r

∂u
dv.

This line integral can now be recognized as one of the terms in the formula for the
geodesic curvature ∫

∂R

∂r

∂u
dv =

∫ L

0

∂r

∂u

dv

ds
ds

=

∫ L

0

∂r

∂u

1

r
sin θds

=

∫ L

0

(
κg −

dθ

ds

)
ds

=

∫ L

0

κgds−
∫ L

0

dθ

ds
ds.

Thus we obtain∫
q(R)

KdA+

∫ L

0

κgds = −
∫
R

∂2r

∂u2
dudv +

∫
∂R

∂r

∂u
dv +

∫ L

0

dθ

ds
ds

=

∫ L

0

dθ

ds
ds.

Finally we must show that ∫ L

0

dθ

ds
ds+

∑
θi = 2π.

For a planar simple closed curve this is a consequence of knowing that the rotation
index is 1 when parametrized to run counterclockwise (see theorem 2.2.5 and section
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2.2 exercise 4). In this case we know that
∫ L

0
dθ
dsds+

∑
θi must be a multiple of 2π.

Consider the abstract metrics

[Iε] =

[
1 0
0 1− ε+ εr2

]
.

For each ε ∈ [0, 1] this defines a metric on U and the rotation index for our curve has
to be a multiple 2π. Moreover, when ε = 0 the rotation index is 1 as the metric is
the standard Euclidean metric. It is easy to see that the angles θε between the curve
and the u-curves is continuous in ε. Thus

∫ L
0

dθ
dsds+

∑
θi also varies continuously.

However, as it is always a multiple of 2π and is 2π in case ε = 0 it follows that it
is always 2π. �

Clearly there are subtle things about the regions R we are allowed to use. Aside
from the topological restriction on R there is also an orientation choice (counter
clockwise) for ∂R in Green’s theorem. If we reverse that orientation there is a sign
change, and the geodesic curvature also changes sign when we run backwards.

We used rather special coordinates as well, but it is possible to extend the proof
to work for all coordinate systems. The same strategy even works, but is compli-
cated by the nasty formula we have for the Gauss curvature in general coordinates.
If we use a conformal or isothermal parametrization, then the argument about the
winding number is much simpler as angles would be the same in the plane and on
the surface. Thus the winding number is clearly 1.

Cartan’s approach using orthonormal frames rather than special coordinates
makes for a fairly simple proof that works within all coordinate systems. This is
exploited in an exercise below. To keep things in line with what we have already
covered we still restrict attention to how this works in relation to a parametrization.

Let us now return to our examples from above. Without geodesic curvature
and exterior angles we expect to end up with the formula∫

q(R)

KdA = 2π.

But there has to be a region R bounding the closed curve. On the sphere we can
clearly use the upper hemisphere. As K = 1 we end up with the well known fact
that the upper hemisphere has area 2π. If we consider a cylinder, then there are lots
of closed curves without geodesic curvature. However, there is no reasonable region
bounding these curves despite the fact that we have a valid geodesic coordinate
system. The issue is that the bounding curve cannot be set up to be a closed curve
in a parametrization where there is a rectangle containing the curve.

It is possible to modify the Gauss-Bonnet formula so that more general regions
can be used in the statement, but it requires topological information about the
region R. This will be studied in detail later and also in some interesting cases in
the exercises below.

In case the surface lies in R3 it is possible to reinterpret the integral of the
Gauss curvature. Recall that

KdA = K

∣∣∣∣∂ q

∂u
× ∂ q

∂v

∣∣∣∣ =

(
∂ n

∂u
× ∂ n

∂v
| n
)

= ±
∣∣∣∣∂ n

∂u
× ∂ n

∂v

∣∣∣∣ .
Thus

∫
R
KdA measures the signed area of the spherical image traced by the normal

vector, or the image of the Gauss map.
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Exercises
(1) Consider a surface of revolution and two latitudes q1 and q2 on it. These

curves bound a band or annular region q (R) . By subdividing the region and
using proper orientations and parametrizations on the curves show that∫

q(R)

KdA =

∫
q1

κgds1 −
∫

q2

κgds2.

(2) Generalize the previous exercise to suitable regions on general surfaces that are
bounded both on the inside and outside by smooth (or even piecewise smooth)
closed curves.

(3) Consider a geodesic triangle (curve with three vertices and vanishing geodesic
curvature) with interior angles α, β, γ inside a parametrization. Show that∫

q(R)

KdA = α+ β + γ − π.

(4) For a surface with K ≤ 0 and a geodesic polygon (sides have vanishing geodesic
curvature) in a parametrization as above show that the number of vertices must
be ≥ 3.

(5) Let q (u, v) be a parametrized surface without special assumptions about the
parametrization. Create tangent vector fields E1 and E2 forming an orthonor-
mal basis for the tangent space everywhere with the further property that E1

is proportional to the first tangent field ∂ q
∂u .

(a) Use section 6.3 exercise 12 to conclude that∫
q(R)

KdA = −
∫
R

(
∂φv
∂u
− ∂φu

∂v

)
dudv

= −
∫

q

φudu+ φvdv.

(b) Finally prove the Gauss-Bonnet theorem by establishing∫
q

φudu+ φvdv =

∫ (
kg −

dθ

ds

)
ds,

where θ is the angle with E1 or ∂ q
∂u . To aid the last calculation show that

dE1

ds
=
∂E1

∂u

du

ds
+
∂E1

∂v

dv

ds
= (cos θφu + sin θφv)E2,

dE2

ds
=
∂E2

∂u

du

ds
+
∂E2

∂v

dv

ds
= − (cos θφu + sin θφv)E1,

q̇ = cos θE1 + sin θE2,

S = − sin θE1 + cos θE2,

q̈I = S
dθ

ds
− sin θ (cos θφu + sin θφv)E1

+ cos θ (cos θφu + sin θφv)E2.
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6.5. Topology of Surfaces

So far we have only worked with the geometry of surfaces. When studying
the global behavior of closed surfaces there are also some interesting topological
concepts that are important in our geometric understanding of these surfaces.

Definition 6.5.1. A polygon, or n-gon is a piecewise smooth simple closed
curve inside a rectangular parameterization as in the previous section. The number
n = 0, 1, 2, ... refers to the number of points where the curve is not differentiable.
We call these points vertices of the closed curve and the connecting arcs the edges.

Remark 6.5.2. The edges will not include the two boundary points, thus they
are simple smooth curves defined on an open interval. A 0-gon is a smooth simple
closed curve, it has 0 vertices and 0 edges. A 1-gon is a loop with one vertex and
one edge etc. The inside is well defined by the Jordan curve theorem (see theorem
2.3.1) and is called the face. Thus the face of an n-gon, n > 0, has a boundary
that consists of n vertices and n edges, each of the edges in turn has vertices as
boundary points. In the special case of a 0-gon the boundary is a smooth circle.
Note that the inside of a circle or regular n-gon in the plane is homeomorphic to
an open disc. Thus any face is homeomorphic to an open disc.

Definition 6.5.3. A polygonal subdivision of an abstract surface is a disjoint
decomposition of the surface into faces and their boundaries. More specifically, if
a point lies inside a face, then it cannot be in any other face or on the boundary
of any face. If a point is a vertex for one face, then it cannot lie on an edge of any
other face, but it can be a vertex for several other faces.

Remark 6.5.4. If a point lies on an edge of one face, then it can only lie on
edges of other faces. In fact it can only lie on the edge for one other face since such
a point has a neighborhood that is homeomorphic to a disc. More precisely, if 3 or
more faces meet in a common edge, then no point on that edge has a neighborhood
that is homeomorphic to a disc.

Definition 6.5.5. A triangulation is a polygonal subdivision into triangles (3-
gons) with the added condition that two faces can have at most one edge in common.
Note that one can subdivide the sphere into two triangles as in a triangular pillow,
but this is not a triangulation. The tetrahedron is a triangulation of the sphere and
in fact the triangulation with the smallest number of vertices, edges and faces.

In any given concrete situation it is not hard to find a triangulation, but for an
abstract surface this is much less easy to see. We will take it for granted that our
surfaces have polygonal subdivisions and triangulations. A polygonal subdivision in
fact creates a triangulation if each n-gon is broken up into 2n triangles that all have
a common vertex in the face and where the edges connect this common vertex to to
the original vertices and midpoints of the original edges. A polygonal subdivision
can be created using some of the geometric developments in the next chapter. One
has to find a finite covering of small sets Bj that have boundaries with positive
geodesic curvature. These form a big Venn-type subdivision of the surface. If the
sets are chosen appropriately this will also be a polygonal subdivision.

Definition 6.5.6. The Euler characteristic of a polygonal subdivision is de-
fined as the alternating sum: χ = V − E + F where F is the number of faces, E
the number of edges, and V the number of vertices. Here E and V are not counted
with multiplicity.
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Example 6.5.7. If we take a smooth simple closed curve on a sphere, then we
obtain a polygonal subdivision where F = 2, E = 0, and V = 0. If we triangulate
the sphere using the tetrahedron then F = 4, E = 6, and V = 4. In either case
χ = 2.

We will first use geometry to show that the Euler characteristic does not depend
on the metric. Below we indicate how closed oriented surfaces are classified and
how the Euler characteristic is constrained to be ≤ 2.

Theorem 6.5.8. Let M be an oriented closed surface, then∫
M

KdA = 2πχ

for any polygonal subdivision of M . In particular, χ does not depend on the polyg-
onal subdivision.

Proof. The orientation is used to ensure that integration has a consistent sign
when we switch parametrizations.

We consider a polygonal subdivision with F polygons. Each nj-gon is denoted
by Pj . The local version of Gauss-Bonnet for each polygon can be written:∫

P j
KdA = −

∫ Lj

0

κgds+ 2π −
nj∑
ij=1

θij

= −
∫ Lj

0

κgds+ 2π − πnj +

nj∑
ij=1

αij ,

where αij is the interior angle. The global formula is now gotten by adding up
these contributions. When doing this it is important to orient each polygon so that
the winding number is 1. Each edge occurs in exactly two adjacent polygons, but
the edge will have opposite orientations in each of the polygons when we insist that
they both have winding number 1. Thus the geodesic curvature changes sign and
those terms cancel each other in the sum.∫

M

KdA =

F∑
j=1

∫
Pj

KdA

= 2πF −
F∑
j=1

πnj +

F∑
j=1

nj∑
ij=1

αij

= 2π (F − E + V ) .

Here the last equality follows from the fact that at each vertex the interior angles
add up to 2π, while n1 + · · ·+ nF = 2E since each edge gets counted twice in that
sum.

This shows that F − E + V does not depend on what subdivision we picked.
Given that information we observe that

∫
M
KdA does not vary if we change the

first fundamental form on a given abstract surface as we can always use the same
subdivision regardless of what the first fundamental form is. �

Definition 6.5.9. The genus g of an orientable closed surface is the maximum
number of disjoint simple closed curves with the property that the complement is
connected. Orientability is used to guarantee that any simple closed curve has a
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well-defined right and and left hand side, i.e., it locally divides the surface in two.
Globally, however, the complement might still be connected. Note that the Jordan
curve theorem implies that g = 0 for the sphere.

Using g surgeries (see proof below) one can obtain a closed surface with g = 0.
We shall be concerned with the opposite question: What can we say about a closed
oriented surface with g = 0 and more generally about a surface with genus g?

It is easy to construct surfaces of genus g by adding g “handles” to a sphere.
The next theorem explains why there are no other orientable surfaces.

Theorem 6.5.10. An oriented surface with genus g has χ = 2 − 2g and is a
sphere with g handles attached.

Proof. We will fix a triangulation for a closed oriented surface. A simple cycle
in a triangulation is a simple closed loop of edges and vertices, i.e. each vertex and
edge only appears once as we run around in the loop. For a fixed triangulation we
can redefine the genus as the maximum number of simple cycles with connected
complement.

Surgery for a triangulation is defined by cutting along a simple cycle whose
complement is connected and adding two pyramids to create a new surface with a
triangulation. This reduces the genus and increases χ by 2. The latter is because
the simple cycle has the same number of edges and vertices and thus does not
contribute to χ. For each pyramid we add the same number of faces and edges
and 1 vertex. Thus χ is increased by 1 for each of the two pyramids. Thus g such
surgeries will result in a triangulated surface with g = 0 and where χ has been
increased by 2g. We show below that a triangulated surface with g = 0 has χ = 2
and is a sphere. Given this, we can reverse the surgeries, also known as adding
handles to the sphere, and conclude that the original surface is a sphere with g
handles.

Recall that faces and edges do not include their boundary points. Consider a
collection of faces, edges, and vertices whose union is homeomorphic to an open
disc and has χ = V −E + F = 1. The boundary consists of the edges and vertices
that meet the faces in the collection, but are excluded from being part of the union.
Since the collection is an open set it can’t contain a vertex without also including
all edges and faces that have the vertex on their boundaries. On the other hand,
it is possible for it to contain two adjacent faces without the common edge. In
particular, such a collection could contain all faces in the triangulation and still
have nonempty boundary. Note that in defining χ for such a collection we only
count the vertices and edges included, not the remaining vertices and edges on the
boundary. The simplest example of such a collection is a single face.

The claim is that any surface contains a collection that forms an open disc with
χ = 1; includes all faces in the triangulation; and such that the boundary graph is
connected and has no branches, i.e., there are no vertices that are met by just one
edge.

Consider any collection whose union is an open disc with χ = 1 and whose
boundary is connected.

Faces outside this collection that meet the boundary either do so in one, two, or
three edges. Regardless of which situation occurs we can add the face and exactly
one of the edges that is also an edge for a face in the collection. This preserves the
properties that the collection forms an open disc with χ = 1. To be specific, note
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that the open half-disc

H =
{

(x, y) ∈ (−∞, 0)× R |
√
x2 + y2 < 1

}
and with a wedge added

H ∪ {(x, y) ∈ [0, 1]× R | |y| < a (1− x) , 0 < a ≤ 1}
are both homeomorphic to open discs. Note that the boundary still has all of the
original vertices, one edge is deleted, and the other two edges and vertex of the
added face are added. Thus the boundary stays connected. Now continue this
process until all faces in the triangulation of the surface have been included.

Next we eliminate branches from the boundary. If the boundary contains a ver-
tex that is met by exactly one edge, then add the vertex and edge to the collection.
This keeps the properties that the collection forms an open disc with χ = 1. To be
specific, note that all of the open sets

{
(x, y) ∈ R2 |

√
x2 + y2 < 1, x ≥ a > −1

}
are homeomorphic to open discs. When we delete a vertex and edge, we are essen-
tially just increasing a. Clearly the boundary stays connected. Continue this until
there are no branches on the boundary.

We can now characterize the sphere as the only surface with g = 0. In this
case the boundary of the open disc with χ = 1 that includes all faces can’t contain
any simple cycles since the complement of the boundary is the open disc and hence
connected. If there are no branches, then it can only be a single vertex. This
implies that χ = 2 and that the surface is a sphere. �

Exercises
(1) Show that for a triangulation of a closed surface of genus g we have:

(a) E ≤
(
V
2

)
,

(b) E ≤
(
F
2

)
,

(c) 2E = 3F ,
(d) E = 3 (V − χ),
(e) F ≥ V ,
(f) V ≥ 1

2

(
7 +
√

1 + 48g
)
,

(g) When g = 0 show that at least one vertex has degree ≤ 5. The degree of a
vertex is the number of edges that meet the vertex.

(h) When g ≥ 1 show that at least one vertex has degree ≤ 1
2

(
7 +
√

1 + 48g
)
−

1.
The number 1

2

(
7 +
√

1 + 48g
)
is also known as the coloring number of the of

the surface. The fact that any map on a surface can be colored with at most
that many colors is the famous 4-coloring conjecture/theorem for the sphere.
Heawood established the result for surfaces of genus g ≥ 1 by showing that (h)
holds. The same proof shows that (g) implies that maps on the sphere can be
6 colored. Heawood also showed that maps on the sphere can be 5 colored.
It was not until 1968 that Ringel and Youngs showed that this is the correct
coloring number for all g ≥ 1. The 4 color problem (g = 0) was solved by Appel
and Haken in 1977.

(2) Show that a closed surface with constant curvature has the property that the
curvature and the Euler characteristic have the same sign.

(3) Show that a closed surface must have a point where K has the same sign as χ.
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(4) Show that if a closed orientable surface has K ≥ R−2 > 0, then its area is
≤ 4πR2. Show that if the area is 4πR2, then K = R−2.

(5) A polyhedron consists of a collection of planar polygons that are glued together
along edges of equal length. It should look like a polygonal subdivision of a
surface. Thus each edge is met by exactly to planar polygons. The fact that
the polygons are planar implies that the sum of the interior angles is π (p− 2),
where p is the number or edges for the polygon. Let Θv be the sum of the
interior angles of faces that meet the vertex v. The angular defect 2π − Θv

measures of far the vertex is from being flat in analogy with exterior angles for
vertices measuring how far the edges are from being straight. Show Descartes
theorem

2πχ =
∑

(2π −Θv) ,

where χ = V − E + F as for a polygonal subdivision of a surface.
(6) A polygonal subdivision of a closed surface is said to be cubical if each vertex

is met by exactly three edges, just as the vertices on a cube.
(a) Show that a cubical subdivision satisfies: 2E = 3V and F =

∑
n pn, where

pn is the number of n-gons.
(b) Show that a cubical subdivision satisfies:

6χ =
∑
n

(6− n) pn.

(c) Show that a cubical subdivision of the sphere into 4-gons consists of exactly
6 quadrilaterals and looks like a cube.

(d) Show that a cubical subdivision of the sphere into quadrilaterals and hexagons
contains exactly 6 quadrilaterals. Give an example that contains hexagons.

(e) A soccer ball is a cubical subdivision of a sphere into hexagons and pen-
tagons. Show that it contains 12 pentagons.

(f) If a surface has a cubical subdivision into hexagons, then χ = 0. Does the
torus admit a cubical subdivision into hexagons?

6.6. Closed and Convex Surfaces

First we need the equivalent of the Jordan curve theorem for closed surfaces.

Proposition 6.6.1. A closed surface M ⊂ R3 has the property that the Gauss
map is onto. There are no closed space-like surfaces M ⊂ R2,1.

Proof. The proof in either case uses the function f (p) = (p | n) for a fixed
n ∈ R3. Select a parametrization q (u, v) such that f (q (u, v)) has a critical point
at (u, v) = (0, 0). The first partials of this function are given by

∂f ◦ q

∂w
=

(
∂ q

∂w
| n
)
.

At a critical point they have to vanish. As ∂ q
∂u ,

∂ q
∂v span the tangent space it follows

that n must be a unit normal at all critical points for f (q (u, v)). At a maximum
f is positive so if the normal to the surface is outward pointing it follows that n
becomes the normal to the surface.

In the case of M ⊂ R2,1 it follows that there will be both time-like and space-
like normal vectors. That’s impossible if all tangent spaces are space-like as that
forces the normals to be time-like. �
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Proposition 6.6.2. A closed surface M ⊂ R3 has points where both principal
curvatures are positive.

Proof. Consider the function f (p) = 1
2 |p|

2 restricted toM . Select a parametriza-
tion q (u, v) such that f (q (u, v)) has a maximum at (u, v) = (0, 0). The first and
second partials of this function are given by

∂f ◦ q

∂w
=

(
q | ∂ q

∂w

)
,

∂2f ◦ q

∂w1∂w2
=

(
∂ q

∂w1
| ∂ q

∂w2

)
+

(
q | ∂2 q

∂w1∂w2

)
= gw1w2 +

(
q | ∂2 q

∂w1∂w2

)
.

Since there is a maximum at (0, 0) the first partials vanish and we can assume that
the normal to the surface is given by

n (0, 0) = − q (0, 0)

|q (0, 0)|
.

The second partials at (0, 0) are then given by:

∂2f ◦ q

∂w1∂w2
= gw1w2 − |q (0, 0)|Lw1w2 .

The second derivative test tells us that the Hessian of f (q (u, v)) must be nonpos-
itive at (0, 0). This is equivalent to

I (X,X)− |q (0, 0)| II (X,X) ≤ 0

for all X ∈ Tq(0,0)M . This in turn implies that both principal curvatures at q (0, 0)

are ≥ 1
|q(0,0)| . �

An abstract surface with g = 0 also has points withK > 0 by the Gauss-Bonnet
theorem.

Theorem 6.6.3. (Liebmann, 1900) If M ⊂ R3 is closed and has constant
Gauss curvature, then it is a constant curvature sphere.

Proof. First note that the surface must have positive curvature. Since the
surface is closed and K = κ1 ·κ2 is constant it follows that when κ1 has a maximum,
then κ2 has a minimum. Hilbert’s lemma (see section 6.3 exercise 7) then tells us
that the principal curvatures must be equal and constant. �

Theorem 6.6.4. If M ⊂ R3 is closed, has constant mean curvature, and posi-
tive Gauss curvature, then it is a constant curvature sphere.

Proof. Same proof as above. �

Theorem 6.6.5. (Hadamard, 1897) Let M ⊂ R3 be a closed surface with K >
0, then the Gauss map is a diffeomorphism and M is convex.

Proof. Consider the signed height function to the tangent plane at a point
p ∈M :

f (x) = (x− p) | np .
Note that the critical points q for f are the points where nq = ±np. Example
5.4.5 shows that every critical point is either a strict local maximum or minimum.
Assume there are two local minima at p, q and consider the min/max

inf
c∈Ωp,q

max f ◦ c.
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If a curve achieves this min/max, then the maximum value for f ◦c is also a critical
point for f and consequently a local maximum for f . But this violates that there
are no curves with smaller max f ◦ c. We conclude that there is a unique minimum
and maximum for f . This shows that the Gauss map is injective. The issue is to
show that such a curve exists.

First observe that n : M → S2 (1) is has nonsingular differential everywhere as
detDN = K > 0. The global Gauss-Bonnet theorem tells us that

0 <

∫
M

KdA = 2πχ (M) .

This implies that χ (M) = 2.
Note that n is onto by proposition 6.6.1.
If n is not one-to-one, then we can find a small open set O ⊂M such that n is

onto when restricted to M −O. This leads to the following contradiction

4π =

∫
M−O

KdA+

∫
O

KdA = 4π +

∫
O

KdA > 4π.

Consider the signed height function to the tangent plane at a point p ∈M :

f (x) = (x− p | np)

This has exactly two critical points where nx = ±np. These correspond to the
maximum and minimum. Assume p is the minimum. Then f (x) > 0 for all x 6= p
and the surface lies on one side of the tangent plane at p.

..................continue to show that it must be imbedded even though this is what
we assumed. �

Theorem 6.6.6. Any two simple closed geodesics on a closed surface with K >
0 intersect.

Proof. If they don’t intersect then there is an annular region with K > 0
where the boundary curves have no geodesic curvature. This violates the Gauss-
Bonnet theorem. See also theorem 7.8.4 for a different proof. �

Remark 6.6.7. One can reprove the results in this section for isometric im-
mersions F : M → R3 whenM is oriented. In particular, it will follow that all such
immersions are embeddings when K > 0.

Definition 6.6.8. A Weingarten surface is a surface where the principal cur-
vatures depend on each other, i.e., W (κ1, κ2) = 0 for some function W . Surfaces
of constant Gauss or mean curvature are examples of such surfaces, as are surfaces
where all points are umbilics.

Exercises
(1) Show that surfaces of revolution are Weingarten surfaces. Hint: The principal

curvatures are constant along latitudes.
(2) Show that tubes are Weingarten surfaces where one principal curvature is con-

stant and that
aH + bK + c = 0

for suitable constants a, b, c.
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(3) Give an example of a closed Weingarten surface M ⊂ R3 with K > 0 that does
not have constant curvature.

(4) Consider a closed surface M ⊂ R3 that satisfies H = RK, for some constant
R > 0. Let O = {p ∈M | K (p) > 0}.
(a) Show that O 6= ∅.
(b) Show that M = O by using that on O we have the relationship:

1

κ1
+

1

κ2
= 2R.

(c) Show that M is a sphere of radius R.
(5) Let M ⊂ R3 be a closed surface.

(a) Show that
∫
M

max {K, 0} dA ≥ 4π.
(b) Show that

∫
M
H2dA ≥ 4π.

(c) Show that if
∫
M
H2dA = 4π, then M is a round sphere. Hint: Show that

the principal curvatures are equal and positive wherever K > 0. Use this
to conclude that they are constant. Finally show that it is not possible to
have K ≤ 0 anywhere.



CHAPTER 7

Geodesics and Metric Geometry

This chapter covers the basics of geodesics and their properties as shortest
curves. We also give models for constant curvature spaces and calculate the geodesics
in these models. We discuss isometries and the local/global classification of sur-
faces with constant Gauss curvature. The chapter ends with a treatment of a few
classical comparison theorems. Virtually all results have analogues for higher di-
mensional Riemannian manifolds, but certain proofs are a bit easier for surfaces.
It will be noted that there is no mention of parallel translation although we do in-
troduce second partial derivatives for 2-parameter maps in to an abstract surface.
This is more or less in line with the classical treatment, as parallel translation was
not introduced until the early part of the 20th century. It also eases the treatment
quite a bit.

Throughout we study abstract surfaces, but note that many calculations are
much easier if we think of the surfaces as sitting in R3.

7.1. Geodesics

Definition 7.1.1. A curve q on a surfaceM is called a geodesic if the tangential
part of the acceleration vanishes, q̈I = 0, specifically

d2u

dt2
+ Γu (q̇, q̇) = 0,

d2v

dt2
+ Γv (q̇, q̇) = 0.

When M ⊂ R3 this is equivalent to saying that q̈ is normal to the surface or that
q̈ = q̈II = n II (q̇, q̇).

Proposition 7.1.2. A geodesic has constant speed.

Proof. Let q (t) be a geodesic. We compute the derivative of the square of
the speed:

d

dt
I (q̇, q̇) =

d

dt
(q̇ | q̇) = 2 (q̈ | q̇) = 2 II (q̇, q̇) (n | q̇) = 0

since n and q̇ are perpendicular. Thus q has constant speed.
There is also a purely intrinsic proof that works for abstract surfaces. Since it

is convenient to do this proof in a more general context it will be delayed until the
end of the next section. �

Next we address existence of geodesics.

Theorem 7.1.3. Given a point p = q (u0, v0) and a tangent vector V =

V u ∂ q
∂u (u0, v0)+V v ∂ q

∂v (u0, v0) ∈ TpM there is a unique geodesic q (t) = q (u (t) , v (t))

193
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defined on some small interval t ∈ (−ε, ε) with the initial values

q (0) = p,

q̇ (0) = V.

Proof. The existence and uniqueness part is a very general statement about
solutions to differential equations (see theorem A.5.1). In this case we note that in
the (u, v) parameters we must solve a system of second order equations

d2u

dt2
= −

[
du
dt

dv
dt

] [ Γuuu Γuuv
Γuvu Γuvv

] [
du
dt
dv
dt

]
,

d2v

dt2
= −

[
du
dt

dv
dt

] [ Γvuu Γvuv
Γvvu Γvvv

] [
du
dt
dv
dt

]
,

with the initial values

(u (0) , v (0)) = (u0, v0) ,

(u̇ (0) , v̇ (0)) = (V u, V v) .

As long as the Christoffel symbols are sufficiently smooth there is a unique solution
to such a system of equations given the initial values. The domain (−ε, ε) on which
such a solution exists is quite hard to determine. It’ll depend on the domain of
parameters U , the initial values, and Christoffel symbols. �

This theorem allows us to find all geodesics on spheres and in the plane without
calculation.

Example 7.1.4. In R2 straight lines q (t) = p+ vt are clearly geodesics. Since
these solve all possible initial problems there are no other geodesics.

Example 7.1.5. On S2 we claim that the great circles

q (t) = q cos (|v| t) +
v

|v|
sin (|v| t) ,

q ∈ S2,

(q | v) = 0

are geodesics. Note that this is a curve on S2, and that q (0) = q, q̇ (0) = v. The
acceleration as computed in R3 is given by

q̈ (t) = −q |v|2 cos (|v| t)− v |v| sin (|v| t) = − |v|2 q (t)

and is consequently normal to the sphere. In particular q̈I = 0. This means that
we have also solved all initial value problems on the sphere.

Depending on our parametrization (u, v)-geodesics can be pictured in many
ways. We’ll study a few models or parametrizations of the sphere where geodesics
take on some familiar shapes and can be described directly by equations rather
than in parametrized form.

Unit Sphere Model: Consider the unit sphere. Great circles and hence
geodesics are described by the two equations:

ax+ by + cz = 0,

x2 + y2 + z2 = 1.

Given a specific geodesic q (t) = q cos (|v| t)+ v
|v| sin (|v| t) we can use (a, b, c) = q×v.
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Elliptic Model: If we use the Monge patch
(
u, v,
√

1− u2 − v2
)
on the upper

hemisphere, i.e., project to the (x, y)-plane along the z-axis, then the equations of
the geodesics become(

a2 + c2
)
u2 + 2abuv +

(
b2 + c2

)
v2 = c2.

These are the equations of ellipses whose axes go through the origin and are in-
scribed in the unit circle. This is how you draw great circles on the sphere!

Recall that the level sets to quadratic equations:

αx2 + 2βxy + γy2 = R2

are ellipses centered at the origin when α+ γ > 0 and αγ − β2 > 0.

Beltrami Model: If we use the parametrization
1√

1 + u2 + v2
(u, v, 1)

on the upper hemisphere, i.e., xz = u, yz = v, then these equations simply become
straight lines in (u, v) coordinates:

au+ bv + c = 0.

This reparametrization was also discussed in section 4.4 exercise 22, where it was
called the Beltrami projection. It is simply the projection of the upper hemisphere
along radial lines to the tangent plane {z = 1} at the North pole.

Conformal Model: The radial projection that was used for the Beltrami
model is an example of a perspective projection, i.e., a projection along radial
lines from a point to a plane that does not pass through this point. The stere-
ographic parametrization from section 4.4 exercise 20 is projection along lines
through (0, 0,−1) to the (x, y)-plane. In this model the upper hemisphere is
parametrized as

q+ (u, v) =
1

1 + u2 + v2

(
2u, 2v, 1− u2 + v2

)
.

One can show that this is a conformal or isothermal parametrization. In case c = 0
the geodesics are straight lines through the origin:

au+ bv = 0.

When c 6= 0 we can normalize so that c = 1 in which case the geodesics become
circles

(u+ a)
2

+ (v + b)
2

= 1 + a2 + b2.

Next we consider hyperbolic space.
Imaginary Unit Sphere Model: We defined hyperbolic space H ⊂ R2,1 in

example 6.1.2 as the the imaginary unit sphere with z > 0. More precisely, it is the
rotationally symmetric surface

x2 + y2 − z2 = −1, z ≥ 1

with a metric that is inherited from the space-time inner product structure. Observe
that the tangent space can be characterized as

TqM =
{
v ∈ R2,1 | (v | q) = 0

}
.
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This means that the normal is be given by n (q) = q. In analogy with the sphere
we consider the curves

q (t) = q cosh (|v| t) +
v

|v|
sinh (|v| t) ,

q ∈ H,

v ∈ TqH.

Since q | v = 0 this is a curve on H with q (0) = q, q̇ (0) = v. Note also that it lies
in the plane spanned by q and v.

The acceleration as computed in R2,1 is given by

q̈ (t) = q |v|2 cosh (|v| t) + v |v| sinh (|v| t) = |v|2 q (t) .

In particular, it has no tangential component and thus has vanishing intrinsic ac-
celeration (see also remark 6.1.5).

If we use (a, b, c) = q × v, then we also obtain the equation form:

ax+ by + cz = 0,

x2 + y2 − z2 = −1, z ≥ 1.

Note that for these planes to intersect the surface it is necessary to assume that:

c2 < a2 + b2.

Hyperbolic Model: This is the orthogonal projection onto the (x, y)-plane.
The parametrization is a Monge patch and is given by

(
u, v,
√

1 + u2 + v2
)
. The

geodesics will be straight lines through the origin when c = 0 and hyperbolas whose
asymptotes are lines through the origin when 0 < c2 < a2 + b2:(

a2 − c2
)
u2 + 2abuv +

(
b2 − c2

)
v2 = c2.

Recall that the level sets to quadratic equations:

αx2 + 2βxy + γy2 = R2

are hyperbolas with asymptotes that pass through the origin when αγ − β2 < 0.

Beltrami Model: The Beltrami model comes from a perspective projection
along radial lines through the origin to the plane z = 1. It gives us the parametriza-
tion

1√
1− u2 − v2

(u, v, 1) , u2 + v2 < 1.

And the geodesics are straight lines:

au+ bv + c = 0.

Conformal Models: Stereographic projection along radial lines through (0, 0,−1)
to the (x, y)-plane gives the Poincaré model. The parametrization is given by:

1

1− u2 − v2

(
2u, 2v, 1 + u2 + v2

)
, u2 + v2 < 1.

It is also called the unit disc model since the open disc is the domain for the
parameters. One can show that this parametrization is conformal or isothermal.
The geodesics are either straight lines through the origin

au+ bv = 0
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or when c 6= 0 and we scale so that c = 1 circles centered outside the unit disc:

(u− a)
2

+ (v − b)2
= a2 + b2 − 1, a2 + b2 > 1.

The upper half plane model comes from a conformal transformation of the
upper half plane to the unit disc (see section 4.4 exercise 21). This map is given by

F (x, y) =
1

x2 + (y + 1)
2

(
2x, 1− x2 − y2

)
.

The geodesics will again be lines and circles but F does not necessarily take lines
to lines. The lines are all vertical:

x = 0, when c = 0, b = 0,

or
x = 1/a, when c = 1, b = −1,

and the circles have centers along the x-axis(
x− a

b

)2

+ y2 = 1 +
a2

b2
, when c = 0,

or (
x− a

b+ 1

)2

+ y2 =
a2 + b2 − 1

(b+ 1)
2 , when c = 1.

It is interesting to note that for the sphere only the unit sphere model actually
covers the entire sphere. In contrast, all of the models for hyperbolic space are
equivalent in the sense that they are models for all of hyperbolic space, not just
part of it.

Definition 7.1.6. An abstract surface is said to be geodesically complete if all
geodesics exist for all time t ∈ R. It is said to be geodesically complete at a point,
if all geodesics through that point are defined for all time.

Example 7.1.7. The unit sphere, all of the above models for hyperbolic space,
and all planes are geodesically complete.

As we have seen, it is often simpler to find the unparametrized form of the
geodesics, i.e., in a given parametrization they are easier to find as an equation or
as functions u (v) or v (u) . There is in fact a tricky characterization of geodesics
that does not refer to the arc-length parameter. The idea is that a regular curve
can be reparametrized to be a geodesic if and only if its tangential acceleration q̈I

is tangent to the curve.

Lemma 7.1.8. A regular curve q (t) = q (u (t) , v (t)) can be reparametrized as
a geodesic if and only if

dv

dt

(
d2u

dt2
+ Γu (q̇, q̇)

)
=
du

dt

(
d2v

dt2
+ Γv (q̇, q̇)

)
.

Proof. First observe that this formula holds iff λ (t) q̇ (t) = q̈I (t) for some
function λ.
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If we reparametrize the curve, then the velocity satisfies: q̇ (t) = ds
dt q̇ (s). For

the acceleration we calculate in coordinates:

d2u

dt2
+ Γu (q̇, q̇) =

d2s

dt2
du

ds
+

(
ds

dt

)2
d2u

ds2
+ Γu

(
ds

dt

d q

ds
,
ds

dt

d q

ds

)
=

d2s

dt2
du

ds
+

(
ds

dt

)2
d2u

ds2
+

(
ds

dt

)2

Γu
(
d q

ds
,
d q

ds

)
=

d2s

dt2
du

ds
+

(
ds

dt

)2(
d2u

ds2
+ Γu

(
d q

ds
,
d q

ds

))
.

Similarly

d2v

dt2
+ Γv (q̇, q̇) =

d2s

dt2
dv

ds
+

(
ds

dt

)2(
d2v

ds2
+ Γv

(
d q

ds
,
d q

ds

))
.

It follows that

q̈I (t) =
d2s

dt2
q̇ (s) +

(
ds

dt

)2

q̈I (s) .

This shows first of all that, if q (s) is a geodesic, then q̈I (t) = d2s
dt2 q̇ (s) as

claimed. Conversely assume that λ (t) q̇ (t) = q̈I (t). Then

λ (s)
ds

dt
q̇ (s) =

d2s

dt2
q̇ (s) +

(
ds

dt

)2

q̈I (s) .

So q̈I (s) = µ (s) q̇ (s) for some function µ. If we assume that s is the arclength
parameter, then we also know that

0 = I
(
q̈I (s) , q̇ (s)

)
= µ (s) .

This shows that q̈I (s) = 0. �

Exercises
(1) Let q (t) be a regular curve on a surface with normal n . Show that it can be

reparametrized to become a geodesic if and only if

det [q̇, q̈,n] = 0.

(2) Let q (t) be a unit speed curve on a surface. Show that

|κg| =
∣∣q̈I
∣∣ .

(3) Consider a unit speed curve q (t) on a surface of revolution

q (u, µ) = (r (u) cosµ, r (u) sinµ, z (u)) ,

where the profile curve (r (u) , 0, z (u)) is unit speed. Let θ (t) denote the angle
with the meridians.
(a) Show that if q̇ (t) = u̇∂u q +v̇∂v q, then

u̇ = cos θ and v̇ =
sin θ

r
.
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(b) Show that if q (t) is a geodesic, then

ü = (v̇)
2
r
∂r

∂u
,

v̈ = −2u̇v̇
∂ log r

∂u
.

(c) (Clairaut) Show that I (q̇, ∂v) = r sin θ is constant along a geodesic.
(d) We say that q (t) is a loxodrome if θ is constant. Show that if all geodesics

are loxodromes, then the surface is a cylinder.
(4) Let q (t) be a unit speed geodesic on a surface in R3. Show that

0 = κg,

κ = κn,

τ = τg,

where κ and τ are the curvature and torsion of q (t) as a space curve.
(5) Consider the two parametrized surfaces

q (r, µ) = (r cosµ, r sinµ, log r) ,

q∗ (r, µ) = (r cosµ, r sinµ, µ) .

(a) Show that their first fundamental forms are not equal.
(b) Show that they have the same Gauss curvature K (r, µ) = K∗ (r, µ).
(c) Show that the surfaces are not isometric.

(6) Let q (t) be a unit speed geodesic on a surface in space with curvature κ and
torsion τ as in the previous exercise.
(a) Show that κ = κ1 cos2 θ+κ2 sin2 θ, where κ1,2 are the principal curvatures

and θ the angles between q̇ and the first principal direction.
(b) Show that τ2 = (κ− κ1) (κ2 − κ).
(c) Show that if κ1 = 0, then κ = τ tan θ.

(7) Show that in the conformal model of the unit sphere the geodesics that pass
through (u, v) = (1, 0) all have center on the v-axis. Show that all initial value
problems can be solved.

(8) Show that the φ curves on a tube

q (t, φ) = c (t) +R (Nc cosφ+ Bc sinφ) ,

(see section 4.1 exercise 6 and section 4.3 exercise 7) are geodesics.
(9) Show that if a unit speed curve on a surface also lies in a plane that is perpen-

dicular to the surface, then it is a geodesic.
(10) Show that geodesics satisfy a second order equation

d2v

du2
= Γuvv

(
dv

du

)3

+ (2Γuuv − Γvvv)

(
dv

du

)2

+ (Γuuu − 2Γvuv)
dv

du
− Γvuu.

(11) (Beltrami) Assume that q (u, v) is a parametrized surface with the property
that all geodesics are lines in the domain U , i.e., each geodesic satisfies an
equation of the form

au+ bv + c = 0, (a, b) 6= (0, 0) .

Note that all formulas below remain the same when u and v are interchanged.
This reduces the number of calculations that need to be done.
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(a) Show using exercise 10 that

Γvuu = Γuvv = 0,

Γuuu = 2Γvuv,

Γvvv = 2Γuuv.

Hint: Use lemma 7.1.8 and parametrize the curve by u or v.
(b) Show that[

∂vguu − ∂uguv
∂ugvv − ∂vguv

]
=

[
guu −guv
−gvu gvv

] [
Γuuv
Γvuv

]
.

(c) Recall from proposition 6.2.4 that

K

[
guu guv
gvu gvv

]
=

[
Rvvuu Rvvuv
Ruuvu Ruuvv

]
.

Use the definition of Rlijk, part (a), and for the second equality, Ruuvu =
Rvvuv, to show that[

Rvvuu Rvvuv
Ruuvu Ruuvv

]
=

[
−∂uΓvvu ∂vΓ

v
vu − 2∂uΓuuv

∂uΓuuv − 2∂vΓ
v
uv −∂vΓuuv

]
+

[
ΓvvuΓvvu ΓuuvΓ

v
vu

ΓvvuΓuuv ΓuuvΓ
u
uv

]
= −

[
∂uΓvvu ∂vΓ

v
vu

∂uΓuuv ∂vΓ
u
uv

]
+

[
ΓvvuΓvvu ΓuuvΓ

v
vu

ΓvvuΓuuv ΓuuvΓ
u
uv

]
.

(d) Use (c) to show that[
∂v (Kguu)− ∂u (Kguv)
∂u (Kgvv)− ∂v (Kgvu)

]
=

[
∂vR

v
vuu − ∂uRvvuv

∂uR
u
uvv − ∂vRuuvu

]
=

[
Rvvuu −Ruuvu
Ruuvv −Rvvuv

] [
Γuuv
Γvuv

]
= K

[
guu −guv
−gvu gvv

] [
Γuuv
Γvuv

]
.

(e) Use (b) and (d) to show that

0 =

[
∂vK ∂uK
∂vK ∂uK

] [
guu −guv
−gvu gvv

]
.

Conclude that the Gauss curvature is constant.

7.2. Mixed Partials

We need to generalize the intrinsic acceleration to also include mixed partial
derivatives. The formulas obtained in section 5.2 will guide us.

Instead of just having a curve q (t) = q (u (t) , v (t)) within a parametrization
we assume that we have a family of curves q (s, t) = q (u (s, t) , v (s, t)) such that
for each s there is a curve parametrized by t. We shall generally assume that
(s, t) ∈ (−ε, ε) × [a, b]. In this case such a family of curves is called a variation
of the base curve q (t) = q (0, t). Note that q (s, t) does not have to be a valid
parametrization of the surface.

To ease the notation we will use the conventions qw (s, t) = w (s, t) so that we
can write ∂s qw = ∂w

∂s , ∂t∂s qw = ∂2w
∂t∂s , etc, and also use ∂t∂s qi with i in place of
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w. We also define

Γw (X,Y ) =
∑

i,j=u,v

ΓwijX
iY j =

[
Xu Xv

] [ Γwuu Γwuv
Γwvu Γwvv

] [
Y u

Y v

]
.

Keeping t or s fixed we already have that(
∂2 q

∂s2

)I

(s, t) =
(
∂2
su+ Γu (∂s q, ∂s q)

)
∂u q +

(
∂2
sv + Γv (∂s q, ∂s q)

)
∂v q

=
∑
i=u,v

(
∂2
s qi +Γi (∂s q, ∂s q)

)
∂i q .

and (
∂2 q

∂t2

)I

(s, t) =
∑
i=u,v

(
∂2
t qi +Γi (∂t q, ∂t q)

)
∂i q .

Moreover, when the surface lies in R3, then these intrinsic second partials are in
fact the tangential components of the second partials in R3.

The intrinsic mixed partial is similarly defined as(
∂2 q

∂s∂t

)I

(s, t) =
∑
i=u,v

(
∂s∂t qi +Γi (∂s q, ∂t q)

)
∂i q .

This mixed partial also commutes commutes since

∂2w

∂s∂t
=
∂2w

∂t∂s

and

Γw
(
∂ q

∂s
,
∂ q

∂t

)
= Γw

(
∂ q

∂t
,
∂ q

∂s

)
.

We can also show that all possible product formulas for taking derivatives hold:

∂s I (∂s q, ∂t q) = I
((
∂2
s q
)I
, ∂t q

)
+ I
(
∂s q, (∂s∂t q)

I
)
,

∂s I (∂t q, ∂t q) = 2 I
(
∂t q, (∂s∂t q)

I
)
,

∂s I (∂s q, ∂s q) = 2 I
((
∂2
s q
)I
, ∂s q

)
,

∂t I (∂s q, ∂t q) = I
(

(∂t∂s q)
I
, ∂t q

)
+ I
(
∂s q,

(
∂2
t q
)I)

,

∂t I (∂s q, ∂s q) = 2 I
(
∂s q, (∂t∂s q)

I
)
,

∂t I (∂t q, ∂t q) = 2 I
(
∂t q,

(
∂2
t q
)I)

.

The proofs are all similar so we concentrate on the first. The essential idea is that
we have the product formula

∂sgij = Γsij + Γsji

directly from the abstract definition of the Christoffel symbols as in section 6.1.
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∂s I (∂s q, ∂t q)

= ∂s
(
gij∂s qi ∂t qj

)
= ∂s (gij) ∂s qi ∂t qj +gij∂

2
s qi ∂t qj +gij∂s qi ∂s∂t qj

= (∂kgij) ∂s qk ∂s qi ∂t qj +gij∂
2
s qi ∂t qj +gij∂s qi ∂s∂t qj

= (Γkij + Γkji) ∂s qk ∂s qi ∂t qj +gij∂
2
s qi ∂t qj +gij∂s qi ∂s∂t qj

= Γkij∂s qk ∂s qi ∂t qj +gij∂
2
s qi ∂t qj

+∂s qi Γkji∂s qk ∂t qj +gij∂s qi ∂s∂t qj

= gljΓ
l
ki∂s qk ∂s qi ∂t qj +gij∂

2
s qi ∂t qj

+gil∂s qi Γlkj∂s qk ∂t qj +gij∂s qi ∂s∂t qj

= gijΓ
i
kl∂s qk ∂s ql ∂t qj +gij∂

2
s qi ∂t qj

+gij∂s qi Γjkl∂s qk ∂t ql +gij∂s qi ∂s∂t qj

= gij
(
Γi (∂s q, ∂s q) + ∂2

s qi
)
∂t qj

+gij∂s qi
(

Γjkl∂s qk ∂t ql +∂s∂t qj
)

= I
((
∂2
s q
)I
, ∂t q

)
+ I
(
∂s q, (∂s∂t q)

I
)
.

Finally we should also justify why these second partial derivatives do not de-
pend on the initial (u, v)-parametrization. This could be done via a notationally
nasty change of parameters or by a more general formula that doesn’t depend a
parametrization. This general formula, however, also has a defect in that it involves
a new variable r so that w = w (r, s, t):

2 I
(

(∂s∂t q)
I
, ∂r q

)
= ∂s I (∂t q, ∂r q) + ∂t I (∂s q, ∂r q)− ∂r I (∂s q, ∂t q) .

Here the right hand side can be calculated independently of a (u, v)-parametrization.
Since we can think of the r-variable as being anything we please, this implicitly cal-
culates (∂s∂t q)

I. The proof of this identity comes from from using the product
rule on each on the terms on the right hand side and using that the intrinsic mixed
partials commute:

∂s I (∂t q, ∂r q) + ∂t I (∂s q, ∂r q)− ∂r I (∂s q, ∂t q)

= I
(

(∂s∂t q)
I
, ∂r q

)
+ I
(
∂t q, (∂s∂r q)

I
)

+ I
(

(∂t∂s q)
I
, ∂r q

)
+ I
(
∂s q, (∂t∂r q)

I
)

−
(

I
(

(∂r∂s q)
I
, ∂t q

)
+ I
(
∂s q, (∂r∂t q)

I
))

= 2 I
(

(∂s∂t q)
I
, ∂r q

)
.

Proposition 7.2.1. Let q (t) be a curve on a surface M . q has constant speed
if and only if its intrinsic acceleration is perpendicular to the speed.

Proof. The proof is now a simple calculation using the product rule for in-
trinsic second derivatives:

d

dt
I (q̇, q̇) = 2 I

(
q̈I, q̇

)
.
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Exercises
(1) Consider a curve q (t) = q (u (t) , v (t)) on an abstract parameterized surface.

(a) Show that q (t) is a geodesic if and only if

d

dt
I (q̇, ∂u) = I

(
q̇,
d

dt
∂u

)
,

d

dt
I (q̇, ∂v) = I

(
q̇,
d

dt
∂v

)
.

(b) Show that q (t) is a geodesic if and only if

d

dt
(guuu̇+ guv v̇) =

1

2

(
∂uguuu̇

2 + 2∂uguvu̇v̇ + ∂ugvv v̇
2
)
,

d

dt
(gvuu̇+ gvv v̇) =

1

2

(
∂vguuu̇

2 + 2∂vguvu̇v̇ + ∂vgvv v̇
2
)
.

These formulas are often quite convenient as they do not explicitly involve
Christoffel symbols.

(2) A Liouville surface has a first fundamental form where

guu = gvv = U − V and guv = 0

and U is a function of u and V a function of v. Consider a unit speed geodesic
q (t) on such as surface and let θ (t) be the angle the geodesic forms with the
u-curves.
(a) Show that if we write q̇ = u̇∂ q

∂u + v̇ ∂ q
∂v , then

u̇2 =
cos2 θ

U − V
and v̇2 =

sin2 θ

U − V
.

(b) Show that q (t) satisfies

d

dt
((U − V ) u̇) =

1

2
∂uU

(
u̇2 + v̇2

)
,

d

dt
((U − V ) v̇) = −1

2
∂vV

(
u̇2 + v̇2

)
.

(c) Show that
d

dt

(
V u̇2 + Uv̇2

u̇2 + v̇2

)
= 0.

(d) Conclude that U sin2 θ + V cos2 θ is constant along geodesics.
(3) Consider two Liouville surfaces

guu = U − V = gvv and guv = 0

and

g′uu =

(
1

V
− 1

U

)
1

U
, g′vv =

(
1

V
− 1

U

)
1

V
, g′uv = 0,

where U is a function of u and V a function of v. Show that the equations of
the geodesics on these two surfaces, in the sense of section 7.1 exercise 10, are
the same.
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(4) Consider an abstract surface with first fundamental form I and the conformally
related first fundamental form e2f I for some function f . Show that

(∂s∂t q)
e2f I

= (∂s∂t q)
I

+ ∂s q df (∂t q) + ∂t q df (∂s q)− I (∂t q, ∂s q)∇f.
Here ∇f = gij∂if∂j and df (X) = ∂ifX

i.
(5) Use the previous exercise to show that if all geodesics for I can be reparametrized

to also be geodesics for e2f I, then f is constant.

7.3. Shortest Curves

The goal is to show that the shortest curves are geodesics.
In the last section we considered variations q (s, t) = q (u (s, t) , v (s, t)) where

(s, t) ∈ (−ε, ε)× [a, b]. The variational field of q (t) = q (0, t) is given by the tangent
vectors V (t) = ∂ q

∂s (0, t) along the curve. The first proposition shows that any such
field V (t) ∈ Tq(t)M comes from a variation.

Proposition 7.3.1. For any curve q (t), t ∈ [a, b] and tangent field V (t) ∈
Tq(t)M , there is a variation whose variational field is V (t).

Proof. For each V (t) let s 7→ q (s, t) be the unique geodesic with q (0, t) =

q (t) and ∂ q
∂s (0, t) = V (t). The fact that [a, b] is compact shows that we can find

ε > 0 so that q (s, t) is defined on (−ε, ε)× [a, b].
The fact that the geodesics depend smoothly on the initial values shows that

the variation is a smooth as q (t) and V (t). In particular, if q (t) is only piecewise
smooth, then the variation will also consist of piecewise smooth curves that break
at exactly the same points. �

Definition 7.3.2. The length of a curve is defined as

L (q) =

∫ b

a

|q̇| dt

and the (kinetic) energy as

E (q) =
1

2

∫ b

a

|q̇|2 dt.

We know that the length of a curve does not change if we parametrize it. This
is very far from true for the energy. You might even have noticed this yourself in
terms of gas consumption when driving. Stop and go city driving consumes far
more gas, than the more steady driving on an empty stretch of road on the country
side. On the other hand this feature of the energy has the advantage that minima
or stationary points for the energy functional come with a fixed parametrization.

Lemma 7.3.3 (First Variation Formula). Consider a smooth variation q (s, t),
(s, t) ∈ (−ε, ε)× [0, 1], with base curve q (t) = q (0, t), then

d

ds

1

2

∫ 1

0

I (q̇, q̇) dt = I (∂s q, ∂t q)|10 −
∫ 1

0

I
(
∂s q, q̈I

)
dt.

If 0 = a0 < a1 < · · · < an = 1 and the variation is smooth when restricted to
(−ε, ε)× [ai−1, ai], then

d

ds

1

2

∫ 1

0

I (q̇, q̇) dt =

n∑
i=1

I (∂s q, ∂t q)|aiai−1
−
∫ 1

0

I
(
∂s q, q̈I

)
dt.
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Proof. The calculation is straightforward in the smooth case:

d

ds

1

2

∫ 1

0

I (q̇, q̇) dt =

∫ 1

0

I
(

(∂s∂t q)
I
, ∂t q

)
dt

=

∫ 1

0

(
∂t I (∂s q, ∂t q)− I

(
∂s q,

(
∂2
t q
)I))

dt

= I (∂s q, ∂t q)|10 −
∫ 1

0

I
(
∂s q,

(
∂2
t q
)I)

dt

= I (∂s q, ∂t q)|10 −
∫ 1

0

I
(
∂s q, q̈I

)
dt.

When the variation is only piecewise smooth, then we can break it up into
smooth parts and add the contributions. �

We define Ωp,q as the space of piecewise smooth curves between points p, q ∈M
parametrized on [0, 1].

Theorem 7.3.4. If a piecewise curve on a surface is stationary for the energy
functional on Ωp,q, then it is a geodesic.

Proof. We consider a piecewise smooth variation q (s, t) where the base curve
q (t) = q (0, t) corresponds to s = 0. For simplicity assume that there is only one
break point at a. Computing the energy of the curves t→ q (s, t) gives a function
of s. The derivative with respect to s can be calculated as

d

ds

1

2

∫ 1

0

I (q̇, q̇) dt = I (∂s q, ∂t q)|a0 + I (∂s q, ∂t q)|1a −
∫ 1

0

I
(
∂s q, q̈I

)
dt.

When all the curves lie in Ωp,q they have the same end points at t = 0, 1, i.e.,
q (s, 0) = p and q (s, 1) = q for all s. Such a variation is also called a proper
variation. Thus, ∂ q

∂s (0, t) = 0 at t = 0, 1 and the formula simplifies to

d

ds

1

2

∫ 1

0

I (q̇, q̇) dt = I

(
∂s q (a) ,

∂ q

∂t−
(a)− ∂ q

∂t+
(a)

)
−
∫ 1

0

I
(
∂s q, q̈I

)
dt.

By assumption s = 0 is a stationary point for 1
2

∫ 1

0
I (q̇, q̇) dt so

0 = I

(
∂s q (a) ,

∂ q

∂t−
(a)− ∂ q

∂t+
(a)

)
−
∫ 1

0

I
(
∂s q, q̈I

)
dt.

First select the variation so that ∂s q (0, t) is proportional to the tangential
acceleration q̈I, i.e., ∂s q (0, t) = µ (t) q̈I, where µ (a) = 0. Then we obtain

0 = −
∫ 1

0

µ (t)
∣∣q̈I
∣∣2 dt.

Since µ can be chosen to be positive on (0, a) ∪ (a, 1) this shows that q̈I = 0 on
(0, a) ∪ (a, 1). This shows that each of the two parts of q (t) on [0, a] and [a, 1] are
geodesics.

Next select a variation where

∂s q (0, a) =
∂ q

∂t−
(a)− ∂ q

∂t+
(a) .
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In this case

0 = I

(
∂s q (a) ,

∂ q

∂t−
(a)− ∂ q

∂t+
(a)

)
= I

(
∂ q

∂t−
(a)− ∂ q

∂t+
(a) ,

∂ q

∂t−
(a)− ∂ q

∂t+
(a)

)
so it follows that

∂ q

∂t−
(a) =

∂ q

∂t+
(a) .

Uniqueness of geodesics, then shows that the two parts of q (t) fit together to form
a smooth geodesic on [0, 1].

Finally any curve of minimal energy is necessarily stationary since the derivative
always vanishes at a minimum for a function. �

Now that we have identified the minima for the energy functional we show that
they are also minima for the length functional.

Lemma 7.3.5. A minimizing curve for the energy functional is also a minimiz-
ing curve for the length functional.

Proof. We start by observing that the Cauchy-Schwarz inequality for the
inner product of functions defined by

(f, g) =

∫ b

a

f (t) g (t) dt

implies that:

∫ b

a

|q̇| dt ≤

√∫ b

a

12dt

√∫ b

a

|q̇|2 dt =
√
b− a

√∫ b

a

|q̇|2 dt,

where equality occurs if |q̇| is constant multiple of 1, i.e., q has constant speed.
When the right hand side is minimized we just saw that q has zero acceleration
and consequently constant speed. Let qmin be a minimum for the energy in Ωp,q
and q any other curve in Ωp,q. We further assume that q has constant speed as
reparametrizing the curve won’t change its length. We now have∫ 1

0

|q̇min| dt ≤

√∫ 1

0

|q̇min|
2
dt

≤

√∫ 1

0

|q̇|2 dt

=

∫ 1

0

|q̇| dt

which shows the claim. �

Corollary 7.3.6. If a piecewise smooth curve has constant speed and is a
minimizer for the length functional, then it is a minimum for the energy and a
geodesic.
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Proof. If qmin is a constant speed minimum for the length functional and
q ∈ Ωp,q, then ∫ 1

0

|q̇min|
2
dt =

(∫ 1

0

|q̇min| dt
)2

≤
(∫ 1

0

|q̇| dt
)2

≤
∫ 1

0

|q̇|2 dt.

This shows that qmin also minimizes the energy functional and by theorem 7.3.4
that it must be a geodesic. �

Remark 7.3.7. Note that minima for the length functional are not forced to
be geodesics unless they are assumed to have constant speed!

Exercises
(1) Consider the curves q (t) =

(
at cos (θ) , bt sin (θ) , t2

)
on z = x2

a2 + y2

b2 , a, b > 0.
(a) Show that this is a geodesic only when θ = 0, π2 , π,

3π
2 .

(b) Assume a < b and t ∈ [0, d] show that∫ d

0

√
a2 + 4t2dt ≤ L (q) ≤

∫ d

0

√
b2 + 4t2dt

with the lower bound holding for θ = 0, π and the upper bound for θ =
π
2 ,

3π
2 .

(2) Consider the curves q (t) = (a cos (t) cos (θ) , b cos (t) sin (θ) , c sin (t)) on 1 =
x2

a2 + y2

b2 + z2

c2 , a, b, c > 0.
(a) Show that this is a geodesic only when θ = 0, π2 , π,

3π
2 .

(b) Assume a < b < c and t ∈ [0, d] show that∫ d

0

√
a2 + (c2 − a2) cos2 tdt ≤ L (q) ≤

∫ d

0

√
b2 + (c2 − b2) cos2 tdt

with the lower bound holding for θ = 0, π and the upper bound for θ =
π
2 ,

3π
2 .

7.4. Short Geodesics

We start by introducing geodesic coordinates along a curve. We then proceed
to do the same construction around a point. This construction is similar but com-
plicated by the fact that our base curve is a fixed point. In Euclidean space this
corresponds to the singularity at the origin when switching from Cartesian to polar
coordinates.

Proposition 7.4.1. Every surface admits geodesic coordinates around every
point.

Proof. Start by choosing a unit speed curve q (v), v ∈ [a, b] such that the
specified point q = q (v0) for some v0 ∈ (a, b). Next select a consistent choice
of unit normal vector S (v) to this curve inside the surface as a variational field.
Then let u 7→ q (u, v) be the unique unit speed geodesic with q (0, v) = q (v) and
∂u q (0, v) = S (v) to obtain a variation on (−ε, ε)× [a, b].
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Since u 7→ q (u, v) is unit speed we have I (∂u q, ∂u q) = 1. Next consider the
inner product I (∂u q, ∂v q). Since ∂u q (0, v) = S (v) is perpendicular to ∂v q (0, v) =
∂v q (v) this inner product vanishes for all parameters (0, v). If we differentiate the
inner product with respect to u and use the product rule twice we obtain

∂u I (∂u q, ∂v q) = I
((
∂2
u q
)I
, ∂v q

)
+ I
(
∂u q, (∂u∂v q)

I
)

= I
(
∂u q, (∂u∂v q)

I
)

= I
(
∂u q, (∂v∂u q)

I
)

=
1

2

(
I
(
∂u q, (∂v∂u q)

I
)

+ I
(

(∂v∂u q)
I
, ∂u q

))
=

1

2
(∂v I (∂u q, ∂u q))

=
1

2
(∂v1)

= 0.

This shows that I (∂u q, ∂v q) is constant along u-curves and vanishes at u = 0.
Thus it vanishes everywhere.

Finally define gvv = I (∂v q, ∂v q). It now just remains to note that gvv (0, v) = 1
and gvv (u, v) is continuous. Thus we can, after possibly decreasing ε, assume
that gvv > 0 on all of the region (−ε, ε) × [a, b]. This shows that the velocity
fields ∂u q and ∂v q never vanish and are always orthogonal. Thus they give the
desired parametrization. We can then further restrict the domain around (0, v0)
if we wish to obtain a coordinate system where the parametrization is a local
diffeomorphism. �

We now fix a point p ∈ M . For a tangent vector X ∈ TpM , let qX be the
unique geodesic with q (0) = p and q̇(0) = X, and [0, bX) the non-negative part
of the maximal interval on which q is defined. Notice that uniqueness of geodesics
implies the homogeneity property : qαX(t) = qX(αt) for all α > 0 and t < bαX . In
particular, bαX = α−1bX . Let Op ⊂ TpM be the set of vectors X such that 1 < bX .
In other words qX(t) is defined on [0, 1].

Definition 7.4.2. The exponential map at p, expp : Op →M , is defined by

expp(X) = qX(1).

The homogeneity property qX(t) = qtX(1) shows that expp (tX) = qX (t).
Therefore, it is natural to think of expp(X) in a polar coordinate representation,
where from p one goes “distance” |X| in the direction of X

|X| . This gives the point
expp(X), since q X

|X|
(|X|) = qX(1).

It is an important property that expp is in fact a local diffeomorphism around
0 ∈ TpM .

Proposition 7.4.3. For each p ∈M there exists ε > 0 so that B (0, ε) ⊂ Op ⊂
TpM and the differential D expp is nonsingular at the origin. Consequently, expp
is a local diffeomorphism.

Proof. By theorem A.5.1 there exists ε > 0 such that qX(t) is defined on [0, 2ε)
for all unit vectors X ∈ TpM . The homogeneity property shows that B (0, ε) ⊂ Op.
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That the differential is non-singular also follows from the homogeneity property of
geodesics. For a fixed vector X ∈ TpM we just saw that

expp (tX) = qX (t)

and thus (
D expp

)
(X) =

d

dt
|t=0 expp (tX)

= q̇X (0)

= X.

This shows that the differential is the identity map and in particular non-singular.
The second statement follows from the inverse function theorem. �

We can now introduce Gauss’s version of geodesic polar coordinates.

Lemma 7.4.4 (Gauss Lemma). Around any point p ∈M it is possible to intro-
duce polar geodesic coordinate parameters q (r, θ) where the r-parameter curves are
the unit speed geodesics emanating from p and

[I] =

[
1 0
0 gθθ

]
.

Proof. Pick ε > 0 such that expp : B(0, ε) → B = expp (B(0, ε)) is a diffeo-
morphism. Then r(q) = | exp−1

p (q)| is well-defined for all q ∈ B. Note that r is
simply the Euclidean distance function from the origin on B(0, ε) ⊂ TpM in expo-
nential coordinates. This function can be continuously extended to B̄ by defining
r (∂B) = ε. Select an orthonormal basis E1, E2 for TpM and introduce Cartesian
coordinates (x, y) on TpM . These parameters are then also used on B via the
exponential map q (x, y) = expp (xE1 + yE2). We define the polar coordinates by

x = r cos θ, y = r sin θ

and note that

r =
√
x2 + y2,

∂r q =
x

r
∂x q +

y

r
∂y q,

∂θ q = −y∂x q +x∂y q .

Observe that ∂r q is not defined at p, while ∂θ q is defined on all of B even though
the angle θ is not. We now need to check what the first fundamental form looks
like in polar coordinates. First note that the r-parameter curves by definition
have velocity ∂r q. On the other hand via the exponential map they correspond
to unit speed radial lines rX, where |X| = 1. This means that they are of the
form expp (rX) = qX (r) and are unit speed geodesics. This shows that grr =
I (∂r q, ∂r q) = 1. To show that grθ = 0 we first calculate its derivative

∂r I (∂r q, ∂θ q) = I
((
∂2
r q
)I
, ∂θ q

)
+ I
(
∂r q, (∂r∂θ q)

I
)

= 0 + I
(
∂r q, (∂θ∂r q)

I
)

=
1

2
∂θ I (∂r q, ∂r q)

= 0.
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Thus I (∂r q, ∂θ q) is constant along geodesics emanating from p. To show that it
vanishes it is tempting to simply evaluate at p since ∂θ q vanishes there. However,
∂r q is undefined so we use a limit argument. First observe that

|I (∂r q, ∂θ q)| ≤ |∂r q| |∂θ q|
= |∂θ q|
≤ |x| |∂y q|+ |y| |∂x q|
≤ r (|∂x q|+ |∂y q|) .

Continuity of D expp shows that ∂x q, ∂y q are bounded near p. Thus I (∂r q, ∂θ q)→
0 as r → 0. This forces I (∂r q, ∂θ q) = 0.

Finally we can just define gθθ = I (∂θ q, ∂θ q) and note that it is positive as ∂θ q
only vanishes at p. �

Theorem 7.4.5. Let M be a surface, p ∈M, and ε > 0 chosen such that

expp : B (0, ε)→ B ⊂M

is a diffeomorphism onto its image B ⊂ M . It follows that the geodesic qX (t) =
expp(tX), t ∈ [0, 1] is the one and only minimal geodesic in M from p to q =
exppX.

Proof. The proof is analogous to the specific situation on the round sphere
covered in example 1.2.12.

To see that qX (t) is the one and only shortest curve in M , we must show
that any other curve from p to q has length > |X|. Suppose we have a curve
q : [0, b] → M from p to q. If a ∈ [0, b] is the largest value so that q (a) = p, then
q |[a,b] is a shorter curve from p to q. Next let b0 ∈ (a, b) be the first value for which
q(t0) /∈ B if such points exist, otherwise b0 = b. The curve q |(a,b0) now lies entirely
in B−{p} and is shorter than the original curve. Its length is easily estimated from
below

L
(
q |(a,b0)

)
=

∫ b0

a

|q̇| dt

=

∫ b0

a

|∂r q| · |q̇| dt

≥
∫ b0

a

I (∂r q, q̇) dt

=

∫ b0

a

I

(
∂r q,

dr (q (t))

dt
∂r q +

dθ (q (t))

dt
∂θ q

)
dt

=

∫ b0

a

dr (q (t))

dt
dt

= r (q (b0))− r (q (a))

= r (q (b0)) ,

where we used that r(p) = 0. If q (b0) ∈ ∂B, then q is not a segment from p to q as
it has length ≥ ε > |X|. If b = b0, then L

(
q |(a,b)

)
≥ r (q (b)) = |X| and equality

can only hold if q̇ (t) is proportional to ∂r q for all t ∈ (a, b]. This shows the short
geodesic is a minimal geodesic and that any other curve of the same length must
be a reparametrization of this short geodesic. �
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7.5. Distance and Completeness

Definition 7.5.1. The distance between two points in a surface M is defined
by attempting to minimize the length of curves between the points:

|pq| = inf {L (q) | q ∈ Ωpq} .

This distance satisfies the usual properties of a distance:
(1) |pq| > 0 unless p = q,
(2) |pq| = |qp|,
(3) |pq| ≤ |px|+ |xq|.

2 and 3 are also immediate from the definition. It is also clear that |pq| ≥ 0. Finally,
if |pq| = 0, then q ∈ B = expp (B (0, ε)) as in theorem 7.4.5. In this case |pq| is a
minimum realized by the short geodesic in B joining p and q. Thus p = q.

Definition 7.5.2. We define the open ball, closed ball and distance sphere
around a point p ∈M as:

B (p, r) = {x ∈M | |px| < r} ,
B̄ (p, r) = {x ∈M | |px| ≤ r} ,
S (p, r) = {x ∈M | |px| = r} .

The next corollary is almost an immediate consequence of theorem 7.4.5 and
its proof now that we have introduced the concept of distance.

Corollary 7.5.3. If p ∈ M and ε > 0 is such that expp : B (0, ε) → B is
defined and a diffeomorphism, then for each δ ≤ ε,

expp(B(0, δ)) = B(p, δ),

and for each δ < ε
expp(B̄(0, δ)) = B̄(p, δ).

In particular, it follows that pi → p if and only if |ppi| → 0.

Proof. We first have to show that B (p, ε) = B.We already have B ⊂ B (p, ε) .
Conversely if q ∈ B (p, ε), then it is joined to p by a curve q (t) ∈ Ωpq of length < ε.
The proof of theorem 7.4.5 now shows that any curve starting at p that leaves B
has length ≥ ε. This means that q (t) lies in O and q ∈ O. This argument can now
be repeated for each δ < ε. This in turn also shows that expp(B̄(0, δ)) = B̄(p, δ)
when δ < ε.

Finally, note that by our definition of convergence any sequence pi that con-
verges to p eventually must lie within the exponential parametrization of B (p, δ).
The same clearly also holds if |ppi| → 0. Since this is true for all δ > 0 the claim
follows. �

We are now ready to connect the concept of geodesic completeness with the
existence of shortest curves on a larger scale.

Theorem 7.5.4. (Hopf-Rinow, 1931) If a surface M is geodesically complete
at p, then any point q ∈M is joined to p by a minimal geodesic of length |pq|.

Proof. Consider p, q and choose ε > 0 such that any point in B̄ (p, ε) can be
joined to p by a unique minimal geodesic (see corollary 7.5.3). This shows that
B̄ (p, ε) is homeomorphic to a disc with boundary S (p, ε). In particular S (p, ε)
is compact. This shows that there exists a q0 ∈ S (p, ε) closest to q. For this



7.5. DISTANCE AND COMPLETENESS 212

q0 we claim that |pq0| + |q0q| = |pq|. Otherwise there would be a unit speed
curve γ ∈ Ωp,q with L(γ) < |pq0| + |q0q|. Choose t so that γ (t) ∈ S (p, ε). Since
t + |γ (t) q| ≤ L(γ) < |pq0| + |q0q| it follows that |γ (t) q| < |q0q| contradicting the
choice of q0. Now let q (t) be the unit speed geodesic with q (0) = p, q (ε) = q0, and

A = {t ∈ [0, |pq|] | |pq| = t+ |q (t) q|} .

Clearly 0 ∈ A. Also ε ∈ A since q (ε) = q0. Note that if t ∈ A, then

|pq| = t+ |q (t) q| ≥ |p q (t)|+ |q (t) q| ≥ |pq| ,

which implies that t = |p q (t)|. We first claim that if t0 ∈ A, then [0, t0] ⊂ A. Let
t < t0 and note that

|pq| ≤ |p q (t)|+ |q (t) q|
≤ |p q (t)|+ |q (t) q (t0)|+ |q (t0) q|
≤ t+ t0 − t+ |q (t0) q|
≤ t0 + |q (t0) q|
= |pq| .

This implies that |p q (t)| + |q (t) q| = |pq| and t = |p q (t)|, showing together that
t ∈ A.

Since t 7→ |q (t) q| is continuous it follows that A is closed.
Finally if t0 ∈ A, then t0 + δ ∈ A for sufficiently small δ > 0. Select δ > 0 so

that any point in B̄ (q (t0) , δ) can be joined to q (t0) by a minimal geodesic. Then
select q1 ∈ S (q (t0) , δ) closest to q. We now have

|pq| = t0 + |q (t0) q|
= t0 + |q (t0) q1|+ |q1q|
= t0 + δ + |q1q|
≥ |pq1|+ |q1q|
≥ |pq| .

It follows that |pq1| = t0 + δ from which we conclude that the piecewise smooth
geodesic that goes from p to q (t0) and then from q (t0) to q1 has length |pq1|.
Consequently it is a smooth geodesic and q1 = q (t0 + δ). It then follows from
|pq| = t0 + δ + |q1q| that q (t0 + δ) ∈ A. �

This in turns shows that several different completeness criteria are all equiva-
lent.

Theorem 7.5.5. (Hopf-Rinow, 1931) The following statements are equivalent
for a surface M :

(1) M is geodesically complete, i.e., all geodesics are defined for all time.
(2) M is geodesically complete at p, i.e., all geodesics through p are defined

for all time.
(3) M satisfies the Heine-Borel property, i.e., every closed bounded set is com-

pact.
(4) M is metrically complete.

Proof. (1)⇒(2) is trivial. (3)⇒(4) follows from the fact that Cauchy se-
quences are bounded.
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For (4)⇒(1): If we have a unit speed geodesic q : [0, b)→M , then |q (t) q (s)| ≤
|t− s|. So if b <∞, it follows that |q (t) q (s)| → 0 as t, s→ b. This shows that q (t)
is a Cauchy sequence as t→ b and by (4) must converge to a point p. In particular,
q (t) lies in a compact set B̄ (p, δ) as t → b. The derivative is also bounded, so it
follows from theorem A.5.1 that starting at any time t0 where q (t0) ∈ B̄ (p, δ) the
geodesic exists on an interval (−ε+ t0, t0 + ε) where ε is independent of t0. When
t0 + ε > b we’ll have found an extension of the geodesic. This shows that the any
geodesic must be defined on [0,∞).

Finally the traditionally difficult part (2)⇒(3) is an easy consequence of the-
orem 7.5.4. We show that expp

(
B̄ (0, r)

)
= B̄ (p, r) for all r > 0. It is clear

that any point in expp
(
B̄ (0, r)

)
is joined to p by a geodesic of length ≤ r. Thus

expp
(
B̄ (0, r)

)
⊂ B̄ (p, r). Conversely we just proved in theorem 7.5.4 that any

point in B̄ (p, r) is joined to p by a geodesic of length ≤ r. But any such geodesic
is of the form qX (t) with qX (0) = p, t ∈ [0, 1], and |X| ≤ r. This shows that
qX (1) ∈ expp

(
B̄ (0, r)

)
. We now have that all of the closed balls B̄ (p, r) are com-

pact as they are the image of a closed ball in R2. Since any bounded subset of M
lies in such a ball B̄ (p, r) the Heine-Borel property follows. �

Exercises
(1) Show that hyperbolic space H (see 6.1.2) is complete.
(2) Show that generalized cones and tangent developables are never complete.
(3) Consider a generalized cylinder q (s, t) = c (t)+sX, t ∈ I, where c is parametrized

by arclength.
(a) Show that the surface is complete if c is closed.
(b) Show that the surface is complete if I = R.
(c) Show the surface is not complete if I 6= R and c is not closed.

(4) Give an example of an abstract surface (i.e., first fundamental form) defined
on all of R2 that is not complete.

7.6. Isometries

So far we’ve mostly discussed how quantities remain invariant if we change pa-
rameters at a given point. Here we shall exploit more systematically what isometries
can do to help us find and calculate geometric invariants. Recall that an isometry is
simply a map that preserves the first fundamental forms. Thus isometries preserve
all intrinsic notions. Isometries are also often referred to as symmetries, especially
when they are maps from a surface to it self.

Corollary 7.6.1. An isometry maps geodesics to geodesics, preserves Gauss
curvature, and preserves the length of curves.

Proof. Let q (t) be a geodesic and F an isometry. The geodesic equation
depends only on the first fundamental form. By definition isometries preserve the
first fundamental form, thus F (q (t)) must also be a geodesic.

Next assume that F is an isometry such that F (p) = q. Again F preserves the
first fundamental form so the Gauss curvatures must again be the same.
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Finally when q (t) is a curve we have

L (F ◦ q) =

∫ b

a

∣∣∣∣ ddt (F (q (t)))

∣∣∣∣ dt
=

∫ b

a

|DF (q̇ (t))| dt

=

∫ b

a

|q̇ (t)| dt

= L (q) .

�

Corollary 7.6.2. An isometry is distance decreasing. Moreover, if it is a
bijection then it is distance preserving.

Proof. Since isometries preserve length of curves it is clear from the defini-
tion of distance that they are distance decreasing. In case F is also a bijection it
follows that F−1 exists and is also an isometry. Thus both F and F−1 are distance
decreasing. This shows that they are distance preserving. �

Basic examples of isometries are rotations around the z axis for surfaces of
revolution around the z axis, or mirror symmetries in meridians on a surface of
revolution. The sphere has an even larger number of isometries as it is a surface of
revolution around any line through the origin. The plane also has rotational and
mirror symmetries, but in addition translations.

It is possible to construct isometries that do not preserve the second fundamen-
tal form. The simplest example is to imagine a flat tarp or blanket, here all points
have vanishing second fundamental form and also there are isometries between all
points. Now lift one side of the tarp. Part of it will still be flat on the ground,
while the part that’s lifted off the ground is curved. The first fundamental form
has not changed but the curved part will now have nonzero entries in the second
fundamental form.

It is not always possible to directly determine all isometries. But as with
geodesics there are some uniqueness results that will help.

Theorem 7.6.3. If F and G are isometries that satisfy F (p) = G (p) and
DF (p) = DG (p), then F = G in a neighborhood of p.

Proof. We just saw that isometries preserve geodesics. So if q (t) is a geodesic
with q (0) = p, then F (q (t)) and G (q (t)) are both geodesics. Moreover they have
the same initial values

F (q (0)) = F (p) ,

G (q (0)) = G (p) ,

d

dt
F (q (t)) |t=0 = DF (q̇ (0)) ,

d

dt
G (q (t)) |t=0 = DG (q̇ (0)) .

This means that F (q (t)) = G (q (t)) . By varying the initial velocity of q̇ (0) we can
reach all points in a neighborhood of p. �
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Often the best method for finding isometries is to make educated guesses based
on what the metric looks like. One general guideline for creating isometries is
the observation that if the first fundamental form doesn’t depend on a specific
variable such as v, then translations in that variable will generate isometries. This
is exemplified by surfaces of revolution where the metric doesn’t depend on µ.
Translations in µ are the same as rotations by a fixed angle and we know that such
transformations are isometries. Note that reflections in such a parameter where v
is mapped to v0 − v will also be isometries in such a case.

Example 7.6.4. The linear orthogonal transformations O (3) of R3 preserve the
spheres centered at the origin. Moreover, with these transformations it is possible
to solve all possible initial value problems as in theorem 7.6.3. To see this last
statement we concentrate on the unit sphere. An orthonormal basis e1, e2 for
TpS

2 will give us an orthonormal basis e1, e2, p for R3. Let f1, f2, q be another
orthonormal basis, i.e., f1, f2 is an orthonormal basis for TqS2. We then have two
orthogonal matrices [

f1 f2 q
]
,
[
e1 e2 p

]
∈ O (3) .

We define O ∈ O (3) by

O =
[
f1 f2 q

] [
e1 e2 p

]−1
.

Thus[
O (e1) O (e2) O (p)

]
= O

[
e1 e2 p

]
=

[
f1 f2 q

] [
e1 e2 p

]−1 [
e1 e2 p

]
=

[
f1 f2 q

]
.

In other words O (p) = q, O (e1) = f1, and O (e2) = f2. This shows that we can
solve all initial value problems.

Example 7.6.5. The isometries of R2 are all of the form F (x) = Ox + q,
where O ∈ O (2) represents the differential O = DF (0) and q ∈ R2 the initial point
q = F (0). Theorem 7.6.3 again shows that there are no more isometries.

Example 7.6.6. The linear transformations that preserve the space-time inner
product on R2,1 are denoted O (2, 1). They are characterized by being of the form
O =

[
e1 e2 e3

]
, where (ei | ej) = 0 when i 6= j, |e1|2 = |e2|2 = 1, and

|e3|2 = −1. Note that

O

 x
y
z

 = xe1 + ye2 + ze3

and that
|xe1 + ye2 + ze3|2 = x2 + y2 − z2.

This means that these transformations preserve the two sheeted hyperboloid x2 +
y2 − z2 = −1. Any given O either preserves each of the two sheets or flips the two
sheets. The first case happens when O preserves H and the set of these transfor-
mations is denoted O+ (2, 1). We can determine when O ∈ O+ (2, 1) by checking
that the 33 entry in O is positive as that means that (0, 0, 1) is mapped to a point
in H. The key observation is that any orthonormal basis e1, e2 for TpH will give us
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an element
[
e1 e2 p

]
∈ O+ (2, 1). Consequently, we can, as in the sphere case,

create the desired transformation using

O =
[
f1 f2 q

] [
e1 e2 p

]−1
.

Here is a slightly more surprising relationship between geodesics and isometries.

Theorem 7.6.7. Let F be a nontrivial isometry and q (t) a unit speed curve
such that F (q (t)) = q (t) for all t, then q (t) is a geodesic.

Proof. Since F is an isometry and it preserves q we must also have that it
preserves its velocity and tangential acceleration

DF (q̇ (t)) = q̇ (t) ,

DF
(
q̈I (t)

)
= q̈I (t) .

As q is unit speed we have
(
q̇ | q̈I

)
= 0. If q̈I (t) 6= 0, then DF preserves q (t) as

well as the basis q̇ (t) , q̈I (t) for the tangent space at q (t) . By the uniqueness result
above this shows that F is the identity map as that map is always an isometry that
fixes any point and basis. But this contradicts that F is nontrivial. �

Note that circles in the plane are preserved by rotations, but they are not fixed,
nor are they geodesics. The picture we should have in mind for such an isometry
and geodesic is a mirror symmetry in a line, or a mirror symmetry in a great circle
on the sphere.

Exercises
(1) Show that the set of bijective isometries (or symmetries) of a surface M form

a group if they product structure is composition of isometries.
(2) Consider three distinct points p1, p2, p3 ∈ M with the property that each pair

is joined by a unique geodesic segment. Show that if an isometry fixes all three
points then it is the identity map.

(3) Consider the ellipsoid
x2

a2
+
y2

b2
+
z2

c2
= 1.

(a) Show that the eight maps (x, y, z) 7→ (±x,±y,±z) are isometries.
(b) Show that when a > b > c > 0 then these are the only isometries: Hint:

The Gauss curvature is calculated in section 5.3 exercise 27. Use that
isometries preserve both curvature as well as critical points for the curva-
ture to show that the three sets of points where two coordinates vanish are
preserved.

(4) Consider the parabolic surface z = x2

a2 + y2

b2 , a, b > 0.
(a) Show that all isometries fix the origin. Hint: Calculate the Gauss curvature.
(b) Show that the four maps (x, y) 7→ (±x,±y) are isometries.
(c) Show that when a > b, then these are the only isometries. Hint: Use that

isometries preserve both distance and curvature to show that an isometry
must preserve the curves where either x = 0 or y = 0. Specifically, on the
level set where z = R the curvature and distance to the origin is maximal
when y = 0. Moreover, when z > R the curvature is strictly smaller than
this value.
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(5) Consider a unit speed curve c (s) : [0, L] → R3 with non-vanishing curvature
and the tube of radius R around it

q (s, φ) = c (s) +R (Nc cosφ+ Bc sinφ)

(see section 4.3 exercise 7 and section 5.3 exercise 22).
(a) Show that the map (s, φ) 7→ (s,−φ) is an isometry.
(b) Assume that κ has a maximum at s0. Show that any isometry must fix

(s0, 0).

7.7. Constant Curvature

We’ve already seen many models of surfaces with constant curvature and in
some cases we explicitly showed how they could be reparametrized to be isometric.
This is no accident and can be done more abstractly. The goal will be to give a
canonical local structure for surfaces with constant Gauss curvature. This will be
done in the form of a canonical parametrization.

Theorem 7.7.1 (Gauss, 1827). If an abstract surface has vanishing Gauss
curvature, then it admits Cartesian coordinates.

Proof. We use geodesic coordinates along a unit speed geodesic as in propo-
sition 7.4.1. Thus v 7→ q (0, v) is a unit speed geodesic and all of the u-curves are
unit speed geodesics. The first fundamental form is

[I] =

[
1 0
0 gvv

]
.

Assuming K = 0, the formula for the Gauss curvature

K = −
∂2
u
√
gvv√
gvv

from example 5.3.9 shows that√
gvv (u, v) =

√
gvv (0, v) + u · (∂u

√
gvv) (0, v) .

We also have the initial condition:√
gvv (0, v) =

∣∣∣∣∂ q

∂v

∣∣∣∣ = 1.

Note that

∂ugvv = 2 I
(

(∂u∂v q)
I
, ∂v q

)
= 2 I

(
(∂v∂u q)

I
, ∂v q

)
= 2∂v I (∂u q, ∂v q)− 2 I

(
∂u q,

(
∂2
v q
)I)

= 2∂vguv − 2 I
(
∂u q,

(
∂2
v q
)I)

= −2 I
(
∂u q,

(
∂2
v q
)I)

,

which vanishes at (0, v) since v 7→ q (0, v) is a geodesic. In particular

(
√
gvv∂u

√
gvv) (0, v) = ∂u

√
gvv (0, v) = 0.

This shows that
√
gvv (u, v) = 1 and hence that we have Cartesian coordinates in

a neighborhood of a geodesic. �
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Theorem 7.7.2. (Minding, 1839) If two abstract surfaces have constant Gauss
curvature K, then they are locally isometric to each other.

Proof. It suffices to show that if a surface has constant curvature K, then it
has a parametrization around every point where the first fundamental form only
depends on K.

As before we fix a geodesic coordinate system q (u, v) where all u-curves are
unit speed geodesics and q (0, v) is a unit speed geodesic. The first fundamental
form is

[I] =

[
1 0
0 gvv

]
,

where as in the proof above: √
gvv (0, v) = 1,

(∂u
√
gvv) (0, v) = 0,

and

K = −
∂2
u
√
gvv√
gvv

.

The last equation dictates how √gvv changes along u curves and the two previous
equations are the initial values. When K = 0 we saw that √gvv = 1, otherwise√

gvv (u, v) =

{
cos
(√

Ku
)
, K > 0,

cosh
(√
−Ku

)
, K < 0.

�

Theorem 7.7.3. Any complete simply connected surface M with constant cur-
vature k is bijectively isometric to S2

k.

Proof. We know from theorem 7.7.2 that given x ∈M sufficiently small balls
B (x, r) ⊂ M are isometric to balls B (x̄, r) ⊂ S2

k. Furthermore, if q ∈ B (x, r),
q̄ ∈ S2

k, and L : TqM → Tq̄S
2
k is a linear isometry, then there is a unique bijective

isometry F : B (x, r) → B (F (x) , r) ⊂ S2
k, where F (q) = q̄ and DF |q = L. Note

that when k ≤ 0, all metric balls in S2
k are convex, while when k > 0 we need their

radius to be < π
2
√
k
for this to be true. For the remainder of the proof assume that

all metric balls are chosen to be isometric to convex balls in the space form. So for
small radii the metrics balls are either disjoint or have connected intersection.

The construction of F : M → S2
k proceeds basically in the same way one does

analytic continuation on simply connected domains. Fix base points p ∈M, p̄ ∈ S2
k

and a linear isometry L : TpM → Tp̄S
2
k. Next, let x ∈ M be an arbitrary point.

If c ∈ Ωp,x is a curve from p to x in M , then we can cover c by a string of balls
B (pi, r), i = 0, ..., k, where p = p0, x = pk, and B (pi−1, r) ∩ B (pi, r) 6= ∅. Define
F0 : B (p0, r)→ S2

k so that F (p) = p̄ and DF0|p0 = L. Then define Fi : B (pi, r)→
S2
k successively to make it agree with Fi−1 on B (pi−1, r)∩B (pi, r) (this just requires

their values and differentials agree at one point). Define a function G : Ωp,x → S2
k

by G (c) = Fk (x). We have to check that it is well-defined in the sense that it
doesn’t depend on our specific way of covering the curve. This is easily done by
selecting a different covering and then showing that the set of values in [0, 1] where
the two choices agree is both open and closed.

If c̄ ∈ Ωp,x is sufficiently close to c, then it lies inside a fixed covering of c,
but then it is clear that G (c) = G (c̄). This implies that G is locally constant. In
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particular, G has the same value on all curves in Ωp,x that are homotopic to each
other. Simple-connectivity simply means that all curves are homotopic to each
other so G is constant on Ωp,x. This means that F (x) becomes well-defined and a
Riemannian isometry.

If M is geodesically complete at a point p, then any point x ∈M lies on a unit
speed geodesic q (t) : [0,∞)→M so that q (0) = p. The map F will take this to a
unit speed geodesic from p̄. Now any point in S2

k lies on a unit speed geodesic that
starts at p̄, so this shows that F is onto.

If F (x) = F (y), then we have two unit speed geodesics emanating from p̄ that
intersect at F (x) = F (y). When k ≤ 0 this is impossible unless the geodesics
agree. Thus F is both onto and one-to-one when k ≤ 0.

In case k > 0 two unit speed geodesics in S2
k that start at p̄ can only intersect

at the antipodal point −p̄. So if we have two different unit speed geodesics q1, q2 :
[0,∞) → M with qi (0) = p. Then F ◦ qi (t) are different unit speed geodesics
emanating from p̄ that intersect when t = nπ/

√
k, n = 1, 2, 3.... In particular,

F : B (p, π/
√
k) → S2

k − {−p̄} is one-to-one and F (S (p, π/
√
k)) = {−p̄}. Then

F−1 : S2
k − {−p̄} → B (p, π/

√
k) is a well-defined isometry that maps points close

to p̄ to points that are close to S (p, π/
√
k). Since points that are close to p̄ are also

close to each other it must follow that S (p, π/
√
k) consists of a single point q. This

shows that all geodesics that start at p go through q. We can then conclude that
B̄ (p, π/

√
k) = M and that F : M → S2

k is one-to-one. �

7.8. Comparison Results

In this section we prove several classical results for surfaces where the Gauss
curvature is either bounded from below or above. Such results are often referred to
as comparison results since they are obtained by a comparison with a corresponding
constant curvature geometry.

We start by analyzing the second derivative of energy for some very specific
variations.

Lemma 7.8.1. (Jacobi, 1842) Let q (u, v) be geodesic coordinates where all u-
curves are geodesics along a unit speed geodesic q (0, v). Consider a variation:
u = su (t) and v = t, i.e., q (s, t) = q (su (t) , t), then

d2E

ds2
|s=0 =

∫ b

a

(
u̇2 −Ku2

)
dt.

Proof. We write the velocity out in coordinates
∂ q

∂t
= su̇∂u q +∂v q

and obtain
I

(
∂ q

∂t
,
∂ q

∂t

)
= s2u̇2 + gvv.

For fixed s the energy of t 7→ q (su (t) , t) is given by

E (s) =
1

2

∫ b

a

(
s2u̇2 + gvv

)
dt,

Keeping in mind that gvv = gvv (su (t) , t) the derivatives are easily calculated:

dE

ds
=

∫ b

a

(
su̇2 +

1

2
u∂ugvv

)
dt,
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d2E

ds2
=

∫ b

a

(
u̇2 +

1

2
u2∂2

ugvv

)
dt.

From example 5.3.9 we have

K = −1

2

∂2
ugvv
gvv

+
1

4

(
∂ugvv
gvv

)2

.

Since q (0, v) is a unit speed curve we have gvv (0, v) = 1. The derivative is calcu-
lated as follows

∂ugvv = 2 I
(

(∂u∂v q)
I
, ∂v q

)
= 2 I

(
(∂v∂u q)

I
, ∂v q

)
= 2∂v I (∂u q, ∂v q)− 2 I

(
∂u q,

(
∂2
v q
)I)

= 2∂vguv − 2 I
(
∂u q,

(
∂2
v q
)I)

= −2 I
(
∂u q,

(
∂2
v q
)I)

.

This vanishes when u = 0 since q (0, v) is a geodesic. The result now follows. �

Corollary 7.8.2. (Bonnet, 1855) If K ≥ R−2 > 0, then no geodesic of length
> πR is minimal.

Proof. We can assume that the geodesic doesn’t intersect itself (if it does
it is clearly not minimal) and construct geodesic coordinates where q (0, v) is the
given geodesic parametrized by arclength on [0, L]. Then select a variation as in
lemma 7.8.1 of the form u (t) = sin (tπ/L). This will yield a proper variation with
the second derivative of energy satisfying

d2E

ds2
|s=0 =

∫ L

0

(
u̇2 −Ku2

)
dt

≤
∫ L

0

((π
L

)2

cos2 (tπ/L)−R−2 sin2 (tπ/L)

)
dt

=
(π
L

)2
∫ L

0

cos2 (tπ/L) dt−R−2

∫ L

0

sin2 (tπ/L) dt

=

((π
L

)2

−R−2

)
L

2
.

This is strictly negative when L > πR showing that the geodesic is a local maximum
for the energy. Since the variation is fixed at the end points there will be nearby
curves of strictly smaller energy with the same end points. Corollary 7.3.6 then
shows that it can’t be a minimum for the length functional. �

Corollary 7.8.3. (Hopf-Rinow, 1931) If a complete surface satisfies K ≥
R−2 > 0, then all distances are ≤ πR and must in particular be a closed surface.

Theorem 7.8.4. If a closed surface has positive curvature, then any two closed
geodesics intersect.

Proof. Assume otherwise and obtain a shortest geodesic between the two
closed geodesics. This geodesic is perpendicular to both of the closed geodesics. In
particular if we let it be the q (0, v) curve in a geodesic parametrization, then the
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curves q (u, 0) and q (u, L) are our two closed geodesics. Now consider the variation
where s = u and t = v, then the second variation is given by

d2E

ds2
|s=0 =

∫ b

a

(
u̇2 −Ku2

)
dt =

∫ b

a

−Ku2dt < 0.

This shows that the curves v 7→ q (u, v) are shorter than L. As they are also curves
between the two closed geodesics this contradicts that our original curve was the
shortest such curve. �

Theorem 7.8.5. (Mangoldt, 1881, Hadamard, 1889?) A complete surface M
with K ≤ 0 admits a global parametrization q (u, v) where (u, v) ∈ R2. If on R2 we
introduce the first fundamental form from M , then we obtain a complete metric on
R2 with K ≤ 0 where all geodesics are minimal.

Proof. The parametrization is given by the exponential map. Identify a fixed
tangent space TpM with R2 via a choice of orthonormal basis E1, E2 and intro-
duce Cartesian (x, y) as well as polar coordinates (r, θ). We can use q (r, θ) =
expp (r cos θE1 + r sin θE2) as a potential parametrization on M . Even when it
isn’t a parametrization as in lemma 7.4.4 we note that it is a geodesic variation
with the radial lines as unit speed geodesics. We have the velocity fields ∂r q, ∂θ q
for the r- and θ-curves which for each (r, θ) give us tangent vectors in Tq(r,θ)M .
Since the r-curves are unit speed geodesics we have |∂r q| = 1 everywhere. We
can also show that I (∂r q, ∂θ q) = 0. First note that it vanishes at r = 0 since
∂θ q (0, θ) = 0. Next observe that I (∂r q, ∂θ q) = 0 is constant since

∂r I (∂r q, ∂θ q) = I
((
∂2
r q
)I
, ∂θ q

)
+ I
(
∂r q, (∂r∂θ q)

I
)

= I
(
∂r q, (∂θ∂r q)

I
)

=
1

2
∂θ I (∂r q, ∂r q)

= 0.

Thus I (∂r q, ∂θ q) = 0 everywhere. It follows that D expp is nonsingular at a point
(r, θ) precisely when I (∂θ q, ∂θ q) > 0 at (r, θ).

Define a first fundamental form on R2 by[
grr grθ
gθr gθθ

]
=

[
1 0
0 gθθ

]
,

where
gθθ =

∣∣D expp (−yE1 + xE2)
∣∣2 = I (∂θ q, ∂θ q) .

When D expp is nonsingular this corresponds precisely to the first fundamental
form of M in this parametrization.

By continuity expp : TpM →M is nonsingular on some open setO that contains
the origin. Let B (0, R) ⊂ O be the largest ball inside O. We claim that R = ∞
and note that if R < ∞ then the closure B̄ (0, R) cannot be contained in O. On
B (0, R) the (r, θ)-coordinates are geodesic polar coordinates with respect to[

1 0
0 gθθ

]
.
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Since they correspond to the first fundamental form on M the Gauss curvature
satisfies

0 ≥ K = −
∂2
r
√
gθθ√
gθθ

.

In particular, ∂2
r
√
gθθ ≥ 0. Consequently, √gθθ is a nonnegative convex function in

r. Moreover it vanishes at r = 0 and is positive for r ∈ (0, R). Thus it is impossible
for this function to vanish when r = R. This shows that B (0, R) ⊂ O can’t be
maximal unless R =∞.

This gives us the desired global parametrization onM with a first fundamental
form on R2 that has K ≤ 0. This will also help us establish the second part of the
result. In fact, no metric on R2 withK ≤ 0 can have geodesics that intersect at more
than one point as that would violate Gauss-Bonnet. Consider two geodesics q1 (t)
and q2 (t) with qi (0) = p. By lemma 7.4.4 they can’t intersect near p. Therefore, if
they intersect at some later point, then there will a point q 6= p closest to p where
they intersect. In this case we can after reparametrizing assume that qi (1) = q
and that when restricted to t ∈ [0, 1] there are no other intersections between the
geodesics. Now create a triangle by using p, q, and, say q1 (1/2), as vertices. This
triangle has angle sum > π as one angle is π. This however, violates the Gauss-
Bonnet theorem as the whole triangle is a simple closed curve of rotation index 2π
when oriented appropriately. Specifically, as the geodesic curvature vanishes the
Gauss-Bonnet theorem 6.4.2 tells us

0 ≥
∫

q(R)

KdA = 2π −
∑

θi,

where θi are the exterior angles at the three vertices. Since they are complementary
to the interior angles α, β, γ we have

0 ≥
∫

q(R)

KdA = 2π −
∑

θi = −π + α+ β + γ.

�

Remark 7.8.6. There are different proofs of the latter part that do not appeal
to the Gauss-Bonnet theorem.



CHAPTER 8

Riemannian Geometry

As with abstract surfaces we simply define what the dot products of the tangent
fields should be:

[I] =
[

∂ q
∂u1 · · · ∂ q

∂un

]t [ ∂ q
∂u1 · · · ∂ q

∂un

]
=

 g11 · · · g1n

...
. . .

...
gn1 · · · gnn


The notation ∂ q

∂ui = ∂i q for the tangent field that corresponds to the velocity of
the ui curves is borrowed from our view of what happens on a surface.

We have the very general formula for how vectors are expanded

V =
[
U1 · · · Un

] ([
U1 · · · Un

]t [
U1 · · · Un

])−1 [
U1 · · · Un

]t
V

=
[
U1 · · · Un

]  (U1 | U1) · · · (U1 | Un)
...

. . .
...

(Un | U1) · · · (Un | Un)


−1  (U1 | V )

...
(Un | V )


provided we know how to compute dot products of the basis vectors and dots
products of V with the basis vectors. So we will now assume that were are given
a symmetric matrix [I] = [gij ] of functions on some domain U ⊂ Rn that uses ui
as parameters. We shall further assume that this first fundamental form has non-
vanishing determinant so that we can calculate the inverse [I]

−1
=
[
gij
]
. We shall

then think of gij = I (∂i q, ∂j q) as describing the inner product of the coordinate
vector fields and q as a point on the space we are investigating. When dealing with
surfaces we also used that this defined an inner product. For the moment we will
not need this condition.

We can define the Christoffel symbols in relation to the tangent fields when we
know the dot products of those tangent fields:

Γijk =
1

2
(∂jgki + ∂igkj − ∂kgij) ,

Γkij =
∑
l

gklΓijl.

Proposition 8.0.1. The metric and Christoffel symbols are also related by

∂kgij = Γkij + Γkji

∂kg
ij = −

∑
l

gilΓjkl + gjlΓikl

223
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Proof. The first formula follows directly from the definition

Γkij + Γkji =
1

2
(∂kgij + ∂igkj − ∂jgki)

+
1

2
(∂kgji + ∂jgki − ∂igkj)

= ∂kgji.

For the second we first have to calculate the derivative of the inverse of a matrix.
Symbolically this is done as follows. If In =

[
δij
]
denotes the identity matrix then

In = [I] [I]
−1

δji = gikg
kj

so

0 = ∂sIn = (∂s [I]) [I]
−1

+ [I] ∂s [I]
−1

0 = ∂sδ
j
i =

∑
l

∂sgilg
lj +

∑
k

gik∂sg
kj

showing that

∂s [I]
−1

= − [I]
−1

(∂s [I]) [I]
−1

∂sg
kj = −

∑
i,l

gki∂sgilg
lj

We can now use the first formula to prove the second

∂kg
ij = −

∑
s,t

gis∂kgstg
tj

= −
∑
s,t

gis (Γkst + Γkts) g
tj

= −
∑
s,t

gisΓkstg
tj −

∑
s,t

gisΓktsg
tj

= −
∑
s

gisΓjks −
∑
t

Γiktg
tj

= −
∑
l

gilΓjkl + gjlΓikl

�

While we have not yet specified where q is placed we can still attempt to define
second partials intrinsically. This means that we imitate what happened for surfaces
but assume that there is no normal vector.

To start with we should have(
∂2
ij q | ∂k q

)
= Γijk

leading to

∂2
ij q =

[
∂1 q · · · ∂n q

]
[I]
−1 [ Γij1 · · · Γijn

]t
=

[
∂1 q · · · ∂n q

]  Γ1
ij
...

Γnij

 .
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Note that the symmetry of the metric and Christoffel symbols tell us that we still
have

∂2
ij q = ∂2

ji q .

This will allow us to define intrinsic acceleration and hence geodesics. It’ll also
allow us to show that the stationary curves for energy are geodesics. If in addition
the metric is positive definite, i.e., I (V, V ) > 0 unless V = 0, then we can define
the length of vectors and consider arc-length of curves. It will then also be true
that short geodesics minimize arc-length.

To define curvature we collect the Gauss formulas

∂i
[
∂1 q · · · ∂n q

]
=

[
∂1 q · · · ∂n q

]  Γ1
i1 · · · Γ1

in
...

. . .
...

Γni1 · · · Γnin


=

[
∂1 q · · · ∂n q

]
[Γi]

and form the expression

∂i [Γj ]− ∂j [Γi] + [Γi] [Γj ]− [Γj ] [Γi]

that we used to define the curvatures involved in the Gauss equations.
This time we don’t have a Gauss curvature, but we can define the Riemann

curvature as the k, l entry in this expression:

[Rij ] = ∂i [Γj ]− ∂j [Γi] + [Γi] [Γj ]− [Γj ] [Γi] ,

Rlijk = ∂iΓ
l
jk − ∂jΓlik +

[
Γli1 · · · Γlin

]  Γ1
jk
...

Γnjk

− [ Γlj1 · · · Γljn
]  Γ1

ik
...

Γnik


This expression shows how certain third order partials might not commute as this
formula indicates that

∂3
ijk q−∂3

jik q =
[
∂1 q · · · ∂n q

]  R1
ijk
...

Rnijk


But recall that since second order partials do commute we have

∂3
ijk q = ∂3

ikj q

Thus the third order partials commute if and only if the Riemann curvature
vanishes. This can be used to establish the difficult existence part of the next result.

Theorem 8.0.2. [Riemann] The Riemann curvature vanishes if and only if
there are Cartesian coordinates around any point.

Proof. The easy direction is to assume that Cartesian coordinates exist. Cer-
tainly this shows that the curvatures vanish when we use Cartesian coordinates, but
this does not guarantee that they also vanish in some arbitrary coordinate system.
For that we need to figure out how the curvature terms change when we change
coordinates. A long tedious calculation shows that if the new coordinates are called
vi and the curvature in these coordinates R̃lijk, then

R̃lijk =
∂uα

∂vi
∂uβ

∂vj
∂uγ

∂vk
∂vl

∂uδ
Rδαβγ .
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Thus we see that if the all curvatures vanish in one coordinate system, then they
vanish in all coordinate systems.

Conversely, to find Cartesian coordinates we set up a system of differential
equations

∂i q = Ui

∂i
[
U1 · · · Un

]
=

[
U1 · · · Un

]
[Γi]

whose integrability conditions are a consequence of having vanishing curvature. We
select a point u0 ∈ U in our given parametrization and assume that we are looking
for a map q : U → Rn where q (u0) = 0 and Ui (u0) = ui a suitable basis for Rn.

The integrability conditions for the first set of equations are

∂iUj = ∂jUi

which from the second set of equations imply that

[
U1 · · · Un

]  Γ1
ij
...

Γnij

 =
[
U1 · · · Un

]  Γ1
ji
...

Γnji


These conditions holds since Γkij = Γkji.

For the second set of equations the integrability conditions are given by

∂i
([

U1 · · · Un
]

[Γj ]
)

= ∂j
([

U1 · · · Un
]

[Γi]
)

which we know reduce to

∂i [Γj ] + [Γi] [Γj ] = ∂j [Γi] + [Γj ] [Γi]

These conditions hold because we assume that [Rij ] = 0.
This means that we can solve these equations on some neighborhood of u0 ∈ U

with the specified initial conditions. We then have to show that the new parametriza-
tion is Cartesian. The new parameters are given by the coordinates for q, i.e.,(

x1, ..., xn
)

=
(
q1, ..., qn

)
= q

(
u1, ..., un

)
Thus

∂j qk =
∂ qk

∂uj
= Ukj

and
∂ij qk = ∂iU

k
j = Ukl Γlij = ∂l q

k Γlij

The new first fundamental form is then given by

g̃kl =
∂ui

∂xk
gij
∂uj

∂xl

[g̃kl] =

[
∂ui

∂xk

]
[gij ]

[
∂uj

∂xl

]
Unfortunately we don’t know what the matrix

[
∂ui

∂xk

]
is. It is given as the inverse

of
[
∂xk

∂ui

]
which in turn is the matrix

[
U1 · · · Un

]
by our first equations. This

means that we have

g̃kl =
∂xk

∂ui
gij

∂ul

∂xj
= ∂i qk gij∂j ql
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We can now calculate the derivative of this as

∂sg̃
kl = ∂si qk gij∂j ql +∂i qk gij∂sj ql

+∂i qk ∂sg
ij∂j ql

= ∂t qk Γtsig
ij∂j ql +∂i qk gij∂t ql Γtsj

−∂i qk
(
gitΓjst + gjtΓist

)
∂j ql

= ∂t qk Γtsig
ij∂j ql−∂i qk gjtΓist∂j ql

+∂i qk gij∂t ql Γtsj − ∂i qk gitΓjst∂j ql

= 0 + 0

showing that the new metric coefficients are constant. We can then specify the basis
ui so that the new metric becomes Cartesian at u0 and hence Cartesian everywhere
since the metric coefficients are constant. �



APPENDIX A

Vector Calculus

A.1. Vector and Matrix Notation

Given a basis e, f for a two-dimensional vector space we expand vectors using
matrix multiplication

v = vee+ vff =
[
e f

] [ ve

vf

]
The matrix representation [L] for a linear map/transformation L can be found from[

L (e) L (f)
]

=
[
e f

]
[L]

=
[
e f

] [ Lee Lef
Lfe Lff

]
Next we relate matrix multiplication and the dot product in R3.We think of vectors
as being columns or 3× 1 matrices. Keeping that in mind and using transposition
of matrices we immediately obtain:

XtY = X · Y = (X | Y ) ,

Xt
[
X2 Y2

]
=

[
(X | X2) (X | Y2)

]
[
X1 Y1

]t
X =

[
(X1 | X)
(Y1 | X)

]
[
X1 Y1

]t [
X2 Y2

]
=

[
(X1 | X2) (X1 | Y2)
(Y1 | X2) (Y1 | Y2)

]
,

[
X1 Y1 Z1

]t [
X2 Y2 Z2

]
=

 (X1 | X2) (X1 | Y2) (X1 | Z2)
(Y1 | X2) (Y1 | Y2) (Y1 | Z2)
(Z1 | X2) (Z1 | Y2) (Z1 | Z2)


These formulas can be used to calculate the coefficients of a vector with respect

to a general basis. Recall first that if E1, E2 is an orthonormal basis for R2, then

X = (X | E1)E1 + (X | E2)E2

=
[
E1 E2

] [
E1 E2

]t
X

So the coefficients for X are simply the dot products with the basis vectors. More
generally we have

Theorem A.1.1. Let U, V be a basis for R2, then

X =
[
U V

] ([
U V

]t [
U V

])−1 [
U V

]t
X

=
[
U V

] ([
U V

]t [
U V

])−1
[

(U | X)
(V | X)

]
228
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Proof. First write

X =
[
U V

] [ Xu

Xv

]
The goal is to find a formula for the coefficients Xu, Xv in terms of the dot products
X · U,X · V. To that end we notice[

(U | X)
(V | X)

]
=

[
U V

]t
X

=
[
U V

]t [
U V

] [ Xu

Xv

]
Showing directly that[

Xu

Xv

]
=
([

U V
]t [

U V
])−1

[
(U | X)
(V | X)

]
and consequently

X =
[
U V

] ([
U V

]t [
U V

])−1
[

(U | X)
(V | X)

]
�

Remark A.1.2. There is a similar formula in R3 which is a bit longer. In prac-
tice we shall only need it in the case where the third basis vector is perpendicular
to the first two. Also note that if U, V are orthonormal then[

U V
]t [

U V
]

=

[
1 0
0 1

]
and we recover the standard formula for the expansion of a vector in an orthonormal
basis.

Theorem A.1.3. A real symmetric matrix, or symmetric linear operator on a
finite dimensional Euclidean space, has an orthonormal basis of eigenvectors.

Proof. First observe that if we have two eigenvectors

Av = λv, Aw = µw

where λ 6= µ, then

(λ− µ)
(
vtw

)
= (λv)

t
w − vt (µw)

= (Av)
t
w − vt (Aw)

= vtAtw − vtAw
= vtAw − vtAw
= 0

so it must follow that v ⊥ w.
This shows that the eigenspaces are all perpendicular to each other. Thus we

are reduced to showing that such matrices only have real eigenvalues. There are
many fascinating proofs of this. We give a fairly down to earth proof in the cases
that are relevant to us.

For a 2× 2 matrix

A =

[
a b
b d

]
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the characteristic polynomial is

λ2 − (a+ d)λ+ ad− b2

so the discriminant is

∆ = (a+ d)
2 − 4

(
ad− b2

)
= (a− d)

2
+ 4b2 ≥ 0

This shows that the roots must be real.
For a 3 × 3 matrix the characteristic polynomial is cubic. The intermediate

value theorem then guarantees at least one real root. If we make a change of basis
to another orthonormal basis where the first basis vector is an eigenvector then the
new matrix will still be symmetric and look like λ1 0 0

0 a b
0 b d


The characteristic polynomial then looks like

(λ− λ1)
(
λ2 − (a+ d)λ+ ad− b2

)
where we see as before that λ2 − (a+ d)λ+ ad− b2 has two real roots. �

A.2. Geometry

Here are a few geometric formulas that use vector notation:
• The length or size of a vector X is denoted:

|X| =
√

(X | X)

• The distance from X to a point P :

|X − P |
• The projection of a vector X onto another vector N :

(X | N)

|N |2
N

• The signed distance from P to a plane (or in R2 to a line) that goes
through X0 and has normal N , i.e., given by (X −X0 | N) = 0:

(P −X0 | N)

|N |
the actual distance is the absolute value of the signed distance. This
formula also works for the (signed) distance from a point to a line in R2.

• The distance from P to a line with direction N that passes through X0:∣∣∣∣∣(P −X0)− (X −X0 | N)

|N |2
N

∣∣∣∣∣ =

√
|P −X0|2 −

|(X −X0 | N)|2

|N |2

• The area of a parallelogram spanned by two vectors X,Y is√
det
([

X Y
]t [

X Y
])

• If X,Y ∈ R2 there is also a signed area given by

det
[
X Y

]
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• If X,Y ∈ R3 the area is also given by

|X × Y |

• The volume of a parallelepiped spanned by X,Y, Z is√
det
([

X Y Z
]t [

X Y Z
])

• If X,Y, Z ∈ R3 the signed volume is given by

det
[
X Y Z

]
= (X, (Y × Z))

= Xt (Y × Z)

• The

A.3. Geometry of Space-Time

We collect a few of the special features of space-time R2,1 where we use the
inner product

X · Y = XxY x +XyY y −XzY z.

A.4. Differentiation and Integration

A.4.1. Directional Derivatives. If h is a function on R3 and X = (P,Q,R)
then

DXh = P
∂h

∂x
+Q

∂h

∂y
+R

∂h

∂z

= ((∇h) | X)

= [∇h]
t
[X]

=
[

∂h
∂x

∂h
∂y

∂h
∂z

]
[X]

and for a vector field V we get

DXV =
[

∂V
∂x

∂V
∂y

∂V
∂z

]
[X] .

We can also calculate directional derivatives by selecting a curve such that ċ (0) =
X. Along the curve the chain rule says:

d (V ◦ c)
dt

=
[

∂V
∂x

∂V
∂y

∂V
∂z

] [dc
dt

]
= DċV

Thus

DXV =
d (V ◦ c)

dt
(0)

A.4.2. Chain Rules. Consider a vector function V : R3 → Rn and a curve
c : I → R3. That the curves goes in to space and the vector function is defined on
the same space is important, but that it has dimension 3 is not. Note also that the
vector function can have values in a higher or lower dimensional space.

The chain rule for calculating the derivative of the composition V ◦ c is:
d (V ◦ c)

dt
=
[

∂V
∂x

∂V
∂y

∂V
∂z

] [dc
dt

]
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There is a very convenient short cut for writing such chain rules if we keep in
mind that they simply involve matrix notation. Write

X =

 x
y
z


and

c (t) = X (t)

Then this chain rule can be written as
d (V ◦ c)

dt
=
∂V

∂X

dX

dt

were we think of
∂V

∂X
=

∂V

∂ (x, y, z)
=
[

∂V
∂x

∂V
∂y

∂V
∂z

]
and

dX

dt
=

d

dt

 x
y
z


It is also sometimes convenient to have X be a function of several variables,

say, X (u, v). In that case we obtain

∂V (X (u, v))

∂u
=
∂V

∂X

∂X

∂u

as partial derivatives are simple regular derivatives in one variable when all other
variables are fixed.

A.4.3. Local Invertibility. Mention Inverse and Implicit Function Theo-
rems. Lagrange multipliers.

A.4.4. Integration. Change of variables. Green’s, divergence, and Stokes’
thms. Use Green Thm to prove the change of variable formula, and similarly with
Stokes.

A.5. Differential Equations

The basic existence and uniqueness theorem for systems of first order equations
is contained in the following statement. The first part is standard and can be found
in most text books. The second part about the assertion of smoothness in relation
to the initial value is very important, but is somewhat trickier to establish.

Theorem A.5.1. Given a smooth function F : R× Rn → Rn the initial value
problem

d

dt
x = F (t, x) , x (0) = x0

has a solution

x (t) =

 x1 (t)
...

xn (t)


that is unique on some possibly small interval (−ε, ε). When |x0| ≤ R, we can pick
ε independently of x0. Moreover this solution is smooth in both t and the initial
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value x0. In case |F (t, x)| ≤ M + C |x| for constants M,C ≥ 1 we can choose
ε =∞.

Proof. The proof is quite long and consists of several different proof. The
existence and uniqueness is relatively standard. The long term existence is less
standard so we supply a proof below. The smoothness on initial values is also
standard but not covered in all texts (see , however, MM for a good proof).

Long term existence:.................................... �

The above result was strictly about ODEs (ordinary differential equations), but
it can be used to prove certain results about PDEs (partial differential equations)
as well.

We consider a system
∂

∂u
x = P (u, v, x)

∂

∂v
x = Q (u, v, x)

x (0, 0) = x0

where x (u, v) is now a function of two variables with values in Rn.
The standard situation from multivariable calculus is:

Theorem A.5.2. (Clairaut’s Theorem) When P = P (u, v) and Q = Q (u, v)
do not depend on x a solution to

∂

∂u
x = P (u, v)

∂

∂v
x = Q (u, v)

x (0, 0) = x0

can be found if and only if the system is exact, i.e.,
∂

∂u
Q =

∂

∂v
P.

This solution will be defined on all of R2 provided P,Q : R2 → R.

Proof. If such a solution exists, then it follows that
∂

∂u
Q =

∂2x

∂u∂v
=

∂2x

∂v∂u
=

∂

∂v
P.

Conversely start by defining x1 (u) as

x1 (u) = x0 +

∫ u

0

P (s, 0) ds.

Next define the function x (u, v) for a fixed u by

x (u, v) = x1 (u) +

∫ v

0

Q (u, t) dt.

This gives us
∂x

∂v
= Q, x (0, 0) = x0.

Thus it remains to check that
∂x

∂u
= P.
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Note however that when v = 0 we have
∂x

∂u
(u, 0) =

dx1

du
(u) = P (u, 0) .

More generally the v-derivatives satisfy
∂2x

∂v∂u
=

∂2x

∂u∂v

=
∂Q

∂u

=
∂P

∂v
.

So it follows that
∂

∂v

(
∂x

∂u
− P

)
= 0.

For fixed u this shows that
v 7→ ∂x

∂u
− P

is constant. Since
(
∂x
∂u − P

)
(u, 0) = 0 this implies that ∂x

∂u = P . �

This result can be extended to the more general situation as follows. When
computing the derivative of P (u, v, x (u, v)) with respect to v it is clearly necessary
to use the chain rule

∂

∂v
(P (u, v, x (u, v))) =

∂P

∂v
+
∂P

∂x

∂x

∂v
=
∂P

∂v
+
∂P

∂x
Q

where ∂P
∂v is the partial derivative of P keeping v and x fixed. Similarly

∂

∂u
(Q (u, v, x)) =

∂Q

∂u
+
∂Q

∂x

∂x

∂u
=
∂Q

∂u
+
∂Q

∂x
P

so if a solution exists the functions P and Q must satisfy the condition
∂P

∂v
+
∂P

∂x
Q =

∂Q

∂u
+
∂Q

∂x
P.

This is called the integrability condition for the system. Conversely we have

Theorem A.5.3. Assume P,Q : R2 ×Rn → Rn are two smooth functions that
satisfy the integrability condition

∂P

∂v
+
∂P

∂x
Q =

∂Q

∂u
+
∂Q

∂x
P.

The solution

x (u, v) =

 x1 (u, v)
...

xn (u, v)


for the initial value problem

∂

∂u
x = P (u, v, x) ,

∂

∂v
x = Q (u, v, x) ,

x (0, 0) = x0

exists and is unique on some possibly small domain (−ε, ε)2. When |P | , |Q| ≤
M + C |x| for constants M,C ≥ 1 the solution exists on all of R2.
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Proof. We invoke theorem A.5.3 to define x1 as the unique solution to
d

du
x1 (u) = P (u, 0, x1 (u)) , x1 (0) = x0.

Next use theorem A.5.3 to define the function x (u, v) for a fixed u as the solution
to

d

dv
x (u, v) = Q (u, v, x (u, v)) , x (u, 0) = x1 (u)

as well as to check that x (u, v) is smooth in both variables. This gives us
∂x

∂v
= Q, x (0, 0) = x0.

Thus it remains to check that
∂x

∂u
= P.

Note however that when v = 0 we have
∂x

∂u
(u, 0) =

dx1

du
(u) = P (u, 0, x (u, 0)) .

More generally the v-derivatives satisfy

∂2x

∂v∂u
=

∂2x

∂u∂v

=
∂

∂u
(Q (u, v, x))

=
∂Q

∂u
+
∂Q

∂x

∂x

∂u

=
∂P

∂v
+
∂P

∂x
Q− ∂Q

∂x
P +

∂Q

∂x

∂x

∂u

and
∂

∂v
P (u, v, x) =

∂P

∂v
+
∂P

∂x

∂x

∂v
=
∂P

∂v
+
∂P

∂x
Q.

So it follows that
∂

∂v

(
∂x

∂u
− P

)
=
∂Q

∂x

(
∂x

∂u
− P

)
.

For fixed u this is a differential equation in ∂x
∂u − P . Now

(
∂x
∂u − P

)
(u, 0) = 0 and

the zero function clearly solves this equation so it follows that
∂x

∂u
− P = 0

for all v. As u was arbitrary this shows the claim.
In case |P | , |Q| ≤M + C |x| we can invoke theorem A.5.1 to see that x is also

defined for all (u, v) ∈ R2. �

Remark A.5.4. It is not difficult to expand this result to systems of m equa-
tions if x has m variables.

The most important case for us is when x = X is a row matrix of vector
functions

X =
[
U1 · · · Um

]
,

where Ui : Ω → V are defined on some domain Ω ⊂ Rn and the vector space
V is m-dimensional. We will generally assume that for each p ∈ Ω the vectors
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U1 (p) , ..., Um (p) form a basis for V . This implies that the derivatives of these
vector functions are linear combinations of this basis. Thus we obtain a system

∂

∂ui
[
U1 · · · Um

]
=
[
U1 · · · Um

]
[Di] ,

where [Di] is an m × m matrix whose columns represent the coefficients of the
vectors on the left hand side

∂Uj
∂ui

= d1
ijU1 + · · ·+ dmijUm =

[
U1 · · · Um

]  d1
ij
...
dmij

 .
In this way each of the entries are functions on the domain dkij : Ω→ R.

The necessary integrability conditions now become
∂2

∂ui∂uj
[
U1 · · · Um

]
=

∂2

∂uj∂ui
[
U1 · · · Um

]
.

As
∂2

∂ui∂uj
[
U1 · · · Um

]
=

∂

∂ui

(
∂

∂uj
[
U1 · · · Um

])
=

∂

∂ui
([

U1 · · · Um
]

[Dj ]
)

=

(
∂

∂ui
[
U1 · · · Um

])
[Dj ] +

[
U1 · · · Um

] ∂

∂ui
[Dj ]

=
[
U1 · · · Um

]
[Di] [Dj ] +

[
U1 · · · Um

] ∂

∂ui
[Dj ]

=
[
U1 · · · Um

](
[Di] [Dj ] +

∂

∂ui
[Dj ]

)
and U1, ..., Um form a basis the integrability conditions become

[Di] [Dj ] +
∂

∂ui
[Dj ] = [Dj ] [Di] +

∂

∂uj
[Di] .

Depending on the specific context it might be possible to calculate [Di] without
first finding the partial derivatives

∂Uk
∂ui

but we can’t expect this to always happen. Note, however, that if V comes with
an inner product, then the product rule implies that

∂ (Uk · Ul)
∂ui

=
∂Uk
∂ui
· Ul + Uk ·

∂Ul
∂ui

.

This means in matrix form that
∂

∂ui

([
U1 · · · Um

]t [
U1 · · · Um

])
=

(
∂

∂ui
[
U1 · · · Um

]t)[
U1 · · · Um

]
+
[
U1 · · · Um

]t ∂

∂ui
[
U1 · · · Um

]
= [Di]

t [ U1 · · · Um
]t [

U1 · · · Um
]

+
[
U1 · · · Um

]t [
U1 · · · Um

]
[Di] .

Or more condensed
∂

∂ui
(
XtX

)
= [Di]

t
XtX +XtX [Di] .
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If we additionally assume that dkij = dkji, then we obtain the surprising formula:

dkij = gkl
(
∂gli
∂uj

+
∂glj
∂ui
− ∂gij
∂ul

)
.



APPENDIX B

Special Coordinate Representations

The purpose of this appendix is to collect properties and formulas that are
specific to the type of parametrization that is being used. These are used in several
places in the text and also appear as exercises.

B.1. Cartesian and Oblique Coordinates

Cartesian coordinates on a surface is a parametrization where

[I] =

[
1 0
0 1

]
Oblique coordinates more generally come from a parametrization where

[I] =

[
a b
b d

]
for constants a, b, d with a, d > 0 and ad− b2 > 0.

Note that the Christoffel symbols all vanish if we have a parametrization where
the metric coefficients are constant. In particular, the rather nasty formula we
developed in the proof of Theorema Egregium shows that the Gauss curvature
vanishes. This immediately tells us that Cartesian or oblique coordinates cannot
exist if the Gauss curvature doesn’t vanish. When we have defined geodesic coordi-
nates below we’ll also be able to show that even abstract surfaces with zero Gauss
curvature admit Cartesian coordinates.

B.2. Surfaces of Revolution

Many features of surfaces show themselves for surfaces of revolution. While
this is certainly a special class of surfaces it is broad enough to give a rich family
examples.

We consider

q (t, µ) = (r (t) cosµ, r (t) sinµ, z (t)) = rer + ze3.

It is often convenient to select or reparametrize (r, z) so that it is a unit speed
curve. In this case we use the parametrization

q (s, µ) = r (s) er + z (s) e3,

ṙ2 + ż2 = 1

We get the unit sphere by using r = sin s and z = cos s.
We get a cone, cylinder or plane, by considering r = (αt+ β) and h = γt.When

γ = 0 these are simply polar coordinates in the q, y plane. When α = 0 we get a

238



B.2. SURFACES OF REVOLUTION 239

cylinder, while if both α and γ are nontrivial we get a cone. When α2 + γ2 = 1 we
have a parametrization by arclength.

The basis is given by

∂ q

∂t
= ṙer + że3,

∂ q

∂µ
= rea

n =
−żer + ṙe3√
ż2 + ṙ2

and first fundamental form by

gtt = ż2 + ṙ2,

gµµ = r2

gtµ = 0

Note that the cylinder has the same first fundamental form as the plane if
we use Cartesian coordinates in the plane. The cone also allows for Cartesian
coordinates, but they are less easy to construct directly. This is not so surprising
as we just saw that it took different types of coordinates for the cylinder and the
plane to recognize that they admitted Cartesian coordinates. Pictorially one can
put Cartesian coordinates on the cone by slicing it open along a meridian and then
unfolding it to be flat. Think of unfolding a lamp shade or the Cartesian grid on a
waffle cone.

Taking a surface of revolution using the arclength parameter s, we see that

∂ n

∂s
=

∂

∂s
(−żer + ṙe3)

= −z̈er + r̈
∂ n

∂µ
=

∂

∂µ
(−żer + ṙe3)

= −żea

The Weingarten map is now found by expanding these two vectors. For the last
equation this is simply

∂ n

∂µ
= −żea

= − ż
r
rer

= − ż
r

∂ q

∂µ

Thus we have

Lsµ = Lµs = 0,

Lµµ =
ż

r
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This leaves us with finding Lss. Since
∂ q
∂s is a unit vector this is simply

Lss = −∂ n

∂s
| ∂ q

∂s
= (−z̈er + r̈ | ṙer + że3)

= z̈ṙ − r̈ż

Thus

K = (z̈ṙ − r̈ż) ż
r

H =
ż

r
+ z̈ṙ − r̈ż

In the case of cylinder, plane, and cone we note that K vanishes, but H only
vanishes when it is a plane. This means that we have a selection of surfaces all with
Cartesian coordinates with different H.

We can in general simplify the Gauss curvature by using that

1 = ṙ2 + ż2,

0 =
d
(
ṙ2 + ż2

)
dt

= 2ṙr̈ + 2żz̈.

This implies

K =

(
r̈
ṙ2

ż
− r̈ż

)
ż

r

=
r̈

r

(
−ṙ2 − ż2

)
= − r̈

r

= −
∂2

∂s2

(√
grr
)

√
grr

.

This makes it particularly easy to calculate the Gauss curvature and also to con-
struct examples with a given curvature function. It also shows that the Gauss
curvature can be computed directly from the first fundamental form! For instance
if we want K = −1, then we can just use r (s) = exp (−s) for s > 0 and then adjust
z (s) for s ∈ (0,∞) such that

1 = ṙ2 + ż2

If we introduce a new parameter t = exp (s) > 1, then we obtain a new parametriza-
tion of the same surface

q (t, µ) = q (ln (t) , µ)

= exp (− ln t) er + z (ln t) e3

=
1

t
er + z (ln t) e3
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To find the first fundamental form of this surface we have to calculate

d

dt
z (ln t) =

dz

ds

1

t

=
√

1− ṙ2
1

t

=

√
1− (− exp (−s))2 1

t

=
√

1− exp (−2 ln t)
1

t

=

√
1− 1

t2
1

t

Thus

I =

[
1
t4 +

(
1− 1

t2

)
1
t2 0

0 1
t2

]
=

[
1
t2 0
0 1

t2

]

This is exactly what the first fundamental form for the upper half plane looks like.
But the domains for the two are quite different. What we have achieved is a local
representation of part of the upper half plane.

Exercises.

(1) Show that geodesics on a surface of revolution satisfy Clairaut’s condi-
tion: r sinφ is constant, where φ is the angle the geodesic forms with the
meridians.

B.3. Monge Patches

This is more complicated than the previous case, but that is only to be expected
as all surfaces admit Monge patches. We consider q (u, v) = (u, v, f (u, v)) . Thus

∂ q

∂u
=

(
1, 0,

∂f

∂u

)
,

∂ q

∂v
=

(
0, 1,

∂f

∂v

)

n = −

(
∂f
∂u ,

∂f
∂v ,−1

)
√

1 +
(
∂f
∂u

)2

+
(
∂f
∂v

)2
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guu = 1 +

(
∂f

∂u

)2

,

gvv = 1 +

(
∂f

∂v

)2

,

guv =
∂f

∂u

∂f

∂v
,

[I] =

 1 +
(
∂f
∂u

)2
∂f
∂u

∂f
∂v

∂f
∂u

∂f
∂v 1 +

(
∂f
∂v

)2


det [I] = 1 +

(
∂f

∂u

)2

+

(
∂f

∂v

)2

∂2 q

∂w1∂w2
=

(
0, 0,

∂2f

∂w1∂w2

)
So we immediately get

Γw1w2w3
=

∂2f

∂w1∂w2

∂f

∂w3

Lw1w2
=

∂2f
∂w1∂w2√

1 +
(
∂f
∂u

)2

+
(
∂f
∂v

)2

The Gauss curvature is then the determinant of

L =

[
Luu Luv
Lvu Lvv

]
=

[
guu guv

gvu gvv

] [
Luu Luv
Lvu Lvv

]

K =
1

det [I]
det

[
Luu Luv
Lvu Lvv

]

=

∂2f
∂u2

∂2f
∂v2 −

(
∂2f
∂u∂v

)2

det [I]
2 .

We note that

[I]
−1

=
1

det [I]

 1 +
(
∂f
∂v

)2

−∂f∂u
∂f
∂v

−∂f∂u
∂f
∂v 1 +

(
∂f
∂u

)2

 ,
[II] =

1√
det [I]

[
∂2f
∂u2

∂2f
∂u∂v

∂2f
∂u∂v

∂2f
∂v2

]
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and the Weingarten map

[L] = [I]
−1

[II]

=
1

(det [I])
3
2

 1 +
(
∂f
∂v

)2

−∂f∂u
∂f
∂v

−∂f∂u
∂f
∂v 1 +

(
∂f
∂u

)2

[ ∂2f
∂u2

∂2f
∂u∂v

∂2f
∂u∂v

∂2f
∂v2

]

=
1

(det [I])
3
2


(

1 +
(
∂f
∂v

)2
)
∂2f
∂u2 − ∂f

∂u
∂f
∂v

∂2f
∂u∂v

(
1 +

(
∂f
∂v

)2
)

∂2f
∂u∂v −

∂f
∂u

∂f
∂v

∂2f
∂v2(

1 +
(
∂f
∂u

)2
)

∂2f
∂u∂v −

∂f
∂u

∂f
∂v

∂2f
∂u2

(
1 +

(
∂f
∂u

)2
)
∂2f
∂v2 −

∂f
∂u

∂f
∂v

∂2f
∂u∂v


This gives us a general example where the Weingarten map might not be a sym-
metric matrix.

B.4. Surfaces Given by an Equation

This is again very general. Note that any Monge patch (u, v, f (u, v)) also yields
a function F (x, y, z) = z − f (x, y) such that the zero level of F is precisely the
Monge patch. This case is also complicated by the fact that while the normal is
easy to find, it is proportional to the gradient of F, we don’t have a basis for the
tangent space without resorting to a Monge patch. This is troublesome, but not
insurmountable as we can solve for the derivatives of F. Assume that near some
point p we know ∂F

∂z 6= 0, then we can use x, y as coordinates. Our coordinates
vector fields look like

∂ q

∂u
=

(
1, 0,

∂f

∂u

)
,

∂ q

∂v
=

(
0, 1,

∂f

∂v

)
where

∂f

∂w
= −

∂F
∂w
∂F
∂z

Thus we actually get some explicit formulas

∂ q

∂u
=

(
1, 0,−

∂F
∂u
∂F
∂z

)
,

∂ q

∂v
=

(
0, 1,−

∂F
∂v
∂F
∂z

)
.

We can however describe the second fundamental form without resorting to
coordinates. We consider a surface given by an equation

F (x, y, z) = C.

The normal can be calculated directly as

n =
∇F
|∇F |

.

This shows first of all that we have a simple equation defining the tangent space at
each point p

TpM =
{
Y ∈ R3 | Y · ∇F (p) = 0

}
.
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Next we make the claim that

II (X,Y ) = − 1

|∇F |
I (DX∇F, Y )

= − 1

|∇F |
Y ·DX∇F,

where DX is the directional derivative. We can only evaluate II on tangent vectors,
but Y ·DX∇F clearly makes sense for all vectors. This has the advantage that we
can even use Cartesian coordinates in R3 for our tangent vectors. First we show
that

L (X) = −DX n .

Select a parametrization q (u, v) such that
∂ q
∂u ×

∂ q
∂v∣∣∣∂ q

∂u ×
∂ q
∂v

∣∣∣ =
∇F
|∇F |

.

The Weingarten equations then tell us that

L

(
∂ q

∂w

)
= −∂ n

∂w
= −D ∂ q

∂w
n .

We can now return to the second fundamental form. Let Y be another tangent
vector then, Y · ∇F = 0 so

− II (X,Y ) = − I (L (X) , Y )

= Y ·DX n

= Y ·
(
DX

1

|∇F |

)
∇F + Y · 1

|∇F |
DX∇F

= Y · 1

|∇F |
DX∇F.

Note that even when X is tangent it does not necessarily follow that DX∇F is also
tangent to the surface.

In case ∂F
∂z 6= 0 we get a relatively simple orthogonal basis for the tangent

space. In case ∂F
∂x = ∂F

∂y = 0 we can simply use

X = (1, 0, 0) , Y = (0, 1, 0)

otherwise we obtain an orthogonal basis by using

X =

(
−∂F
∂y

,
∂F

∂x
, 0

)
,

Y =

(
∂F

∂z

∂F

∂x
,
∂F

∂z

∂F

∂y
,−

((
∂F

∂x

)2

+

(
∂F

∂y

)2
))

.

With that basis the Weingarten map can then be calculated as

[L] = [I]
−1

[II]

=

[
|X|−2

0

0 |Y |−2

] [
II (X,X) II (X,Y )
II (X,Y ) II (Y, Y )

]
.
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To calculate the second fundamental form we use that

[
∂∇F
∂x

∂∇F
∂y

∂∇F
∂z

]
=


∂2F
∂x2

∂2F
∂x∂y

∂2F
∂x∂z

∂2F
∂y∂x

∂2F
∂y2

∂2F
∂y∂z

∂2F
∂z∂x

∂2F
∂z∂y

∂2F
∂z2

 .
So

II (X,X) =
1

|∇F |

[
−∂F∂y

∂F
∂x 0

]
∂2F
∂x2

∂2F
∂x∂y

∂2F
∂x∂z

∂2F
∂y∂x

∂2F
∂y2

∂2F
∂y∂z

∂2F
∂z∂x

∂2F
∂z∂y

∂2F
∂z2


 −∂F∂y∂F

∂x
0

 ,

II (X,Y ) =
1

|∇F |

[
−∂F∂y

∂F
∂x 0

]
∂2F
∂x2

∂2F
∂x∂y

∂2F
∂x∂z

∂2F
∂y∂x

∂2F
∂y2

∂2F
∂y∂z

∂2F
∂z∂x

∂2F
∂z∂y

∂2F
∂z2




∂F
∂z

∂F
∂x

∂F
∂z

∂F
∂y

−
(
∂F
∂x

)2 − (∂F∂y )2

 ,

II (Y, Y ) =
1

|∇F |

[
∂F
∂z

∂F
∂x

∂F
∂z

∂F
∂y −

(
∂F
∂x

)2 − (∂F∂y )2
]

∂2F
∂x2

∂2F
∂x∂y

∂2F
∂x∂z

∂2F
∂y∂x

∂2F
∂y2

∂2F
∂y∂z

∂2F
∂z∂x

∂2F
∂z∂y

∂2F
∂z2




∂F
∂z

∂F
∂x

∂F
∂z

∂F
∂y

−
(
∂F
∂x

)2 − (∂F∂y )2

 .
Exercises.
(1) If q is a curve, then it is a curve on F = C if q (0) lies on the surface

and q̇ · ∇F vanishes. If q is regular and a curve on F = C, then it
can be reparametrized to be a geodesic if and only if the triple product
det [∇F, q̇, q̈] = 0.

B.5. Geodesic Coordinates

This is a parametrization having a first fundamental form that looks like:

I =

[
1 0
0 gvv

]
This is as with surfaces of revolution, but now gvv can depend on both u and v.
Using a central v curve, we let the u curves be unit speed geodesics orthogonal
to the fixed v curve. They are also often call Fermi coordinates after the famous
physicist and seem to have been used in his thesis on general relativity. They
were however also used by Gauss. These coordinates will be used time and again
to simplify calculations in the proofs of several theorems. The v-curves are well
defined as the curves that appear when u is constant. At u = 0 the u and v curves
are perpendicular by construction, so by continuity they can’t be tangent as long
as u is sufficiently small.

Exercises.
(1) Consider a parametrization q (s, t) where the s-curves are unit speed

geodesics and ∂ q
∂s (s, 0) ⊥ ∂ q

∂t (s, 0). Show that

∂ q

∂s
(s, t) ⊥ ∂ q

∂t
(s, t)

and conclude that such a parametrization defines geodesic coordinates.
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(2) Show that for geodesic coordinates:

Γuuu = 0,

Γuvu = 0 = Γvuu,

Γvvu = −1

2

∂gvv
∂u

,

Γvvv =
1

2

∂gvv
∂v

,

Γuvv =
1

2

∂gvv
∂u

= Γvuv,

Γuuv = 0,

Γuij = Γiju,

Γvij =
1

gvv
Γijv,

and

K = −
∂2
u
√
gvv√
gvv

= −1

2

(
∂2
ugvv
gvv

−
(
∂ugvv
gvv

)2
)
.

B.6. Chebyshev Nets

These correspond to a parametrization where the first fundamental form looks
like:

I =

[
1 c
c 1

]
=

[
1 cos θ

cos θ 1

]
,

The idea is to have a material such as a fishnet where the fibers are not changed in
length or stretched, but are allowed to change their mutual angles.

Note that such parametrizations are characterized as having unit speed param-
eter curves.

Exercises.

(1) ???Show that any surface locally admits Chebyshev nets. Hint: Fix a
point p = q (u0, v0) for a given parametrization and define new parameters

s (u, v) =

∫ u

u0

√
guu (x, v)dx

t (u, v) =

∫ v

v0

√
gvv (u, y)dy

Show that ∂s
∂v (u0, v0) = 0 = ∂t

∂u (u0, v0) and conclude that (s, t) defines a
new parametrization that creates a Chebyshev net.

(2) Show that Chebyshev nets q (u, v) satisfy the following properties

∂2 q

∂u∂v
⊥ TpM,
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Γuvw = Γuuu = Γvvv = 0,

Γuuv = −∂θ
∂u

sin θ,

Γvvu = −∂θ
∂v

sin θ,

∂2θ

∂u∂v
= −K sin θ.

(3) Show that the geodesic curvature κg of the u-coordinate curves in a Cheby-
shev net satisfy

κg = −∂θ
∂u
.

(4) (Hazzidakis) Show that
√

det [I] = sin θ, and that integrating the Gauss
curvature over a coordinate rectangle yields:

−
∫

[a,b]×[c,d]

K sin θdudv = 2π − α1 − α2 − α3 − α4

where the angles αi are the interior angles.

B.7. Isothermal Coordinates

These are also more generally known as conformally flat coordinates and have
a first fundamental form that looks like:

I =

[
λ2 0
0 λ2

]
The proof that these always exist is called the local uniformization theorem. It is not
a simple result, but the importance of these types of coordinates in the development
of both classical and modern surface theory cannot be understated. There is also
a global result which we will mention at a later point. Gauss was the first to work
with such coordinates, and Riemann also heavily depended on their use. They have
the properties that

Γuuu =
∂ log λ

∂u

Γuvu =
∂ log λ

∂v
= Γvuu

Γvvv =
∂ log λ

∂v

Γuvv =
∂ log λ

∂u
= Γvuv

Γuuv = −∂ log λ

∂v

Γvvu = −∂ log λ

∂u
,

Γw3
w1w2

=
1

λ2
Γw1w2w3

,

K = − 1

λ2

(
∂2 log λ

∂u2
+
∂2 log λ

∂v2

)
.
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Using complex analysis one obtains isothermal parametrizations as follows. For
a parametrized surface define w = u+ iv and complex functions φi (w), i = 1, 2, 3

φ = (φ1, φ2, φ3) =
∂ q

∂w
=
∂ q

∂u
− i

∂ q

∂v
.

In other words
Reφ =

∂ q

∂u
, Imφ = −∂ q

∂v
.

First observe that
∂φ

∂w̄
=
∂φ

∂u
+ i

∂φ

∂v
=

∂2 q

∂w̄∂w
=
∂2 q

∂u2
+
∂2 q

∂v2
.

So φ is holomorphic if and only if q is harmonic.
Next note that

φ2
1 + φ2

2 + φ2
3 = φ · φ =

(
∂ q

∂u
− i

∂ q

∂v

)
·
(
∂ q

∂u
− i

∂ q

∂v

)
= guu − gvv − 2iguv.

So we obtain an isothermal parametrization when φ2
1 +φ2

2 +φ2
3 = 0. The conformal

factor can then be calculated by noting that

φ · φ̄ = |φ1|2 + |φ2|2 + |φ3|2 =

(
∂ q

∂u
− i

∂ q

∂v

)
·
(
∂ q

∂u
+ i

∂ q

∂v

)
= guu + gvv.

Conversely, starting with holomorphic functions φi (w), i = 1, 2, 3 such that
φ2

1 + φ2
2 + φ2

3 = 0 we can define their antiderivatives and construct a surface by

q (w) =

(
2Re

(∫
φ1 (w) dw

)
, 2Re

(∫
φ2 (w) dw

)
, 2Re

(∫
φ3 (w) dw

))
since ∂Ref

∂w = 1
2

(
∂f
∂w + ∂f̄

∂w

)
= 1

2
∂f
∂w , when f (w) is holomorphic and consequently f̄

antiholomorphic.
A minimal surface evidently always has such a parametrization: First use that

the Gauss map is conformal to conclude that it has an isothermal parametrization.
This must be harmonic which in turn shows that φ is holomorphic since.

Examples:
Catenoid: φ1 = sinhw, φ2 = −i coshw, φ3 = 1.
Helicoid: φ1 = i sinhw, φ2 = coshw, φ3 = i.
Enneper: φ1 = 1− w2, φ2 = i

(
1 + w2

)
, φ3 = 2w.

Scherk: φ1 = 2
1+w2 , φ2 = 2i

1−w2 , φ3 = 4w
1−w4 .

Catalan: φ1 = 1− cosh (−iw), φ2 = i sinh (−iw), φ3 = 2 sinh
(
− iw

2

)
.

Can always use φ1 = F
(
1−G2

)
, φ2 = iF

(
1 +G2

)
, and φ3 = 2FG with

2F = φ1 − iφ2.

Exercises.
(1) A particularly nice special case occurs when

λ2 (u, v) = U2 (u) + V 2 (v)

These types of metrics are called Liouville metrics. Compute their Christof-
fel symbols, Gauss curvature, and show that when geodesics are written
as v (u) or u (v) they they solve a separable differential equation. Show
also that the geodesics have the property that

U2 sin2 θ − V 2 cos2 θ
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is constant, where θ is the angle the geodesic forms with the u curves.
(2) Show that when

λ =
1

a (u2 + v2) + buu+ bvv + c

we obtain a metric with constant Gauss curvature

K = 4ac− b2u − b2v
It can be shown that no other choices for λ will yield constant curvature.
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