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When does a topological polyhedral complex (embedded in Rd) admit a geometric realiza-

tion (a rectilinear embedding in Rd)? What are the constraints on the possible realizations?

Two classic results concerning such questions are Fáry’s theorem, which states that every

planar graph can be drawn in the plane such that each edge is a straight line segment, and

Tutte’s theorem, which provides necessary and sufficient conditions for embedding a planar

graph such that all faces are convex. The present work is motivated largely by the question

of whether these types of results generalize to higher dimensions.

We begin by constructing an irrational polytopal complex consisting of 1278 convex

3-polytopes in R3. The methods of this construction may also be used to produce small

topological complexes with no geometric realization, as well as geometric complexes which

encode arbitrary point and line configurations. This allows us to prove universality theorems

for 3-dimensional polytopal complexes and arrangements. We also investigate geometric

realizations of plane triangulations, and describe an explicit algorithm that embeds a plane

triangulation with n vertices in a 4n3 × 8n5 integer grid, in such a way that at each step of

the algorithm, the resulting region of the plane is convex. This embedding, by nature of its

sequential convexity, may be lifted vertically to a 3-polytope. This process gives a new proof

of Steinitz’s Theorem for triangulations, and provides a new upper bound on the size of the

integer grid necessary to embed the vertices of simplicial 3-polytopes. For certain classes of

triangulations, this grid size is subexponential.
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CHAPTER 1

Introduction

The notion of realizing topological configurations geometrically is illustrated elegantly in

Fáry’s theorem [F], which states that every planar graph can be drawn in the plane such that

each edge is a straight line segment (See Figure 1.1). In two influential papers [T1, T2], Tutte

first showed necessary and sufficient conditions for realizing 2-connected planar graphs, with

all faces (non-strictly) convex. He then showed that for 3-connected planar graphs one can

make all faces strictly convex. Much of this work was originally motivated by the possibility

of extending Tutte’s results to 3 and higher dimensions.

Figure 1.1: A topological plane graph (left) and a geometric embedding of that graph (right).

The starting point for our investigations is Steinitz’s Theorem (see e.g. [G, P, R, Z1]). It

states that every 3-connected planar graph is the graph of a 3-polytope. As a consequence

of the proof, all polytopes in R3 can be realized over Q (i.e. realized with rational vertex

coordinates) by applying small perturbations of the vertices which preserve combinatorial

structure (the faces of the polytope). There are several directions into which this result has

been shown to have negative analogues:

(1) In Rd, d ≥ 4, there exist irrational convex polytopes (see [R, RZ]),
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(2) There exists an irrational 2-dimensional polyhedral surface in R3 (see [Z3]),

(3) There exists a 3-dimensional topological simplicial complex that is not geometrically

realizable (see [Ca, HZ, K]).

In light of Steinitz’s theorem, (1) and (2), it is natural to ask whether every 3-dimensional

polytopal complex can be realized over Q. A 3-dimensional polytopal complex is a natural

generalization of a Schlegel diagram of a 4-polytope, so this question occupies an intermediate

position between Steinitz’s theorem and (1). Our first result answers this question in the

negative (see below for definitions and notation).

Theorem 1.0.1 There exists an irrational 3-dimensional polytopal complex in R3, consisting

of 1278 convex 3-polytopes.

In other words, we show that there exists a configuration of finitely many convex 3-

polytopes, attached face-to-face in R3, which cannot be realized over Q. In particular, in

contrast with a single polytope, one cannot perturb (in unison) the vertices of the polytopes

to make them all rational. Our construction also shows that Brehm’s construction (2)

presented in [Z3] can be replaced with a complex of convex 3-polytopes in R3.

The proof of Theorem 1.0.1 follows the same general approach as (1), going back to

Perles’s first original construction of an irrational polytope in R8 (see [G]). We start with

an irrational point and line configuration in the plane, and then use polyhedral gadgets

to constrain the realization space emulating the configuration. At the end, we explicitly

construct an irrational complex consisting of 1277 triangular prisms and one pentagonal

pyramid.

Our second result is a variation on (3). There are of course various topological obstruc-

tions to embedding an abstract simplicial complex into Rd. Furthermore, a geometric embed-

ding is even harder to obtain, even if we assume that we start with a topological complex—a

complex that is already embedding into Rd. The results in [HZ, K] (see also [AB, Ca, Wi])

rely on topological triangulations whose 1-skeletons contain a nontrivial knot with 5 or fewer

2



edges (this creates an obstruction to a rectilinear embedding). By a much simplified variation

on a construction from the proof of Theorem 1.0.1, we show that if one replaces “simplicial”

with “polyhedral”, one obtains very small examples of complexes which are not geometrically

realizable. These examples are much smaller than those found in [HZ, Wi].

Theorem 1.0.2 There exists a topological 3-dimensional polyhedral complex X in R3 with

8 vertices and 3 polyhedra, that is not geometrically realizable.

In fact, we may extend this polyhedral complex to a polyhedral subdivision of a ball:

Theorem 1.0.3 There exists a topological 3-dimensional polyhedral complex X ′ in R3 con-

sisting of 9 vertices and 9 polyhedra, such that X ′ is homeomorphic to a ball, and the complex

X of Theorem 1.0.2 is a subcomplex of X ′. In particular, X ′ is not geometrically realizable.

Heuristically, both (3) and Theorem 1.0.2 say that one cannot possibly extend the Fáry

and Tutte theorems to R3 in full generality. To put both our results into one scheme, we

have:

topological polyhedral complex ;thm 1.0.2 geometric polyhedral complex,

geometric polyhedral complex ;thm 1.0.1 rational polyhedral complex.

Our final result in a positive result complementing Theorems 1.0.1 and 1.0.2. Our actual

result in full generality is somewhat involved (see Section 5.2), so we state it here only for

simplicial complexes.

We restrict ourselves to simplicial complexes which are homeomorphic to a ball, and

which are vertex decomposable (see e.g. [BP, Wo]). This is a topological property that

implies shellability. A simplicial d-ball X is vertex decomposable if either it is a single

simplex, or recursively, it has a boundary vertex v ∈ ∂X such that the the deletion X r v

is also a vertex decomposable d-ball. We say that X is strongly vertex decomposable if in

addition, this vertex v is adjacent to exactly d boundary edges.
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Theorem 1.0.4 Let X be a topological d-dimensional simplicial complex in Rd that is home-

omorphic to a d-ball and strongly vertex decomposable. Then there is a geometric simplicial

complex Y in Rd such that Y is a realization of X.

This result may seem restrictive, but for d = 2 it is equivalent Fáry’s theorem. To see

this, note first that it suffices to prove Fáry’s theorem for triangulations (added edges can

be removed later). But in the plane, every triangulation X is vertex decomposable [BP] (see

also [FPP] for a short proof). But then, by definition, X is also strongly vertex decomposable,

and thus Theorem 1.0.4 is just Fáry’s theorem.

We have already mentioned that the original proof of Stenitz’s Theorem allows us to

realize any 3-polytope with rational vertex coordinates. By clearing denominators, the vertex

coordinates can be made integers. A natural question then arises: How large must these

integers be? Following the original paper by Onn and Sturmfels [OS] which gave the first

nontrivial upper bound on the integer grid size, there have been a series of improvements [R,

Ro], leading to the currently best expO(n) bound in [BS, RRS].

The idea behind the bounds in [BS, R, RRS, Ro] is as follows. Start with the Tutte spring

embedding of G with unit weights [T2], and lift it up to a convex surface according to the

Maxwell-Cremona theorem (see [L, R]). Since Tutte’s embedding and the lifting are given

by rational equations, this embedding can be expanded to an integer embedding. However,

there is only so much room for this method to work, and since the determinants are given

by the number of spanning trees in G, the bounds cannot be made subexponential in the

case of triangulations. The only other class of graphs for which there is a subexponential

bound, is the class of triangulations corresponding to stacked polytopes [DS], which can be

embedded into a polynomially-sized grid.

Although there are several interesting proofs of the Steinitz theorem [Z1, Z2], neither

seem to simplify in the case of triangulations. We present a proof that follows a similar idea,

but in place of the Tutte spring embedding we use an inductive construction. In essence,

we construct a sequentially convex embedding of 2-connected triangulations, giving a simple
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proof of the main result in [T2]. We make our construction quantitative, by doing this on a

4n3 × 8n5 grid, thus reproving a weak version of the main result in [BR].

We then lift the resulting triangulation directly to a convex surface. The inductive

argument allows us to obtain a new type of quantitative bound ζ(n) = (500n8)τ(G) on the

height of the lifting. Unfortunately, the parameter τ(G) here and used in the induction may

be linear in n for the case of “paths” or “stacked” triangulations. It is bounded from below

by both the diameter of G and the diameter of the dual graph of G. However, in a number

of special cases this parameter is sublinear.

Rather than discuss the main theorem (Theorem 7.1.2), we present here our main appli-

cation. A grid triangulation of [p×q] = {1, . . . , p}×{1, . . . , q} is a triangulation with all grid

points as the set of vertices. These triangulations have a curious structure, and have been

studied and enumerated in a number of papers (see [A, KZ, Wo] and references therein). For

example, according to [Du], there are 1.999 · 1021 grid triangulations of [6× 6].

Theorem 1.0.5 Let G be a grid triangulation of [p × q] such that every triangle fits in an

`× ` subgrid. Then G can be realized as the graph of a convex surface embedded in a grid of

size 4(pq)3 × 8(pq)5 × (500(pq)8)6`(p+q).

For example, for p = q =
√
n, and ` = O(1), we have a subexponential grid size:

O(n3)×O(n5)× expO(
√
n log(n)).

Figure 1.2: A non-regular grid triangulation of [5× 5], with ` = 3 (see [KZ]).

We should mention that not every grid triangulation is regular. An example found by
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Santos (quoted in [KZ]), is shown in Figure 1.2. This means that one cannot embed this

triangulation by a direct lifting—another plane embedding of the triangulation is necessary

for that.
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CHAPTER 2

Basic Definitions and Notation

Given a set A ⊆ Rn, let conv(A) and aff(A) denote the convex and affine hulls of A in

Rn, respectively. We write int(A) for the topological interior of A. If A is a manifold then

we write ∂A for the manifold boundary of A. Let Bd = {x ∈ Rd | ‖x‖ = 1} denote the unit

d-ball. If two topological spaces A, B are homeomorphic, we shall write A ∼ B.

A polytope P is the convex hull of finitely many points x1, . . . , xk ∈ Rn. A polytope P is

a d-polytope if aff(P ) is a d-dimensional affine subspace of Rn. We call a poset X a geometric

d-polyhedron in Rn if X is the face poset of a d-polytope. By abuse of notation we will refer

to a geometric polyhedron as a polytope.

For a geometric d-polyhedron X, an element F ∈ X is a face of X. By a k-face of X we

mean a face whose affine hull has dimension k as an affine subspace of Rn. We shall call a

0-face of X a vertex, a 1-face an edge, a (d− 1)-face a facet, and the d-face the cell.

A poset X, ordered by set inclusion, is a topological d-polyhedron (in Rn) if there exists

a geometric d-polyhedron Y in Rn and a poset isomorphism ϕ : X → Y such that for each

F ∈ X, F ⊆ Rn and F ∼ ϕ(F ). See Figure 2.1. Note that every geometric polyhedron is a

topological polyhedron.

A topological d-polyhedral complex (in Rn) is a set X =
⋃n
i=1Xi, where each Xi is a

topological d-polyhedron in Rn, and such that if A ∈ Xi and B ∈ Xj then A∩B ∈ Xi ∩Xj.

We call X a geometric d-polyhedral complex (in Rn) if each Xi is a geometric d-polyhedron.

We will also refer to a geometric polyhedral complex as a polytopal complex. For brevity,

we will write polyhedron instead of topological polyhedron and polyhedral complex instead of

topological polyhedral complex.
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Figure 2.1: Geometric (left) and topological (right) 3-simplices.

We should mention that in Chapter 7, we will use the term polyhedron to mean something

different—namely a region of Rn that is the intersection of finitely many closed half-spaces.

In this usage, the difference between a polyhedron and a polytope is that a polytope is

bounded, whereas a polyhedron may be unbounded. The meaning of polyhedron will be

clear from context.

We will use the same terminology for the faces F ∈ X of a polyhedral complex X

(vertices, cells, etc.) as for the faces of a polyhedron. We say that a polyhedral complex is a

simplicial complex if each of its faces is a simplex (of the appropriate dimension). It is worth

pointing out that, in the terminology used in more general settings, we are considering here

only pure polyhedral complexes. That is to say, for a d-polyhedral complex X as defined

above, there is a fixed number d such that every face of X is a subset of some d-face of X.

Note that every polyhedron is a polyhedral complex. If X =
⋃k
i=1Xi is a polyhedral com-

plex in Rn, we shall write PX = {X1, . . . , Xk} and |X| =
⋃
F∈X F . Note that |X| ⊆ Rn is the

region of Rn determined by the faces of X. If F ∈ X, we define PX(F ) = {P ∈ PX | F ∈ P}.

Let ∂X = {F ∈ X | F ⊆ ∂X}. Note that ∂X is also a polyhedral complex. Two polyhedral

complexes are isomorphic, written X ' Y , if they are isomorphic as posets under inclusion.

A (geometric) realization of a polyhedral complex X is a geometric polyhedral complex

Y such that X ' Y . We say that Y (geometrically) realizes X. If a polyhedral complex has

a geometric realization, then we say that it is (geometrically) realizable.

A plane graph is a planar graph together with a fixed embedding of this graph in R2. Let

G = (V,E) denote a plane graph. By abuse of notation we will identify G with the subset of
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R2 consisting of its vertices and edges. We write V (G) for the vertices of G and E(G) for the

edges of G. When G is 2-connected we let F(G) = {F1, . . . , Fm} denote the set of bounded

faces of G. We define F(G) =
⋃
i Fi, the region of R2 determined by G. For a subgraph H

of G, we write H ⊆ G (or H ⊂ G, if the inclusion is strict).

When G is 2-connected, a vertex v is called a boundary vertex if v ∈ ∂F(G), and an

interior vertex otherwise. Similarly, an edge e is called a boundary edge if e is completely

contained in the boundary of F(G), and an interior edge otherwise. A diagonal of G is an

interior edge whose endpoints are boundary vertices of G. For a plane graph G with vertex v,

let G− {v} denote the plane graph obtained by removing v and all edges adjacent to v.

A geometric plane graph is a plane graph for which each edge is a straight line segment.

Two plane graphs G,G′ are isotopic, written G ∼ G′, if they are homotopic via a homotopy

F : R2 × [0, 1]→ R2, and F (x, t) is a homeomorphism for each fixed t ∈ [0, 1]. In particular

G ∼ G′ implies that G and G′ correspond to the same abstract graph. When G ∼ G′ and v

is a vertex of G, we will write v′ for the corresponding vertex of G′. A geometric embedding

of a plane graph G in the set S ⊆ R2 is a geometric plane graph G′ such that G ∼ G′ and

every vertex of G′ is a point of S. For a point u = (a, b) ∈ R2, we will write x(u) = a and

y(u) = b for the standard projections.
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CHAPTER 3

An Irrational 3-Polytopal Complex

In this chapter we will work in real projective space RPd, and we extend the definitions

of convex hull and affine hull appropriately. We regard Rd ⊆ RPd under the standard

inclusion (p1, . . . , pd) 7→ [p1 : . . . : pd : 1]. We say that distinct points p1, . . . ,pn ∈ RPd

are collinear if they are contained in the same line. We say that distinct projective lines

`1, . . . , `n are concurrent if `1∩· · ·∩`n is non-empty. If e1, . . . , en are edges of a polytope and

the edge supporting lines aff(e1), . . . , aff(en) are concurrent, we say that the edges e1, . . . , en

are concurrent.

An (abstract) point and line configuration L = ([n], E) consists of a finite set [n] =

{1, . . . , n}, together with a set of (abstract) lines E = {e1, . . . , ek}, where each ei ⊆ [n].

We require that each point is contained in at least 2 lines, and each line contains at least 3

points. A realization of L is a set of points Λ = {p1, . . . ,pn} ⊆ RPd such that each collection

{pi1 , . . . ,pik} of 3 or more points is collinear if and only if {i1, . . . ik} ⊆ e for some e ∈ E.

A line ` ⊂ RPd is a line of Λ if ` ∩ Λ = {pi1 , . . . ,pik} and {i1, . . . , ik} ∈ E. A point and

line configuration L is said to be realizable over a field F if there is a realization Λ of L such

that each point of Λ has coordinates in F .

A realizable point and line configuration L is said to be irrational if it is not realizable

over Q. That is, for every realization Λ of L there is some point p ∈ Λ such that p has an

irrational coordinate. The following 9-point configuration due to Perles is irrational.

Lemma 3.0.6 (Perles, [G]) The point and line configuration depicted in Figure 3.1 is irra-

tional.

10
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Figure 3.1: The 9-point Perles configuration

We say that a geometric polyhedral complex X generates a realization Λ of a point and

line configuration L, if each point of Λ is the intersection of affine hulls of faces of X. We

say that a polyhedral complex X is realizable over a field F if there is a geometric realization

X ′ of X such that each vertex of X ′ has coordinates in F . Note that realizable over R

is equivalent to realizable. A geometric polyhedral complex X is called irrational if it is

not realizable over Q. In this section we will construct a geometric polyhedral complex X

such that every realization of X generates the Perles configuration. This implies that X is

irrational.

In what follows we let T denote any geometric realization of a triangular prism in R3.

The edges of T not contained in the triangular facets of T are the lateral edges of T , and

the facets containing these edges (i.e. the tetragonal facets) are the lateral facets.

Lemma 3.0.7 In every geometric realization T of a triangular prism, the lateral edges of T

are concurrent (see Figure 3.2).

Proof. Let `1, `2, `3 denote the supporting lines of the lateral edges of T . These lines are

pairwise coplanar. Indeed, P1,2 = aff(`1∪`2), P1,3 = aff(`1∪`3) and P2,3 = aff(`2∪`3) are the

supporting planes of the lateral facets of T . Since `1, `2 are coplanar projective lines, they

intersect in a point p. Thus {p} = `1∩`2 ⊆ P1,3∩P2,3 = `3. Therefore {p} = `1∩`2∩`3.

11



Figure 3.2: A triangular prism, and the point of concurrency of its lateral edges.

A belt is a polyhedral complex B consisting of triangular prisms T1, . . . , Tm attached

consecutively along their lateral facets (see Figure 3.3). We introduce notation that will

be used in Lemma 3.0.8 below. Let B =
⋃m
i=1 Ti be a belt. For i = 1, . . . ,m and

j = 1, 2, 3 let z(i,j) and z(i,j′) denote the adjacent vertices of Ti contained in opposite tri-

angular facets. For i = 1, . . . ,m and j = 1, 2 let F(i,j) denote the facet containing the

vertices z(i,1), z(i,1′), z(i,2), z(i,2′). Then each F(i,k) is a lateral facet of Ti. We assume that the

prisms are attached so that F(i,2) = F(i+1,1) for all i = 1, . . . ,m− 1.

When attached to other polytopes, a belt forces concurrency of the edges along which it

is attached. This is ensured by the following lemma. It will be a crucial ingredient in the

proofs that follow.

Lemma 3.0.8 For every belt B =
⋃m
i=1 Tm, the set of all lateral edges of all prisms Ti is a

set of concurrent lines.

Proof. Let `(i,j) = aff(z(i,j), z(i,j′)) denote the supporting line of the jth lateral edge of Ti. For

each i = 1, . . . ,m, by Lemma 3.0.7 there is some pi ∈ R3 such that {pi} = `(i,1)∩`(i,2)∩`(i,3).

Let i ∈ {1, . . . ,m − 1}. Then {pi} = `(i,1) ∩ `(i,2) ∩ `(i,3) = `(i,1) ∩ `(i,2) = `(i+1,1) ∩ `(i+1,2) =

`(i+1,1) ∩ `(i+1,2) ∩ `(i+1,3) = {pi+1}. Thus

{p1} = · · · = {pm} =
⋂

1≤i≤m, 1≤j≤3

`(i,j).
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Figure 3.3: A belt of 7 prisms.

Proof of Theorem 1.0.1. For k = 1, . . . , 5, let

xk =

(
cos

(
2πk

5

)
, sin

(
2πk

5

)
, 0

)
and x′k =

(
cos

(
2πk

5

)
, sin

(
2πk

5

)
, 2

)
.

Note that the convex hull of the xk and x′k is a regular pentagonal prism, call it R. Let

a =

(
0, 0, 1− 1√

5

)
and a′ =

(
0, 0, 1 +

1√
5

)
.

We subdivide R into 7 polytopes as follows. Let M denote the pentagonal pyramid with

base vertices xk and apex a, and M ′ the pentagonal pyramid with base vertices x′k and

apex a′. For i = 1, . . . , 5, let Ti denote the triangular prism whose two triangular faces

Fi and F ′i consist of the vertices a,xi,xi+1 and a′,x′i,x
′
i+1, respectively, where addition is

modulo 5. Note that the prisms Ti all share the lateral edge conv(a, a′). Now remove the

“top” pentagonal pyramid M ′. The result is a geometric polyhedral complex K consisting

of 6 geometric polyhedra. We call K the core (see Fig. 3.4). It forms the centerpiece of our

construction.

For i = 1, . . . , 5, let ei = conv(xi,xi+1) denote the edges of the base of the pentagonal

prism M , let e′i = conv(x′i, a
′) denote the edges on the top of K containing a′, and let

`i = aff(ei) and `′i = aff(e′i). Let Pi = aff(Ti ∩ Ti−1), and let Pb = aff(x1, . . . ,x5) denote the

supporting plane of the base of the pentagonal pyramid M .
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Figure 3.4: The core K, together with the resulting Perles configuration (shown in red).

Compare with Figure 3.1.

We define 9 points p1, . . .p9 in Pb as follows. Let p2 = x1, p3 = x5, p5 = x2, p7 = x4.

Define p1,p4,p8,p9 by

{p1} = `2 ∩ `5, {p4} = `3 ∩ `5, {p8} = `1 ∩ `3, {p9} = `2 ∩ `4.

Finally, let `c = aff(a, a′), and define p6 by {p6} = `c ∩ Pb.

One can directly check that the points p1, . . . ,p9 constitute a realization Λ of the Perles

configuration (in fact the points are labeled so that pi corresponds to vertex i in Figure 3.1).

Indeed, all collinearities are satisfied (see Fig. 3.4). For example, p1, . . . ,p2,p3,p4 are all

contained in the line `5 by definition, and p3,p6,p8 are collinear by a direct calculation.

Furthermore, it is clear from the definitions that in any geometric realization of K, the

collinearities {2, 5, 8}, {1, 5, 9}, {4, 7, 8}, {3, 7, 9}, {1, 2, 3, 4} are satisfied, since they corre-

spond to the lines `1, `2, `3, `4, `5, respectively. However, the collinearities {2, 6, 9}, {4, 5, 6},

{1, 6, 7}, {3, 6, 8} may fail. To obtain a geometric polyhedral complex X such that these

last four collinearities hold in any realization of X, we attach four belts to K, one for each

collinearity.

In order for X to be a polyhedral complex, when we attach four belts to K we must ensure
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that they do not intersect. To achieve this, the belts we use are long thin arcs consisting of

hundreds of triangular prisms. We have produced an explicit construction on the computer,

of which we give an overview here. The complete code necessary to generate the complex

explicitly is available in a Mathematica notebook, which is included with this document

as a supplemental file.

We force the collinearity {2, 6, 9} to hold in any realization by attaching a belt B1 to K

as follows. Draw two simple arcs ϕ1, ϕ
′
1, which intersect K in at most their endpoints, and

such that ϕ1(0) = ϕ′1(0) = x3, ϕ1(1) = a′, and ϕ′1(1) is a point lying in the plane P1, above

the edge e′1 and close to but not directly above a′. Place a large number N of points roughly

equidistantly along each arc, and label these points z1, . . . , zN and z′1, . . . , z
′
N , respectively.

We demand that z1 = z′1 = x3, zN = a′, and z′N = ϕ′1(1). These points determine a collection

of triangles ∆i = conv(zi, zi+1, z
′
i+1), for i = 1, . . . , N − 1 and ∆′i = conv(zi, z

′
i, z
′
i+1) for

i = 2, . . . , N − 1.

For each triangle ∆i, we obtain a triangular prism with triangular facet ∆i by letting the

lateral edges be segments of the lines passing through p9 and one of zi, zi+1, z
′
i+1. Similarly

for the triangles ∆′i. We demand in particular that the lateral edge containing z1 = x3 is the

edge e2, and that the lateral edge containing zN is the edge e′1. We are free to choose the

length of the remaining lateral edges. By choosing this length to be very short for all lateral

edges save for those containing points close to z1 and zN , we make it possible to attach other

belts while avoiding intersections.

Concretely, let m ∈ Z+ and let fm : [0, 1]→ [0, 1] be defined by

fm(t) = (1− t)m + tm.

Let L(e) denote the length of the edge e of K, and let g(t) = (1− t)L(e2) + tL(e′1). Define a

function hm by hm(t) = fm(t)g(t). Let Ei denote the lateral edge containing zi and E ′i the

lateral edge containing z′i. Then we choose the length of Ei to be hm( i−1
N−1) and the length

of E ′i to be hm( i−1
N

). Taking m large, we may ensure that the lengths of the lateral edges of

each prism are very short except near the edges e2 and e′1. In our explicit construction we
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Figure 3.5: Left: Attaching one belt in the construction of Theorem 1.0.1. Right: The

complete irrational complex with all four belts attached.

take m = 80.

The collection of the resulting triangular prisms forms a “half-belt” B′1. Reflect B′1 across

the plane P1, and call the result B′′1 . Then B1 = B′1∪B′′1 is the desired belt. It intersects K in

the three edges e2, e4, and e′1 (see Figure 3.5). In our explicit construction we take N = 80,

so that B′1 and B′′1 each consist of 2(80 − 1) + 1 = 159 prisms, for a total of 2(159) = 318

prisms in the belt B1.

We now show that in any realization of the geometric polyhedral complex K ∪ B1, the

collinearity {2, 6, 9} is satisfied. Let Z denote any geometric realization of K ∪B. Let pi, `i,

`′i and P1, Pb denote the points, lines, and planes of Z corresponding to pi, `i, `
′
i, and P1, Pb.

Since the belt B is attached to K along the three edges e2, e4, and e′1, the lines `2, `4, and

`′1 must be concurrent by Lemma 3.0.8, and their point of intersection is {p9} = `2 ∩ `4. So

in particular, p9 ∈ `′1. Clearly p9 ∈ Pb and `′1 ⊆ P1, so we have p9 ∈ `′1 ∩ Pb ⊆ P1 ∩ Pb. But
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P1 ∩ Pb is a line containing p2 and p6. Thus p2, p6, p9 are collinear.

We may force the remaining three collinearities to hold in any realization by attaching

three more belts to K. The construction of these remaining belts is analogous to the con-

struction of B1. In particular, attaching a belt B2 to the edges e3, e5, and e′2 forces the

collinearity {4, 5, 6}, attaching a belt B3 to the edges e5, e2, and e′4 forces the collinearity

{1, 6, 7}, and attaching a belt B4 to the edges e1, e3, and e′5 forces the collinearity {3, 6, 8}.

Let X denote the resulting geometric polyhedral complex with all 4 belts attached (see Fig-

ure 3.5). Choosing the arcs which define these belts to curve in the appropriate way, we

may ensure that the belts do not intersect. In our explicit construction, each of these four

belts consists of 318 triangular prisms. There are 5 triangular prisms in K, for a total of

4(318) + 5 = 1277 triangular prisms in X. Together with the pentagonal pyramid M , we

have a grand total of 1278 polytopes comprising X. For more pictures and further details

see Chapter 9.

Thus in every geometric realization Y of X, the points corresponding to p1, . . . ,p9 form

a realization ΛP of LP , which is irrational by Lemma 1. Thus Y must have an irrational

vertex coordinate. Otherwise, the supporting planes of Y would be the defined by equations

with rational coefficients, whence the points of ΛP would be the solutions of systems of linear

equations with rational coefficients, hence rational, a contradiction.
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CHAPTER 4

The Universality of 3-Polytopal Complexes and

Arrangements

Let us begin by noting that the first irrational polytope result of Perles was later ex-

tended by Mnëv to a general universality theorem [Mn], and then further extended to all

4-polytopes [R]. Similarly, Brehm’s result [Z3] gives a universality theorem for polyhedral

2-surfaces in R3.

In what follows, we extend Theorem 1.0.1 to a similar universality result. Using belts, we

can in fact mimic the constructions of Theorem 1.0.1 for any point and line configuration. In

particular, for a point and line configuration L, we can construct a geometric 3-polyhedral

complex X(L) such that every realization of X(L) generates a realization of L. The univer-

sality theorem for point and line configurations (see e.g. [P]) then implies, in particular, that

for any proper subfield K of the algebraic closure of Q, there is a geometric 3-polyhedral

complex that cannot be realized with all vertex coordinates in K.

Technically, the universality theorem for point and line configurations assumes that the

realizations of a configuration are restricted to the projective plane RP2. If we allow realiza-

tions in RPd for d > 2, some realizations may not lie entirely in a single plane. A point and

line configuration L is said to be planar if every realization of L in RPd lies in a (projective)

2-plane. If a point and line configuration is not planar, there is a straightforward way to

extend it to a planar configuration, which we describe in the following lemma.

Lemma 4.0.9 Let L = ([n], E) be a point and line configuration. There is a point and line

configuration L = ([3n + 1], E) such that E ⊆ E, and every realization of L in RPd is a
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Figure 4.1: Left: A point and line configuration L that may have non-planar realizations in

RP3. Right: The resulting planar configuration L as constructed in Lemma 4.0.9.

subset of a 2-plane. Furthermore, every realization of L contains a realization of L.

Proof. Let L = ([n], E). For each point i ∈ [n], we add two points wi = n+2i−1, w′i = n+2i

and the line ei = {i, wi, w′i}. Then we add a new point a = 3n + 1, together with two lines

l = {a, w1, . . . , wn} and l′ = {a, w′1, . . . , w′n}. See Figure 4.1. Let L = ([3n+1], E) denote the

resulting point and line configuration. Clearly, in every realization of L in RPd, each point

p must lie in the plane determined by the two intersecting lines L and L′ corresponding to

l and l′.

Finally, let Λ denote a realization of L. Since X ⊆ X and E ⊆ E, there is a subset Λ ⊆ Λ

and a map f : X → Λ such that f is a bijection, and a collection of points {f(xi)}i∈I is

collinear if I ⊆ E. To see that a collection of points {f(xi)}i∈I is collinear only if I ⊆ E, note

that each abstract line ei = {i, wi, w′i} contains only one point of L, namely i. Furthermore,

the two lines L and L′ contain no points of L. So the lines added to E to form E do not

enforce any new concurrencies among the points of L.

We call the configuration L, constructed in Lemma 4.0.9, the planar extension of L.

Theorem 4.0.10 (Weak Universality Theorem) Let L be a point and line configuration, and
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T

Figure 4.2: (Belts are shown schematically in purple) Left: A belt Bp which ensures that

the three lines spanned by the red edges are concurrent in any realization of X. Right: Two

belts B and C, attached to the tetrahedron A along the green edges, which ensure that the

three lines spanned by the red edges are not concurrent in any realization of X (so that

p1 6= p2). Note that B and C share the red edge of the tetrahedron T , but they do not share

a 2-face.

let K be a proper subfield of the algebraic closure of Q. There exists a geometric 3-polyhedral

complex X(L) such that if X(L) has a realization over K then L has a planar realization

over K. Moreover, the complex X(L) may be constructed using only triangular prisms.

Proof. We provide a sketch of the construction. By Lemma 4.0.9, we may assume that L is

a planar configuration (if L is not planar, replace it with its planar extension). Let Λ denote

a realization of L in RP3. For each line `i of Λ, place a tetrahedron with a marked edge ei,

such that `i = aff(ei).
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For each point p ∈ Λ, let Lp denote the set of lines of Λ containing p. For each such set

Lp, add a belt Bp such that for each line `i ∈ Lp, the edge ei is identified with a lateral edge

of Bp. See Figure 4.2 (left).

Finally, for each collection of 3 lines `i, `j, `k which are not concurrent in the realization

Λ, place a tetrahedron Aijk with vertices labeled x1,x2,x3,x4. Add a belt Bijk such that

each of the 3 edges ei, ej, and x1x2 is identified with a lateral edge of Bijk. Add another

belt Cijk such that each of the 3 edges ej, ek, and x3x4 is attached along a lateral edge of

Cijk. See Figure 4.2 (right). Call the resulting geometric 3-polyhedral complex X(L).

Let X ′ be a geometric realization of X(L). The belts Bp ensure that the concurrencies

present among the edges ei of X(L) hold among the corresponding edges e′i of X ′. The

points of intersection of the edges e′i of X ′ constitute a set of points Λ′. To show that Λ′ is a

realization of L, it remains to show that no further concurrencies hold among the edges e′i.

That is, we wish to show that Λ′ is not a degenerate realization of L. But this is ensured by

the tetrahedra Aijk and the corresponding pairs of belts Bijk and Cijk.

To see this, let `i, `j, `k be distinct lines of Λ which are not concurrent, and let ei, ej, ek

denote the corresponding edges of X(L). Then X(L) contains the tetrahedron Aijk and belts

Bijk, Cijk as described above. Let A′ijk, B
′
ijk, C

′
ijk denote the corresponding prisms and belts

of X ′, where the vertices of A′ijk are labeled x′1,x
′
2,x

′
3,x

′
4. The belt B′ijk ensures that the edges

e′i, e
′
j and x′1x

′
2 are concurrent, and the belt C ′ijk ensures that the edges e′j, e

′
k and x′3x

′
4 are

concurrent. Suppose that the edges e′i, e
′
j, e
′
k of X ′ are concurrent. From the concurrencies

forced by the belts, this implies that the edges x′1x
′
2 and x′3x

′
4 are concurrent. Thus the

vertices x′1,x
′
2,x

′
2,x

′
3 are coplanar, so they do not determine a tetrahedron, a contradiction.

Now let K be a proper subfield of the algebraic closure of Q, and suppose that X(L) is

realizable over K. Let X ′ be a realization of X(L) having all vertex coordinates in K, and

let Λ be the realization of L generated by X ′. Then the affine hulls of the faces of X ′ are

defined by linear equations with coefficients in K. The points of Λ are the intersection of

these affine hulls, hence they are solutions of a system of linear equations with coefficients

in K. Thus the points of Λ have all coordinates in K. That is, L is realizable over K.
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To prove the last claim of the theorem, note that each tetrahedron used in the above

construction may be replaced in with a triangular prism. In fact, the tetrahedra whose

marked edges generate the lines of Λ may be removed, as the edges of the attached belts

suffice to define these lines. The tetrahedra Aijk may be replaced with triangular prisms in

the obvious way, by attaching the corresponding belts along two skew edges of the triangular

prism, in the same way in which they were attached along two skew edges of the tetrahedron.

Note that the object produced by Theorem 4.0.10 is a polytopal complex, which by

definition is not allowed to intersect itself (except that two polytopes may intersect in at

most a common face of both). That is, a polyhedral complex is embedded in R3. This

property, while geometrically appealing, makes Theorem 4.0.10 a weak universality theorem,

in the sense that it does not imply that the realization spaces of X(L) and L are stably

equivalent. We would now like to investigate whether it is possible to obtain this latter

type of result. We will find that by modifying our previous definitions slightly, we can in

fact obtain a “true” universality theorem. To this end, we adopt the definition of stable

equivalence given in [R], and we define the realization spaces of X(L) and L as follows.

For a point and line configuration L = ([n], E), we define the (Euclidean) realization

space of L (in R3) to be the set

R(L) = {(p1, . . . ,pn) ∈ R3n | Λ = {p1, . . . ,pn} is a realization of L}.

In particular, we only allow realizations Λ in R3, rather than RP3 (that is, we do not allow

points at infinity). This will be important for our final universality result. Notice that the

coordinates of the realization space come with a particular order, induced by the natural

order on [n]. That is, for each i ∈ [n], if (p1, . . . ,pn) ∈ R(L) then pi must be the point

corresponding to i. For a geometric 3-polyhedral complex X with N vertices, the realization

space of X is the set

R(X) = {(v 1, . . . , vN) ∈ R3N | v 1, . . . , vN are the vertices of a realization of X}.

22



Consider the natural map f : R(X(L)) → R(L) that assigns to each realization X ′ of

X(L) the realization of L generated by X ′. The following informal argument shows that f

will not be a stable equivalence in general. Suppose that X(L) is constructed so that its belts

consist of a very large number of prisms. Let Λ be a realization of L, and consider the fiber

A = f−1(Λ). Since the belts of X(L) consist of a large number of prisms, for a given pair of

belts B1 and B2 of X(L), we may construct a realization X ′ ∈ A in which the corresponding

belts are knotted, and a realization Y ′ ∈ A in which they are not knotted. Since we forbid the

possibility that the belts B1 and B2 may intersect one another arbitrarily, the knot in X ′ is

non-trivial. That is, there is no continuous path from X ′ to Y ′ inR(X(L)) ⊂ R3N . Therefore

A is not path-connected. But all fibers of a stable equivalence must be path-connected.

By modifying our definition of polyhedral complex slightly, we can eliminate the problem

encountered in the previous paragraph. The idea is to preserve the face identifications in the

complex, but allow polytopes to self-intersect (so in particular we will allow belts to intersect

one another arbitrarily).

We define a d-polytopal arrangement X = (X,A) to consist of a set X =
⋃n
i=1Xi, where

each Xi is a (face lattice of a) polytope, together with a set A ⊂ X of distinguished common

faces, such that any face F ∈ A belongs to at least two polytopes, and any two polytopes

have at most one common face that is contained in A. That is, if F ∈ A and F ∈ Xi ∩Xj,

then G /∈ A for all other G ∈ Xi ∩Xj.

A geometric polytopal arrangement Y = (Y,B) is a realization of X = (X,A) if there is a

bijection f : X → Y such that Xi ' f(Xi), and the face poset isomorphisms gi : Xi → f(Xi)

satisfy

F ∈ A if and only if gi(F ) ∈ B.

The realization space R(X ) of a polytopal arrangement X is defined in the obvious way.

Note that any two polytopes in X may intersect in more than a common face of both, but

they can only have one common face distinguished by membership in A. That is, only the

common face F ∈ A is required to be a common face of both polytopes in every realization,
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although the intersection of the polytopes may consist of much more.

Given a geometric d-polyhedral complex X =
⋃n
i=1Xi, we may construct a corresponding

d-polytopal arrangement X by taking

A = {F ∈ X | F ∈ Xi ∩Xj for some i 6= j}

and X = (X,A). The only difference between X and X is that in realizations of X , we

allow the polytopes to self-intersect arbitrarily. However, the intersections corresponding to

the faces in A are required to hold in all realizations of X . For this reason, Theorem 4.0.10

holds if we replace “polyhedral complex” with “polytopal arrangement”, and the proof is

identical. With this understanding, we may prove the desired universality results.

Theorem 4.0.11 Let L be a point and line configuration. Then there is a 3-polytopal

arrangement X (L) such that R(X (L)) is stably equivalent to R(L).

Proof. Let L be a point and line configuration, with realization Λ ⊂ R3. Let Z(L) denote

the corresponding geometric 3-polyhedral complex constructed from Λ as in Theorem 4.0.10.

Let Z(L) be the polytopal arrangement corresponding to Z(L). We begin by constructing

a polytopal arrangement X = X (L) by adding additional polytopes to Z(L). The purpose

of adding these polytopes is simply to force the realizations of L generated by realizations

of X to lie in R3 (rather than RP3), hence in R(L).

Let pi ∈ Λ, and place a tetrahedron (or triangular prism) Ti such that pi is a vertex of

Ti. Let e1 and e2 denote two of the edges of Ti containing pi. Let B denote a belt of Z(L)

whose lateral edges are concurrent at pi. Let e3 and e4 denote two of the lateral edges of B.

Now construct a new belt Ci that is attached along four of its lateral edges to the four edges

e1, e2, e3, e4. See Figure 4.3. Adding Ti and Ci to Z(L) for each i ∈ [n] yields the polytopal

arrangement X = X (L).

Consider a realization X ′ of X , and let Λ′ be the realization of Λ generated by X ′. For

a point p′ ∈ Λ′, let e′1, e
′
2, e
′
3, e
′
4 be the edges corresponding to e1, e2, e3, e4 in the above

construction. Since they are the lateral edges of a belt, these edges will be concurrent, at p′.
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Figure 4.3: A belt, shown schematically in purple, attached to the four indicated edges of

the tetrahedra. This belt forces the point p to be a vertex of the tetrahedron T in every

realization of X .

Since the point of concurrency of e′1 and e′2 is a vertex of X ′, we have that p′ is a vertex

of X ′. Thus, for any realization X ′ of X , the realization Λ′ of L generated by X ′ consists

entirely of vertices of X ′. In particular, Λ′ does not contain points at infinity.

We will now define a map F : R(X )→ R(L) such that F assigns to each realization X ′ of

X the corresponding realization of L generated by X ′. We show that F is a stable equivalence,

by showing that it is the composition of stable projections and rational homeomorphisms.

Let n denote the number of points of L and N the number of vertices of X . Then we

have R(L) ⊂ R3n, and R(X ) ⊂ R3N . From the construction of X(L) in Theorem 4.0.10, we

see that each point i of L corresponds to a belt Bi of X . In particular, we choose Bi to be

one of the belts such that the lateral edges of Bi are concurrent at the point pi ∈ Λ.

For each belt Bi, fix an ordering of the its vertices v i1, v i2, . . . , v isi , such that the first four

vertices are the (cyclically ordered) vertices of a lateral facet fi of Bi, and such that v i1v i2

and v i3v i4 are the two lateral edges of fi. Let w 1, . . . ,w r denote the remaining vertices
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of X . Let f1 : R3N → R3N be a map that permutes the coordinates, in such a way that

f1(x) = (x11,x12,x13,x14,x21,x22,x23,x24, . . . ,xn1,xn2,xn3,xn4 | x15, . . . ,xnsn ,y1, . . . ,yr),

where each xij,yi ∈ R3, and X is obtained by letting xij and yi take on the values v ij and

w i, respectively. That is, each quadruple xi1,xi2,xi3,xi4 appears first in the ordering of the

coordinates determined by f1. We may choose any one of the many such maps f1, since

we do not care how the remaining coordinates (to the right of the bar) are permuted. Let

f2 : R3N → R3(4n) denote the standard projection onto the first 4n triples of coordinates.

Consider a realization X ′ of X , and let Λ = {p1, . . . ,pn} ⊆ R3 be the realization of L

generated by X ′. Note that each point pi is the point of intersection of the lateral edges of

the belt B′i of X ′ corresponding to the belt Bi of X . Let v ′ij and w ′i denote the corresponding

vertices of X ′

Note that v ′i2v
′
i3 and v ′i1v

′
i4 are the non-lateral edges of fi. Let `1 = aff(v ′i1, v

′
i2), `2 =

aff(v ′i3, v
′
i4), `3 = aff(v ′i2, v

′
i3), `4 = aff(v ′i1, v

′
i4) denote the lines spanned by these edges.

By definition of Bi, the lines `1 and `2 intersect at pi. Thus the coordinates of pi can be

solved for in terms of those of the v ij. That is, pi = gi(v
′
i1, v

′
i2, v

′
i3, v

′
i4) for some rational

function gi with coefficients in Q. Similarly, the lines `3 and `4 intersect in a point q i, so

q i = hi(v
′
i1, v

′
i2, v

′
i3, v

′
i4) for some rational function hi with coefficients in Q.

Let A ⊂ R3(4) denote the space of coplanar 4-tuples (x1,x2,x3,x4), xj ∈ R3, such that

no three are collinear. For each i, we define a map si : A→ A by

si(xi1,xi2,xi3,xi4) = (gi(xi1,xi2,xi3,xi4),xi2, hi(xi1,xi2,xi3,x4),xi4).

From the definitions of gi and hi, we see that given a point in b = (b1, b2, b3, b4) ∈ A, we

may reconstruct the unique point a = (a1, a2, a3, a4) ∈ A for which si(a) = b. Namely,

a2 = b2, a4 = b4, a1 is the intersection of the lines aff(b1, b2) and aff(b3, b4), and a3 is the

intersection of the lines aff(b1, b4) and aff(b2, b3). See Figure 4.4. Thus si is a bijection,

and clearly si and s−1i are continuous. Hence si is a homeomorphism. Since gi and hi are

rational functions with coefficients in Q, by definition si is a rational homeomorphism.
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a1

a2

a3

a4

gi(a1, a2, a3, a4)

hi(a1, a2, a3, a4)

b2

b4

b1

b3

a1

a3

Figure 4.4: The map si (left) and its inverse (right). Encircled points indicate points obtained

as the intersection of two lines.

It follows that the map f3 : An → An defined by

f3(x11,x12,x13,x14, . . . ,xn1,xn2,xn3,xn4) = (s1(x11,x12,x13,x14), . . . , sn(xn1,xn2,xn3,xn4))

is a rational homeomorphism. Let f4 : R3(4n) → R3(4n) be the coordinate permutation defined

by

f4(x11,x12,x13,x14, . . . ,xn1,xn2,xn3,xn4)

= (x11, . . . ,xn1,x12, . . . ,xn2,x13, . . . ,xn3,x14, . . . ,xn4).

Let f5 : R3(4n) → R3n denote the standard projection onto the first n triples of coordi-

nates. Then note that

f5 ◦ f4 ◦ f3(x11,x12,x13,x14, . . . ,xn1,xn2,xn3,xn4)

= (g1(x11,x12,x13,x14), . . . , gn(xn1,xn2,xn3,xn4)),

so in particular

f5 ◦ f4 ◦ f3(v ′11, v ′12, v ′13, v ′14, . . . , v ′n1, v ′n2, v ′n3, v ′n4) = (p1,p2, . . . ,pn).

Let f ′1 denote the restriction of f1 to R(X ), and recursively, for i > 1 let f ′i denote the

restriction of fi to the range of fi−1. We define F = f ′5 ◦ f ′4 ◦ f ′3 ◦ f ′2 ◦ f ′1. Then from the
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definition of the functions f ′i we see that F : R(X ) → R(L) and F is a surjection. We

demonstrated above that f3 is a rational homeomorphism, and the functions f1 and f4 are

simply permutations of the coordinates, hence rational homeomorphisms. It follows that

f ′1, f
′
3, f

′
4 are rational homeomorphisms.

Furthermore, note that the functions f2 and f5 are standard coordinate projections. We

may factor f ′2 and f ′5 into a composition of projections, each of which deletes one coordinate

at a time. Since realizations of X allow for self-intersection of polytopes, the only constraints

on R(X ) are those which require each vertex to be contained in the appropriate polytopes.

That is, there are no constraints forbidding the intersection of polytopes. Thus every factor

map has the property that each of its fibers is the intersection of half-spaces (in particular,

no unions are taken over half-spaces). That is, these factors are stable projections, so f ′2 and

f ′5 are the composition of stable projections. Therefore F is a stable equivalence.

While the above result shows that the realization space of a polytopal arrangement is

stably equivalent to the underlying point and line configuration, we would like a stronger

result, which states that realization spaces of polytopal arrangements can be stably equivalent

to arbitrary semialgebraic sets. For this, we will need to add an additional structure to our

point and line configurations, to obtain an oriented matroid. We provide an equivalent

definition of an oriented matroid, which will be convenient for our purposes.

A line L ⊂ Rd has two possible orientations, each of which induces a linear order on the

points x ∈ L. Let L = (X,E) be a planar point and line configuration, such that every

two abstract lines e1, e2 ∈ E share a point of X (that is, e1 ∩ e2 6= ∅). Let Λ ⊂ Rd be a

realization of L. For each e ∈ E, let L be the line of Λ realizing e, and choose an orientation

γ of L. Write e = {i1, . . . , ik}, where (pi1 ,pi2 , · · ·pik) is the order of the pj ∈ L induced

by γ. We define the oriented line e′ to be the ordered tuple (i1, . . . , ik). Let E ′ denote the

resulting set of oriented lines e′. ThenM = (X,E ′) is an oriented matroid. One can readily

check that this definition is equivalent to those given elsewhere (see e.g. [R]). In particular,

the fact that we require every two lines of M to intersect in a point of M means that all
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realizations of M (which will agree on the order of the points) will agree on the set of half

planes in which a given point lies.

IfM = (X,E ′) is an oriented matroid, let E be the set obtained by replacing each tuple

(i1, . . . , ik) ∈ E ′ with the set {i1, . . . , ik}. Then we say that L(M) = (X,E) is the point and

line configuration corresponding to M. A realization of M is a set Λ = {p1, . . . ,pn} ⊂ Rd

such that Λ is a realization of L(M), and such that if L is a line of Λ corresponding to

e′ = (i1, . . . , ik), then there is an orientation γ of L such that (pi1 ,pi2 , · · ·pik) is the order of

the pj ∈ L induced by γ. In other words, a realization ofM is a realization of the underlying

point and line configuration in which the points of each line have a prescribed order, up to

reversing the orientation of the line.

Theorem 4.0.12 Let M be an oriented matroid. Then there is a 3-polytopal arrangement

Y(M) such that R(Y(M)) is stably equivalent to R(M).

Proof. Let M be an oriented matroid, and let Λ ⊂ R3 be a realization of L(M). Let

X (L(M)) be the polytopal arrangement constructed from Λ as in Theorem 4.0.11. We write

X = X (L(M)). We introduce a new polyhedral gadget which, when added to X , will yield

a polytopal arrangement Y = Y(M) such that every realization of Y generates a realization

of M. That is, every realization of Y generates a realization of L(M) in which the points

occur on each line in the order prescribed by M. The proof of stable equivalence is then

identical to the proof of Theorem 4.0.11.

Let pi,pj,pk denote three points of Λ which appear consecutively on a line L of Λ. We

construct a belt Gijk consisting of two triangular prisms, call them T1 and T2, as follows.

Let v 1, v 2, v 3, v 4 denote the vertices of a lateral facet f of T1 labeled cyclically, where

e1 = v 1v 4 and e2 = v 2v 3 are the lateral edges of f . We may choose the vertices xi so that

if `1 = aff(v 1, v 2), `2 = aff(v 1, v 3), and `3 = aff(v 1, v 4), then pi ∈ `1, pj ∈ `2, and pk ∈ `3.

Note that `2 is the line spanned by the diagonal v 1v 3 of the facet f . Let z denote the point

of intersection of the diagonals v 1v 3 and v 2v 4. We attach T2 to T1 along the unique lateral

facet g of T1 that contains the edge e2 and does not contain e1. Let e3 denote the non-lateral
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v 1

v 2

v 3

v 4

e1

e2

e3

pi pj pk

z

Figure 4.5: The arrangement Iijk, with the two prisms T1 and T2 shown in blue and the belt

Hijk shown schematically in purple. The diagonals of the facet f of T1 are shown in red.

edge of T2 containing the vertex v 3, and not contained in g. We may choose the vertices of

T2 such that e3 ⊂ `2.

Attach a belt Hijk to Gijk along the edges e1, e2, e3 of Gijk. Call the resulting arrangement

Iijk (see Figure 4.5). Then in every realization of Iijk, the edges e1, e2, e3 will be concurrent.

Thus the vertex v 1 will be contained in aff(e3). Since v 3 ∈ e3 by construction, this implies

that `2 = aff(e3). That is, the diagonal v 1v 3 will be collinear with the line spanned by e3.

If Ba denotes a belt of X with all lateral edges concurrent at pa, then attach a lateral edge

of the belt Bi to the edge e1 of Iijk, a lateral edge of Bk to e2, and a lateral edge of Bj

to e3. Let Y denote the arrangement obtained by adding Iijk to X for each such consecutive

collinear triple of points pi,pj,pk, and performing the belt attachments just described.

Now suppose pi,pj,pk are three consecutive collinear points of Λ, contained in a line L

of Λ. Let Y ′ be a realization of Y , and for each point, edge, line, or facet a of Y , let a′ denote

the corresponding object of Y ′. Then z′ must lie between v ′2 and v ′4 on the line aff(v ′2, v
′
4),

since z′ is the intersection of the diagonals v ′1v
′
3 and v ′2v

′
4 of f ′, and f ′ is convex. From the

attachment of the belts Bi, Bj, Bk to Iijk, we see that pi ∈ `′1, pj ∈ aff(e′3) = `′2, and pk ∈ `′3.

Thus the point p′j must lie between the points p′i and p′k on the line L′ containing them.
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It follows that in every realization Y ′ of Y , the realization Λ′ of L(M) generated by Y ′

has the property that all points occur along each line in the order prescribed by M. That

is, Λ′ is a realization of M.

From Theorem 4.0.12, together with the universality theorem for oriented matroids

(see [R]), we obtain the following universality theorem for polytopal arrangements.

Corollary 4.0.13 (Strong Universality Theorem) Let V ⊆ Rm be a basic primary semial-

gebraic set, defined over Z. Then there is a 3-polytopal arrangement X such that R(X ) is

stably equivalent to V .
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CHAPTER 5

Geometric Realizations of Polyhedral Complexes

5.1 Unrealizable Complexes

Using the techniques of the construction in the proof of Theorem 1.0.1 (namely belts),

it is easy to construct topological polyhedral complexes that have no geometric realization

at all. We will prove Theorems 1.0.2 and 1.0.3 by constructing two such complexes. The

second of these complexes is homeomorphic to a 3-ball.

Proof of Theorem 1.0.2. Let A be a 3-simplex in R3, with vertices labeled x1,x2,x3,x4. Let

ei,j = conv(xi,xj), i 6= j, denote the edges of A. Attach a topological belt B consisting of 2

triangular prisms to the two edges x1x2 and x3x4 as shown in Figure 5.1. Call the resulting

topological polyhedral complex X.

Suppose that X has a geometric realization Y , with vertices yi corresponding to xi.

Since the edges e1,2 and e3,4 both belong to the belt B, the corresponding edges of Y must

be concurrent by Lemma 3.0.8. But then the vertices y1,y2,y3,y4 are all coplanar. Hence

they do not determine a 3-simplex, a contradiction.

Proof of Theorem 1.0.3. Let X denote the polyhedral complex of Theorem 1.0.2. As shown

in Figure 5.1, the vertices x1,x3, a1 and the edges between them determine a topological

2-simplex, call it ∆1. Similarly, the vertices x2,x4, a2 and the edges between them determine

a topological 2-simplex ∆2. That is, ∆1 and ∆2 are topological 2-polyhedral complexes. We

define S = X ∪ {∆1,∆2}.

Note that S is not a 3-polyhedral complex by our definition, because it contains facets
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Figure 5.1: The unrealizable topological polyhedral complex of Theorem 1.0.2.

∆1 and ∆2 which are not contained in any cell of S. However, we may create a polyhedral

complex from S as follows. Let R denote the bounded component of the complement of S

(i.e. R is the region surrounded by S). Let c ∈ R, and for each facet F in the boundary of

(the closure of) R, add to S the topological cone with apex c and base F . In other words,

cone from the point c. Let X ′ denote the resulting 3-polyhedral complex.

Then clearly X is a subcomplex of X ′, and |X ′| ∼ B3. Furthermore, X ′ has exactly 9

vertices, 24 edges, 25 facets, and 9 cells. The cells of X ′ are comprised of 5 tetrahedra, 2

triangular prisms, and 2 tetragonal pyramids.

It is worth noting that the unrealizable complex of Theorem 1.0.2 is minimal, in the

sense that any topological 3-polyhedral complex consisting of two polyhedra is geometrically

realizable. To see this, let X be a topological 3-polyhedral complex consisting of two 3-

polyhedra Q1 and Q2. If Q1 and Q2 share less than a 2-face, the result is immediate. So

suppose that Q1 and Q2 share a 2-face F . Let P1 and P2 be polytopes isomorphic to Q1

and Q2, respectively. Let F1 and F2 denote the facets of P1 and P2, respectively, that

correspond to F . Barnette and Grünbaum [BG] proved that the shape of one facet of a

3-polytope may be arbitrarily prescribed. Therefore we may choose P1 and P2 so that F1

and F2 are congruent. Apply an affine transformation that identifies F1 with F2. The result

is a geometric 3-polyhedral complex isomorphic to X.
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5.2 Sufficient Conditions for Realization

Having described complexes which are not realizable, we now undertake the task of devis-

ing reasonable sufficient conditions for a polyhedral complex to be geometrically realizable.

The first is Theorem 1.0.4, which tells us that we may geometrically realize a certain class of

simplicial complexes in arbitrary dimension. The second is an analogous result for general

polyhedral complexes, and holds only for d ≤ 3. Before we state and prove these theorems we

will need to introduce some relevant definitions. Some of these definitions (such as star, link,

and vertex decomposable) are standard, while others (such as strongly vertex decomposable

and vertex truncatable) are not.

Let X be a polyhedral complex and let F be a face of X. The star of F in X is the set

stX(F ) = {A ∈ X | F ⊆ A}. Let cstX(F ) = {A ∈ X | A ⊆ B ∈ stX(F )} denote the closed

star of F . Note that cstX(F ) is a polyhedral complex, while stX(F ) may not be (since it may

not be closed under taking subfaces). For F ∈ X, let XrF be a shorthand for Xr stX(F ),

which is called the deletion of F from X. The deletion is clearly a polyhedral complex. The

link of F in X is the polyhedral complex lkX(F ) = cstX(F ) r F .

Let X be a topological d-polyhedral complex such that |X| ∼ Bd, and let v be a boundary

vertex of X. We say that v is boundary minimal if v is contained in exactly d boundary

facets, each of which is a (d− 1)-simplex. We call v a shedding vertex of X if |X r v| ∼ Bd,

and a strong shedding vertex if in addition v is boundary minimal. We say that X is strongly

vertex decomposable if either X is a single polyhedron, or recursively, X has a strong shedding

vertex v such that X r v is strongly vertex decomposable. A boundary vertex w of X is a

solitary vertex if there is exactly one polyhedron Pw ∈ PX such that w ∈ Pw, and a strong

solitary vertex if in addition w it is boundary minimal.

If we restrict ourselves to simplicial complexes, then we find that in any dimension d, a

strongly vertex decomposable simplicial d-ball is always geometrically realizable. This is the

statement of Theorem 1.0.4, and the proof is straightforward.

Proof of Theorem 1.0.4. Let X denote a d-simplicial complex, such that |X| ∼ Bd and X
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is strongly vertex decomposable. We proceed by induction on n, the number of vertices

of X. If n = d + 1, then X consists of a single d-simplex, which is obviously realizable. If

n > d+1, let v be a strong shedding vertex of X, and let X ′ = Xrv. Then by definition X ′

is a strongly vertex decomposable d-ball. Since X ′ has one fewer vertex than X, by the

induction hypothesis X ′ has a geometric realization Y ′. Since v is a strong shedding vertex,

it is adjacent to exactly d boundary vertices of X, call them w1, . . . wd. Then lk∂X(v) (the

link of v in the complex ∂X) has exactly d faces of maximal dimension, call them F1, . . . , Fd,

each of which is a (d− 2)-face of X. Each face Fi is contained in exactly one facet τi of X ′.

Let Hi = aff(τi) and let H ′ = aff(w1, . . . , wd).

Since d hyperplanes in RPd always intersect in a point, we may let x denote the point of

intersection of the hyperplanes Hi. If x is a point at infinity, or x lies on the same side of

the hyperplane H ′ as |Y ′|, then apply a projective transformation so that x is a finite point

and x and |Y ′| lie on different sides of H ′. Now let u be a point contained in conv(Y ′ ∪ v)

such that u is very close to v. Add straight line segments between u and all vertices of

|Y ′| that correspond to neighbors of v in X. By taking u arbitrarily close to v, we may

ensure that these added line segments intersect |Y ′| only in the desired vertices. These

line segments, together with u and its neighbors, determine a collection of k-simplices for

2 ≤ k ≤ d. Adding these simplices to Y ′ yields a geometric d-simplicial complex Y such that

X ' Y .

Now we consider the general case that X is a d-polyhedral complex. We will need to

develop some more involved definitions in order to prove a result analogous to Theorem 1.0.4.

SupposeX1 andX2 are two d-polyhedra that share exactly one facetQ. Then letX1#QX2

denote the polyhedron obtained from X1 ∪ X2 by replacing the two cells |X1| and |X2| by

the single cell |X1| ∪ |X2| and removing the facet Q.

We now define a construction called subdivision by facet. Let X be a polyhedral complex,

let v be a boundary vertex of X, and let P ∈ PX(v). Let τ(v, P ) ⊆ |P | denote a (topological)

(d−1)-ball such that τ(v, P )∩|lk∂P (v)| = ∂τ(v, P ). In particular, the vertices of X contained
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Figure 5.2: A 2-polyhedral complex with vertex v encircled, and the resulting complex X∗(v)

with the added facets τ(v, P ) shown in red.

in τ(v, P ) are exactly the neighbors of v in ∂X. We may construct a new polyhedral complex

X⊕ τ(v, P ), called the subdivision of X at v and P , as follows. If X already contains a facet

F ⊆ P such that F ∩ |lk∂P (v)| = ∂F , then take X ⊕ τ(v, P ) = X. If X contains no such

facet, then X ⊕ τ(v, P ) is obtained by adding the facet τ(v, P ) and replacing P ∈ X with

two new cells σ1, σ2 such that σ1 ∪ σ2 = P and σ1 ∩ σ2 = τ(v, P ). Note that subdivision by

facet has no effect on simplicial complexes.

For a boundary vertex v of X we define the full subdivision of X at v by

X∗(v) = X
⊕

P∈PX(v)

τ(v, P ).

That is, X∗(v) is obtained from X by repeatedly doing subdivision by facet, in effect subdi-

viding X at v and P for each P ∈ PX(v) (see Figure 5.2).

We say that X is vertex truncatable if |X| ∼ Bd and at least one of the following holds:

(a) X is a d-simplex.

(b) X has a strong shedding vertex v such that X∗(v) r v is vertex truncatable.

(c) X has a strong solitary vertex v such that X∗(v) r v is vertex truncatable.

Note that if |X| ∼ Bd and v is a strong shedding vertex of X, then v is clearly a strong shed-

ding vertex of X∗(v). Thus |X∗(v) r v| ∼ Bd. It follows that strongly vertex decomposable

implies vertex truncatable.
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Two k-faces F1, F2 ∈ X are said to be strongly adjacent if dim(F1 ∩ F2) = k − 1. For X1

a polytope and F1, F2 ∈ X1 strongly adjacent facets, we define α(F1, F2) to be the interior

angle of X1 formed between F1 and F2. More precisely, α(F1, F2) is the angle between

the normal vectors to the hyperplanes aff(F1) and aff(F2). Technically, there are two such

angles—we take the angle less than π so that it is interior to X1. If d = 2 then α(F1, F2) is

a vertex angle, and if d = 3 then α(F1, F2) is a dihedral angle.

Given a d-polytope X in Rd and a facet F ∈ X, the Schlegel set of X with respect to

F , which we denote by ξ(X,F ), is the closed convex set bounded by the hyperplanes aff(F )

and aff(Gi) for each facet Gi strongly adjacent to F . That is, if G1, . . . , Gk ∈ X denote the

facets strongly adjacent to F , the set HGi
is the closed halfspace bounded by aff(Gi) and

meeting the interior of X, and the set HF is the closed halfspace bounded by aff(F ) and

not meeting the interior of X, then ξ(X,F ) = HF ∩
⋂k
i=1HGi

. A Schlegel point is a point

y ∈ int(ξ(X,F )).

If the facet F is a (d−1)-simplex, the hyperplanes aff(Gi) intersect in a (possibly infinite)

point, which we call the apex of ξ(X,F ). If the apex x is a finite point, then x ∈ ξ(X,F ) if

and only if x and X lie on opposite sides of the hyperplane aff(F ). If the apex x is a finite

point and x ∈ ξ(X,F ), then ξ(X,F ) is just the cone with base F and apex x.

Theorem 5.2.1 Let d ≤ 3 and let X be a topological d-polyhedral complex in Rd such

that |X| ∼ Bd and all interior facets F (that is, F ∈ X r ∂X) are simplices. If X is

vertex truncatable, then there is a geometric polyhedral complex Y in Rd such that X ' Y .

Furthermore, we may choose Y to have all vertices rational.

Proof. To prove the theorem, we strengthen it, which in turn strengthens our induction

hypothesis. Namely, we claim that if such a Y exists, then furthermore:

(i) For any polytope Z such that ∂Z ' ∂X, we may choose Y such that |Y | = |Z|.

(ii) Let ε > 0. Let X1, . . . Xk ∈ PX such that Xi ∩ Xj ⊆ ∂X and Xi ∩ ∂X is a facet

of X, call it Fi. Let Yi ∈ PY be the polyhedron corresponding to Xi and let Gi ∈ ∂Y be

37



the face corresponding to Fi ∈ ∂X. Then we may choose Y such that α(Hj, Gi) < ε for all

i = 1, . . . , k and every face Hj ∈ Yi strongly adjacent to Gi.

If d ≤ 1 the theorem is trivial, so assume d ∈ {2, 3}. Suppose that X is a vertex

collapsible d-polyhedral complex with simplicial interior facets. We proceed by induction

on n, the number of vertices of X. In the base case X has d + 1 vertices, and we may take

Y to be any geometric d-simplex in Rd. Now suppose n > d+ 1.

Since X is vertex truncatable, choose a boundary vertex w0 satisfying either condition

(b) or (c) of the definition. Let X ′ = X∗(w0) r w0. By definition, X ′ is vertex truncatable,

so in particular |X ′| ∼ Bd. Furthermore, all interior facets of X ′ are clearly simplices.

Let Z be a polytope such that ∂Z ' ∂X. If d = 3, such a polytope Z exists by Steinitz’s

Theorem. If d = 2 then Z may be any strictly convex polygon with the same number

of boundary vertices as X. Since w0 is boundary minimal, it has d neighbors w1, . . . , wd

in ∂X. Let v0 denote the vertex of Z corresponding to w0. For each i = 1, . . . , d, the vertex

wi corresponds to a vertex vi of Z, where vi is a neighbor of v0. The vertices vi lie on

a hyperplane H = aff(v1, . . . , vd). The hyperplane H splits Z into two polytopes Q1, Q2,

each defined by taking all faces of Z lying on a given side of H, which includes the facet

TZ = conv(v1, . . . , vd) in both cases. One of these two polytopes, say Q1, contains v0. Then

note that Q1 is a d-simplex.

Clearly |lkX∗(w0)(w0)| is homeomorphic to a (d − 1)-ball. So if d = 3 then lkX∗(w0)(w0)

is isomorphic to the Schlegel diagram of some 3-polytope by Steinitz’s theorem. Call this

polytope A. If d = 2 then we may simply take A to be a convex polygon with one more edge

than lkX∗(w0)(w0). Let u1, . . . , ud be the vertices of A corresponding to the vertices v1, . . . , vd

of lkX∗(w0)(w0), and let TA = conv(u1, . . . , ud). Note that TA is a (d−1)-simplex, and a facet

of A. Apply an affine transformation to |A| so that TA = TZ . If A is not a simplex, apply

a projective transformation to |A| that fixes TA and takes the apex x of ξ(A, TA) to a finite

point on the side of the hyperplane aff(TA) not containing |A|.

For a set S ⊆ Rd, let (S, 1) = {(x, 1) ∈ Rd × R | x ∈ S}. Form the (d + 1)-cone C with
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base (|A|, 1) and apex a ∈ Rd+1, ad+1 6= 1. Let FC denote the (clearly simplicial) d-face of

C containing a and (TA, 1). Let W denote the Schegel projection of C onto its facet FC ,

with respect to a Schlegel point y. Then W is a geometric polyhedral complex. Clearly W

contains a subcomplex B such that B ' A. Since (TA, 1) ⊆ FC , the (d − 1)-face (TA, 1)

is fixed by the Schlegel projection, so in fact (TA, 1) ∈ B is the face of B corresponding to

TA ∈ A. Apply an affine transformation to |W | that maps (TA, 1) to TA = TZ and maps

a to v0. This transforms |B| accordingly. In particular, we now have |W | = |Q1|. Thus

Z ′ = B#TZQ2 is a polytope such that ∂Z ′ ' ∂X ′.

By the induction hypothesis and (i), since X ′ contains one fewer vertex than X, there is a

geometric polyhedral complex Y ′ such that X ′ ' Y ′ and |Y ′| = |Z ′|. Let Y ∗ = Y ′∪W . Then

clearly X∗(w0) ' Y ∗. Removing the facets of Y ∗ corresponding to the facets τ(w0, P ) of

X∗(w0), we obtain a polyhedral complex Y such that X ' Y and |Y | = |Z|. This establishes

(i), provided that each cell of Y is convex. We now show that this is the case.

Let X ′1, . . . , X
′
k ∈ PX′ denote the d-polyhedra of X ′ such that |X ′i| ⊆ |X| for some

X ∈ PX(w0). We will let Xi denote the unique d-polyhedron of X such that |X ′i| ⊆ |Xi|.

For all i, j = 1, . . . , k, since w0 ∈ Xi ∩ Xj and X is a polyhedral complex, we must have

X ′i ∩ X ′j ⊆ ∂X ′, for otherwise Xi and Xj would intersect in more than a unique common

face. If w0 is a strong solitary vertex of X, then k = 1. Thus the single polyhedron Y1 ∈ PY

corresponding to X1 is clearly convex from the above construction.

Now suppose that w0 is a strong shedding vertex of X. Note that any shedding vertex

w0 of X must satisfy cstX(w0) ∩ ∂X = cst∂X(w0), for otherwise |X r w0| would not be

homeomorphic to Bd. Thus we must have X ′i ∩ ∂X ′ = τ(w0, Xi). So X ′1, . . . X
′
k satisfy the

hypotheses of (ii). Let Y ′i ∈ PY ′ be the polyhedron corresponding to X ′i and Gi ∈ Y ′ the facet

corresponding to τ(w0, Xi). Let Yi ∈ PY be the unique polyhedron such that |Y ′i | ⊆ |Yi|.

Since our induction hypothesis is enhanced by (ii), we may assume that the angles α(Hj, Gi)

are arbitrarily small for each i and each face Hj ∈ Y ′i strongly adjacent to Gi. Since the cells

|Y ′i | are convex by induction and form arbitrarily small angles with Gi, we may ensure that

on removing Gi the resulting cell |Yi| ∈ Y is convex. Finally, if σ ∈ Y is a cell not having
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any of the |Y ′i | as a subset, then either σ is a d-simplex (hence convex) or σ ∈ Y ′. In the

latter case σ is convex because Y ′ is a geometric polyhedral complex.

Now we must show that (ii) holds. Let X1, . . . , X` ∈ PX be a collection of polytopes

satisfying the hypotheses of (ii), and let Y1, . . . Y` ∈ PY denote the corresponding polytopes

of Y . If Yi ∈ PY ′ then we obtain the conclusion of (ii) from the induction hypothesis. Now

suppose Yi /∈ PY ′ . Then Yi ∈ PW . If the A in the above construction is a simplex, then ` = 1.

Let v be the vertex of A not contained in TA. Then we may clearly choose v arbitrarily close

to the facet Yi ∩ ∂Y . If A is not a simplex, then because the point x is finite and lies on

the side of aff(TA) opposite to that of A, x ∈ ξ(C,FC). In particular ξ(C,FC) is a cone with

base FC and apex x ∈ Rd+1. By choosing the Schlegel point y in the above construction

arbitrarily close to x, we may ensure that all such angles α(Fi, Fj) in the projection W are

arbitrarily small.

Finally, that Y may be chosen to be rational is an immediate consequence of the methods

of the proof. Broadly speaking, we obtained Y by first using Steinitz’s theorem to produce

polytopes Z and A, and then manipulating these polytopes using projective transformations.

But from the proof of Steinitz’s theorem, we may take both Z and A to be rational. By then

using only rational affine and projective transformations in the above constructions, we may

in fact obtain a rational geometric polyhedral complex Y such that X ' Y .

It is straightforward to show that all 2-polyhedral complexes are vertex truncatable.

Thus Theorem 5.2.1 implies that all 2-polyhedral complexes are geometrically realizable.

Note that every 2-polyhedral complex is a 2-connected plane graph. However, the converse

is not true. In fact, if a 2-connected plane graph is not a polyhedral complex (i.e. if the

intersection of two faces is more than a unique common edge or vertex of both), then it

clearly does not admit an embedding such that all faces are strictly convex.

Therefore we obtain necessary and sufficient conditions for a 2-connected plane graph G

to admit an isotopic embedding G′ such that all faces of G′ are strictly convex. Specifically,

a 2-connected plane graph G has a strictly convex isotopic embedding if and only if G is a
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2-polyhedral complex. From this we recover Tutte’s theorem [T1].

Finally, we note that the condition d ≤ 3 in the statement of Theorem 5.2.1 plays a crucial

role. Namely, it allows us to invoke Steinitz’s theorem (for d = 3). For example, by Steinitz’s

theorem a simplicial 2-sphere is always (combinatorially) isomorphic to the boundary of a

3-polytope. In higher dimensions the analogous statement is not true (see [GS]).
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CHAPTER 6

A Sequentially Convex Embedding Algorithm for

Plane Triangulations

For a plane graph G with n vertices and an ordering of the vertices a = (a1, . . . , an), we

define a sequence of plane graphs G0(a), . . . , Gn(a) recursively by Gn(a) = G and Gi−1(a) =

Gi(a) − {ai}. We will write Gi for Gi(a) when a is understood. If v is a vertex of Gi then

we let di(v) denote the degree of v in the graph Gi.

A plane triangulation is a 2-connected plane graph G such that each bounded face

of G has exactly 3 vertices. Note in particular that if G is a plane triangulation then F(G)

is homeomorphic to a 2-ball. A boundary vertex v of a plane triangulation G is a shedding

vertex of G if G−{v} is a plane triangulation. Let G be a plane triangulation with n vertices.

A vertex sequence a = (a1, . . . , an) is called a shedding sequence for G if ai is a shedding

vertex of Gi(a) for all i = 4, . . . , n. We have the following useful lemma.

Lemma 6.0.2 ([FPP], section 2) Let G be a plane triangulation. Then for any boundary

edge uv of G, there is a shedding sequence a = (a1, . . . , an) for G such that u = a1 and

v = a2.

We say that a strictly convex polygon P ⊂ R2 with edge e is projectively convex with

respect to e if P is contained in a triangle having e as an edge. A shedding sequence

a = (a1, . . . , an) for a plane triangulation G is a convex shedding sequence if the region

F(Gi(a)) is a projectively convex polygon with respect to the edge a1a2 for all i = 3, . . . , n.

A geometric embedding G′ of G is sequentially convex if G′ has a convex shedding sequence.

In this section we describe an algorithm for producing a sequentially convex embedding of any
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given plane triangulation, such that the vertices of the embedding lie in a polynomially-sized

integer grid.

6.1 A Rational Embedding

First we address a much easier question: How does one obtain a sequentially convex

embedding of G in Q2 (that is, with vertex coordinates rational)? We describe a simple

construction that produces such an embedding. The method used to accomplish this easier

task will provide part of the motivation and intuition behind the more involved method we

will use to obtain a polynomially-sized embedding in Z2.

Theorem 6.1.1 Let G be a plane triangulation with n vertices and boundary edge uv, and

let a = (a1, . . . , an) be a shedding sequence for G with u = a1, v = a2. Then G has a

geometric embedding G′ in Q2, such that the corresponding sequence a′ = (a′1, . . . , a
′
n) is a

convex shedding sequence for G′.

Proof. We proceed by induction on n. If n = 3 then any triangle with rational coordinates

is a sequentially convex embedding of G. If n > 3, then by the inductive hypothesis there

is an embedding G′n−1 of Gn−1 in Q2 such that (a′1, . . . , a
′
n−1) is a convex shedding sequence

for G′n−1. We may assume that u′v′ lies along the x-axis, and that u′ lies to the left of v′,

and that G′n−1 lies in the upper half-plane. Let w1, . . . , wk denote the neighbors of an in G,

and let w′1, . . . , w
′
k denote the corresponding vertices of G′n−1, ordered from left to right. If

w′1 6= u′, then let z′1 denote the left boundary neighbor of w′1. Similarly, if w′k 6= v′, let z′2

denote the right boundary neighbor of w′k.

For adjacent vertices u and v, we will denote the slope of the edge uv by s(uv). Similarly,

we will denote the slope of a line ` by s(`). Consider the lines `1, `2, `3, `4 spanned by the

edges z′1w
′
1, w

′
1w
′
2, w

′
k−1w

′
k, and w′kz

′
2, respectively. If w′1 = u′, we may take `1 to be any non-

vertical line passing through u′, with slope satisfying s(`1) > s(`2). Similarly, if w′k = v′, we

may take `4 to be any non-vertical line passing through v′, with slope satisfying s(`3) > s(`4).
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Figure 6.1: The new vertex a′n, chosen as a rational point of the set S.

Let A1, A4 ⊂ R2 denote the open half-planes below the lines `1 and `4, respectively, and

let A2 and A3 denote the open half-planes above the lines `2 and `3, respectively. Since

F(G′n−1) is projectively convex with respect to u′v′, the slopes of the lines `i must satisfy

s(`1) > s(`2) > s(`3) > s(`4). Thus the region S = A1 ∩ A2 ∩ A3 ∩ A4 is non-empty. See

Figure 6.1. Since each set Ai is open, the set S is open, so we may choose a rational point

in S, call it a′n. For each j = 1, . . . , k add a straight line segment ej between a′n and the

vertex w′j. Since a′n lies in the region above the lies `2 and `3, each line segment ej will

intersect G′n−1 only in the vertex w′j.

Let G′ denote the plane graph obtained from G′n−1 by adding the vertex a′n and the

edges ej. Then G′ is clearly a geometric embedding of Gn = G, such that each vertex

ai corresponds to a′i, for i = 1, . . . , n. Furthermore, since a′n lies in the region below the

lines `1 and `4, the region F(G′) is projectively convex with respect to u′v′. From this,

together with the fact that (a′1, . . . , a
′
n−1) is a convex shedding sequence for G′n−1, we have

that a′ = (a′1, . . . , a
′
n) is a convex shedding sequence for G′.

44



6.2 The Shedding Tree of a Plane Triangulation

Now we turn to the problem of embedding the triangulation G on an integer grid. The

idea behind our construction is roughly as follows. We start with a triangular base whose

the horizontal width is very large. We then show that, because this horizontal width is

large enough, we may add each vertex in a manner similar to that used in the proof of

Theorem 6.1.1, and we will always have enough room to find an acceptable integer coordinate.

The crucial part of the construction is the careful method in which we add each new vertex.

In particular, there are two distinct methods for adding the new vertex ai, depending on

whether di(ai) = 2 or di(ai) > 2. To facilitate the proper placement of the vertices ai with

di(ai) = 2, we will appeal to a certain tree structure determined by the shedding sequence a.

We introduce the following definitions.

Let G be a plane triangulation with shedding sequence a. We may assume that G is

embedded geometrically as in Theorem 6.1.1. Proceeding recursively, we define a binary tree

T = T (G, a), such that the nodes of T are edges of G, and the edges of T correspond to

faces of G.

Let ν2 denote the edge of G containing vertices a1, a2, and let T2 be the tree consisting

of the single node ν2. Now let 3 ≤ i ≤ n, and let νi, ν
′
i denote the boundary edges of

Gi(a) immediately to the left and right of ai, respectively (this is well defined because G is

embedded as in Theorem 6.1.1). Assume that we have already constructed Ti−1, and that

all boundary edges of Gi−1(a) are nodes of Ti−1. Let ξ, ξ′ be the boundary edges of Gi−1(a)

such that ξ shares a face with νi, and ξ′ shares a face with ν ′i.

Define Ti = Ti(G, a) to be the tree obtained from Ti−1 by adding νi and ν ′i as nodes,

and adding the edges (ξ, νi) and (ξ′, ν ′i), designated left and right, respectively. Then clearly

all boundary edges of Gi(a) are vertices of Ti. Thus we have a recursively defined se-

quence of trees (T2, T3, . . . , Tn), and nodes (ν2, ν3, ν
′
3, . . . , νn, ν

′
n), such that Ti has nodes

ν2, ν3, ν
′
3, . . . , νi, ν

′
i. We define T = Tn (see Figure 6.2). Note that for all i = 2, . . . , n, we

have Ti(G, a) = T (Gi(a), (a1, . . . , ai)).
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G G∗

T T ∗

a1 a2 a1 a2

Figure 6.2: The triangulations G and G∗, together with corresponding trees T and T ∗. Each

node of T corresponds to an edge of G, and similarly for T ∗ and G∗. The tree T ∗ is obtained

from T by contracting the blue edges. The large nodes of T are the internal nodes of T ∗,

and correspond to the vertices of G∗ other than a1 and a2.

Let R = {i ∈ {1, . . . , n} | di(ai) ≤ 2}, and define a set of edges

ER = {(ξ, σ) ∈ E(T ) | σ = νj or σ = ν ′j for some j /∈ R}.

Let T ∗i = T ∗i (G, a) be the tree obtained from Ti by contracting all edges in ER (shown in

blue in Figure 6.2). Note that each T ∗i is a full binary tree. We define T ∗ = T ∗n , and we call

the Ti’s the reduced trees of G. If di(ai) = 2 for all i ≥ 3, then T ∗ = T .

A fundamental idea behind our integer grid embedding is that the reduced tree T ∗ con-

tains the crucial information needed for carrying out the embedding of G. For example, for

each i ∈ R − {1, 2}, the vertex ai corresponds to an internal node of T ∗ (shown as large

dots in Figure 6.2). Thus the structure of T ∗ tells us how to horizontally space the vertices

ai with di(ai) = 2, and how to choose the slopes of the boundary edges adjacent to them.
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On the other hand, when adding vertices ai with di(ai) > 2, our construction will have the

property that the boundary slopes will be perturbed only slightly, and the horizontal dis-

tances between vertices will only increase. Furthermore, throughout our entire construction

the total horizontal width of the embedding will remain fixed.

If a plane triangulation G has the reduced trees T ∗2 , . . . , T
∗
n , then there is a natural

construction which produces a triangulation G∗ and shedding sequence a∗, such that T ∗i is

isomorphic to Ti(G
∗, a∗), for all i = 2, . . . , n. We call the resulting triangulation G∗ the

reduced triangulation of G (see Figure 6.2). Furthermore, the construction of G∗ may be

carried out on a grid with size polynomial in the number of vertices of G∗. This is the content

of the next theorem. It can be though of as a special instance of our main result, in the case

that di(ai) = 2 for all i ≥ 3.

Lemma 6.2.1 Let (t2, . . . , tn) be a sequence of full binary trees, such that ti−1 is a subtree

of ti, and ti has 1 + 2(i− 2) nodes, for all i = 2, . . . , n. Then there is a sequentially convex

plane triangulation H with n vertices, embedded in a 2(n − 2) ×
(
n−1
2

)
integer grid, and a

convex shedding sequence a for H, such that ti is isomorphic to Ti(H,a) for all i = 2, . . . , n.

Proof. Let m and m′ denote the number of internal nodes of tn to the left and right of the

root node, respectively. Note that m+m′+3 = n. Without loss of generality we may assume

m ≤ m′. For −m ≤ k ≤ m′ + 1, we define

xk = k, yk =

(
m′ + 2

2

)
−
(
|k|+ 1

2

)
.

Additionally, define

x−m−1 = −xm′+1, y−m−1 = 0.

We have now defined n pairs (xk, yk), which will serve as the (x, y)-coordinates of the vertices

of the triangulation H.

Note that for all i = 3, . . . , n, since ti is full and contains two more nodes than ti−1,

it follows that ti contains exactly one more internal node than ti−1. Let (ξ3, . . . ξn) denote
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the sequence of internal nodes so obtained. Note that ξ3 is the root node of all the trees

ti, and t2 consists of the single node ξ3. The nodes of tn may be linearly ordered by a

depth-first search on tn, such that left nodes are visited before right nodes. Call this order

Ω. This restricts to a linear order on the internal nodes of tn, which induces a permutation

ω : {3, . . . , n} → {3, . . . , n}. That is, node ξi has position ω(i) in the order Ω. Then we

define a sequence of points a = (a1, a2, . . . , an) by

a1 = (x−m−1, y−m−1),

a2 = (xm′+1, ym′+1),

ai = (xσ(i)−m−3, yσ(i)−m−3) for 3 ≤ i ≤ n.

For i = 3, . . . , n, let ωi : {3, . . . , i} → {3, . . . , i} denote the permutation induced by re-

stricting the order Ω to the internal nodes (ξ3, . . . , ξi) of ti. Note that ω = ωn. For each

i = 3, . . . , n, we would like to determine the internal nodes of ti that immediately precede and

succeed ξi in the order ωi. For this purpose, we define functions f, g : {3, . . . , n} → {1, . . . , n}

by

f(i) =


ω−1i (ωi(i)− 1) if ωi(i) > 3,

1 otherwise

g(i) =


ω−1i (ωi(i) + 1) if ωi(i) < i,

2 otherwise.

We may now define a sequence of plane triangulations H1, . . . , Hn recursively. Let H1

consist of the single vertex a1, and let H2 consist of the vertices a1, a2 and the line segment

a1a2. Now let 3 ≤ i ≤ n, and suppose we have constructed Hi−1. We obtain Hi by adding the

vertex ai and the line segments aiaf(i) and aiag(i) to Hi−1. This completes the construction

of the graphs H2, . . . , Hn. We write H = Hn.

We now check that a = (a1, . . . , an) is a convex shedding sequence for H. By construction,

we have immediately that Hi−1 = Hi − {ai} for all i = 2, . . . , n, and furthermore di(ai) =

2 for all i ≥ 3. For k ≥ −m, the slope of the edge between adjacent vertices (xk, yk)
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and (xk+1, yk+1) of H is

yk+1 − yk
xk+1 − xk

=

(
|k|+ 1

2

)
−
(
|k + 1|+ 1

2

)
=


−(k + 1) if k ≥ 0,

−k if k < 0.

Additionally, the slope of the edge between (x−m−1, y−m−1) and (x−m, y−m) is

y−m − y−m−1
x−m − x−m−1

=
y−m

−m+ (m′ + 1)
=

1

m′ −m+ 1

((
m′ + 2

2

)
−
(
m+ 1

2

))
=

(m′ + 2)(m′ + 1)− (m+ 1)m

2(m′ −m+ 1)
=

(m′ −m+ 1)(m′ +m+ 2)

2(m′ −m+ 1)

=
m′ +m+ 2

2
≥ m+m+ 2

2
= m+ 1.

Thus the boundary edge slopes of H are strictly decreasing from left to right. Since di(ai) = 2

for all i ≥ 3, this implies that the boundary edge slopes of each Hi are strictly decreasing

from left to right. It follows that Hi is plane triangulation and F(Hi) is projectively convex,

for all i ≥ 3. Hence a is a convex shedding sequence for H.

To see that ti is isomorphic to Ti(H, a) for all i = 2, . . . , n, we construct an explicit

isomorphism. We define a map ψ2 : t2 → T2(H, a) by ψ2(ξ3) = af(3)ag(3) = a1a2, which is

trivially an isomorphism. For i ≥ 3, and j = 3, . . . , i, let ξ−j and ξ+j denote the left and right

child, respectively, of the internal node ξj of ti. We define a map ψi : ti → Ti(H, a) by

ψi(ξj) = af(j)ag(j),

ψi(ξ
−
j ) = ajaf(j),

ψi(ξ
+
j ) = ajag(j) for j = 3, . . . , i.

From the definition of the order Ω and the resulting functions f and g, it is straightforward

to check that ψi is well-defined and bijective. Since the triangle (ajaf(j)ag(j)) is a face of Hj

for all j = 3, . . . , i, the pairs (af(j)ag(j), ajaf(j)) and (af(j)ag(j), ajag(j)) are edges of Ti(H, a).

Thus ψi is clearly a tree isomorphism. We may think of ψn as providing a correspondence

between the internal node ξi and the vertex ai (whose neighbors in Hi are af(i) and ag(i)),

for all i = 3, . . . , n (See Figure 6.2).

Finally, the width of the grid is

xm′+1 − x−m−1 = 2xm′+1 = 2(m′ + 1) ≤ 2(n− 2),
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and the height of the grid is

y0 =

(
m′ + 2

2

)
≤
(
n− 1

2

)
.

Therefore H is embedded in an integer grid of size 2(n− 2)×
(
n−1
2

)
.

6.3 The Integer Grid Embedding

Given a plane triangulation G with n vertices and shedding sequence a, let ti = T ∗i (G, a)

denote the reduced trees of G. Let ρ denote the unique increasing bijection from R to

{1, . . . , R}, where R is the subset of {1, . . . , n} defined above, and R = |R|. Note that

1, 2, 3 ∈ R, so ρ(i) = i for i ≤ 3. Define a map h : {1, . . . , n} → {1, . . . , R} by taking h(i) to

be the unique index for which

ρ−1(h(i)) ≤ i < ρ−1(h(i) + 1).

In particular, if i ∈ R then h(i) = ρ(i).

The sequence of distinct trees tρ−1(1), . . . , tρ−1(R) satisfies the hypotheses of Theorem 6.2.1.

Therefore we let G∗i denote the sequentially convex triangulation constructed from tρ−1(i) as

in Theorem 6.2.1. We call the G∗i the reduced triangulations of G, and write G∗ = G∗R (See

Figure 6.2). Let a∗ = (a∗1, . . . , a
∗
R) denote the corresponding convex shedding sequence of G∗

produced by Theorem 6.2.1. Note that each vertex a∗i has degree 2 in G∗i . So we may think

of G∗ as being obtained from G by “throwing away” all vertices ai for which di(ai) > 2. It

was this property that originally motivated our definition of G∗.

As we will see, the triangulation G∗ will tell us exactly how to add vertices of degree 2,

in our construction of a sequentially convex embedding of G. A particular property of the

reduced triangulations makes this possible. Namely, for any boundary edge e of Gi, there is

a corresponding boundary edge e∗ of G∗h(i), which we define as follows. First note that from

the definitions, and the construction of Theorem 6.2.1, the trees Ti(G
∗, a∗) and T ∗i (G, a) are

isomorphic. Thus we may think of an edge of G∗i (which is a node of Ti(G
∗, a∗)) as a node

of T ∗i (G, a). For a boundary edge e of Gi, we denote by e∗ the unique boundary edge of
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G∗h(i), thought of as a node of T ∗i (G, a), that is identified with the node e of Ti(G, a) upon

contracting the edges in the set ER.

Theorem 6.3.1 Let G be a plane triangulation with n vertices and boundary edge uv, and

let a = (a1, . . . , an) be a shedding sequence for G with u = a1, v = a2. Then G has a

geometric embedding G′ in a 4n3 × 8n5 integer grid, such that the corresponding sequence

a′ = (a′1, . . . , a
′
n) is a convex shedding sequence for G′.

Proof. We recursively construct a sequence of graphs G′1, . . . , G
′
n, and a sequence of vertices

a′1, . . . , a
′
n, such that each G′i is a geometric embedding of Gi with convex shedding sequence

a′ = (a′1, . . . , a
′
i), where a′i is the vertex of G′ corresponding to ai. Let G∗i denote the reduced

triangulations of G, and let a∗ = (a∗1, . . . , a
∗
|R|) denote the corresponding shedding sequence

for G∗. Let m′ denote the number of vertices of G∗ lying between a∗3 and a∗2, and m the

number of vertices lying between a∗1 and a∗3. Then m′+m+3 = n. Without loss of generality

we may assume that m ≤ m′.

For points v1, v2 ∈ R2 and e = v1v2 the line segment between them, we write

x(e) = |x(v1)− x(v2)| and y(e) = |y(v1)− y(v2)|.

We first scale G∗ to obtain a much larger triangulation, which we will use to construct the

triangulations G′i. We choose the scaling factors large enough so that we will have “enough

room” to carry out our constructions. Specifically, let α = 2n2 + n + 1 and β = 2nα.

We define Zi to be the result of scaling G∗i by a factor of α in the x dimension and β in

the y dimension. That is, for each i = 1, . . . , R, we define zi = (αx(a∗i ), βy(a∗i )). Then

z = (z1, . . . , zR) is the shedding sequence for ZR corresponding to a∗. We write Z = ZR.

Since G′i ∼ Gi (as we verify below) the edges of G′i and Gi are in correspondence. Thus

every boundary edge e of G′i corresponds to a boundary edge e∗ of G∗h(i), as defined above.

We write Z(e) for the edge of Zh(i) corresponding to e∗. Note that if e∗ has slope s, then

Z(e) has slope β
α
s. In particular, since m′ + 1 is the largest magnitude of the slope of any

edge of G∗, we see that β
α

(m′ + 1) = 2n(m′ + 1) is the largest magnitude of the slope of any
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G′i−1

(x, y)

a′i = (x′, y′)

w′
1

w′
2 w′

3
w′

4

`u `s

Figure 6.3: The construction of vertex a′i when di(ai) > 2. In this example, di(ai) = 4.

edge of Z. Let M denote this slope, and note that M ≤ 2n2. Note also that the absolute

difference of two boundary edge slopes of Z is at least β
α

= 2n. It follows immediately that

for each i = 1, . . . , R, the absolute difference of two boundary edge slopes of Zi is at least 2n.

Define a′1 = z1 and a′2 = z2. Take G′1 to consist of the single vertex a′1, and take G′2

to consist of the vertices a′1, a
′
2, together with the line segment a′1a

′
2. Now let 3 ≤ i ≤ n,

and suppose we have constructed G′i−1. To define a′i, we consider two cases, namely whether

di(ai) = 2 or di(ai) > 2.

Construction of a′i, in the case di(ai) > 2. If di(ai) > 2, then let w1, . . . , wk denote the

neighbors of ai in Gi, and let w′1, . . . , w
′
k denote the corresponding vertices of G′i−1, ordered

from left to right. Let s denote the slope of the edge w′1w
′
2, and u the slope of the edge

w′k−1w
′
k. Let `s denote the line of slope s containing the point w′1, and `u the line of slope u

containing the point w′k. We denote by (x, y) the point of intersection of the lines `s and `u.

Let x′ = dxe and γ = x′ − x, and let y′ = dye + bγsc + 1. We now define a′i = (x′, y′) (see

Figure 6.3). We obtain G′i from G′i−1 by adding the vertex a′i, together with all line segments

between a′i and the vertices w′1, . . . , w
′
k.

Construction of a′i, in the case di(ai) = 2. If di(ai) = 2, then let ∆ be the triangle of Zi

containing zρ(i). Let w1, w2 denote the boundary neighbors of ai in Gi, and let w′1, w
′
2 denote

the corresponding vertices of G′i−1, so that w′1 lies to the left of w′2. We are going to construct

a triangle ∆′, such that ∆′ is the image of ∆ under an affine map which is the composition
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of a uniform scaling and a translation. Furthermore, we will place ∆′ in a specific position

with respect to the triangulation G′i−1. In particular, if v1, v2, v3 denote the vertices of ∆′, we

require that x(v1) = x(w′1), v2 = w′2, and x(v1) < x(v3) < x(v2) (see Figure 6.4). It is easily

verified that these conditions, together with the requirement that ∆′ is a scaled, translated

copy of ∆, determine the vertices v1, v2, v3 of ∆′ uniquely.

Let η = y(v1) − y(w′1). Let b1 and b2 denote the left and right boundary neighbors,

respectively, of zρ(i) in Zρ(i). Notice that the edge b1b2 = Z(w′1w
′
2) is a boundary edge of

Zh(i−1). We will now define a ratio κ, which describes how far away zρ(i) is from b2, in the x

direction. That is, we define

κ =
x(b2)− x(zρ(i))

x(b2)− x(b1)
.

Using η and κ will allow us to appropriately define the new vertex a′i. We begin by letting

v3 = (x(v3), y(v3) − κη). So v3 is obtained by pushing v3 up or down, by an amount

determined by κ.

Note that z3 is the apex of Zi for all i = 1, . . . , R, and x(z3) = αx(a∗3) = α · 0 = 0. So if

x(zρ(i)) < 0 then x(zρ(i)) lies to the left of the apex of Zi, and if x(zρ(i)) > 0 then zρ(i) lies to

the right of the apex. With this understanding, we set

v′3 =


(bx(v3)c, dy(v3)e) if x(zρ(i)) ≤ 0,

(dx(v3)e, dy(v3)e) if x(zρ(i)) > 0.

We now define a′i = v′3. We obtain G′i from G′i−1 by adding the vertex a′i and the two line

segments between a′i and the vertices w′1, w
′
2.

Verification of the construction. We have now explicitly described the construction. It

remains to show that the above constructions actually produce a convex shedding sequence

a′ = (a′1, . . . , a
′
n) for G′, and that G′ lies in the grid size indicated. Clearly the horizontal

width of the grid remains constant throughout the construction. Specifically, the triangu-

lations G′1, G
′
2, . . . , G

′
n all have the same width α2(n − 2), which is the width of the Zi. So

to show that the construction is sequentially convex, and that the bound on the height of
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Zρ(i) G′i−1

zρ(i)

b1 z2

z3

b2

v1

v2 = w′2

v3

η
w′1

∆

∆′

Figure 6.4: The first stage of the construction of vertex a′i when di(ai) = 2. The red triangles

∆ and ∆′ differ by a uniform scaling and a translation.

G′ is correct, we will calculate how the boundary slopes are modified when we add the new

vertex a′i in the two cases di(ai) = 2 and di(ai) > 2.

For each 3 ≤ i ≤ n, let C(i) denote the following three-part claim:

C(i, 1). For every boundary edge e of G′i, we have x(e) ≥ x(Z(e)).

C(i, 2). For every boundary edge e of G′i, the slopes of e and Z(e) differ by at most i.

C(i, 3). G′i ∼ Gi and G′i has convex shedding sequence (a′1, . . . a
′
i).

To prove C(i) for each i = 3, . . . , n, we proceed by induction on i.

For i = 3, note that a′1 = z1, a
′
2 = z2, and the vertex a′3 is chosen so that in particular

the triangle (a′1a
′
2a
′
3) is a scaling of the triangle (z1z2z3) = F(Z3). This implies that a′3 = z3.

Thus G′3 = Z3, which immediately establishes C(3).

Now let i > 3, and suppose that C(i − 1) holds. As in the construction, we consider

separately the cases di(ai) > 2 and di(ai) = 2.

Verification of C(i) in the case di(ai) > 2. Clearly Z(w′1a
′
i) = Z(w′1w

′
2) and Z(a′iw

′
k) =

Z(w′k−1w
′
k). Note that x(w′2) ≤ x ≤ x(w′k−1), and thus x(w′2) ≤ x(a′i) ≤ x(w′k−1). Therefore

x(w′1a
′
i) = x(a′i)− x(w′1) ≥ x(w′2)− x(w′1) = x(w′2w

′
1) ≥ x(Z(w′2w

′
1)) = x(Z(w′1a

′
i)),
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where the last inequality follows from C(i− 1, 1). Similarly, we have x(a′iw
′
2) ≥ x(Z(a′iw

′
2)).

Thus C(i, 1) holds.

We now show that the slopes of the boundary edges of G′i containing a′i differ only slightly

from the slopes s and u defined in the above construction. That is, let s′ denote the slope of

the line passing through w′1 and a′i = (x′, y′), and let u′ denote the slope of the line passing

through a′i and w′k. Since

y′ − y = (dye − y) + bγsc+ 1 ≥ bγsc+ 1 > γs,

we clearly have s′ − s > 0. On the other hand,

s′ − s =
y′ − y(w′1)

x+ γ − x(w′1)
− s =

y′ − y(w′1)− (x− x(w′1))s− γs
x+ γ − x(w′1)

=
(y′ − y)− γs
x+ γ − x(w′1)

=
(dye − y) + (bγsc − γs) + 1

x+ γ − x(w′1)
<

2

x+ γ − x(w′1)
≤ 2

x− x(w′1)
≤ 2

x(w′2)− x(w′1)

≤ 2

x(Z(w′2w
′
1))
≤ 2

α
≤ 1.

In the last line we have invoked C(i− 1, 1).

Since s > u, we have y′ − y > γs > γu. From this, together with the fact that x′ ≥ x, it

follows that u− u′ > 0. By C(i− 1, 2), we have |s| ≤M + (i− 1). Thus

u− u′ = y(w′k)− y
x(w′k)− x

− y(w′k)− y′

x(w′k)− x′
≤ y(w′k)− y
x(w′k)− x′

− y(w′k)− y′

x(w′k)− x′
=

y′ − y
x(w′k)− x′

=
(dye − y) + bγsc+ 1

x(w′k)− x′
<

|s|+ 2

x(w′k)− x′
≤ |s|+ 2

x(w′k)− x(w′k−1)
≤ |s|+ 2

x(Z(w′k−1w
′
k))

≤ |s|+ 2

α
≤ M + (i− 1) + 2

α
≤ 2n2 + i+ 1

α
≤ 2n2 + n+ 1

α
= 1.

In the second line we have invoked C(i− 1, 1).

Let Z(s) denote the slope of the edge Z(w′1w
′
2), and let Z(u) denote the slope of Z(w′k−1w

′
k).

By C(i− 1, 2), we have |s− Z(s)| ≤ i− 1 and |u− Z(u)| ≤ i− 1. Thus

|s′ − Z(s)| ≤ |s′ − s|+ |s− Z(s)| ≤ 1 + (i− 1) = i,

and similarly |u′ − Z(u)| ≤ i, so C(i, 2) holds.
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Since s′− s > 0 and u− u′ > 0, each line segment a′iw
′
j intersects G′i−1 only in the vertex

w′j, for all j = 1, . . . k. Thus G′i is a plane triangulation, and G′i ∼ Gi. It remains to show

that F(G′i) is projectively convex, in order to establish C(i, 3). To do this, we will show that

when the slope s is changed to s′ for example, convexity is preserved at the vertex w′1. That

is, the slope s′, while greater than s, is still less than the slope of the boundary edge to the

left of the edge w′1w
′
2.

Let ŝ denote the slope of the boundary edge of G′i adjacent and to the left of w′1, if

such an edge exists, and let û denote the slope of the boundary edge of G′i adjacent and to

the right of w′k, if such an edge exists. Let Z(ŝ) and Z(û) denote the boundary slopes of

Zh(i−1) corresponding to ŝ and û, respectively. By C(i− 1, 2), we have s−Z(s) < i− 1 and

Z(ŝ)− ŝ < i− 1. Thus

ŝ− s = (ŝ− Z(s))− (s− Z(s)) ≥ (ŝ− Z(s))− (i− 1)

= (Z(ŝ)− Z(s))− (Z(ŝ)− ŝ)− (i− 1) ≥ (Z(ŝ)− Z(s))− 2(i− 1)

≥ 2n− 2i+ 2 ≥ 2.

We conclude that

ŝ− s′ = (ŝ− s)− (s′ − s) ≥ (ŝ− s)− 1 ≥ 2− 1 = 1 > 0.

An analogous calculation shows that u′ − û > 0. Thus w′1 and w′k are convex vertices

of G′i. Because the region F(G′i−1) is projectively convex by C(i − 1, 3), we conclude that

F(G′i) is projectively convex. The sequence (a′1, . . . , a
′
i−1) is a convex shedding sequence for

G′i−1 by C(i − 1, 3), hence (a′1, . . . , a
′
i) is a convex shedding sequence for G′i. Thus C(i, 3)

holds. We have now established C(i) in the case that di(ai) > 2.

Verification of C(i) in the case di(ai) = 2. First note that by C(i− 1, 1), we have

x(v1v2) = x(w′1w
′
2) ≥ x(Z(w′1w

′
2)) = x(b1b2).

This implies that x(w′1v3) = x(v1v3) ≥ x(b1zρ(i)), because ∆′ is a scaled, translated copy

of ∆. Since x(a′i) = bx(v3)c, and x(b1zρ(i)) and x(w′1) are integers, we also have

x(w′1a
′
i) ≥ x(b1zρ(i)) = x(Z(w′1a

′
i)).
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Similarly, we obtain x(a′iw
′
2) ≥ x(zρ(i)b2) = x(Z(a′iw

′
2)). Thus C(i, 1) holds.

We now consider two relevant slopes in the construction of G′i. Let r denote the slope of

the edge w′1w
′
2 of G′i−1, and let Z(r) denote the slope of the corresponding edge Z(w′1w

′
2) =

b1b2 of Zh(i−1). Since the triangle ∆′ is a scaled, translated copy of ∆, we see that Z(r) is

also the slope of the edge v1v2 of ∆′. Let ε = r − Z(r), and note that

ε =
y(w′2)− y(w′1)

x(w′2)− x(w′1)
− y(v2)− y(v1)

x(v2)− x(v1)
=
y(w′2)− y(w′1)

x(v2)− x(v1)
− y(w′2)− y(v1)

x(v2)− x(v1)
=

η

x(v2)− x(v1)
.

We consider another important pair of slopes arising in the construction of G′i, together

with the corresponding pair of slopes of Zρ(i). Specifically, let q1 and q2 denote the slopes

of the line segments v1v3 and v3v2, respectively. Since ∆′ is a scaled, translated copy of ∆,

these slopes q1 and q2 are also the slopes of the boundary edges b1zρ(i) and zρ(i)b2 of Zρ(i),

respectively. Let q1 and q2 denote the slopes of the line segments v3w
′
1 and v3w

′
2, respectively.

We may think of q1 and q2 as modifications of the slopes q1 and q2, which arise from replacing

the vertices v1 and v3 of ∆′ with the vertices w′1 and v3, respectively. A consequence of our

definitions is that q1 − q1 = q2 − q2 = ε. Indeed,

q1 − q1 =
y(v3)− y(w′1)

x(v3)− x(w′1)
− y(v3)− y(v1)

x(v3)− x(v1)
=
y(v3)− y(w′1)

x(v3)− x(v1)
− y(v3)− y(v1)

x(v3)− x(v1)

=
(y(v1)− y(w′1)) + (y(v3)− y(v3))

x(v3)− x(v1)
=

η − κη
x(v3)− x(v1)

= (1− κ)
η

x(v3)− x(v1)

=
x(zρ(i))− x(b1)

x(b2)− x(b1)
· η

x(v3)− x(v1)
=
x(v3)− x(v1)

x(v2)− x(v1)
· η

x(v3)− x(v1)

=
η

x(v2)− x(v1)
= ε.

In the third line, we have used the fact that ∆′ is a scaled, translated copy of ∆. An

analogous calculation shows that q2 − q2 = ε.

The result is that if ε is the difference between a current boundary slope r of G′i−1 and

the corresponding boundary slope Z(r) of Zh(i−1), then this difference is propagated, but not
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increased, by the addition of a′i. That is, the slopes of the boundary edges of G′i adjacent to

a′i will differ by ε from the corresponding boundary slopes of Zρ(i).

We now investigate how the slopes q1 and q2 change when we move v3 to the integer

point v′3 = a′i. We may assume without loss of generality that x(zρ(i)) < 0, and hence that

a′i = (bx(v3)c, dy(v3)e), as the other case is treated identically. We will let q′1 and q′2 denote

the slopes that result from replacing v3 with v′3 = a′i. That is, let q′1 be the slope of the line

passing through a′i and w′1, and let q′2 be the slope of the line passing through a′i and w′2.

Since zρ(i) lies to the left of the apex of Zρ(i), the vertex a′i lies below and to the left of

the apex of G′i. Therefore we clearly have q′1 − q1 > 0 and q2 − q′2 > 0. By C(i − 1, 2), we

have |ε| < i− 1. Therefore we obtain

q′1 − q1 =
dy(v3)e − y(w′1)

bx(v3)c − x(w′1)
− q1 <

y(v3)− y(w′1) + 1

x(v3)− x(w′1)− 1
− q1

=
y(v3)− y(w′1) + 1− (x(v3)− x(w′1))q1 + q1

x(v3)− x(w′1)− 1
=

1 + q1
x(v3)− x(w′1)− 1

=
1 + q1

x(v3)− x(v1)− 1

≤ 1 + q1
x(zρ(i))− x(b1)− 1

≤ 1 + q1
α− 1

=
1 + q1 + ε

α− 1
≤ 1 +M + ε

α− 1
≤ 1 +M + (i− 1)

α− 1

≤ 2n2 + n

α− 1
= 1.

In the third line we have used the fact that x(v3) − x(v1) ≥ x(zρ(i)) − x(b1), which

we demonstrated above in order to establish C(i, 1). An analogous calculation shows that

q2 − q′2 < 1.

We may now compute

|q′1 − q1| ≤ |q′1 − q1|+ |q1 − q1| = |q′1 − q1|+ ε < 1 + ε ≤ 1 + (i− 1) = i.

An identical caluculation shows that |q′2− q2| ≤ i. Note that q′1 is the slope of the boundary

edge w′1a
′
i of G′i and q1 is the slope of the edge b1zρ(i) = Z(w′1a

′
i), and similarly for q′2 and q2.

This establishes C(i, 2).

From the construction of a′i it is clear that the line segments w′1a
′
i and a′iw

′
2 intersect G′i−1

only in the vertices w′1 and w′2. Thus G′i is a plane triangulation, and G′i ∼ Gi. To show
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that F(G′i) is projectively convex, we carry out a calculation similar to that of the di(ai) > 2

case.

Let q̂1 denote the slope of the boundary edge of G′i adjacent and to the left of w′1, if such

an edge exists, and let q̂2 denote the slope of the boundary edge of G′i adjacent and to the

right of w′2, if such an edge exists. Let Z(q̂1) and Z(q̂2) denote the boundary slopes of Zh(i−1)

corresponding to q̂1 and q̂2, respectively. By C(i − 1, 2), we have q1 − q1 = ε ≤ i − 1 and

Z(q̂1)− q̂1 ≤ i− 1. Thus

q̂1 − q1 = (q̂1 − q1)− (q1 − q1) ≥ (q̂1 − q1)− (i− 1)

= (Z(q̂1)− q1)− (Z(q̂1)− q̂1)− (i− 1) ≥ (Z(q̂1)− q1)− 2(i− 1)

≥ 2n− 2i+ 2 ≥ 2.

We conclude that

q̂1 − q′1 = (q̂1 − q1)− (q′1 − q1) ≥ (q̂1 − q1)− 1 ≥ 2− 1 = 1 > 0.

An analogous calculation shows that q′2− q̂2 > 0. Thus w′1 and w′2 are convex vertices of G′i.

Because the region F(G′i−1) is projectively convex by C(i− 1, 3), we conclude that F(G′i) is

projectively convex. By C(i−1, 3), the sequence (a′1, . . . , a
′
i−1) is a convex shedding sequence

for G′i−1, hence (a′1, . . . , a
′
i) is a convex shedding sequence for G′i. Thus C(i, 3) holds. We

have now established C(i) in the case that di(ai) = 2. This completes the induction, and we

conclude that C(i) holds for all 3 ≤ i ≤ n. Thus the triangulation G′ = G′n is a sequentially

convex embedding of G, with convex shedding sequence a′ = (a′1, . . . , a
′
n).

We have immediately that the x dimension of G′ is

α2(n− 2) = (2n2 + n+ 1)(2n− 4) = 4n3 − 6n2 − 2n− 4 ≤ 4n3.

Since C(n, 2) holds, we conclude that the largest absolute value of a boundary slope of G′ is

at most M + n ≤ 2n2 + n. Thus the y dimension of G′ is at most

α2(n− 2)(2n2 + n) = (4n3 − 6n2 − 2n− 4)(2n2 + n) = 8n5 − 8n4 − 10n3 − 10n2 − 4n ≤ 8n5.

Therefore G′ is embedded in a 4n3 × 8n5 integer grid.
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CHAPTER 7

Lifting a Plane Triangulation to a Simplicial 3-Polytope

7.1 Lifting and the Shedding Diameter

LetG = (V,E) be a plane triangulation. After obtaining a sequentially convex embedding

of G using the algorithm of the previous chapter, it is a straightforward matter to construct

a simplicial 3-polyhedron that projects vertically onto G. We introduce some definitions

which will allow us to precisely describe how “tall” this polyhedron may need to be.

Let AG denote the set of all shedding sequences for G. For a = (a1, . . . , an) ∈ AG, we

write aj →a ai if aj is adjacent to ai in Gi(a). Then we define the height of each vertex ai

recursively, by

τ(ai, a) =


i i ≤ 3

1 + max{τ(aj, a) | aj →a ai} i > 3

.

We define the height of the shedding sequence a ∈ AG by

τ(a) = max
i
τ(ai, a),

and the shedding diameter of G by

τ(G) = min
a∈AG

τ(a).

Taking the transitive closure of the relation →a, we obtain a partial order �a on the

vertices of G. The height τ(a) of the sequence a is then precisely the height of �a. That is,

τ(a) is the maximal length of a chain in �a.

Lemma 7.1.1 Let G be a plane triangulation with n vertices and shedding sequence a ∈ AG,

embedded as in Theorem 6.3.1, so that a is a convex shedding sequence for G. Then there is
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a convex (unbounded) 3-polyhedron Pi that projects vertically onto Gi, for each i = 3, . . . , n.

Furthermore, if h(ai) denotes the height of the vertex of Pi projecting to ai, then we may

choose h(ai) to be an integer such that h(ai) ≤ 499n8mi + 1, where

mi = max{h(aj) | aj →a ai}.

Proof. We proceed by induction on i. Let h(v) denote the height assigned to the vertex v,

and let ϕ(v) = (v, h(v)) ∈ R3 denote the point of R3 projecting vertically to v. We set

h(a1) = h(a2) = h(a3) = 0, and let P3 = {(x, y, z) ∈ R3 | (x, y) ∈ conv(a1, a2, a3), z ≥ 0}.

That is, P3 is the unbounded prism with triangular face a1a2a3 and lateral edges extending

in the positive vertical direction, parallel to the z-axis. If i > 3, then by the induction

hypothesis, Gi−1 is the projection of a convex polyhedral surface Pi−1. To obtain a lifting of

Gi, we must choose h(ai) properly.

Let Si denote the set of faces of Gi−1 having a vertex v such that v →a ai. Choose

the height h(ai) large enough so that ϕ(ai) is not coplanar with ϕ(v1), ϕ(v2), ϕ(v3), for any

face F ∈ Si with vertices v1, v2, v3. Let `i denote the ray with vertex ϕ(ai) and extending

in the positive vertical direction, parallel to the z-axis. Since F(Gi−1) is convex, clearly

Pi = conv(Pi−1 ∪ `i) is a convex polyhedral surface Pi that projects vertically to Gi.

We now determine an upper bound on the height h(ai) for which ϕ(ai) is coplanar with

ϕ(v1), ϕ(v2), ϕ(v3), for any F ∈ Si with vertices v1, v2, v3. Let (x0, y0, z0) ∈ R3 denote

the coordinates of ϕ(ai). Fix an F ∈ Si and let v1, v2, v3 denote the vertices of F . Let

(xj, yj, zj) ∈ R3 denote the coordinates of ϕ(vj). So in particular (xj, yj) = vj. Then

coplanarity of ϕ(ai) with ϕ(v1), ϕ(v2), ϕ(v3) means that

z0 = a1x0 + a2y0 + a3,

where 
x1 y1 1

x2 y2 1

x3 y3 1




a1

a2

a3

 =


z1

z2

z3

 .
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Let A denote the matrix on the left side of this equation, and write x = (x1, x2, x3),y =

(y1, y2, y3), z = (z1, z2, z3). By Cramer’s rule, ai = det(Ai)
det(A)

, where Ai is obtained by replacing

the ith column of A with z.

Since G is embedded as in Theorem 6.3.1, the vertices of G lie in a 4n3×8n5 integer grid.

Furthermore, from the construction of Theorem 6.3.1, the point (0, 0) is contained in the

edge a1a2 of G. This implies that |xj| ≤ 4n3 and |yj| ≤ 8n5 for each j = 0, 1, 2, 3. Therefore

‖x‖ ≤
√

3 max
1≤j≤3

|xj| ≤ 4
√

3n3 and ‖y‖ ≤
√

3 max
1≤j≤3

|yj| ≤ 8
√

3n5.

Note also that

‖z‖ ≤
√

3 max
1≤j≤3

|zi| ≤
√

3mi.

Since A is an invertible integer matrix, we have | det(A)| ≥ 1. Thus

| det(A1)|
| det(A)|

≤ | det(A1)|

≤ ‖(1, 1, 1)‖‖z‖‖y‖ =
√

3‖z‖‖y‖

≤
√

3(
√

3mi)(8
√

3n5) = 24
√

3n5mi,

where we have invoked Hadamard’s inequality in the second line.

By a similar argument,

| det(A2)|
| det(A)|

≤ 12
√

3n3mi and
| det(A3)|
| det(A)|

≤ 96
√

3n8mi.

Thus when ϕ(ai) is coplanar with ϕ(v1), ϕ(v2), ϕ(v3), we have

z0 =
det(A1)

det(A)
x0 +

det(A2)

det(A)
y0 +

det(A3)

det(A)

≤ | det(A1)|
| det(A)|

|x0|+
| det(A2)|
| det(A)|

|y0|+
| det(A3)|
| det(A)|

≤ 24
√

3n5mi(4n
3) + 12

√
3n3mi(8n

5) + 96
√

3n8mi

= 288
√

3n8mi ≤ 499n8mi.

So letting z0 be the smallest integer greater than 499n8mi will ensure that ϕ(ai) is not

coplanar with ϕ(v1), ϕ(v2), ϕ(v3). Thus we may take h(ai) = z0 ≤ 499n8mi + 1, as desired.
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Theorem 7.1.2 Let G be a plane triangulation with n vertices. Then G is the vertical

projection of a convex 3-polyhedron with vertices lying in a 4n3 × 8n5 × (500n8)τ(G) integer

grid.

Proof. Choose a shedding sequence a ∈ AG such that τ(G) = τ(a). By Theorem 6.3.1, we

may embed G in a 4n3 × 8n5 integer grid such that a = (a1, . . . , an) is a convex shedding

sequence for G. For each vertex ai we may assign a height h(ai) as follows. For i = 1, 2, 3

we may set zi = 0. For i > 3, by Lemma 7.1.1 we may choose h(ai) such that Gi is the

projection of a polyhedral surface, and

h(ai) ≤
(
499n8 + 1

)τ(ai,a) ≤ (500n8)τ(ai,a) ≤ (500n8)τ(a) = (500n8)τ(G).

Note that if G has at least 4 vertices, and the boundary G is a triangle (that is, ∂F(G)

contains exactly 3 vertices), then the 3-polyhedron of Theorem 7.1.2 may be replaced with

a (bounded) 3-polytope. Indeed, simply truncate the polyhedron with the hyperplane that

is defined by the lifts of the three boundary vertices of G. Then the three boundary vertices

of G lift to the vertices of a triangular face of the resulting 3-polytope.

7.2 Triangulations of a Rectangular Grid

For p, q ∈ Z, p, q ≥ 2, let [p× q] = {1, . . . , p} × {1, . . . , q}. We may think of the integer

lattice [p× q] as the vertices of (p− 1)(q − 1) unit squares. A geometric plane triangulation

G is a triangulation of [p× q] if the vertices of G are exactly the vertices of [p× q], and every

boundary edge of [p× q] is an edge of G. We call G a grid triangulation. An `× ` subgrid of

Z2 is an integer translation of the lattice [`× `] = {1, . . . , `}×{1, . . . , `}. By an `× ` subgrid

of [p× q] we mean an `× ` subgrid of Z2 that is a subset of [p× q]. In this section we state

and prove the following result concerning the shedding diameter of grid triangulations.

Theorem 7.2.1 Let G be a triangulation of [p× q] such that for every edge e of G, there is
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a subgrid of size `× ` that contains the endpoints of e. Then τ(G) ≤ 6`(p+ q).

This gives a class of triangulations with sublinear shedding diameter, if ` is held constant.

According to Theorem 7.1.2, such a triangulation can be drawn in the plane so that it is the

vertical projection of a simplicial 3-polyhedron embedded in a subexponential grid. That

is, this class of triangulations corresponds to a class of simplicial polyhedra which may be

embedded in an integer grid whose size is subexponential in the number of vertices.

Let ≤Z2 denote the linear order on Z2 defined by

(x1, y1) ≤Z2 (x2, y2) if and only if y1 < y2 or y1 = y2 and x1 ≤ x2.

That is, ≤Z2 is a lexicographic order in which y-coordinates take precedence in determining

the order. We state without proof the following lemma, which summarizes some standard

properties of shedding vertices of planar triangulations. See [BP] for a proof and references.

Lemma 7.2.2 ([BP], section 3) Let G be a plane triangulation, and let v be a boundary

vertex of G. If v is not a shedding vertex of G, then v is the endpoint of a diagonal e of G.

Furthermore, each of the two connected components of F(G) r e contains a shedding vertex

of G.

The rough idea of the proof of Theorem 7.2.1 is as follows (we provide the details below).

We begin by constructing a particular shedding sequence a for G. To do this, we first

subdivide [p× q] into a grid of dpq
`2
e subgrids, (most of) which are squares of size `× `. These

squares form dp
`
e columns and d q

`
e rows.

We shed G in three stages. In Stage 1, we take every fourth column U(1), U(5), U(9), . . .

and shed the vertices of each of these columns from top to bottom. When shedding U(i),

we may need to shed vertices in the column U(i − 1) or U(i + 1), for a total of at most

3q` vertices shed in the process of shedding the column U(i). Because of their spacing, the

shedding vertices for each column U(1), U(5), U(9), . . . do not interact. Specifically, at each

step we have a collection of shedding vertices, one for each column, which we may think of

as shedding “all at once”. This collection of vertices is then an antichain with respect to �a.
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ai−2
ai−1

ai

Figure 7.1: A graph Gi produced during Stage 1 of the construction of a in the proof of

Theorem 7.2.1. Distinct columns U(j) are separated by dashed lines. The columns of the

form U(1 + 4j) are shown in red, while the columns U(3 + 4j) are shown in green. The

bottom row R(1) is shown in blue.

When shedding the vertices of each such column, for topological reasons we do not shed the

vertices (x, y) with y ≤ `. See Figure 7.1.

After Stage 1 is complete, what remains are a set of “jagged columns”, each of which

consists of the remaining vertices of three adjacent columns. Hence each jagged column

contains at most 3q` vertices. In Stage 2, we shed these columns, but for topological reasons

we do not shed vertices (x, y) with y ≤ 2`. As before, these jagged columns do not interact,

and at each step we have a set of shedding vertices, each of which belongs to a different jagged

column. Hence this set forms an antichain. Finally, in Stage 3 we shed the remaining vertices,

which are contained in the bottom two rows of G. There are at most 2p` such vertices, and

we simply define a singleton set (which is trivially an antichain) for each of them. Therefore

we see that G may be partitioned into at most 2p` + 3q` + 3q` = `(2p + 6q) ≤ 6`(p + q)

antichains of �a. This implies that τ(a) ≤ 6`(p+ q), since τ(a) is the length of some chain

in �a. The detailed proof follows.
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Proof of Theorem 7.2.1. Let G be such a triangulation of [p× q]. For each i ∈ Z, let

U(i) = {(x, y) ∈ [p× q] | `(i− 1) + 1 ≤ x ≤ `i}, and

R(i) = {(x, y) ∈ [p× q] | `(i− 1) + 1 ≤ y ≤ `i},

where some of these sets may be empty. We think of the sets U(i) as columns of width `

and the R(i) as rows of height `. For each i ∈ Z, we also define

T (i) = U(i− 1) ∪ U(i) ∪ U(i+ 1),

which may be empty. We call T (i) a tricolumn of [p× q].

We construct the shedding sequence a recursively. Suppose that we have a sequence

of shedding vertices ai+1, ai+2, . . . , an (for the initial step of the recursion, i = n and this

sequence is empty), and therefore we also have graphs Gi, Gi+1, . . . , Gn = G, where as usual

Gj−1 = Gj−{aj} for all j = i+1, . . . , n. For each i = 1, . . . , n, let Ri(1) denote the subgraph

of Gi induced by all vertices of Gi contained in R(1). Similarly, for each i = 1, . . . , n and

j ∈ Z, let Ui(j) denote the subgraph of Gi induced by all vertices of Gi contained in U(j).

We let C(i, 1) and C(i, 2) denote the following inductive claims:

C(i, 1). We have Ui(3 + 4j) = Un(3 + 4j) (for j ∈ Z such that U(3 + 4j) 6= ∅).

C(i, 2). The graph Ri(1) is connected.

Note that C(n, 1) holds by definition. We have Gn = G, so the vertices of Un(1 + 3j) are

exactly those of U(1+3j), and similarly for Rn(1) and R(1). Since G is a grid triangulation,

it follows that Un(1 + 3j) and Rn(1) are connected. Thus in particular C(n, 2) holds.

To construct the next vertex ai of the shedding sequence we break the construction

into three stages, described below. As can readily be seen, Stage 1 occurs for a con-

secutive sequence of indices i = k, k + 1, . . . , n, Stage 2 occurs for a consecutive sequence

i = j, j + 1, . . . , k − 1, and Stage 3 occurs for a consecutive sequence i = 1, 2, . . . , j − 1. We

will also see that C(i, 1) holds i = k, k+1, . . . , n, and C(i, 2) holds for i = j, j+1, . . . , k, . . . , n.
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24 23 25 21 22

17 16 18 19 20

13 14 15 7 12

3 4
6 8 10

1 2 5
9 11

12 11 16 15 16

10 9 12 13 14

7 8 9 7 11

3 4
6 8 10

1 2 5 9 11

Figure 7.2: The grid triangulation of Figure 1.2, together with the indices i of the shedding

sequence a defined in Theorem 7.2.1 (left) and the corresponding values of τ(ai, a) (right).

A chain of maximal length τ(a) = 16 is shown in red.

Stage 1. Some column of the form U(1 + 4j) contains a vertex (x, y) of Gi with y > `. See

Figure 7.1. Let U(1 + 4j1), . . . , U(1 + 4jr) denote all such columns, where j1 < · · · < jr.

Assume that C(i, 1) and C(i, 2) hold.

For each k = 1, . . . , r, let vk be the ≤Z2-greatest vertex of U(1 + 4jk). If vk is a shedding

vertex of Gi, define wk = vk. Otherwise, by Lemma 7.2.2, the vertex vk is the endpoint of a

diagonal of Gi. Let uk denote ≤Z2-greatest vertex of Gi such that the edge ukvk is a diagonal

of Gi. Write ek = ukvk.

By the Jordan curve theorem, F(Gi)rek consists of two connected components, call them

Ai and A′i. Since the vertices uk and vk are adjacent, by assumption they are contained in

an ` × ` subgrid of [p × q]. It follows that uk ∈ T (1 + 4jk). Thus uk, vk /∈ U(3 + 4j) for

all j. Furthermore, since y(vk) > `, we have y(uk) > 1. By this and C(i, 1), one of the

components of F(Gi)rek, say Ai, does not intersect any of the columns U(3+4j). It follows

that all vertices in Ai are contained in T (1 + 4jk). By Lemma 7.2.2, the region Ai contains

a shedding vertex of Gi. We define wk to be the ≤Z2-greatest such shedding vertex.

We now have a collection of shedding vertices w1, . . . , wr of Gi. Since each of these vertices

lies in a distinct column U(1+4jk), no two of these vertices are adjacent to a common vertex.

Thus the vertex wr−1 is a shedding vertex of Gi−{wr}, the vertex wr−2 is a shedding vertex
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of Gi − {wr, wr−1}, etc. That is, these vertices remain shedding vertices after deleting any

finite subset of them from Gi. So for each k = 1, . . . , r, we may define ai−r+1, . . . , ai by

ai−r+k = wk. Since no two of the vertices ai−r+1, . . . ai, are adjacent, the set {ai−r+1, . . . , ai}

is an antichain of �a.

We now show that C(i − r + k, 1) and C(i − r + k, 2) hold for all k = 1, . . . , r. By

construction we have ai−r+1, . . . , ai /∈ U(3 + 4j) for all j. Thus Ui−r+k(3 + 4j) = Ui(3 + 4j)

for all k = 1, . . . , r. That is, none of the vertices of the columns U(3 + 4j) are deleted in

Stage 1. Thus C(i− r + k, 1) clearly holds.

On the other hand, some vertices of Ri(1) may be deleted in Stage 1. But any vertex

ai−r+k which is a vertex of Ri(1) is part of a sequence of vertices, whose deletion turns a

diagonal of Gi into a boundary edge of Gi−r+k, for some k. It follows that Ri−r+k(1) is

path-connected for all k = 1, . . . , r, so C(i− r + k, 2) holds.

Stage 2. No column of the form U(1 + 4j) contains vertices (x, y) of Gi with y > `,

but some tricolumn of the form T (3 + 4j) contains vertices of (x, y) with y > 2`. Let

T (3 + 4j1), . . . , T (3 + 4jr) denote all such tricolumns, where j1 < · · · < jr. Assume that

C(i, 2) holds.

For each k = 1, . . . , r, let vk be the ≤Z2-greatest vertex of T (3 + 4jk). If vk is a shedding

vertex of Gi, define wk = vk. Otherwise, by Lemma 7.2.2, the vertex vk is the endpoint of a

diagonal of Gi. Let uk denote ≤Z2-greatest vertex of Gi such that the edge ukvk is a diagonal

of Gi. Write ek = ukvk.

By the Jordan curve theorem, F(Gi)rek consists of two connected components, call them

Ai and A′i. Since the vertices uk and vk are adjacent, by assumption they are contained in

an ` × ` subgrid of [p × q]. Since y(vk) > 2`, it follows that y(uk) > `. Thus uk, vk /∈ R(1).

Then by C(i, 2), one of the components of F(Gi) r ek, say Ai, does not intersect R(1).

By Lemma 7.2.2, the region Ai contains a shedding vertex of Gi. We define wk to be the

≤Z2-greatest such shedding vertex.

We now have a collection of shedding vertices w1, . . . , wr of Gi. Since each of these
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vertices lies in a distinct tricolumn T (3 + 4jk), and the columns of the form U(1 + 4j) are

empty save for vertices in R(1), no two of the vertices w1, . . . , wr are adjacent to a common

vertex. Thus these vertices remain shedding vertices after deleting any finite subset of them

from Gi. So for each k = 1, . . . , r, we may define ai−r+1, . . . , ai by ai−r+k = wk. Since no two

of the vertices ai−r+1, . . . ai, are adjacent, the set {ai−r+1, . . . , ai} is an antichain of �a.

Finally, note that by construction we have ai−r+1, . . . , ai /∈ R(1) for each k = 1, . . . , r.

That is, none of the vertices of the bottom row are deleted in Stage 2. ThusRi−r+k(1) = Ri(1)

for all i = 1, . . . , k, so the claim C(i− r + k, 2) clearly holds.

Stage 3. All vertices (x, y) of Gi have y ≤ 2`. If i > 3 we define ai to be the ≤Z2-

greatest shedding vertex of Gi, which exists by Lemma 6.0.2. If i ≤ 3 we define ai to be the

≤Z2-greatest vertex of the triangle G3. The singleton set {ai} is trivially an antichain of �a.

This completes the construction of the shedding sequence a = (a1, . . . , an) (See Fig-

ure 7.2). It is straightforward to count the number of antichains of �a obtained from this

construction. Stage 1 requires as many steps as it takes for the last column of the form

U(1 + 4j) to run out of vertices (x, y) with y > `. Since each vertex ai−r+k of Stage 1 is

contained in some tricolumn of the form T (1 + 4jk), this requires at most |T (1 + 4j)| = 3q`

steps, each of which produces an antichain. Similarly, Stage 2 requires as many steps as it

takes for the last tricolumn of the form T (3 + 4j) to run out of vertices (x, y) with y > 2`.

This requires at most |T (3 + 4j)| = 3q` steps, each of which produces an antichain. Finally,

each set {ai} is trivially an antichain, so taking the singleton of each vertex ai defined in

Stage 3 yields at most 2p` antichains.

The set of antichains of �a produced by these three cases clearly forms a partition of

V (G) = [p× q]. There are at most 2p`+ 3q`+ 3q` = `(2p+ 6q) antichains in this partition.

Thus, since τ(a) is the length of some chain in �a, we have

τ(G) ≤ τ(a) ≤ `(2p+ 6q) ≤ 6`(p+ q).
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Theorem 1.0.5 is now an immediate corollary of Theorems 7.1.2 and 7.2.1.
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CHAPTER 8

Final Remarks and Further Directions

It is perhaps not obvious why Theorem 1.0.1 does not follow from existence of irrational

4-polytopes. Indeed, one can take a Schlegel diagram Q of an irrational 4-polytope P and

conjecture that this is the desired irrational polyhedral complex. The logical fallacy here

is that the implications go the other way. If the Schlegel diagram of P is irrational, then

indeed P must be an irrational polytope. However, the converse is not true. There is no

reason why all realizations of the Schegel diagram Q must have irrational coordinates, even

if P is irrational. In fact, after computing degrees of freedom one should expect additional

realizations of Q. Similarly, it is only in R3 that one can have (and does have) the Maxwell-

Cremona theorem [R]. In R4 and higher dimensions it easily fails.

There is a rather simple reason why Tutte’s theorems are delicate and unlikely to allow a

direct extension to higher dimensions, even ignoring the obstructions discussed in Chapter 1.

Consider the two graphs as in Figure 8.1 below. The smaller of the two has a non-strict

convex realization, while the bigger does not. Tutte’s result produces a non-strict convex

realization for the smaller one, and no realization for the second. His theorem is “if and only

if”, and he explains that the difference between the two graphs is combinatorial rather than

geometric or topological. Of course, neither have a (strict) convex realization. This can be

explained from the fact that this graph is not 3-connected and thus its spring embedding

collapses.

Now in R3, replace the middle square with an octahedron, and the other two cells with

non-convex polyhedra whose union with the octahedron forms a square prism (a natural

3-dimensional analogue of the middle graph in Figure 8.1). Then the connectivity obstacle
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disappears. However, one can readily see that in this case, the intersection of all three

polyhedra yields the four non-apex vertices of the octahedron, and the edges between them.

Thus the intersection is topologically S1, hence not contractible. From this and similar

reasoning, we found that a more natural requirement than graph connectivity is that the

topological polyhedra form a complex. That is, we require that the intersection of any two

(or more) polyhedra is at most a single common face of both. In particular, this implies that

the intersection must be contractible.

Figure 8.1: A graph with a non-strict convex realization (left), a graph with no convex

realization (middle), and an octahedron (right).

Recently, two new explicit examples of simplicial balls with further properties were an-

nounced in [BL]. They have 12 and 15 vertices, respectively. These balls are not geometrically

realizable, a consequence of the fact that their 1-skeletons contain knots consisting of few

edges. They can be contrasted with the topological polyhedral ball X ′ we construct in the

proof of Theorem 1.0.3, which has only 9 vertices.

It is obvious that the triangulation produced in Theorem 1.0.4 can be made rational—

simply perturb all the vertices. In particular, this explains why we must use non-simplicial

polytopes in the proof of Theorem 1.0.1. It is perhaps less obvious that all geometric realiza-

tions produced by Theorem 5.2.1 can be rational. Although the resulting polyhedral complex

must have simplicial interior faces, the boundary faces can be arbitrary. Here rationality

is a corollary resulting from the nature of the proof. All steps, in particular all projective

transformations, can be done over Q.
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The strong vertex decomposability condition in Theorem 1.0.4 is somewhat restrictive

already in R3. For example, it cannot apply to any triangulation of the icosahedron since

its boundary has no vertices of degree three. Note the implications

strongly vertex decomposable ⇒ vertex decomposable ⇒ shellable.

Strong vertex decomposability is sufficient but not necessary for the existence of geometric

realizations, and in fact neither vertex decomposability nor shellability are necessary. For

all d ≥ 3, there are examples of simplicial d-balls with d+ 4 vertices which are geometrically

realizable, but not vertex decomposable (see [Lu]). In fact, there are simplicial 3-balls which

are geometrically realizable (with boundary that of a tetrahedron), but not even shellable

(see [Ru, Wz]).

Finding necessary and sufficient conditions for geometric realizability, hence improving

the statements of Theorems 1.0.4 and 5.2.1 to if and only if, would be a remarkable accom-

plishment. We can attempt to place these types of results into a general framework. We

have mentioned in Chapter 1 that the presence of knots in the 1-skeleton of the complex can

be an obstruction to realizability. In the construction of Theorem 1.0.2, we have something

slightly different. There are no knots present, and we could have used an arbitrary number

of prisms in the belt. Indeed, the only reason we use two prisms is so that the construction

is minimal.

In the case of non-trivial knots made of very few edges, the obstruction to realizability

is a topological one. The edges cannot be knotted in a geometric (convex) realization, from

which it follows that the complex must self-intersect in any such realization. In the case of

the complex of Theorem 1.0.2, the obstruction to realizability is a geometric one. The issue

is not self-intersection, but rather that in any geometric realization, the tetrahedron must

be degenerate. That is, the belt imposes a linear constraint (namely, affine dependence) on

the vertices of the tetrahedron.

If we limit ourselves to simplicial rather than general polyhedral complexes, then faces

do not impose linear relations on their vertices, hence the only obstructions to realizability

73



are topological. The goal is then to classify the possible topological obstructions. Above

we considered realizations of d-simplicial complexes in Rd, but it may be enlightening to

consider more generally realizations of d-simplicial complexes in Rk, with k ≥ d. Already by

Fáry’s theorem and Kuratowski’s theorem, we have a precise description of when a graph

(a 1-simplicial complex) has a geometric realization in R2. Namely, such a realization exists

if and only if the graph G does not contain a subdivision of K5 or K3,3 (see also [Th]). On

the other hand, a simple volume argument shows that every graph may be geometrically

realized in R3.

The general idea is that either passing to a lower dimensional space, or requiring a

geometric (convex) realization, may force certain non-trivial topological data to collapse,

preventing such an embedding. There are many results (for example in [HZ]) concerning the

implications of knots for properties of simplicial complexes such as constructibility, shella-

bility, and vertex decomposability. However, the precise relationship between knots or other

topological structures and geometric realizability remains unknown.

A natural question to ask is whether the geometric realizability of a simplicial complex

is determined (at least in some reasonable cases) by the topological properties of a lower-

dimensional subcomplex. For example, we conjecture the following.

Conjecture 8.0.3 Let X be a topological 3-simplicial complex such that |X| ∼ B3. Suppose

there is a topological 3-simplicial complex Z for which X ' Z, and such that the 1-skeleton of

Z is ambient isotopic to a geometric graph G in R3. Then X has a geometric realization Y ,

such that G is the 1-skeleton of Y .

We began our discussion with Steinitz’s Theorem, and we conclude with it as well. An

immediate consequence of Theorem 7.1.2 is that every plane triangulation may be lifted to

a simplicial 3-polyhedron. In fact, if the boundary of the triangulation is a triangle, it may

be lifted to a (bounded) 3-polytope. A natural question to ask is whether the proof of this

theorem (in particular, the proofs of Theorems 6.1.1 and 7.1.1) can be readily extended to

work for all 2-connected plane graphs (i.e. with general polygonal faces).
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We have recently shown that it can, which gives an elementary proof of Tutte’s theo-

rem [T1] by induction on the number of vertices of the graph, and also yields a new proof

of Steinitz’s Theorem in the general case. In fact, since we consider general 2-connected

plane graphs, we obtain something slightly stronger. Namely, our proof shows that every

2-connected planar graph is the graph of a 3-dimensional Alexandrov cap, which can be

thought of as an unbounded polyhedron with one vertex at infinity. This brings us to the

end of our discourse, but it is not the end of our story.
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CHAPTER 9

Additional Figures and Notes

It follows from Theorem 1.0.1 that the vertices of the belts used in the proof of that

theorem cannot be given by integer coordinates, so we cannot easily tabulate them. However,

using the computer we are able to give an explicit description of the belts. This is done by

specifying the arcs on which the triangular facets of the prisms lie, as well as a function

describing their lateral lengths (see Figure 9.3). Note that the lateral lengths of the prisms

are made small except at the boundary to ensure that the belts do not intersect. Furthermore,

we must ensure that the arcs bend sufficiently to avoid each other at the top of the core.

To create the arcs we start with a family of circles, and then apply a parametrized family

of rotations to stretch them. A Mathematica notebook with code describing the explicit

details of the construction in the proof of Theorem 1.0.1, and used to generate the irrational

complex and images of it, is included with this document as a supplemental file.

In each belt, our construction uses 318 triangular prisms, exactly 2(80 − 1) + 1 = 159

prisms per half-belt. The core consists of 5 triangular prisms and 1 pentagonal pyramid.

The complete irrational complex thus consists of a total of 4 · 318 + 5 = 1277 triangular

prisms and 1 pentagonal pyramid, as in the theorem.

Since the belts come close to intersecting near the boundary of the core, some checking

is necessary. In Figure 9.4 we show how the belts near-miss each other due to their shape.

We conclude with additional images of the irrational 3-polytopal complex of Theorem 1.0.1.
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Figure 9.1: Left: Circles used in the first stage of the design of each belt. Right: The prism

length function fm for m = 80, described in the proof of Theorem 1.0.1.

Figure 9.2: Left: The shape of one belt, obtained by stretching the circles of Fig. 9.3. Right:

Belts do not intersect at the top of the core.
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Figure 9.3: Left: One belt attached to the core. Right: Two belts attached.

Figure 9.4: Left: Three belts attached. Right: All four belts attached.
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Figure 9.5: The complete irrational 3-polytopal complex of Theorem 1.0.1.
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Figure 9.6: A rotated view of the irrational complex.

80



References

[A] E. E. Anclin, An upper bound for the number of planar lattice triangulations, J.
Combin. Theory Ser. A 103 (2003), no. 2, 383–386.

[AB] K. Adiprasito and B. Benedetti, Metric geometry and collapsibility, available at
http://arxiv.org/abs/1107.5789.

[BP] L. Billera and J. Provan, Decompositions of simplicial complexes related to diam-
eters of convex polyhedra, Math. Op. Res. 5 (1980), 576–594.

[BG] D. W. Barnette and G. Grünbaum, Preassigning the shape of a face, Pacific J.
Math. 32 (1970), 299–302.

[BL] B. Benedetti and F. Lutz, Non-evasiveness, collapsibility and explicit knotted tri-
angulations, Oberwolfach Report, 8 (2011), 1–2.
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