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Following the techniques initiated in [MP], we continue to study the limit shapes

of random permutations avoiding a specific subset of patterns. We consider pat-

terns in S3 extensively, and also prove some results regarding pairs of permu-

tations with one in S3 and another in S4. We analyze the limiting distribution

of a pattern-avoiding permutation, and calculate the asymptotic behavior of dis-

tributions of positions of numbers in the permutations. The distributions vary

significantly depending on which patterns are avoided. We also apply our results

to obtain results on various permutation statistics.
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CHAPTER 1

Introduction

1.1 Introduction

The Catalan numbers are an extensively studied integer sequence which appears

throughout combinatorics, counting numerous combinatorial objects. Euler first

studied the sequence in the mid-1700’s[Eul] while counting triangulations of poly-

gons, though the history from that point on spans decades and mathematical ob-

jects. There are currently over 200 examples of objects enumerated by the Catalan

numbers [S2]. Many statistics on such objects have been analyzed throughout the

years as well.

The study of pattern-avoiding permutations dates back to MacMahon[Mac] in

1915. Knuth studied the topic as well[Knu] in the 1960s, while the notation and

terminology we use today, including the term ”pattern”, was initiated by Simion

and Schmidt[SS] in 1985. Since then, the field has expanded rapidly, with many

enumerative results, generalizations, and extensions.

In this thesis, we view pattern-avoiding permutations as permutation matri-

ces, and consider the expected distribution of the 1’s within the matrices. For

various permutation classes, we find and analyze the limiting distribution. Since

permutations which avoid a given pattern of length three are enumerated by the

Catalan numbers, these permutation matrices are a Catalan structure. By an-

alyzing this limit shape in detail, we obtain results on statistics relating to this

Catalan structure. We find results on statistics for the other permutation classes

1



as well.

In the remainder of this introduction, we lay out some definitions which we

will use throughout this thesis, describe the history of the relevant problems, and

give an overview of our main results.

1.1.1 Asymptotics

Throughout this thesis we use f(n) ∼ g(n) to denote

lim
n→∞

f(n)

g(n)
= 1 .

We use f(n) = O(g(n)) to mean that there exists a constant M and an integer

N such that

|f(n)| ≤ M |g(n)| for all n > N.

Also, f(n) = Θ(g(n)) denotes that f(n) = O(g(n)) and g(n) = O(f(n)). Simi-

larly, f(n) = o(g(n)) is defined by

lim
n→∞

f(n)

g(n)
= 0 .

Recall Stirling’s formula

n! ∼
√

2πn
(n
e

)n
.

We use Cn to denote the n-th Catalan number:

Cn =
1

n+ 1

(
2n

n

)
, and Cn ∼

4n
√
πn

3
2

.

1.1.2 Pattern avoidance

We define a permutation σ of length n to be an ordering of the integers from 1

to n, inclusive. We denote the set of all permutations of length n by Sn. Let n

and m be positive integers with m ≤ n, and let

σ = (σ(1), σ(2), . . . , σ(n)) ∈ Sn,

2



and pattern τ = (τ(1), τ(2), . . . , τ(m)) ∈ Sm. We say that σ contains τ if there

exist indices i1 < i2 < . . . < im such that (σ(i1), σ(i2), . . . , σ(im)) is in the same

relative order as (τ(1), τ(2), . . . , τ(m)). If σ does not contain τ then we say σ

is τ -avoiding, or avoiding pattern τ . In this chapter we use only τ ∈ S3; to

simplify the notation we use 123 and 132 to denote patterns (1, 2, 3) or (1, 3, 2),

respectively. For example, σ = (2, 4, 5, 1, 3) contains 132, since the subsequence

(σ(1), σ(2), σ(5)) = (2, 4, 3) has the same relative order as (1, 3, 2). However,

σ = (5, 3, 4, 1, 2) is 132-avoiding.

We define two operations on patterns to help with notation. Let

τ = (τ1, . . . , τn) ∈ Sn .

We say the reverse of τ is τR = (τn, . . . , τ1). We say the complement of τ is

τC = (n + 1 − τ1, . . . , n + 1 − τn). Observe that (τR)C = (τC)R = (n + 1 −

τn, . . . , n + 1 − τ1). We define the reverse-complement of τ as τRC = (τC)R. As

an example, we see that (1, 3, 4, 2)R = (2, 4, 3, 1), (1, 3, 4, 2)C = (4, 2, 1, 3), and

(1, 3, 4, 2)RC = (3, 1, 2, 4).

If S = {σ, τ, π, . . .} ⊂ Sn, then SR = {σR, τR, πR, . . .}. The sets SC and SRC

are defined similarly.

Given a permutation σ ∈ Sn, we say k is a fixed point of σ if σ(k) = k. We

use fpn(σ) to denote the number of fixed points of σ.

1.1.3 History

As mentioned above, the Catalan numbers were first studied by Euler, in the

mid-1750’s. Various researchers discovered them in connection with different

mathematical objects, including Segner, Liouville, Catalan, and Cayley. The

history of the subject is recounted and detailed by Pak in [P3]. In 1915, Percy

MacMahon [Mac] enumerated permutations which avoid 123, and realized that

3



Sn(123) = Cn. While Catalan numbers continued to be of interest, the concept

of analyzing pattern-avoidance did not become widespread until the latter part of

the 20th century. In 1965, Donald Knuth [Knu] showed that Sn(231) = Cn, in the

context of stack-sortability in computer science. The field of pattern-avoidance

did not gain traction until 1985, with Simion and Schmidt’s paper [SS], in which

they define ”pattern”, and enumerate Sn(A) for all A ⊂ S3.

From this point forward, pattern-avoidance became a hot topic, with many

extensions, generalizations, and new results. We mention the results most closely

related to our research; the history and current state of the subject is very thor-

oughly explained by Kitaev [Kit]. While MacMahon and Knuth together showed

that Sn(τ) = Cn for every pattern τ ∈ S3, this was not the case for S4. In fact,

for n ≥ 7, we have |Sn(1342)| < |Sn(1234)| < |Sn(1324)|. Permutations avoid-

ing 1342 were enumerated by Bóna [B4], and Sn(1234) by Gessel [Ges], while

|Sn(1324)| is still open. Even the asymptotic growth rate of |Sn(1324)| is not

known at this point; the best-known upper and lower bounds on the asymptotic

growth rate of were proved by Bóna [B5] and Bevan [Bev], respectively. In a re-

cent result, Conway and Guttmann [CG] estimate the asymptotic behavior with

even more accuracy.

There are currently over 200 examples of combinatorial objects enumerated

by the Catalan numbers [S2]. Another extensive area of study is to analyze statis-

tics on these objects [B2, S1], including both their probabilistic and asymptotic

behavior [Drm, FS].

1.1.4 Results

In Chapter 1, we consider Sn(τ), for τ ∈ S3. We view permutations in these

classes as 0-1 matrices, and we analyze the probability of a given permutation

having a 1 in a given region of the matrix. We let n → ∞, and analyze the
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limiting behavior of the probability of σ(an) = bn for all values of a, b ∈ [0, 1].

For τ = 123 let Pn(an, bn) be the number of permutations σ ∈ Sn(τ) with

σ(j) = k. For τ = 132, let Qn(an, bn) denote the analogous quantity. On this

first-order level of asymptotic behavior, we see that both

Pn(an, bn)

Cn
< εn and

Qn(an, bn)

Cn
< εn ,

for a + b < 1. For a + b > 1, our two permutation classes exhibit different

behavior. The differences in the two limit shapes help explain why there are

numerous bijections between Sn(123) and Sn(132).

We also analyze the behavior of the fixed point statistic for permutations in

Sn(τ). Elizalde calculated the expected number of fixed points for each of these

classes [E1]. We extend his results by calculating the probability of having fixed

points in given positions in our matrices.

In Chapters 2 through 5, we consider Sn(A) for various sets A, and do the

same sort of analysis. Chapter 2 involves sets A ⊂ S3 with |A| = 2. The enu-

meration for these sets was completed by Simion and Schmidt [SS], and is either

|Sn(A)| = 2n−1 or n
2

+ 1. The limit shapes for most classes have exponentially

small probabilities away from one diagonal, as in chapter 1. One class, however,

has limiting behavior which forms a V-shape, with the only non-exponential decay

occurring at a+ 2b = 1 and 2b− a = 1.

In Chapter 3, we analyze sets B ⊂ S3 with |B| = 3. Enumeration is either

Fn+1 or n depending on which set B we choose, where Fn is the n-th Fibonacci

number. The limit shapes are not particularly exciting in this section, though we

include it for thoroughness.

In Chapter 4 and 5, we analyze Sn(τ, ρ) where τ ∈ S3 and ρ ∈ S4. We

calculate in detail the limiting shapes and expected fixed point behavior for two

specific classes of permutations. In Chapter 4, with τ = 123, ρ = 3412, we find

that the limiting shape is exponentially low everywhere except where a + 2b =

5



1, a+ 2b = 2, 2a+ b = 1, or 2a+ b = 2. The shape is similar to that of Sn(τ), as

described in Chapter 1, though the distance from the diagonal where a+ b = 1 to

the regions of highest probability remains constant as n→∞, whereas in Sn(τ)

this distance tends to 0 as n grows.

In Chapter 5, we consider τ = 132 and ρ = 4231. Here, the limiting shape

is only exponentially small in regions of measure less than 1, which matches the

behavior of Sn(132). Here, however, the remainder of the square exhibits limiting

behavior on the order of c
n
, for c = 1, 2, or 3 depending on the values of a and b.

It is not immediately clear why the relative heights of these regions should be so

nicely distributed.

In Chapter 6, we consider the problem of calculating Lk(n), the number of

positive integer solutions to x1x2 +x2x3 + . . .+xkxk+1 = n, for fixed k. Somewhat

surprisingly, formulas for this function are only known up to k = 5. Previously,

the proofs of expressions for L4(n) and L5(n) involved manipulating generating

functions. We give new combinatorial proofs of the expressions for L4(n) and

L5(n).

In each of the following chapters, we include a shorter introduction which both

presents the background and motivation of the current subject in more detail and

also states our results.
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CHAPTER 2

Avoiding a single pattern of length three

Introduction

The Catalan numbers is one of the most celebrated integer sequences, so much

so that it is hard to overstate their importance and applicability. In the words of

Manuel Kauers and Peter Paule, “It is not exaggerated to say that the Catalan

numbers are the most prominent sequence in combinatorics” [KP] Richard Stan-

ley called them “the most special” and his “favorite number sequence” [Kim]. To

quote Martin Gardner, “they have the delightful propensity for popping up unex-

pectedly, particularly in combinatorial problems” [Gar]. In fact, Henry Gould’s

bibliography [Gou] lists over 450 papers on the subject, with many more in recent

years.

Just as there are many combinatorial interpretations of Catalan numbers [S1,

Exc. 6.19] (see also [P2, Slo, S2]), there are numerous results on statistics of

various such interpretations (see e.g. [B1, S1]), as well as their probabilistic and

asymptotic behavior (see [Drm, FS]). The latter results usually come in two

flavors. First, one can study the probability distribution of statistics, such as the

expectation, the standard deviation and higher moments. The approach we favor

is to define the shape of a large random object, which can be then analyzed by

analytic means (see e.g. [A2, Ver, VK]). Such objects then contain information

about a number of statistics under one roof.
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In this chapter we study the set Sn(π) of permutations σ ∈ Sn avoiding a

pattern π. This study was initiated by Percy MacMahon and Don Knuth, who

showed that the size of Sn(π) is the Catalan number Cn, for all permutations π ∈

S3 [Knu, Mac]. These results opened a way to a large area of study, with numerous

connections to other fields and applications [Kit] (see also Subsection 2.9.2).

We concentrate on two classical patterns, the 123- and 132-avoiding permu-

tations. Natural symmetries imply that other patterns in S3 are equinumerous

with these two patterns. We view permutations as 0-1 matrices, which we aver-

age, scale to fit a unit square, and study the asymptotic behavior of the resulting

family of distributions. Perhaps surprisingly, behavior of these two patterns is

similar on a small scale (linear in n), with random permutations approximating

the reverse identity permutation (n, n − 1, . . . , 1). However, on a larger scale

(roughly, on the order nα away from the diagonal), the asymptotics of shapes of

random permutations in Sn(123) and Sn(132), are substantially different. This

explains, perhaps, why there are at least nine different bijections between two

sets, all with different properties, and none truly “ultimate” or “from the book”

(see Subsection 2.9.3).

Our results are rather technical and contain detailed information about the

random pattern avoiding permutations, on both the small and large scale. We

exhibit several regimes (or “phases”), where the asymptotics are unchanged, and

painstakingly compute the precise limits, both inside these regimes and at the

phase transitions. Qualitatively, for 123-avoiding permutations, our results are

somewhat unsurprising, and can be explained by the limit shape results on the

brownian excursion (see Subsection 2.9.7); still, our results go far beyond what

was known. However, for the 132-avoiding permutations, our results are ex-

tremely unusual, and have yet to be explained even on a qualitative level (see

Subsection 2.9.8).
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The rest of the chapter is structured as follows. In the next section we first

present examples and calculations which then illustrate the “big picture” of our

results. In Section 2.2 we give formal definitions of our matrix distributions

and state basic observations on their behavior. We state the main results in

Section 2.3, in a series of six theorems of increasing complexity, for the shape

of random permutations in Sn(123) and Sn(132). Sections 2.4 and 2.5 contain

proofs of the theorems. In the next three sections (sections 2.6, 2.7 and 2.8), we

give a long series of corollaries, deriving the distributions for the positions of 1

and n, the number and location of fixed points, and the generalized rank. We

conclude with final remarks and open problems (Section 2.9).

2.1 The big picture

In this section we attempt to give a casual description of our results, which

basically makes this the second, technical part of the introduction.1

2.1.1 The setup

Let Pn(j, k) and Qn(j, k) be the number of 123- and 132-avoiding permutations,

respectively, of size n, that have j in the k-th position. These are the main

quantities which we study in this chapter.

There are two ways to think of Pn(·, ·) and Qn(·, ·). First, we can think of

these as families of probability distributions

1

Cn
Pn(j, ·) , 1

Cn
Pn(·, k) ,

1

Cn
Qn(j, ·) , and

1

Cn
Qn(·, k) .

In this setting, we find the asymptotic behavior of these distributions, where they

are concentrated and the tail asymptotics; we also find exactly how they depend

1Here and always when in doubt, we follow Gian-Carlo Rota’s advice on how to write an
Introduction [Rota].
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on parameters j and k.

Alternatively, one can think of Pn(·, ·) and Qn(·, ·) as single objects, which we

can view as a bistochastic matrices:

Pn =
1

Cn

∑
σ∈S(123)

M(σ), Qn =
1

Cn

∑
σ∈S(132)

M(σ),

where M(σ) is a permutation matrix of σ ∈ Sn, defined so that

M(σ)jk :=


1 σ(j) = k

0 σ(j) 6= k.

This approach is equivalent to the first, but more conceptual and visually trans-

parent, since both Pn and Qn have nice geometric asymptotic behavior when

n→∞. See Subsection 2.9.1 for more on this difference.

Let us present the “big picture” of our results. Roughly, we show that both

matrices Pn and Qn are very small for (j, k) sufficiently far away from the anti-

diagonal

∆ = {(j, k) | j + k = n+ 1},

and from the lower right corner (n, n) in the case of Qn. However, already on the

next level of detail there are large differences: Pn is exponentially small away from

the anti-diagonal, while Qn is exponentially small only above ∆, and decreases

at a rate Θ(n−3/2) on squares below ∆.

At the next level of detail, we look inside the “phase transition”, that is what

happens when (j, k) are near ∆. It turns out, matrix Pn maximizes at distance

Θ(
√
n) away from ∆, where the values scale as Θ(n−1/2), i.e. much greater than

the average 1/n. On the other hand, on the anti-diagonal ∆, the values of Pn

scale as Θ(n−3/2), i.e. below the average. A similar, but much more complicated

phenomenon happens for Qn. Here the “phase transition” splits into several

phases, with different asymptotics for rate of decrease, depending on how the

distance from (j, k) to ∆ relates to Θ(
√
n) and Θ(n3/8) (see Section 2.3).
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At an even greater level of detail, we obtain exact asymptotic constants on the

asymptotic behavior of Pn and Qn, not just the rate of decrease. For example,

we consider Pn at distance Θ(n1/2+ε) from ∆, and show that Pn is exponentially

small for all ε > 0. We also show that below ∆, the constant term implied by

the Θ notation in the rate Θ(n−3/2) of decrease of Qn, is itself decreasing until

“midpoint” distance n/2 from ∆, and is increasing beyond that, in a symmetric

fashion.

Unfortunately, the level of technical detail of our theorems is a bit overwhelm-

ing to give a casual description; they are formally presented in Section 2.3, and

proved in sections 2.4 and 2.5. The proofs rely on explicit formulas for Pn(j, k)

and Qn(j, k) which we give in Lemmas 2.4.2 and 2.5.3. These are proved by di-

rect combinatorial arguments. From that point on, the proofs of the asymptotic

behavior of Pn and Qn are analytic and use no tools beyond Stirling’s formula

and the Analysis of Special Functions.

2.1.2 Numerical examples

First, in Figures 8.5 and 8.6 we compute the graphs of P250 and Q250 (see the

Appendix). Informally, we name the diagonal mid-section of the graph of P250 the

canoe; this is the section of the graph where the values are the largest. Similarly,

we use the wall for the corresponding mid-section of Q250 minus the corner spike.

The close-up views of the canoe and the wall are given in Figures 8.7 and 8.8,

respectively. Note that both graphs here are quite smooth, since n = 250 is large

enough to see the the limit shape, with C250 ≈ 4.65× 10146, and every pixelated

value is computed exactly rather than approximated.

Observe that the canoe is symmetric across both the main and the anti-

diagonal, and contains the high spikes in the corners of the canoe, both of which

reach 1/4. Similarly, the wall is symmetric with respect to the main diagonal, and
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has three spikes which reach 1/4. These results are straightforward and proved

in the next section.

To see that the canoe is very thin, we compare graphs of the diagonal sections

Pn(k, k)/Cn for n = 62, 125, 250 and 500, as k varies from 90 to 160 (see Fig-

ures 8.1 to 8.4 in the Appendix). Observe that as n increases, the height of the

canoes decreases, and so does the width and “bottom”. As we mentioned earlier,

these three scale as Θ(n−1/2), Θ(n−1/2), and Θ(n−3/2), respectively. Note also the

sharp transition to a near flat part outside of the canoe; this is explained by an

exponential decrease mentioned earlier. The exact statements of these results are

given in Section 2.3.

Now, it is perhaps not clear from Figure 8.7 that the wall bends to the left.

To see this clearly, we overlap two graphs in Figure 2.1. Note that the peak of

P250(k, k) is roughly in the same place of Q250(k, k), i.e. well to the left of the

midpoint at 125. The exact computations show that the maxima occur at 118

and at 119, respectively. Note also that Q250(k, k) has a sharp phase transition

on the left, with an exponential decay, but only a polynomial decay on the right.

Figure 2.1: Comparison of P250(k, k)/C250 and Q250(k, k)/C250.
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2.1.3 Applications

We mention only one statistic which was heavily studied in previous years, and

which has a nice geometric meaning. Permutation σ is said to have a fixed point

at k if σ(k) = k. Denote by fpn(σ) the number of fixed points in σ.

For random permutations σ ∈ Sn, the distribution of fp is a classical problem;

for example E[fp] = 1 for all n. In a fascinating paper [RSZ], the authors prove

that the distribution of fp on S(321) and on S(132) coincide (see also [E2, EP]).

Curiously, Elizalde used the generating function technique to prove that E[fp] = 1

in both cases, for all n, see [E1]. He also finds closed form g.f. formulas for the

remaining two patterns (up to symmetry).

Now, the graphs of Pn(k, k)/Cn and Qn(k, k)/Cn discussed above, give the

expectations that k is a fixed point in a pattern avoiding permutation. In other

words, fixed points of random permutations in Sn(123) and Sn(132) are con-

centrated under the canoe and under the wall, respectively. Indeed, our results

immediately imply that w.h.p. they lie near n/2 in both cases. For random per-

mutations in Sn(321) and Sn(231), the fixed points lie in the ends of the canoe

and near the corners of the wall, respectively. In Section 2.7, we qualify all these

statements and as a show of force obtain sharp asymptotics for E[fp] in all cases,

both known and new.

2.2 Basic observations

Recall that Sn(π) is the set of π-avoiding permutations in Sn. For the case of

patterns of length 3, it is known that regardless of the pattern π ∈ S3, we have

|Sn(π)| = Cn .

Theorem 2.2.1 (MacMahon, Knuth). For all π ∈ S3, we have |Sn(π)| = Cn.
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While the equalities |Sn(132)| = |Sn(231)| = |Sn(213)| = |Sn(312)| and

|Sn(123)| = |Sn(321)| are straightforward, the fact that |Sn(132)| = |Sn(123)|

is more involved.

2.2.1 Symmetries

Recall that Pn(j, k) and Qn(j, k) denote the number of permutations in Sn(123)

and Sn(132), respectively, of size n that have j in the k-th position. In this section

we discuss the symmetries of such permutations.

Proposition 2.2.2. For all n, j, k positive integers such that 1 ≤ j, k ≤ n, we

have Pn(j, k) = Pn(k, j) and Qn(j, k) = Qn(k, j). Also, Pn(j, k) = Pn(n + 1 −

k, n+ 1− j), for all k, j as above.

The proposition implies that we can interpret Pn(j, k) as either

|{σ ∈ Sn(123) s.t.σ(j) = k}| or |{σ ∈ Sn(123) s.t.σ(k) = j}|,

and we use both formulas throughout the chapter. The analogous statement

holds with Qn(j, k) as well. Note, however, that Qn(j, k) is not necessarily equal

to Qn(n + 1 − k, n + 1 − j); for example, Q3(1, 2) = 2 but Q3(2, 3) = 1. In

other words, there is no natural analogue of the second part of the proposition

for Qn(j, k), even asymptotically, as our results will show in the next section.

Proof. The best way to see this is to consider permutation matrices. Observe that

Pn(j, k) counts the number of permutation matrices A = (ars) which have akj = 1,

but which have no row indices i1 < i2 < i3 nor column indices j1 < j2 < j3 such

that ai1j1 = ai2j2 = ai3j3 = 1. If A is such a matrix, then B = AT is also a matrix

which satisfies the conditions for Pn(k, j), since bjk = 1 and B has no indices

which lead to the pattern 123. This transpose map is clearly a bijection, so we

have Pn(j, k) = Pn(k, j).
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Similarly, since any 132 pattern in a permutation matrix A will be preserved

in B = AT , we have Qn(j, k) = Qn(k, j). Finally, observe that Pn(j, k) = Pn(n+

1− k, n+ 1− j), since σ is 123-avoiding if and only if ρ = (n+ 1− σ(n), n+ 1−

σ(n− 1), . . . , n+ 1− σ(1)) is 123-avoiding.

2.2.2 Maxima and minima

Here we find all maxima and minima of matrices Pn(·, ·) and Qn(·, ·). We separate

the results into two propositions.

Proposition 2.2.3. For all n ≥ 3, the value of Pn(j, k) is minimized when

(j, k) = (1, 1) or (n, n). Similarly, Pn(j, k) is maximized when

(j, k) = (1, n), (1, n− 1), (2, n) or (n− 1, 1), (n, 1), (n, 2).

Proof. For any n, the only σ ∈ Sn(123) with σ(1) = 1 is σ = (1, n, n−1, . . . , 3, 2).

This implies that Pn(1, 1) = 1. Similarly, Pn(n, n) = 1, since the only such

permutation is (n− 1, n− 2, . . . , 2, 1, n).

For every j, k ≤ n, the maximum possible value of Pn(j, k) is Cn−1, since the

numbers from 1 to n excluding j must be 123-avoiding themselves. Let us show

that

Pn(1, n) = Pn(2, n) = Pn(1, n− 1) = Cn−1,

proving that this maximum is in fact achieved by the above values of j and k.

If σ ∈ Sn(123) has σ(1) = n, then n cannot be part of a 123-pattern, since it

is the highest number but must be the smallest number in the pattern. Therefore,

any σ ∈ Sn−1(123) can be extended to a permutation τ ∈ Sn(123) in the following

way: let τ(1) = n, and let τ(i) = σ(i−1) for 2 ≤ i ≤ n. Since |Sn−1(123)| = Cn−1,

we have Pn(1, n) = Cn−1. Similarly, if σ(2) = n, then n cannot be part of

a 123-pattern, so Pn(2, n) = Cn−1. The same is true if σ(1) = (n − 1), so
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Pn(1, n− 1) = Cn−1. By Proposition 2.2.2, we also have

Pn(n− 1, 1) = Pn(n, 1) = Pn(n, 2) = Cn−1,

as desired.

Proposition 2.2.4. For all n ≥ 4, the value of Qn(j, k) is minimized when

(j, k) = (1, 1). Similarly, Qn(j, k) is maximized when

(j, k) = (1, n), (1, n− 1), (n− 1, 1), (n, 1), or (n, n).

Proof. For (j, k) = (1, 1), the only 132-avoiding permutation is

σ = (1, 2, 3, . . . , n− 1, n) .

Therefore, Qn(1, 1) = 1 for all n.

For the second part, we use the same reasoning as in Proposition 2.2.3, except

for (j, k) = (n, n). For (j, k) = (n, n), we have Qn(n, n) = Cn−1 as well, since n in

the final position cannot be part of a 132-pattern. Observe that unlike Pn(2, n),

Qn(2, n) < Cn−1, since σ(2) = n requires σ(1) = n − 1, in order to avoid a

132-pattern.

2.3 Main results

In this section we present the main results of the chapter.

2.3.1 Shape of 123-avoiding permutations

Let 0 ≤ a, b ≤ 1, 0 ≤ α < 1, and c ∈ R s.t. c 6= 0 for α 6= 0 be fixed constants.

Recall that Pn(j, k) is the number of permutations σ ∈ Sn(123) with σ(j) = k.
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Define

F (a, b, c, α) = sup

{
d ∈ R+

∣∣∣ lim
n→∞

ndPn(an− cnα, bn− cnα)

Cn
<∞

}
for α 6= 0 or a+ b 6= 1 ,

and

F (a, b, c, α) = sup

{
d ∈ R+

∣∣∣ lim
n→∞

ndPn(an− cnα + 1, bn− cnα)

Cn
<∞

}
,

for α = 0 and a+ b = 1 .

Similarly, let

L(a, b, c, α) = lim
n→∞

nF (a,b,c,α)Pn(an− cnα, bn− cnα)

Cn
for α 6= 0 or a+ b 6= 1,

and

L(a, b, c, α) = lim
n→∞

nF (a,b,c,α)Pn(an− cnα + 1, bn− cnα)

Cn
for α = 0 and a+ b = 1,

defined for all a, b, c, α as above, for which F (a, b, c, α) < ∞; let L be undefined

otherwise.

Theorem 2.3.1. For all 0 ≤ a, b ≤ 1, c ∈ R and 0 ≤ α < 1, we have

F (a, b, c, α) =



∞ if a+ b 6= 1 ,

∞ if a+ b = 1, c 6= 0, α > 1
2
,

3
2

if a+ b = 1, c = 0 ,

3
2
− 2α if a+ b = 1, c 6= 0, α ≤ 1

2
.

Here F (a, b, c, α) =∞ means that Pn(an− cnα, bn− cnα) = o(Cn/n
d), for all

d > 0. The following result proves the exponential decay of these probabilities.

Theorem 2.3.2. Let 0 ≤ a, b ≤ 1 s.t. a + b 6= 1, c ∈ R, and 0 < α < 1. Then,

for n large enough, we have

Pn(an− cnα, bn− cnα)

Cn
< εn,
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where ε = ε(a, b, c, α) is independent of n, and 0 < ε < 1. Similarly, let 0 ≤ a ≤

1, c 6= 0, and 1
2
< α < 1. Then, for n large enough, we have

Pn(an− cnα, (1− a)n− cnα)

Cn
< εn

2α−1

,

where ε = ε(a, c, α) is independent of n and 0 < ε < 1.

These theorems compare the growth of Pn(an− cnα, bn− cnα) to the growth

of Cn. Clearly,
n∑
j=1

Pn(j, k) = |Sn(123)| = Cn for all 1 ≤ k ≤ n .

Therefore, if Pn(j, k) were constant across all values of j, k between 1 and n, we

would have Pn(j, k) = Cn/n for all 1 ≤ j, k ≤ n. Theorem 2.3.1 states that for

0 ≤ a, b ≤ 1, a + b 6= 1, we have Pn(an, bn) = o(Cn/n
d), for every d ∈ R. For

a + b = 1, we have Pn(an, bn) = Θ(Cn/n
3
2 ). Theorem 2.3.1 is in fact stating

slightly more. When we consider Pn(an − cnα, bn − cnα) instead of Pn(an, bn),

we have

Pn(an− cnα, bn− cnα) = Θ
(
Cn/n

3
2
−2α
)
,

for all α ≤ 1
2
. This relationship can be seen in Figures 2.2 and 2.3.

0

1

1 a

b

γ γ : {a+ b = 1− c√
n
}

γ′ : {a+ b = 1 + c√
n
}γ′

Figure 2.2: Region where Pn(an, bn) ∼ Cn/n
d for some d.

In Figure 2.3, on γ1, we have

Pn
(
an− c

√
n, (1− a)n− c

√
n
)

= Θ

(
Cn√
n

)
.

18



0

1

1

γ1 : {a+ b = 1− 2c√
n
}

γ1

γ2 : {a+ b = 1− 2c
n1−α for some 0 ≤ α ≤ 1

2
}

γ2

γ3

γ3 : {a+ b = 1}

a

b

Figure 2.3: Region where Pn(an, bn) ∼ Cn/n
d for some d.

On γ2, where

a+ b = 1− 2c

n1−α , for some 0 ≤ α ≤ 1

2
,

we have

Pn(an− cnα, (1− a)n− cnα) = Θ

(
Cn

n
3
2
−2α

)
.

On γ3, we have Pn(an, (1− a)n) = Θ(Cn/n
3
2 ). Behavior is symmetric about the

line a+ b = 1.

The following result is a strengthening of Theorem 2.3.1 in a different direc-

tion. For a, b, c, and α as above, s.t. F (a, b, c, α) < ∞, we calculate the value

of L(a, b, c, α).

Theorem 2.3.3. For all 0 ≤ a ≤ 1, c ∈ R, and 0 ≤ α ≤ 1/2, we have

L(a, 1− a, c, α) =


ξ(a, c) if c = 0 or α = 0 ,

η(a, c) if c 6= 0 and 0 < α < 1
2
,

η(a, c)κ(a, c) if c 6= 0 and α = 1
2
,

where

ξ(a, c) =
(2c+ 1)2

4
√
π(a(1− a))

3
2

, η(a, c) =
c2

√
π(a(1− a))

3
2

,

and κ(a, c) = exp

[
−c2

a(1− a)

]
.
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Let us note that for α = 0 or c = 0 as in theorem, we actually evaluate

Pn(an− cnα, (1− a)n− cnα + 1) rather than Pn(an− cnα, (1− a)n− cnα).

We do this in order to ensure that we truly measure the distance away from

the anti-diagonal where j + k = n + 1. This change only affects the asymptotic

behavior of Pn(·, ·) when α = 0 or c = 0.

2.3.2 Shape of 132-avoiding permutations

Recall that Qn(j, k) is the number of permutations σ ∈ Sn(132) with σ(j) = k.

Let a, b, c and α be defined as in Theorem 2.3.1. Define

T (a, b, c, α) = sup

{
d ∈ R+

∣∣∣ lim
n→∞

ndQn(an− cnα, bn− cnα)

Cn
<∞

}
.

Let

M(a, b, c, α) = lim
n→∞

nT (a,b,c,α)Qn(an− cnα, bn− cnα)

Cn
,

defined for all a, b, c, α as above for which T (a, b, c, α) < ∞; M is undefined

otherwise.

Theorem 2.3.4. For 0 ≤ a, b ≤ 1, c ∈ Z and α ≥ 0, we have T (a, b, c, α) =

=



∞ if 0 ≤ a+ b < 1,

3
2

if 1 < a+ b < 2,

0 if a = b = 1, α = 0,

3
4

if a+ b = 1, c = 0,



3
2
α if a = b = 1, 0 < α < 1, c 6= 0,

∞ if a+ b = 1, 1
2
< α < 1, c > 0,

3
4

if a+ b = 1, 0 ≤ α ≤ 3
8
, c 6= 0,

3
4

if a+ b = 1, 3
8
≤ α ≤ 1

2
, c < 0,

3
2
α if a+ b = 1, 1

2
< α < 1, c < 0,

3
2
− 2α if a+ b = 1, 3

8
≤ α ≤ 1

2
, c > 0.

As in Theorem 2.3.1, here T (a, b, c, α) = ∞ means that Qn(an − cnα, bn −

cnα) = o(Cn/n
d), for all d > 0. The following result proves exponential decay of

these probabilities (cf. Theorem 2.3.2.)
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Theorem 2.3.5. Let 0 ≤ a, b < 1 such that a + b < 1, c 6= 0, and 0 < α < 1.

Then, for n large enough, we have

Qn(an− cnα, bn− cnα)

Cn
< εn,

where ε = ε(a, b, c, α) is independent of n, and 0 < ε < 1. Similarly, let 0 ≤ a ≤

1, 0 < c, and 1
2
< α < 1. Then, for n large enough, we have

Qn(an− cnα, (1− a)n− cnα)

Cn
< εn

2α−1

,

where ε = ε(a, c, α) is independent of n, and 0 < ε < 1.

The above theorems compare the relative growth rates of Qn(i, j) and Cn, as

n → ∞. Theorem 2.3.4 states that for a + b < 1, Qn(an, bn) = o(Cn/n
d) for all

d > 0. For 1 < a+ b < 2, we have

Qn(an, bn) = Θ

(
Cn

n
3
2

)
.

Qn(an, bn) is the largest when a = b = 1 or when a + b = 1. The true behavior

of Qn(i, j) described in Theorems 2.3.4 and 2.3.6 takes the second order terms of

i and j into account. In fact we have that

Qn(n− cnα, n− cnα) = Θ

(
Cn

n
3
2
α

)
when α ≤ 1

2
.

For a+ b = 1, the asymptotic behavior of Qn(an− cnα, bn− cnα) varies through

several regimes as α varies between 0 and 1, and c varies between positive and

negative numbers. This relationship is illustrated in Figures 2.4 and 2.5.

In Figure 2.5, on the curve γ1, we have

Qn(an− c
√
n, (1− a)n− c

√
n) = Θ

(
Cn

n
1
2

)
.

Similarly, on γ2, we have

Qn(an− cnα, (1− a)n− cnα) = Θ

(
Cn

n
3
2
−2α

)
.
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0

1

1
a

b

γ γ : {a+ b = 1− 2c√
n
}

Figure 2.4: Region where Qn(an, bn) ∼ Cn/n
d for some d.

0

1

1

γ1 : {a+ b = 1− 2c√
n
}

γ1
γ2 γ2 : {a+ b = 1− 2c

n1−α , where 3
8
< α < 1

2
}

γ3 γ3 : {a+ b = 1− 2c

n
5
8
}

γ4
γ4 : {a+ b = 1 + 2c√

n
}

γ5
γ5 : {a+ b = 1 + 2c

n1−α , where 1
2
< α < 1}

a

b

Figure 2.5: Region where Qn(an, bn) ∼ Cn/n
d for some d.

In the space between γ3 and γ4, we have

Qn(an+ k, (1− a)n+ k) = Θ

(
Cn

n
3
4

)
,

where −cn 3
4 ≤ k ≤ cn

1
2 . Finally, on γ5, we have

Qn(an+ cnα, (1− a)n+ cnα) = Θ

(
Cn

n
3
2
α

)
.

As in Theorem 2.3.3, the following result strengthens Theorem 2.3.4 in a

different direction. For a, b, c, α where T (a, b, c, α) <∞, we calculate the value of

M(a, b, c, α).
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Theorem 2.3.6. For a, b, c, α as above, we have

M(a, b, c, α) =



v(a, b) if 1 < a+ b < 2,

w(c) if a = b = 1, 0 < α < 1,

u(c) if a = b = 1, c ≥ 0, α = 0,

w(c) if a+ b = 1, c < 0, 1
2
< α,

x(a, c) if a+ b = 1, c < 0, α = 1
2
,

and

M(a, b, c, α) =



z(a) if a+ b = 1, 0 ≤ α < 3
8
,

z(a) if a+ b = 1, c < 0, 3
8
≤ α < 1

2
,

z(a) + y(a, c) if a+ b = 1, c > 0, α = 3
8
,

y(a, c) if a+ b = 1, c > 0, 3
8
< α < 1

2
,

y(a, c)κ(a, c) if a+ b = 1, c > 0, α = 1
2
,

where

u(c) =
c∑
s=0

(
s+ 1

2c+ 1− s

)2(
2c+ 1− s
c+ 1

)2

4s−2c−1, y(a, c) =
2c2

√
πa

3
2 (1− a)

3
2

,

w(c) =
1

2
5
2 c

3
2
√
π
, x(a, c) =

1

4πa
3
2 (1− a)

3
2

∫ ∞
0

s2

(s+ 2c)
3
2

exp

[
−s2

4a(1− a)

]
ds,

v(a, b) =
1

2
√
π(2− a− b) 3

2 (a+ b− 1)
3
2

, z(a) =
Γ(3

4
)

2
3
2πa

3
4 (1− a)

3
4

,

and κ(a, c) is defined as in Theorem 2.3.3.

Observe that for c = 0 or α = 0, values Qn(an− cnα, (1− a)n− cnα) behave

the same asymptotically as Qn(an − cnα, (1 − a)n − cnα + 1). We explain this

in more detail in Lemma 2.5.8. This is in contrast with the behavior of Pn(·, ·),

where we need to adjust when on the anti-diagonal. Note also that for a = b = 1,

α = 0 and c = 0, we have

u(0) =
1

4
= lim

n→∞

Qn(n, n)

Cn
= lim

n→∞

Cn−1

Cn
,
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which holds since Qn(n, n) = Cn−1 given in the proof of Proposition 2.2.4. We

prove the theorem in Section 2.5.

2.4 Analysis of 123-avoiding permutations

2.4.1 Combinatorics of Dyck Paths

We say a Dyck path of length 2n is a path from (0, 0) to (2n, 0) in Z2 consisting

of upsteps (1,1) and downsteps (1,-1) such that the path never goes below the

x-axis. We denote by Dn the set of Dyck paths of length 2n. We can express a

Dyck path γ ∈ Dn as a word of length 2n, where u represents an upstep and d

represents a downstep.

Recall that Pn(j, k) is the number of permutations σ ∈ Sn(123) with σ(j) = k.

Let f(n, k) = Pn(1, k) (or Pn(k, 1)). Let b(n, k) be the number of lattice paths

consisting of upsteps and downsteps from (0, 0) to (n + k − 2, n− k) which stay

above the x-axis. Here b(n, k) are the ballot numbers, given by

b(n, k) =
n− k + 1

n+ k − 1

(
n+ k − 1

n

)
.

Lemma 2.4.1. For all 1 ≤ k ≤ n, we have f(n, k) = b(n, k).

Proof. We have that f(n, k) counts the number of permutations σ ∈ Sn(123) such

that σ(1) = k. By the RSK-correspondence (see e.g. [B1, S1]), we have f(n, k)

counts the number of Dyck paths γ ∈ Dn whose final upstep ends at the point

(n + k − 1, n + 1 − k). Remove the last upstep from path γ, and all the steps

after it. We get a path γ′ from (0, 0) to (n + k − 2, n − k) which remains above

the x-axis. These paths are counted by b(n, k), and the map γ → γ′ is clearly

invertible, so f(n, k) = b(n, k), as desired.
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Lemma 2.4.2. For all 1 ≤ j, k ≤ n, we have

Pn(j, k) = b(n− k + 1, j) b(n− j + 1, k), where j + k ≤ n+ 1.

Similarly, we have

Pn(j, k) = b(j, n− k + 1) b(k, n− j + 1), where j + k > n+ 1.

Proof. Let us show that the second case follows from the first case. Suppose

j + k > n+ 1. By assuming the first case of the lemma, we have

Pn(j, k) = Pn(n+ 1− j, n+ 1− k)

= b(n− (n+ 1− k) + 1, n+ 1− j) b(n− (n+ 1− j) + 1, n+ 1− k)

= b(k, n− j + 1) b(j, n− k + 1),

by Proposition 2.2.2. Therefore, it suffices to prove the lemma for j + k ≤ n+ 1.

Let j + k ≤ n + 1, and let σ be a 123-avoiding permutation with σ(j) = k.

We use decomposition σ = τ kρ, where

τ = {σ(1), . . . , σ(j − 1)} and ρ = {σ(j + 1), . . . , σ(n)}.

We now show that σ(i) > k, for all 1 ≤ i < j. Suppose σ(i) < k for some i < j.

Then there are at most (j − 2) numbers x < j with σ(x) > k. Since σ(j) = k,

in total there are (n − k) numbers y such that σ(y) > k. Since j − 2 < n − k,

there must be at least one number z > j with σ(z) > k. However, this gives a

123 pattern consisting of (i, j, z), a contradiction. Therefore, σ(i) > k, for all

1 ≤ i < j.

Consider the values of σ within τ . From above, the values within τ are all

greater than k. Given a possible τ , the values within ρ which are greater than k

must be in decreasing order, to avoid forming a 123-pattern starting with k.

Therefore, to count possible choices for τ , it suffices to count possible orderings

within σ of the numbers x with k ≤ x ≤ n. The number of such orderings is
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b(n− k+ 1, j), since the smallest number is in the j-th position. Therefore, there

are b(n− k + 1, j) possible choices for τ .

Now consider the values of σ within {k} ∪ ρ. We have (n − j + 1) numbers

to order, and (k − 1) of them are less than k. Our only restriction on ρ is that

we have no 123-patterns. There are b(n − j + 1, k) of these orderings, since the

k-th smallest number is in the 1-st position. Therefore, we have b(n − j + 1, k)

possible choices for ρ.

Once we have chosen τ and ρ, this completely determines the permutation σ.

Therefore, there are b(n− j+1, k)b(n−k+1, j) choices of such σ, as desired.

Example 2.4.3. Let us compute P7(4, 3), the number of permutations

σ ∈ S7(123) with σ(4) = 3 .

The numbers 1 and 2 must come after 3 in any such permutation, since oth-

erwise a 123 will be created with 3 in the middle. There are

b(7− 3 + 1, 4) =
2

8

(
8

5

)
= 14

ways to order the numbers between 3 and 7, shown here:

(47635) (54736) (57436) (57634) (64735) (65437) (65734)

(67435) (67534) (74635) (75436) (75634) (76435) (76534).

For each of these, there are

b(7− 4 + 1, 3) =
2

6

(
6

4

)
= 5

ways to place the numbers between 1 and 3, shown here:

(∗ ∗ ∗ 3 1 ∗ 2) (∗ ∗ ∗ 3 2 1∗) (∗ ∗ ∗ 3 2 ∗ 1) (∗ ∗ ∗ 3 ∗ 1 2) (∗ ∗ ∗ 3 ∗ 2 1),

where the asterisks represent the positions of 4, 5, 6, and 7. In total, we have

P7(4, 3) = b(5, 4)b(4, 3) = (14)(5) = 70.
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2.4.2 Proof of theorems 2.3.1, 2.3.2, and 2.3.3

The proof follows from several lemmas: one technical lemma and one lemma for

each case from Theorem 2.3.1.

Let h : [0, 1]2 → R be defined as

h(a, b) =
(1− a+ b)(1−a+b)(1− b+ a)(1−b+a)

aa(1− a)(1−a)bb(1− b)(1−b) .

Lemma 2.4.4 (Technical lemma). We have

h(a, b) ≤ 4, for all 0 ≤ a, b ≤ 1.

Moreover, h(a, b) = 4 if and only if b = 1− a.

Proof. Observe that h(a, 1−a) = 4. Furthermore, we consider the partial deriva-

tives of h with respect to a and b. We find that h has local maxima at each point

where b = 1− a. In fact these are the only critical points within [0, 1]2. We omit

the details.2

Lemma 2.4.5 (First case). Let a, b ∈ [0, 1], c 6= 0, and 0 ≤ α < 1, such that

a + b 6= 1. Then F (a, b, c, α) = ∞. Moreover, for n sufficiently large, we have

Pn(an− cnα, bn− cnα)/Cn < εn, where ε is independent of n and 0 < ε < 1.

Proof. By lemmas 2.4.1 and 2.4.2, we have

Pn(an−cnα, bn−cnα) = b(n−(bn−cnα)+1, an−cnα) b(n−(an−cnα)+1, bn−cnα)

=
(n(1− a− b) + 2cnα + 2)2

n2(1− b+ a)(1− a+ b)

(
n(1− b+ a)

n− (bn− cnα) + 1

)(
n(1− a+ b)

n− (an− cnα) + 1

)
.

Applying Stirling’s formula gives

Pn(an− cnα, bn− cnα) ∼ r(n, a, b) · h(a, b)n,

2The proof follows similar (and even somewhat simplified) steps as the proof of Lemma 2.5.5.
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where r(n, a, b) =

=
(n(1− a− b) + 2cnα + 2)2(an− cnα)(bn− cnα)

2πn3(n(1− a) + cnα + 1)(n(1− b) + cnα + 1)(1− a+ b)(1− b+ a)

×
(

(1− a+ b)(1− b+ a)

ab(1− a)(1− b)

) 1
2

.

Using

Cn ∼
4n
√
πn

3
2

,

we obtain

ndPn(an− cnα, bn− cnα)

Cn
∼
√
π nd+

3
2 r(n, a, b)h(a, b)n 4−n.

Clearly, for h(a, b) < 4, the r.h.s.→ 0 as n→∞, for all d ∈ R+. By Lemma 2.4.4,

we have h(a, b) < 4 unless b = 1 − a. Therefore, since a + b 6= 1, we have

F (a, b, c, α) =∞. Also, when n is large enough,

Pn(an− cnα, bn− cnα)

Cn
<

(
h(a, b) + 4

8

)n
,

as desired.

Lemma 2.4.6 (Second case). For all a ∈ (0, 1), 0 < c, and 1
2
< α < 1, we have

F (a, 1− a, c, α) = ∞. Moreover, for n large enough, we have

Pn(an− cnα, (1− a)n− cnα)

Cn
< εn

2α−1

,

where ε is independent of n and 0 < ε < 1.

Proof. Let k = cnα. Evaluating Pn(an− k, (1− a)n− k), we have

Pn(an− k, (1− a)n− k) =
(2k + 2)2

(2(1− a)n)(2an)

(
2(1− a)n

(1− a)n+ k + 1

)(
2an

an+ k + 1

)
.

Using Stirling’s formula and simplifying this expression gives

Pn(an− k, (1− a)n− k) ∼ (k + 1)2

π(a(1− a))
3
2n3

4n
(

an

an+ k

)an+k (
an

an− k

)an−k
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×
(

(1− a)n

(1− a)n+ k

)(1−a)n+k (
(1− a)n

(1− a)n− k

)(1−a)n−k

.

Clearly,

ln

[(
an

an+ k

)an+k (
an

an− k

)an−k]
∼ −k

2

an
as n→∞.

Therefore,

ndPn(an− k, (1− a)n− k)

Cn
∼ nd(k + 1)2

√
π(a(1− a)n)

3
2

exp

[
−k2

a(1− a)n

]
.

Substituting k ← cnα, gives

ndPn(an− k, (1− a)n− k)

Cn
∼ c2nd
√
π(a(1− a))

3
2n

3
2
−2α

exp

[
−c2

a(1− a)n1−2α

]
.

For α > 1
2
, this expression → 0 as n → ∞, for all d. This implies that F (a, 1 −

a, c, α) = ∞. In fact, we have also proved the second case of Theorem 2.3.6, as

desired.

Lemma 2.4.7 (Third case). For all a ∈ (0, 1), c > 0, and α ∈ [0, 1], we have

F (a, 1− a, 0, α) = F (a, 1− a, c, 0) =
3

2
.

Furthermore, we have L(a, 1− a, c, 0) = ξ(a, c).

Proof. In this case, to ensure that cnα measures the distance from the anti-

diagonal, we need to analyze Pn(an− cnα, (1− a)n− cnα + 1). Evaluating as in

Lemma 2.4.6, gives

ndPn(an− cnα, (1− a)n− cnα + 1)

Cn
∼ nd−

3
2 (2k + 1)2

4
√
π(a(1− a))

3
2

exp

[
−k2

a(1− a)n

]
.

For c = 0, we get F (a, 1−a, 0, α) = 3/2 and L(a, 1−a, 0, α) = ξ(a, 0). For α = 0,

we get F (a, 1− a, c, 0) = 3/2 and L(a, 1− a, c, 0) = ξ(a, c), as desired.
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Lemma 2.4.8 (Fourth case). For all a ∈ (0, 1), c > 0 and 0 < α ≤ 1
2
, we have

F (a, 1− a, c, α) =
3

2
− 2α.

Furthermore, for 0 < α < 1
2
, we have

L(a, 1− a, c, α) = η(a, c) and L

(
a, 1− a, c, 1

2

)
= η(a, c)κ(a, c),

where η(a, c) and κ(a, c) are defined as in Theorem 2.3.3.

Proof. As in Lemma 2.4.6, we have

ndPn(an− k, (1− a)n− k)

Cn
∼ c2nd
√
π(a(1− a))

3
2n

3
2
−2α

exp

[
−c2

a(1− a)n1−2α

]
.

We can rewrite this expression as

ndPn(an− k, (1− a)n− k)

Cn
∼ η(a, c) nd−( 3

2
−2α) exp

[
−c2

a(1− a)n1−2α

]
.

For α < 1
2
, we clearly have

exp

[
−c2

a(1− a)n1−2α

]
→ 1 as n→∞,

so F (a, 1 − a, c, α) = 3
2
− 2α and L(a, 1 − a, c, α) = η(a, c). For α = 1

2
, by the

definition of κ(a, c), we have

exp

[
−c2

a(1− a)n1−2α

]
→ κ(a, c), as n→∞,

so F (a, 1− a, c, 1/2) = 1/2, and L(a, 1− a, c, 1/2) = η(a, c)κ(a, c), as desired.

Let us emphasize that the results of the previous two lemmas hold for c < 0 as

well as c > 0. This is true by the symmetry of Pn(j, k) displayed in Lemma 2.2.2,

and since c only appears in the formulas for η(a, c) and κ(a, c) as c2. Therefore,

we have proven all cases of Theorems 2.3.1 and 2.3.3.
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2.5 Analysis of 132-avoiding permutations

2.5.1 Combinatorics of Dyck paths

We recall a bijection ϕ between Sn(132) and Dn, which we then use to derive the

exact formulas for Qn(j, k). This bijection is equivalent to that in [EP], itself a

variation on a bijection in [Kra] (see also [B1, Kit] for other bijections between

these combinatorial classes).

Given γ ∈ Dn, for each downstep starting at point (x, y) record y, the level of

(x, y). This defines yγ = (y1, y2, . . . , yn).

We create the 132-avoiding permutation by starting with a string {n, n −

1, . . . , 2, 1} and removing elements from the string one at a time each from the

yi-th spot in the string, creating a permutation ϕ(γ). Suppose this permutation

contains a 132-pattern, consisting of elements a, b, and c with a < b < c. After

a has been removed from the string, the level in the string must be beyond b

and c. Since we can only decrease levels one at a time, we must remove b before

removing c, a contradiction. Therefore, the map ϕ is well-defined, and clearly

one-to-one. By Theorem 2.2.1, this proves that ϕ is the desired bijection.

Example 2.5.1. Take the Dyck path γ = (uuduuddudd). Then zγ = (2, 3, 2, 2, 1),

as seen in Figure 2.6. We then create our 132-avoiding permutation ϕ(γ) by

taking the string {5, 4, 3, 2, 1} and removing elements one at a time. First we

remove the 2-nd element (4), then we remove the 3-rd element from the remaining

list {5, 3, 2, 1}, which is 2, then the 2-nd from the remaining list {5, 3, 1}, which

is 3, then the 2-nd from {5, 1}, which is 1, then the last element (5), and we

obtain ϕ(γ) = (4, 2, 3, 1, 5).

Let g(n, k) be the number of permutations σ ∈ Sn(132) with σ(1) = k, so

g(n, k) = Qn(1, k). Recall that since Qn(j, k) = Qn(k, j), we can also think of

g(n, k) as the number of permutations σ ∈ Sn(132) with σ(k) = 1. Let b(n, k)
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Level 1
Level 2
Level 3

Figure 2.6: Dyck Path γ with downsteps at yγ = (2, 3, 2, 2, 1).

denote the ballot numbers as in Lemma 2.4.1.

Lemma 2.5.2. For all 1 ≤ k ≤ n, we have g(n, k) = b(n, k).

Proof. Let σ ∈ Sn(132) with σ(1) = k. Using bijection ϕ, we find that ϕ−1(σ) is

a Dyck path with its final upstep from (n+ k− 2, n− k) to (n+ k− 1, n+ 1− k).

The result now follows from the same logic as in the proof of Lemma 2.4.1.

Lemma 2.5.3. For all 1 ≤ j, k ≤ n,

Qn(j, k) =
∑
r

b(n− j + 1, k − r) b(n− k + 1, j − r)Cr,

where the summation is over values of r such that

max {0, j + k − n− 1} ≤ r ≤ min {j, k} − 1.

Proof. Since our formula is symmetric in j and k except for the upper limit of

summation, proving the lemma when j ≤ k will suffice. When j ≤ k the upper

limit is j − 1, rather than k − 1 when j > k. Qn(j, k) represents the number

of permutations σ ∈ Sn(132) with σ(j) = k. Let qn(j, k, r) be the number of

132-avoiding permutations σ counted by Qn(j, k) such that there are exactly r

values x with x < j such that σ(x) < k. Below we show that

qn(j, k, r) = b(n− j + 1, k − r)b(n− k + 1, j − r)Cr for all 0 ≤ r ≤ j − 1,

which implies the result.

Let σ ∈ Sn(132) such that σ(j) = k and there are exactly r numbers xi with

xi < j and σ(xi) < σ(j) = k. We use decomposition σ = τ πkφ, where

τ = {σ(1), . . . , σ(j − r − 1)}, π = {σ(j − r), . . . , σ(j − 1)} ,
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and

φ = {σ(j + 1), . . . , σ(n)} .

Observe that either all elements of π are smaller than k, or there is some element

of π greater than k, and some element of τ smaller than k. Suppose the second

case is true, with a an element of τ smaller than k, and b an element of π larger

than k. Then a, b, and k form a 132-pattern, a contradiction. Therefore, all

elements of π must be smaller than k.

Suppose some element x of π is smaller than (k−r). Then some number y with

k − r ≤ y < k is an element of φ. Then we have a 132-pattern, formed by x, k,

and y, which is a contradiction, so π consists of {k− r, k− r+ 1, . . . , k−2, k−1}.

There are Cr possible choices for π, since π must avoid the 132-pattern.

Now consider the values of σ within τ . Observe that regardless of τ , the

numbers s in φ with s > k must be in decreasing order in φ, in order to avoid

a 132-pattern that starts with k. Therefore, the number of possible choices for

τ is equal to the number of possible orderings of the numbers between k and n

that avoid 132, with k in the (j−r)-th position (since π only consists of numbers

smaller than k). There are exactly b(n− k + 1, j − r) such possible choices.

Finally, consider values of σ within {k} ∪ φ. Here we need to order n− j + 1

numbers so that they avoid the 132-pattern, with the first number being the

(k−r)-th smallest. There are exactly b(n−j+1, k−r) ways to do this. Choosing

π, τ , and φ completely determines σ. Therefore, there are b(n− j+1, k−r) b(n−

k + 1, j − r)Cr possible choices for σ, as desired.

Example 2.5.4. Let us compute Q7(4, 3), the number of permutations σ ∈

S7(132) with σ(4) = 3. We count the permutations separately depending on how

many numbers smaller than 3 come ahead of 3. First suppose r = 0, so there are

no numbers smaller than 3 ahead of 3 in the permutation. This means that 3 is
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in the 4-th position among those numbers greater than equal to 3. There are

b(7− 3 + 1, 4− 0) =
5− 4 + 1

5 + 4− 1

(
5 + 4− 1

5

)
=

2

8

(
8

5

)
= 14

ways to order the numbers between 3 and 7, displayed here:

(45637) (54637) (56437) (56734) (64537) (65437) (65734)

(67435) (67534) (74536) (75436) (75634) (76435) (76534).

For each of these there are

b(7− 4 + 1, 3− 0) =
2

6

(
6

4

)
= 5

ways to place the numbers between 1 and 3, shown here:

(∗ ∗ ∗ 3 1 2 ∗) (∗ ∗ ∗ 3 2 1 ∗) (∗ ∗ ∗ 3 2 ∗ 1) (∗ ∗ ∗ 3 ∗ 1 2) (∗ ∗ ∗ 3 ∗ 2 1),

where the stars represent the positions of 4,5,6 and 7. In total we find that

q7(4, 3, 0) = b(5, 4)b(4, 3) = (14)(5) = 70.

Similarly, for r = 1 there is 1 number smaller than 3 ahead of 3 in the

permutation. This number has to be 2, since otherwise a 132 pattern would be

formed with 1,2, and 3. Also this number must be directly in front of 3 in the

permutation, since otherwise a 132 would be formed with 2 as the 1 and 3 as the

2. This means that 3 is now in the 3-rd position among those numbers greater

than equal to 3. There are

b(7− 3 + 1, 4− 1) =
3

7

(
7

5

)
= 9

ways to order the numbers between 3 and 7, displayed here:

(45367) (54367) (56347) (64357) (65347) ,

(67345) (74356) (75346) (76345) .

For each of those orderings there are

b(7− 4 + 1, 3− 1)C1 =
3

5

(
5

4

)
= 3
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ways to place the numbers between 1 and 3, displayed here:

(∗ ∗ 2 3 1 ∗ ∗) (∗ ∗ 2 3 ∗ 1∗) (∗ ∗ 2 3 ∗ ∗1).

Therefore, overall we have q7(4, 3, 1) = b(5, 3)b(4, 2)C1 = (9)(3) = 27. In other

words, there are 27 distinct 132-avoiding permutations of length 7 with 3 in the

4-th position, and one number smaller than 3 and ahead of 3.

The final case is when r = 2, in which case both 1 and 2 come ahead of 3 in

the permutation. This means that 3 is in the 2-nd position among those numbers

between 3 and 7. Therefore there are

b(7− 3 + 1, 4− 2) =
4

6

(
6

5

)
= 4

ways to order the numbers between 3 and 7, displayed here:

(43567) (53467) (63457) (73456).

For each of these we have

b(7− 4 + 1, 3− 2)C2 =

(
4

4

)
(2) = 2

ways to place the numbers between 1 and 3, displayed here:

(∗1 2 3 ∗ ∗∗) (∗ 2 1 3 ∗ ∗∗).

Together we have that q7(4, 3, 2) = b(5, 2)b(4, 1)C2 = (4)(1)(2) = 8, so there are 8

different 132-avoiding permutations of length 7 with 3 in the 4-th position, and

two numbers smaller than 3 and ahead of 3. We have shown that

Q7(4, 3) = q7(4, 3, 0) + q7(4, 3, 1) + q7(4, 3, 2) = 70 + 27 + 8 = 105.
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2.5.2 Proof of theorems 2.3.4, 2.3.5, and 2.3.6

The proof again involves one technical lemma and several cases corresponding to

the statements of Theorems 2.3.4 and 2.3.6.

Let h : [0, 1]3 → R be defined so that

h(a, s, t) =
4ast(1− at+ a− ast)1−at+a−ast(1− a+ at− ast)1−at+a−ast

(1− at)(1−at)(a− ast)(a−ast)(1− a)(1−a)(at− ast)(at−ast) .

Lemma 2.5.5. For all (a, s, t) ∈ [0, 1]3, we have h(a, s, t) ≤ 4. Moreover,

h(a, s, t) = 4 if and only if s =
at+ a− 1

at
.

Proof. Take the logarithmic derivative of h to obtain

d(lnh)

ds
= at ln 4 + (−at(1 + ln (1− at+ a− ast)))

− at(1 + ln (1− a+ at− ast))

− [−at(1 + ln (a− ast))− at(1 + ln (at− ast))]

= at ln [4(a− ast)(at− ast)]

− at ln [(1− at+ a− ast)(1− a+ at− ast)].

Set this derivative equal to 0 to get

4(a− ast)(at− ast)− (1− at+ a− ast)(1− a+ at− ast) = 0,

or

(ast− (at+ a− 1))(3ast− (at+ a+ 1)) = 0,

giving

s =
at+ a− 1

at
or s =

at+ a+ 1

3at
.

Since
at+ a+ 1

3at
=

1

3
+

1

3t
+

1

3at
≥ 1

3
+

1

3
+

1

3
= 1,
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this value of s is greater than 1, and is only equal to 1 if a = s = t = 1. Similarly,

the ratio (at + a− 1)/at is between 0 and 1 if at + a > 1. It is easy to see that

the second derivative

d2(lnh)

(ds)2
< 0 at s =

at+ a− 1

at
,

which implies that this value of s does indeed maximize h(a, s, t). We can also

verify that

h
(
a,
at+ a− 1

at
, t
)

=
4(at+a−1)(2− 2at)(2−2at)(2− 2a)(2−2a)

(1− at)(1−at)(1− at)(1−at)(1− a)(1−a)(1− a)(1−a) = 4.

Observe that h(a, s, t) < 4 on the boundary of [0, 1]3 except for where a = s =

t = 1, completing the proof.

Lemma 2.5.6. Let a, b ∈ [0, 1]2, c 6= 0 and 0 ≤ α < 1, such that a+ b < 1. Then

T (a, b, c, α) =∞. Moreover, for n sufficiently large, we have

Qn(an− cnα, bn− cnα)

Cn
< εn,

where ε is independent of n, and 0 < ε < 1.

Proof. By Lemma 2.5.3, we have

Qn(atn, an) =
∑
r

b(n− atn+ 1, an− r) b(n− an+ 1, atn− r)Cr

=
∑
r

[
n− atn+ 1− (an− r) + 1

n− atn+ 1 + (an− r)− 1

(
n− atn+ an− r
n− atn+ 1

)]

×
[
n− an+ 1− atn+ r + 1

n− an+ 1 + atn− r − 1

(
n− an+ 1 + atn− r − 1

n− an+ 1

)]
×
[

1

r + 1

(
2r

r

)]
,

where the summation is over values of r such that

max {0, j + k − n− 1} ≤ r ≤ min {j, k} − 1.
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Let r = atsn, so s varies from 0 to
(
1− 1

atn

)
by increments of 1

atn
. Applying

Stirling’s formula, we get

Qn(atn, an) ∼
∑
r

χ(n, atn, an, astn) h(a, s, t)n,

where

χ(n, atn, an, astn) =

√
(1− at+ a− ats)(1− a+ at− ats)

(1− at)(a− ats)(1− a)(at− ats)(ats)

× a2t(1− s)(1− st)(n(1− a− at+ ats) + 2)2

2(πn)3/2(n(1− at) + 1)(n(1− a) + 1)

× 1

(1 + a− at− ats)(1− a+ at− ats)(atsn+ 1)
.

We now have

ndQn(an− cnα, bn− cnα)

Cn
∼
√
πnd+

3
2

an−cnα−1∑
r=0

νr(n),

where

νr(n) = χ(n, an− cnα, bn− cnα, r)h(b, r/an, a/b)n4−n.

From Lemma 2.5.5, we have that h(b, r/an, a/b) < 4 for r 6= (a + b − 1)n. For

values of r where h(b, r/an, a/b) < 4, νr(n) decreases exponentially as n→∞ for

fixed d. Therefore, for these values of r,

√
πnd+

3
2νr(n)→ 0 as n→∞ for all d.

The only values of r which could potentially have limn→∞ νr(n) 6= 0, are when

r ∼ (a+ b− 1)n, as n→∞. Observe that since a+ b− 1 < 0, there are no such

possible values of r. In this case,

lim
n→∞

ndQn(an− cnα, bn− cnα)

Cn
= 0 for all d > 0.

This implies T (a, b, c, α) =∞ when a+ b < 1. Also, for n large enough, we have

Qn(an− cnα, bn− cnα)

Cn
<

(
1 + h(b, 0, a/b)

2

)n
,

as desired.
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Lemma 2.5.7. Let a ∈ [0, 1], c > 0, and 1
2
< α < 1. Then T (a, 1− a, c, α) =∞.

Moreover, for n large enough, we have

Qn(an− cnα, (1− a)n− cnα)

Cn
< εn

2α−1

,

where ε = ε(a, c, α) is independent of n, and 0 < ε < 1.

Proof. Let k = cnα. Then

Qn(an− k, (1− a)n− k) = qn(an− k, (1− a)n− k, 0) Sa,n,k ,

where

Sa,n,k =

(
1 +

an−k−1∑
r=1

gr(n)

)
,

and

gr(n) =

(
qn(an− k, (1− a)n− k, r)
qn(an− k, (1− a)n− k, 0)

)
.

Observe that

qn(an− k, (1− a)n− k, 0) = Pn(an− k, (1− a)n− k).

Applying Stirling’s formula and using the Taylor expansion for ln(1 + x) gives

gr(n) ∼ (2k + r + 2)2Cr
(2k + 2)24r

exp

[
−(4kr + r2)

4a(1− a)n

]
.

Therefore,

ndQn(an− cnα, bn− cnα)

Cn
∼
(
ndPn(an− cnα, bn− cnα)

Cn

)

×

(
1 +

an−k−1∑
r=1

(2k + r + 2)2Cr
(2k + 2)24r

exp

[
−(4kr + r2)

4a(1− a)n

])
.

For α > 1
2
, by Theorem 2.3.1, we have

lim
n→∞

ndPn(an− cnα, (1− a)n− cnα)

Cn
= 0 for all d.

Therefore, T (a, 1− a, c, α) =∞ for α > 1
2
. Also, we have proven the second case

of Theorem 2.3.5, as desired.
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For the next three cases, we denote r = hnp, and let h and p be fixed as

n→∞. For p > 1
2
, we have

ndgr(n)

Cn
→ 0 as n→∞, for all d,

since gr(n) decreases exponentially for fixed d.

For α < p < 1
2
, we have

gr ∼
r

1
2

4
√
πk2
∼

( √
h

4
√
π

)
n
p
2
−2α.

For p ≤ α < 1
2

or p < α = 1
2
, we have

gr = Θ
(
r−

3
2

)
= Θ

(
n−

3p
2

)
.

Similarly, for p = 1
2
, we obtain

gr = Θ
(
n

1
4
−2α
)
.

Lemma 2.5.8. Let a ∈ [0, 1], c ∈ R and 0 ≤ α < 3
8
. Then

T (a, 1− a, c, α) =
3

4
and M(a, 1− a, c, α) = z(a),

where

z(a) =
Γ(3

4
)

2
9
4π [a(1− a)]

3
4

as in Theorem 2.3.6.

Proof. As in Lemma 2.5.7, we write

Qn(an− cnα, (1− a)n− cnα) = Pn(an− cnα, (1− a)n− cnα)Sa,n,k ,

where

Sa,n,k = 1 +
an−k−1∑
r=0

gr(n).

Again, as n→∞, we have

gr(n) ∼ (2k + r + 2)2Cr
(2k + 2)24r

exp

[
−(4kr + r2)

4a(1− a)n

]
.
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Fix s > 0, and observe that for any 0 ≤ α < 3
8
, we have

gnδ(n) = o(gs√n(n)), for every δ 6= 1

2
.

Therefore, as n→∞, t→ 0, and u→∞, we have

Sa,n,k ∼
u
√
n∑

r=t
√
n

gr(n).

Interpreting this sum as a Riemann sum, we have

Sa,n,k ∼
√
n

∫ u

t

gv√n(n)dv

∼
√
n

∫ u

t

(2k + v
√
n+ 2)2

(2k + 2)2
√
π(v
√
n)

3
2

(
exp

[
−(4kv

√
n+ (v

√
n)2)

4a(1− a)n

])
dv.

Therefore, we have

Sa,n,k ∼
√
n

∫ u

t

v
1
2n

1
4

4k2
√
π

(
exp

[
−v2

4a(1− a)

])
dv.

A direct calculation gives

Sa,n,k =
n

3
4
−2α

c2
z(a)

(√
π [a(1− a)]

3
2

)
.

Now we see that

ndQn(an− cnα, (1− a)n− cnα)

Cn
∼ ndPn(an− cnα, (1− a)n− cnα)

Cn
Sa,n,k

∼ z(a)nd−
3
4 ,

by the proof of Theorem 2.3.1 and the analysis of Sa,n,k. Therefore, T (a, 1 −

a, c, α) = 3
4
. For α < 3

8
this also gives M(a, 1− a, c, α) = z(a), as desired.

This case displays why we do not need to adjust our analysis to be on the

anti-diagonal. Since the behavior of Q depends on values of r on the order of
√
n,

adding 1 to the second coordinate is a lower-order term and does not affect G or

M at all. In fact, the whole value of cnα has no effect on G or M for this case.
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Lemma 2.5.9. Let a ∈ [0, 1], c > 0, and 3
8
< α ≤ 1

2
. Then

T (a, 1− a, c, α) =
3

2
− 2α .

Moreover,

M(a, 1− a, c, α) =


y(a, c) if 3

8
< α < 1

2
,

y(a, c)κ(a, c) if α = 1
2
,

where y(a, c) and κ(a, c) are defined as in Theorem 2.3.3.

Proof. As in the previous lemma, we have Qn(an−cnα, (1−a)n−cnα) = Pn(an−

cnα, (1− a)n− cnα)Sa,n,k. We analyze Sa,n,k to see which values of r contribute

the most. In this case, for p = 1
2
, we have gr = Θ(n

1
4
−2α), which is on the order

of nd with d strictly less than −1
2
. Therefore, even if we sum over all values of

r where p = 1
2
, we will end up with an expression on the order of nd+

1
2 which is

lower order than a constant. For p ≤ α < 1
2

or p < α = 1
2
, since gr = Θ(n−

3p
2 ),

the terms with the highest order will come when p = 0. Therefore, the values of

r which contribute the most to Sa,n,k will be constants in this case. From this,

we have

Sa,n,k ∼ 1 +
s∑
r=1

gr ∼ 1 +
s∑
r=1

Cr
4r
∼ 2, as n→∞.

Therefore,

ndQn(an− k, (1− a)n− k)

Cn
∼ 2ndPn(an− k, (1− a)n− k)

Cn
.

Referring back to Theorems 2.3.1 and 2.3.3 gives us the desired results.

Lemma 2.5.10. Let a ∈ [0, 1] and c > 0. Then T (a, 1 − a, c, 3/8) = 3
4

and

M(a, 1− a, c, 3/8) = z(a) + y(a, c).

Proof. Here we are essentially on the intersection of the last two cases, which

provides some intuition to the reason that M(a, 1 − a, c, 3/8) = z(a) + y(a, c).
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Again we let r = hnp. When α = 3
8
, values of gr which contribute the highest

order to Sa,n,k are when p = 0 and when p = 1
2

. We get z(a) from the terms

where p = 1
2
, and y(a, c) when p = 0.

Sa,n,k ∼
z(a)

c2

(√
π [a(1− a)]

3
2

)
+ 2,

so
ndQn(an− k, (1− a)n− k)

Cn
∼ 2c2
√
π(a(1− a))

3
2

nd−
3
4 + z(a)nd−

3
4 ,

so T (a, 1− a, c, α) = 3
4

and M(a, 1− a, c, α) = z(a) + y(a, c), as desired.

Lemma 2.5.11. Let c > 0 and 0 ≤ α < 1. Then

T (1, 1, c, α) =
3

2
α.

Moreover, for α > 0, we have M(1, 1, c, α) = w(c), and M(1, 1, c, 0) = u(c),

where w(c) and u(c) are defined as in Theorem 2.3.6.

Proof. We first consider Qn(n− k, n− k) with k = cnα, and α > 0. We have

Qn(n− k, n− k) =
n−k−1∑

i=n−2k−1

b(k + 1, n− k − i)2Ci ,

which is equivalent to

Qn(n− k, n− k) = CkCkCn−2k−1

(
1 +

k∑
r=1

hr(n)

)
,

where

hr(n) =
(r + 1)2

(
2k−r
k

)2(
2k
k

)2 (
Cn−2k−1+r

Cn−2k−1

)
.

Observe that hr(n) ∼ r2 exp
[
−r2
2k

]
, so hkδ(n) = o(h

k
1
2
(n)) for all δ 6= 1

2
. From

here we have

ndQn(n− k, n− k)

Cn
∼ nd

4πk3

∫ ∞
0

n
3
2
αs2 exp

[
−s2

2c

]
ds
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∼ nd−
3
2
α

4πc3

∫ ∞
0

s2 exp

[
−s2

2c

]
ds.

Therefore T (1, 1, c, α) = 3
2
α and

M(1, 1, c, α) =
1

2
5
2π

1
2 c

3
2

= w(c),

as desired.

For α = 0,

Qn(n− k, n− k) = Qn(n− c, n− c) =
n−c−1∑

i=n−2c−1

b(c+ 1, n− c− i)2Ci,

=
c∑
s=0

(
s+ 1

2c+ 1− s

(
2c+ 1− s
c+ 1

))2

Cn−2c−1+s.

Therefore, we have

Qn(n− k, n− k)

Cn
∼ 1

42c+1

c∑
s=0

(
s+ 1

2c+ 1− s

(
2c+ 1− s
c+ 1

))2

4s as n→∞,

completing the proof.

Lemma 2.5.12. Let a ∈ [0, 1], c < 0 and 0 < α < 1. Then

T (a, 1− a, c, α) =


3
4

if 0 < α ≤ 1
2
,

3
2
α if 1

2
< α < 1 ,

and

M(a, 1− a, c, α) =


z(a) if 0 < α < 1

2
,

x(a, c) if α = 1
2
,

w(c) if 1
2
< α < 1 ,

where z(a), x(a, c), and w(c) are defined as in Theorem 2.3.6.

Proof. We now analyze Qn(an+ k, (1− a)n+ k), where k = cnα. We have

Qn(an+ k, (1− a)n+ k)

=
an+k−1∑
r=2k−1

b((1− a)n− k + 1, (1− a)n+ k − r)

b(an− k + 1, an+ k − r)Cr .
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We can rewrite this as

Qn(an+ k, an+ k)

=
an−k∑
d=0

b((1− a)n− k + 1, (1− a)n− k − d+ 1)

× b(an− k + 1, an− k − d+ 1)Cd+2k−1 .

Denote by gd the d-th term of this summation. Then we can express Qn(an +

k, an+ k) as

Qn(an+ k, an+ k) = g0

(
1 +

an−k∑
d=1

gd
g0

)
.

Denote hd as hd = gd
g0

. We can express hd as

hd =
(d+ 1)2

(
2(an−k)−d
an−k

)(
2((1−a)n−k)−d

(1−a)n−k

)(
2(an−k)
an−k

)(
2((1−a)n−k)
(1−a)n−k

) (
Cd+2k−1

C2k−1

)
.

We now have

hd ∼ d2 exp

[
−d2

4an

]
exp

[
−d2

4(1− a)n

](
Cd+2k−1

4dC2k−1

)
.

Fix s > 0 and 0 ≤ β < 1. We set d = snβ, and consider the behavior of hd as

n→∞. Observe that for any α,

hnδ = o(h
sn

1
2
)

when δ 6= 1
2
. For 1

2
= β < α, we have

hd ∼ d2 exp

[
−s2

4a(1− a)

]
.

For 1
2

= β = α, we have

hd ∼ d2 exp

[
−s2

4a(1− a)

](
2c

s+ 2c

) 3
2

.

Similarly, for α < β = 1
2
,

hd ∼ d
1
2 (2k)

3
2 exp

[
−s2

4a(1− a)

]
.
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Therefore, as n→∞, t→ 0, and u→∞,

Qn(an+ k, an+ k) ∼ g0

1 +
un

1
2∑

d=tn
1
2

hd

 .

Recall that

g0 ∼
4n−1

(2πa(1− a)k)
3
2n3

.

We are now ready to analyze T (a, 1− a, c, α). For α < 1
2

we have

ndQn(an+ cnα, (1− a)n+ cnα)

Cn
∼ nd

4π(2a(1− a)c)
3
2n

3
2
(1+α)

∫ ∞
0

n
3
4 (2k)

3
2 s

1
2

× exp

[
−s2

4a(1− a)

]
ds

∼ nd−
3
4

4π(a(1− a))
3
2

(
Γ(3

4
)(4a(1− a))

3
4

2

)
,

so T (a, 1 − a, c, α) = 3
4

and M(a, 1 − a, c, α) = z(a), as desired. For α > 1
2

we

have

ndQn(an+ cnα, (1− a)n+ cnα)

Cn
∼ nd

4π(2a(1− a)c)
3
2n

3
2
(1+α)

×
∫ ∞

0

n
3
2 s2 exp

[
−s2

4a(1− a)

]
ds

∼ nd−
3
2
α

4π(2a(1− a)c)
3
2

(
π

1
2 (4a(1− a))

3
2

4

)
,

so T (a, 1− a, c, α) = 3
2
α and M(a, 1− a, c, α) = w(c).

For α = 1
2

we have

ndQn(an+ cnα, (1− a)n+ cnα)

Cn
∼ nd

4π(2a(1− a)c)
3
2n

3
2
(1+α)

×
∫ ∞

0

n
3
2 s2 exp

[
−s2

4a(1− a)

](
2c

s+ 2c

) 3
2

ds

∼ nd−
3
4

4π(a(1− a))
3
2

∫ ∞
0

s2

(s+ 2c)
3
2

exp

[
−s2

4a(1− a)

]
ds ∼ nd−

3
4x(a, c),
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proving that T (a, 1− a, c, 1
2
) = 3

4
and M(a, 1− a, c, 1

2
) = x(a, c). This completes

the proof.

Our final case is where 1 < a+ b < 2.

Lemma 2.5.13. Let a, b ∈ [0, 1], such that 1 < a + b < 2, and let c ∈ R,

0 < α < 1. Then

T (a, b, c, α) =
3

2
and M(a, b, c, α) = v(a, b),

where v(a, b) is defined as in Theorem 2.3.6.

Proof. By considering Qn(an+ k, bn+ k), we obtain

Qn(an+ k, bn+ k) = C(1−a)n+kC(1−b)n+kC(a+b−1)n−2k−1

1 +

(1−b)n∑
d=1

gd

 ,

where

gd =
(d+ 1)2

(
2((1−a)n+k)−d

(1−a)n+k

)(
2((1−b)n+k)−d

(1−b)n+k

)(
2((1−a)n+k)
(1−a)n+k

)(
2((1−b)n+k)
(1−b)n+k

) (
C(a+b−1)n−1+d

C(a+b−1)n−1

)
.

We find that

gd ∼ d2 exp

[
−d2(2− a− b)

4(1− a)(1− b)n

]
,

so gnβ = o(g
n

1
2
) if β 6= 1

2
.

Therefore, letting k = cnα, we get

ndQn(an+ cnα, bn+ cnα)

Cn
∼ nd−3

4π((1− a)(1− b)(a+ b− 1))
3
2

×
∫ ∞

0

n
3
2 s2 exp

[
−s2(2− a− b)
4(1− a)(1− b)

]
ds .

We can now see that T (a, b, c, α) = 3
2

and M(a, b, c, α) = v(a, b), as desired.

We have now proved all cases of Theorems 2.3.4 and 2.3.6.
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2.6 Expectation of basic permutation statistics

2.6.1 Results

The following result describes the behavior of the first and last elements of σ

and τ .

Theorem 2.6.1. Let σ ∈ Sn(123) and τ ∈ Sn(132) be permutations chosen

uniformly at random from the corresponding sets. Then

E[σ(1)] = E[σ−1(1)] = E[τ(1)] = E[τ−1(1)]→ n− 2 as n→∞, (1)

E[σ(n)] = E[σ−1(n)]→ 3, as n→∞, (2)

and

E[τ(n)] = E[τ−1(n)] =
(n+ 1)

2
for all n. (3)

We remark here that the above theorem can be proved by using the exact

formulas for Pn(j, k) and Qn(j, k) shown in Lemmas 2.4.2 and 2.5.3. We will

instead prove the theorem by analyzing bijections between Sn(123) and Sn(132).

Before proving Theorem 2.6.1 we need some notation and definitions.

2.6.2 Definitions

Let A,B be two finite sets. We say A and B are equinumerous if |A| = |B|. Let

α : A→ Z and β : B → Z. We say α and β are statistics on A and B, respectively.

We say that two statistics α and β on equinumerous sets are equidistributed if

|α−1(k)| = |β−1(k)| for all k ∈ Z; in this case we write α ∼ β. Note that being

equidistributed is an equivalence relation.

For example, let A = Sn(132), let α : A→ Z, such that α(σ) = σ(1), and let

β : A → Z such that β(σ) = σ−1(1). Then α ∼ β, by Proposition 2.2.2. Given
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π ∈ Sn, let

rmax(π) = #{i s.t. π(i) > π(j) for all j > i, where 1 ≤ i ≤ n}.

We call rmax(π) the number of right-to-left maxima in π. Let

ldr(π) = max {i s.t. π(1) > π(2) > . . . > π(i)}.

We call ldr(π) the leftmost decreasing run of π.

2.6.3 Position of first and last elements

To prove Theorem 2.6.1, we first need two propositions relating statistics on

different sets. Let Tn be the set of rooted plane trees on n vertices. For all

T ∈ Tn, denote by δr(T ) the degree of the root vertex in T . Recall that Dn is the

set of Dyck paths of length 2n. For all γ ∈ Dn, denote by α(γ) the number of

points on the line y = x in γ. Recall that

|Dn| = |Sn(123)| = |Sn(132)| = Cn .

Recall that |Tn+1| = Cn (see e.g. [B1, S1]), so {Tn,Dn,Sn(123),Sn(132)} are all

equinumerous.

Proposition 2.6.2. Define the following statistics:

δn : Tn+1 → Z such that δn(T ) = δr(T ),

αn : Dn → Z such that αn(γ) = α(γ),

rmaxn : Sn(132)→ Z such that rmaxn(σ) = rmax(σ),

ldrn : Sn(123)→ Z such that ldrn(σ) = ldr(σ),

ldr′n : Sn(132)→ Z such that ldr′n(σ) = ldr(σ), and

firstn : Sn(123)→ Z such that firstn(σ) = σ(1).

Then, we have

δn ∼ αn ∼ rmaxn ∼ ldrn ∼ ldr′n ∼ (n+ 1− firstn) for all n.
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Proof of Proposition 2.6.2. Throughout the proof we refer to specific bijections

described and analyzed in [CK]; more details and explanation of equidistribution

are available there. We now prove equidistribution of the statistics one at a time.

• δn ∼ αn Recall the standard bijection φ : Tn+1 → Dn. Observe that

φ : δn → αn .

Therefore, δn ∼ αn, as desired.

• αn ∼ rmaxn Let ψ : Dn → Sn(132) be the bijection ϕ presented in Section 2.5.1.

Observe that ψ : αn → rmaxn. Therefore, αn ∼ rmaxn, as desired.

• rmaxn ∼ ldrn Let Φ be the West bijection between Sn(132) and Sn(123). Ob-

serve that Φ : rmaxn → ldrn. Therefore, rmaxn ∼ ldrn, as desired.

• ldrn ∼ ldr′n Let Ψ be the Knuth-Richards bijection between

Sn(123) and Sn(132) .

Observe that if Ψ(σ) = τ for some σ ∈ Sn(123), then

ldrn(σ) = ldr′n(τ−1) .

Since Sn(132) is closed under inverses, we get ldrn(Sn(123)) ∼ ldr′n(Sn(132)), as

desired.

• ldr′n ∼ (n+ 1− firstn) Let ∆ be the Knuth-Rotem bijection between Sn(132)

and Sn(321), and let Γ : Sn(321) → Sn(123) such that Γ(σ) = (σ(n), . . . , σ(1)).

Observe that if Γ ◦∆(σ−1) = τ for some σ ∈ Sn(132), then ldr′n(σ−1) = n + 1−

firstn(τ). Since σ−1 ranges over all Sn(132), we get ldr′n ∼ (n + 1 − firstn), as

desired.
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The second proposition explains the behavior of τ(n), for τ ∈ Sn(132).

Proposition 2.6.3. Let τ ∈ Sn(132) be chosen uniformly at random. Let lastn :

Sn(132)→ Z be defined as lastn(τ) = τ(n). Then we have

lastn ∼ n+ 1− lastn.

Proof. By applying Lemma 2.5.3 for k = n, we obtain

Qn(j, n) = Cj−1Cn−j,

implying that

Qn(j, n) = Qn(n+ 1− j, n) for all integers j and n where j ≤ n.

Since for all 1 ≤ j ≤ n, we have

|last−1
n (j)| = Qn(j, n) and |(n+ 1− lastn)−1(j)| = Qn(n+ 1− j, n) ,

we have lastn ∼ (n+ 1− lastn), by the definition of equidistribution.

2.6.4 Proof of Theorem 2.6.1

Let σ ∈ Sn(123) and τ ∈ Sn(132) be chosen uniformly at random. It is known

that

E[δn]→ 3 as n→∞,

where δn is defined as in Proposition 2.6.2 (see e.g. [FS, Example III.8]). Since

δn and (n+ 1− firstn) are equidistributed by Proposition 2.6.2, we have

E[δn] = n+ 1− E[σ(1)].

Therefore, we have E[σ(1)]→ (n− 2) as n→∞, as desired.

Due to the symmetries explained in the proof of Proposition 2.2.2, we have

E[σ−1(1)] = E[σ(1)]→ n− 2 ,
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and

E[σ(n)] = E[σ−1(n)] = n+ 1− E[σ(1)]→ 3 ,

as n→∞, completing the proof of (1).

Since Pn(1, k) = b(n, k) = Qn(1, k) for all n and k by lemmas 2.4.1 and 2.5.2,

we have

E[τ(1)] = E[σ(1)]→ n− 2 as n→∞.

Also, by Proposition 2.2.2, we have

E[τ−1(1)] = E[τ(1)]→ n− 2 as n→∞,

completing the proof of (2).

In order to complete the proof of Theorem 2.6.1, it suffices to prove (3). By

Proposition 2.6.3, we have lastn ∼ (n+ 1− lastn), so

E[lastn] = E[n+ 1− lastn].

By the linearity of expectation, we have E[lastn] = (n+ 1)/2, so

E[τ(n)] =
n+ 1

2
,

as desired. By the symmetry in Proposition 2.2.2, we have

E[τ−1(n)] = E[τ(n)] =
n+ 1

2
,

completing the proof.

2.7 Fixed points in random permutations

2.7.1 Results

Let σ ∈ Sn. The number of fixed points of σ is defined as

fpn(σ) = #{i s.t. σ(i) = i, 1 ≤ i ≤ n}.
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In [E1, §5.6], Elizalde uses bijections and generating functions to obtain results

on the expected number of fixed points of permutations in Sn(321),Sn(132), and

Sn(123). In the following three theorems, the first part is due to Elizalde, while

the second parts are new results.

We use In,ε(a) = [(a − ε)n, (a + ε)n] to denote the intervals of elements in

{1, . . . , n}.

Theorem 2.7.1. Let ε > 0, and let σ ∈ Sn(321) be chosen uniformly at random.

Then

E[fpn(σ)] = 1 for all n.

Moreover, for a ∈ (ε, 1− ε),

P (σ(i) = i for some i ∈ In,ε(a))→ 0 as n→∞.

Theorem 2.7.2. Let ε > 0, and let σ ∈ Sn(132) be chosen uniformly at random.

Then

E[fpn(σ)] = 1, as n→∞.

Moreover, for a ∈ (0, 1/2− ε) ∪ (1/2 + ε, 1− ε),

P (σ(i) = i for some i ∈ In,ε(a))→ 0 as n→∞.

Theorem 2.7.3. Let ε > 0, and let σ ∈ Sn(123) be chosen uniformly at random.

Then

E[fpn(σ)]→ 1

2
, as n→∞.

Moreover, for a ∈ (0, 1/2− ε) ∪ (1/2 + ε, 1),

P (σ(i) = i for some i ∈ In,ε(a))→ 0 as n→∞.

In fact, Elizalde obtains exact formulas for E[fpn(σ)] in the last case as

well [E1, Prop. 5.3]. We use an asymptotic approach to give independent proofs

of all three theorems.
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The final case to consider, of fixed points in 231-avoiding permutations, is

more involved. In the language of Section 2.1, the expectation is equal to the

sum of entries of Qn along anti-diagonal ∆, parallel to the wall. It is larger than

in the case of the canoe since the decay from the wall towards ∆ is not as sharp

as in the case of the canoe.

In [E1], Elizalde calculated the (algebraic) generating function for the expected

number of fixed points in Sn(231), but only concluded that E[fpn(σ)] > 1 for n ≥

3. Our methods allow us to calculate the asymptotic behavior of this expectation,

but not the location of fixed points.

Theorem 2.7.4. Let σ ∈ Sn(231) be chosen uniformly at random. Then

E[fpn(σ)] ∼
2Γ(1

4
)

√
π

n
1
4 , as n→∞.

Recall that if σ ∈ Sn is chosen uniformly at random, then E[fpn(σ)] = 1, so

the number of fixed points statistic does not distinguish between random permu-

tation in Sn(132), Sn(321) and random permutations in Sn. On the other hand,

permutations in Sn(123) are less likely to have fixed points, in part because they

can have at most 2 of them, and permutations in Sn(231) are much more likely

to have fixed points than the typical permutation in Sn.

2.7.2 Proof of Theorem 2.7.1

Let σ ∈ Sn(321) be chosen uniformly at random, and σ′ = (σ(n), . . . , σ(1)). Since

σ ∈ Sn(321), we have σ′ ∈ Sn(123). For τ ∈ Sn, define afp(τ) = #{i s.t. τ(i) =

n + 1 − i, 1 ≤ i ≤ n}. Let afpn : Sn(123) → Z such that afpn(τ) = afp(τ). Let

fpn : Sn(321) → Z such that fpn(σ) = fp(σ). By these symmetries, we have

fpn ∼ afpn.
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Clearly,

E[afpn] =
1

Cn

n∑
k=1

Pn(k, n+ 1− k).

Observe that

Pn(k, n+ 1− k) = Ck−1Cn−k

by Lemma 2.4.2. By the recurrence relation for the Catalan numbers, we have
n∑
k=1

Pn(k, n+ 1− k) = Cn.

Therefore,

E[afpn] = 1, so E[fpn] = 1.

For the proof of the second part, let ε > 0 and a ∈ (ε, 1 − ε), and define

δ = min {ε, a− ε}. Let

P = P (σ(i) = i for some i ∈ [δn, (1− δ)n+ 1]) .

By the definition of P, we have

P(σ(i) = i for some i ∈ In,ε(a)) ≤ P for all n,

so it suffices to show that P→ 0 as n→∞. Observe that for all n, we have

P =
1

Cn

(1−δ)n+1∑
k=δn

Pn(k, n+ 1− k).

By Lemma 2.4.2, we have

Pn(δn, (1− δ)n+ 1)

Cn
=
Cδn−1C(1−δ)n

Cn
∼ 1

4
√
π(δ(1− δ)n)

3
2

, as n→∞.

Observe that for d ∈ (δ, 1 − δ) and for n sufficiently large, we have Pn(dn, (1 −

d)n+ 1) < Pn(δn, (1− δ)n+ 1). Therefore, for n sufficiently large, we have

P =
1

Cn

(1−δ)n+1∑
k=δn

Pn(k, n+ 1− k)

≤ (1− 2δ)n+ 2

Cn
Pn(δn, (1− δ)n+ 1)

∼ 1− 2δ

4
√
π(δ(1− δ)) 3

2
√
n
.

Therefore, P→ 0 as n→∞, as desired.
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2.7.3 Proof of theorems 2.7.2 and 2.7.3

We omit the proofs of the probabilities tending to 0 since they are very similar

to the proof of Theorem 2.7.1, and instead prove the following proposition.

Proposition 2.7.5. Let σ ∈ Sn(123) and τ ∈ Sn(132) be chosen uniformly at

random. Then

E[fpn(τ)] = 1 for all n, and E[fpn(σ)]→ 1

2
, as n→∞.

Proof. Let σ ∈ Sn(123) and τ ∈ Sn(132) be chosen uniformly at random. By a

bijection between 132-avoiding and 321-avoiding permutations in [EP] (see also

[CK, Rob, RSZ]), fixed points are equidistributed between Sn(132) and Sn(321).

Therefore, by the proof of Theorem 2.7.1, we have E[fpn(τ)] = 1.

Now we prove that

E[fpn(σ)]→ 1

2
, as n→∞.

Observe that for all n, we have

E[fpn(σ)] =
n∑
k=1

Pn(k, k)

Cn
.

Let c1 and c2 be constants such that 0 < c1 < c2. By Theorems 2.3.1 and 2.3.3,

we have

E[fpn(σ)] ∼
n/2−c1

√
n∑

k=n/2−c2
√
n

Pn(k, k)

Cn
+

n/2+c2
√
n∑

k=n/2+c1
√
n

Pn(k, k)

Cn
+ e(c1, c2, n),

where the error term e(c1, c2, n) → 0 as c1 → 0, c2 → ∞, and n → ∞. By the

symmetry in Proposition 2.2.2, and by Lemma 2.4.8, we have

E[fpn(σ)] ∼ 2

n/2−c1
√
n∑

k=n/2−c2
√
n

Pn(k, k)

Cn
+ e(c1, c2, n)

∼ 2

c2
√
n∑

k=c1
√
n

8k2n−
3
2

√
π

e−
4k2

n + e(c1, c2, n) .
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As c1 → 0 and c2 →∞, we have

E[fpn(σ)] ∼ 2
√
n

∫ ∞
0

8c2√
π
√
n
e−4c2dc =

16√
π

∫ ∞
0

c2e−4c2 .

Since ∫ ∞
0

r2e−4r2dr =

√
π

32
,

we get E[fpn(σ)]→ 1/2, as desired.

2.7.4 Proof of Theorem 2.7.4

Proof. Let σ ∈ Sn(231) be chosen uniformly at random. Observe that τ =

(σ(n), σ(n − 1), . . . , σ(1)) ∈ Sn(132) and is distributed uniformly at random.

Therefore,

E[fpn(σ)] = E[afpn(τ)] =
n∑
k=1

Qn(k, n+ 1− k)

Cn
.

Let Ak = Qn(k, n − k + 1)/Cn, so E[fpn(σ)] =
∑n

k=1Ak. By Lemma 2.5.3 and

Stirling’s formula, we have

E[fpn(σ)] ∼ 2

n/2∑
k=1

n
3
2

√
πk

3
2 (n− k)

3
2

(
1 +

k−1∑
r=1

√
r√
π

exp

[
− r2n

4k(n− k)

])
.

Let BK =
∑K−1

k=1 Ak, CK =
∑n

k=K Ak, and let K =
√
n. We show that

BK = o(CK). For k < K, we have(
k−1∑
r=1

√
r√
π

exp

[
− r2n

4k(n− k)

])
= O(k

3
4 ), since

C
√
k∑

r=1

√
r√
π
∼ 2Ck

3
4

3
√
π
.

Therefore, Ak = O(k−
3
4 ), and

BK = O(
√
n(
√
n)−

3
4 ) = O(n

1
8 ).

For k →∞ as n→∞, we have(
1 +

k−1∑
r=1

√
r√
π

exp

[
− r2n

4k(n− k)

])
∼ k

3
4

√
π

∫ ∞
0

√
x exp

[
− x2n

4k(n− k)

]
dx

=

√
2 Γ

(
3
4

)
√
π

(
k(n− k)

n

) 3
4

.
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Therefore, for these values of k, we have

Ak ∼
√

2 Γ
(

3
4

)
π

· n
3
4

k
3
4 (n− k)

3
4

.

Consequently, we have

CK =
n∑

k=
√
n

Ak ∼
2
√

2 Γ
(

3
4

)
π

n
1
4

∫ 1
2

0

(x− x2)−
3
4dx

∼
2
√

2 Γ
(

3
4

)
π

n
1
4

(
2
√

2π Γ
(

5
4

)
Γ
(

3
4

) )
=

2 Γ
(

1
4

)
√
π

n
1
4 .

As a result, we have

E[fpn(σ)] = BK + CK ∼
2 Γ

(
1
4

)
√
π

n
1
4 ,

as desired.

2.8 Generalized rank and the longest increasing subse-

quence

2.8.1 Results

For λ > 0, define the rankλ of a permutation σ ∈ Sn as the largest integer r such

that σ(i) > λr for all 1 ≤ i ≤ r. Observe that for λ = 1, we have rankλ = rank

as defined in [EP] (see also [CK, Kit]).

Theorem 2.8.1. Let c1, c2, λ > 0 and 0 < ε < 1
2
. Also, let σ ∈ Sn(123) and

τ ∈ Sn(132) be chosen uniformly at random. Let Rλ,n = rankλ(σ) and Sλ,n =

rankλ(τ). Then E[R1,n] = E[S1,n] for all n. Furthermore, for n sufficiently large,

we have
n

λ+ 1
− c1n

1
2
+ε ≤ E[Rλ,n] ≤ n

λ+ 1
− c2
√
n.

The following corollary rephrases the result in a different form.
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Corollary 2.8.2. Let λ and Rλ,n be as in Theorem 2.8.1. Then we have

lim
n→∞

log
(

n
λ+1
− E[Rn]

)
log n

=
1

2
.

For λ = 1, the corollary is known and follows from the following theorem of

Deutsch, Hildebrand and Wilf. Define lis(σ), the length of the longest increasing

subsequence in σ, to be the largest integer k such that there exist indices i1 <

i2 < . . . < ik which satisfy σ(i1) < σ(i2) < . . . < σ(ik). Let lisn : Sn(321) → Z

such that lisn(σ) = lis(σ).

Theorem 2.8.3 ([DHW]). Let σ ∈ Sn(321). Define

Xn(σ) =
lisn(σ)− n

2√
n

.

Then we have

lim
n→∞

P(Xn(σ) ≤ θ) =
Γ(3

2
, 4θ2)

Γ(3
2
)

,

where Γ(x, y) is the incomplete Gamma function

Γ(x, y) =

∫ y

0

ux−1e−udu.

Theorem 2.8.3 states that E[lisnσ] → n
2

+ c
√
n as n → ∞, for some con-

stant c > 0. By [EP], we have S1,n ∼ (n − lisn). By Knuth-Richards’ bijection

between Sn(123) and Sn(132), we have S1,n ∼ R1,n, so E[R1,n] = E[n − lisn].

Therefore,

E[R1,n]→ n− (
n

2
+ c
√
n) =

n

2
− c
√
n, as n→∞.

2.8.2 Another technical lemma

By Knuth-Richards’ bijection (also Simion-Schmidt’s bijection) between Sn(123)

and Sn(132), the rank statistic is equidistributed in these two classes of permuta-

tions, so E[R1,n] = E[S1,n] for all n (see [CK, Kit]). Therefore, it suffices to prove

the inequalities for Rλ,n.
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We prove the lower bound first, followed by the upper bound. To prove the

lower bound, we first need a lemma regarding this sum.

Lemma 2.8.4. Let ε > 0, c1 > 0, λ > 0, n a positive integer, and i, j be integers

such that

1 ≤ i ≤ r, 1 ≤ j ≤ λr, where r =

⌊
n

λ+ 1
− c1n

1
2
+ε

⌋
.

Then the function Pn(i, j) is maximized for (i, j) = (r, λr), as n→∞.

Proof of Lemma 2.8.4. By reasoning similar to the proof of Lemma 2.4.6,

Pn(r, λr)

Cn
∼ (λ+ 1)5c21n

2ε− 1
2

4λ
3
2
√
π

exp

[
−(λ+ 1)4c21n

2ε

4λ

]
, as n→∞.

Let 1 ≤ i ≤ r and 1 ≤ j ≤ λr such that i+ j ∼ sn for some 0 ≤ s < 1. Then by

Lemma 2.4.5, there exists some 0 < δ < 1 such that

Pn(i, j)

Cn
< δn for n sufficiently large.

For n sufficiently large, we have

δn <
(λ+ 1)5c21n

2ε− 1
2

4λ
3
2
√
π

exp

[
−(λ+ 1)4c21n

2ε

4λ

]
,

so Pn(i, j) < Pn(r, λr) as n→∞.

It remains to consider 1 ≤ i ≤ r, 1 ≤ j ≤ λr such that i + j ∼ n. Since

r ∼ n/(λ+ 1), we need

i ∼ n

λ+ 1
and j ∼ λn

λ+ 1

as well. Let i = n/(λ+ 1)− c and j = λn/(λ+ 1)− d, where

c = an
1
2
+ε+α and d = bn

1
2
+ε+β,

0 ≤ α, β < 1/2−ε, and if α = 0 (or β = 0), then a ≥ c1 (or b ≥ λc1, respectively).
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We have

Pn(i, j)

Cn
∼ (λ+ 1)3(c+ d+ 2)2

4λ
3
2
√
πn

3
2

exp

[
−(λ+ 1)2(c+ d)2

4λn

]
,

by similar logic to that used in the proof of Lemma 2.4.6. Plugging in for c and

d in the exponent gives

Pn(i, j)

Cn
∼ (λ+ 1)3(c+ d+ 2)2

4λ
3
2
√
πn

3
2

exp

[
−(λ+ 1)2(anα + bnβ)2n2ε

4λ

]
.

Clearly if α > 0 or β > 0 we have Pn(i, j) < Pn(r, λr) as n → ∞. Similarly,

if α = β = 0 but a + b > (λ + 1)c1, then we again have Pn(i, j) < Pn(r, λr) as

n → ∞. Therefore, the function Pn(i, j) is indeed maximized at (i, j) = (r, λr),

as desired.

2.8.3 Proof of the lower bound in Theorem 2.8.1

Let ε > 0, σ ∈ Sn(123), and let 0 < c1. Consider

P(Rλ,n ≤ r), where r =
n

λ+ 1
− c1n

1
2
+ε.

By the union bound,

P(Rλ,n ≤ r) ≤
r∑
i=1

λr∑
j=1

Pn(i, j)

Cn
.

By Lemma 2.8.4, we have

P(Rλ,n ≤ r) ≤ λr2 Pn(r, λr)

Cn
,

and by Lemma 2.4.6, there exists δ > 0 so that for n sufficiently large, we have

λr2 Pn(r, λr)

Cn
< λr2δn

2ε → 0.

Therefore,

P

(
Rλ,n ≤

n

λ+ 1
− c1n

1
2
+ε

)
→ 0 as n→∞,

and

E[Rλ,n] ≥ n

λ+ 1
− c1n

1
2
+ε ,

as desired.
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2.8.4 Proof of the upper bound in Theorem 2.8.1

We can express E[Rλ,n] as

E[Rλ,n] =

n/(λ+1)∑
k=0

kP(Rλ,n = k) =
n

λ+ 1
−

n/(λ+1)∑
k′=0

k′P

(
Rλ,n =

n

λ+ 1
− k′

)
,

if we let k′ = n/(λ+ 1)− k. From here, for every 0 < a < b, we have

E[Rλ,n] ≤ n

λ+ 1
−

b
√
n∑

k′=a
√
n

k′P

(
Rλ,n =

n

λ+ 1
− k′

)

≤ n

λ+ 1
− a
√
n

b
√
n∑

k′=a
√
n

P

(
Rλ,n =

n

λ+ 1
− k′

)
.

Therefore, it suffices to show that for some choice of 0 < a < b, we have

P

(
n

λ+ 1
− b
√
n ≤ Rλ,n ≤

n

λ+ 1
+ a
√
n

)
= A > 0,

for some constant A = A(a, b, λ).

Let

F =

⌊
λ− 1

λ+ 1
n

⌋
.

Let σ ∈ Sn(123), and suppose we have

i, j <
n

λ+ 1
, σ(i) = i+ F, and σ(j) = j + F.

Then for any r > j, we have σ(r) < j + F , since otherwise a 123-pattern would

exist with (i, j, r). However, this is a contradiction, since σ : Z ∩ [j + 1, n] →

Z ∩ [1, j + F − 1] must be injective, but n− j > j + F − 1. Consequently, σ can

have at most one value of i < n/(λ+ 1) with σ(i) = i+ F .

Let k′ = n/(λ+ 1)− d
√
n for some constant d. Then we have

P(Rλ,n ≤ k′) ≥
k′∑
i=1

Pn(i, i+ F )

Cn
,
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since
∑k′

i=1 Pn(i, i+F ) counts the number of values i ≤ k′ such that σ(i) = i+F

for some σ ∈ Sn(123), and each σ is counted by at most one i. In the notation of

Theorem 2.3.3, we obtain

P(Rλ,n ≤ k′) ≥
∫ ∞
d

η

(
1

λ+ 1
, t

)
κ

(
1

λ+ 1
, t

)
dt as n→∞.

For any d > 0, this integral is a positive constant which is maximized at d = a

for d ∈ [a, b]. Therefore,

P

(
n

λ+ 1
− b
√
n ≤ Rλ,n ≤

n

λ+ 1
+ a
√
n

)
→
∫ b

a

η

(
1

λ+ 1
, t

)
κ

(
1

λ+ 1
, t

)
dt ,

as n→∞. Denote

A(a, b, λ) =

∫ b

a

η

(
1

λ+ 1
, t

)
κ

(
1

λ+ 1
, t

)
dt.

For any λ we can choose 0 < a(λ) < b(λ) so that A(a, b, λ) is bounded away

from 0. Plugging back into our upper bound gives

E[Rλ,n] ≤ n

λ+ 1
− a(λ)A(a, b, λ)

√
n,

completing the proof of the upper bound and of Theorem 2.8.1.

2.9 Final remarks and open problems

2.9.1

The history of asymptotic results on Catalan numbers goes back to Euler who

noticed in 1758, that Cn+1/Cn → 4 as n → ∞, see [Eul]. In the second half

of the 20th century, the study of various statistics on Catalan objects, became

of interest first in Combinatorics and then in Analysis of Algorithms. Notably,

binary and plane trees proved to be especially fertile ground for both analysis and

applications, and the number of early results concentrate on these. We refer to
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[A3, BPS, Dev, DFHNS, DG, FO, GW, GP, Ort, Tak] for an assortment of both

recent and classical results on the distributions of various statistics on Catalan

objects, and to [FS] for a compendium of information on asymptotic methods in

combinatorics.

The approach of looking for a limiting object whose properties can be an-

alyzed, is standard in the context of probability theory. We refer to [A1, A2]

for the case of limit shapes of random trees (see also [Drm]), and to [Ver, VK]

for the early results on limit shapes of random partitions and random Young

tableaux. Curiously, one of the oldest bijective approach to pattern avoidance

involves infinite “generating trees” [West].

2.9.2

The study of pattern avoiding permutations is very rich, and the results we ob-

tain here can be extended in a number of directions. First, most naturally, one

can ask what happens to patterns of size 4, especially to classes of equinumerous

permutations not mapped into each other by natural symmetries (see [B2]). Of

course, multiple patterns with nice combinatorial interpretations, and other gen-

eralizations are also of interest (see e.g. [B1, Kit]). We return to this problem in

later sections.

Second, there are a number of combinatorial statistics on Sn(123) and Sn(132),

which have been studied in the literature, and which can be used to create a bias

in the distribution. In other words, for every such statistic α : Sn(π) → Z one

can study the limit shapes of the weighted average of matrices

∑
σ∈Sn(π)

qα(σ)M(σ) , where q ≥ 0 is fixed

(cf. Subsection 2.1.1). Let us single out statistic α which counts the number of

times pattern ω occurs in a permutation σ. When π is empty, that is when the
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summation above is over the whole Sn, these averages interpolate between Sn for

q = 1, and Sn(ω) for q → 0. We refer to [B3, Hom] for closely related results (see

also [MV1, MV2])

Finally, there are natural extensions of pattern avoidance to 0-1 matrices,

see [KMV, Spi], which, by the virtue of their construction, seem destined to be

studied probabilistically. We plan to make experiments with the simple patterns,

to see if they have interesting limit shapes.

2.9.3

There are at least nine different bijections between Sn(123) and Sn(132), not

counting symmetries which have been classified in the literature [CK] (see also

[Kit, §4]). Heuristically, this suggests that none of these is the most “natural”

or “canonical”. From the point of view of [P1], the reason is that such a natural

bijection would map one limit shape into the other. But this is unlikely, given

that these limit shapes seem incompatible.

2.9.4

The integral which appears in the expression for x(a, c) in Theorem 2.3.5 is not

easily evaluated by elementary methods. After a substitution, it is equivalent to∫ ∞
0

z2

(z + c)
3
2

e−z
2

dz,

which can be then computed in terms of hypergeometric and Bessel functions3;

we refer to [AS] for definitions. Similarly, it would be nice to find an asymptotic

formula for u(c) in Theorem 2.3.6.

3For more discussion of this integral, see http://tinyurl.com/akpu5tk
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2.9.5

Let us mention that the results in Section 2.3 imply few other observations which

are not immediately transparent from the figures. First, as we mentioned in

Subsection 2.1.1, our results imply that the curve Qn(k, k) is symmetric for (1/2+

ε)n < k < (1− ε)n, reaching the minimum at k = 3n/4, for large n. Second, our

results imply that the ratio

Qn(n/2−
√
n, n/2−

√
n)

Pn(n/2−
√
n, n/2−

√
n)
→ 2 as n→∞,

which is larger than the apparent ratios of peak heights visible in Figure 2.1.

Along the main diagonal, the location of the local maxima of Pn(k, k) andQn(k, k)

seem to roughly coincide and have a constant ratio, as n → ∞. Our results are

not strong enough to imply this, as extra multiplicative terms can appear. It

would be interesting to see if this is indeed the case.

2.9.6

The generalized rank statistics rankλ we introduce in Section 2.8 seem to be

new. Our numerical experiments suggest that for all λ > 0 and for all n, rankλ

is equidistributed between Sn(132) and Sn(123). This is known for λ = 1 (see

§2.8.2). We conjecture that this is indeed the case and wonder if this follows

from a known bijection. If true, this implies that the “wall” and the left side of

the “canoe” are located at the same place indeed, as suggested in the previous

subsection.

Note that rank(σ) ≤ n/2 for every σ ∈ Sn, since otherwise M(σ) is singular.

Using the same reasoning, we obtain rankλ(σ) ≤ n/(1+λ) for λ ≤ 1. It would be

interesting to see if there is any connection of generalized ranks with the longest

increasing subsequences, and if these inequalities make sense from the point of

view of the Erdős-Szekeres inequality [ES]. We refer to [AD, BDJ] for more on
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the distribution of the length of the longest increasing subsequences in random

permutations.

2.9.7

From Lemma 2.4.2, it is easy to see that Pn(j, k) for j+k ≤ n+1, coincided with

the probability that a random Dyck path of length 2n passes through point (n−j+

k−1, n+j−k−1). This translates the problem of computing the limit shape of the

“canoe” to the shape of Brownian excursion, which is extremely well understood

(see [Pit] and references therein). As mentioned in the introduction, this explains

all qualitative phenomena in this case. For example, the expected maximum

distance from the anti-diagonal is known to be
√
πn(1 + o(1)) (see [Chu, DI]).

Similarly, the exponential decay of Pn(k− t, n−k− t) for t = n1/2+ε, follows from

the setting, and seems to correspond to tail estimates for the expected maximal

distance. However, because of the emphasis on the maxima and occupation time

of Brownian excursions, it seems there are no known probabilistic analogues for

results such as our Theorem 2.3.3 despite similarities of some formulas. For

example, it is curious that for c 6= 0 and α = 1/2, the expression

η(a, c)κ(a, c) =
c2

√
πa

3
2 (1− a)

3
2

exp

[
−c2

a(1− a)

]
is exactly the density function of a Maxwell-distributed random variable, which

appears in the contour process of the Brownian excursion (cf. [GP]).

2.9.8

Since the paper containing the results of this chapter was published, a proba-

bilistic model with the same limit shape as Sn(132) was found, by Christopher

Hoffman, Doug Rizzolo, and Erik Slivken [HRS].
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2.9.9

After this paper was written and posted on the arXiv, we learned of two closely

related papers. In [ML], the authors set up a related random pattern avoiding

permutation model and make a number of Monte Carlo simulations and conjec-

tures, including suggesting an empiric “canoe style” shape. Rather curiously,

the authors prove the exponential decay of the probability P
(
τ(1) > 0.71n

)
, for

random τ ∈ Sn(4231).

In [AM], the authors prove similar “small scale” results for patterns of size 3,

i.e. exponential decay above anti-diagonal and polynomial decay below anti-

diagonal for random σ ∈ Sn(132). They also study a statistic similar but not

equal to rank.
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CHAPTER 3

Avoiding two patterns of length three

simultaneously

3.1 Introduction

In this chapter, we again analyze permutations which avoid patterns of length

three. The difference is that we now require permutations to avoid multiple

patterns simultaneously. For a given set A of patterns of length three, with

|A| ≥ 2, the number of permutations of length n avoiding all patterns in A is less

than the n-th Catalan number, since the set is more restrictive. Depending on

the size of A, and the specific patterns in A, we find a range of limit shapes and

asymptotic behavior.

3.2 Definitions and Basic Observations

Let A = {τ1, . . . , τr}, where τi ∈ S3 for all i. Denote by Sn(A) the set of per-

mutations in Sn which avoid each τi simultaneously. As seen in Chapter 2.9.9, if

|A| = 1, then |Sn(A)| = Cn, regardless of which pattern of length 3 is in A.

For A ⊂ S3 with |A| > 1, initially we see there are 26−6−1 = 57 such distinct

sets. We use symmetry to simplify the analysis.
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3.2.1 Symmetries

For A of size 2, up to symmetry there are five classes to consider. Let A ⊂ 2S3 ,

such that A ∈ A if and only if |A| = 2. To simplify the argument, we define an

equivalence relation on A. Let S, T ∈ A, with S = {a, b} and T = {c, d}. Then

we say S ≡ T if

T ∈ {S, SC , SR, SRC}.

Since the reverse and complement operations act on sets in A, and form a Klein

four-group, this equivalence relation is well-defined. This definition is natural for

us, since sets which are equivalent under this definition will have limit shapes

which are equal under some rotation or reflection.

We now give a proposition describing elements of A.

Proposition 3.2.1. Let A ⊂ 2S3, such that A ∈ A if and only if |A| = 2. Then

the equivalence classes under ≡ are given by A(1), A(2), A(3), A(4), and A(5), where

A(1) = {132, 213} ∼ {231, 312} ,

A(2) = {132, 231} ∼ {132, 312} ∼ {213, 231} ∼ {213, 312} ,

A(3) = {123, 132} ∼ {123, 213} ∼ {231, 321} ∼ {312, 321} ,

A(4) = {123, 231} ∼ {123, 312} ∼ {132, 321} ∼ {213, 321} ,

A(5) = {123, 321} .

Proof. We prove the result for A(3), since the other cases are similar. Let A be

defined as A = {123,132} . Then AR = {123R,132R} = {321,231}. Similarly,

AC = {321,312}, and ARC = {123,213}. Therefore, A(3) = {A,AR, AC , ARC}.

By the definition of ≡, we see that A(3) consists precisely of the sets equivalent

to A, as desired.

Because of the forementioned symmetries, when calculating the limiting dis-

tribution of A(i) it suffices to analyze the first pair of patterns listed, and then

rotate the distribution as needed to calculate for the other pairs of patterns.
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For sets A of length two, Sn(A) was studied and enumerated by Simion and

Schmidt [SS].

Theorem 3.2.2 ([SS]). Let A(1), A(2), A(3), A(4), and A(5) be as above. Then

|Sn(A(1))| = |Sn(A(2))| = |Sn(A(3))| = 2n−1 ,

while |Sn(A(4))| =
(
n

2

)
+ 1 and |Sn(A(5))| = 0 , for n ≥ 5 .

Unlike Sn(τ) with τ ∈ S3, the size of Sn(A) depends on which two patterns A

contains. The fact that Sn(A(5)) = ∅ for n ≥ 5 follows from Erdős and Szekeres’s

result on longest increasing and decreasing subsequences [ES].

In the following section, we analyze the limit shapes of Sn(A) for each A ∈ A.

3.3 Main results

In this section we present the main results of the paper.

3.3.1 Shape of A-avoiding permutations

Let 0 ≤ a, b ≤ 1, c, d ∈ R, α, β ∈ [0, 1) be fixed constants. Recall that A
(i)
n (j, k)

measures the probability that a permutation σ chosen uniformly at random from

Sn(A(i)) has σ(j) = k. Define

F i(a, b, c, d, α, β) = sup
{
r ∈ R+

∣∣∣ lim
n→∞

nrA(i)
n (an+ cnα, bn+ dnβ) <∞

}
.

Similarly, let

Li(a, b, c, d, α, β) = lim
n→∞

nF
i(a,b,c,d,α,β)A(i)

n (an+ cnα, bn+ dnβ) ,

defined for all a, b as above, for which F i(a, b, c, d, α, β) <∞; let L be undefined

otherwise.
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Note that unlike in Chapter 2.9.9, we allow deviations cnα and bnβ to poten-

tially differ - this is because we do not always retain the same symmetries which

were present in Sn(123) and Sn(132).

Theorem 3.3.1. For all 0 ≤ a, b ≤ 1, c, d ∈ R, α, β ∈ [0, 1), we have

F (1)(a, b, c, d, α, β) =


0 if a+ b = 1, α = β = 0

∞ otherwise.

Theorem 3.3.2. Let 0 ≤ a, b ≤ 1, c, d ∈ R, α, β ∈ [0, 1). Then we have

F (3)(a, b, c, d, α, β) =


0 if a+ b = 1, α = β = 0, c+ d ≥ 0 ,

∞ otherwise.

The limiting distribution for A(2) is noticeably different from A(1) and A(3).

Theorem 3.3.3. For all a, b ∈ [0, 1], c, d ∈ R, α, β ∈ [0, 1), we have

F (2)(a, b, c, d, α, β) =



∞ b /∈ {1− 2a, 2a− 1} ,

∞ b ∈ {1− 2a, 2a− 1}, b 6= 1,max{α, β} > 1
2
,

1
2

b ∈ {1− 2a, 2a− 1}, b 6= 1, α, β ≤ 1
2
,

∞ b = 1, a ∈ {0, 1}, α 6= β

∞ b = 1, a ∈ {0, 1}, α = β > 0, 2c /∈ {d,−d}

α
2

b = 1, a = 0, α = β > 0, 2c = −d ,

α
2

b = 1, a = 1, α = β > 0, 2c = d ,

0 b = 1, a = 0, α = β = 0,−d ≥ c− 1 ≥ 0 ,

0 b = 1, a = 1, α = β = 0,−d ≥ −c ≥ 0 ,

∞ b = 1, a = 0, α = β = 0,−d < c− 1

∞ b = 1, a = 1, α = β = 0,−d < −c .
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In both of the results above, F i(a, b) =∞ means that A
(i)
n (an, bn) = o(1/nr),

for all r > 0.

In fact, we have results on exponential decay for each of these permutation

classes as well.

Theorem 3.3.4. Let 0 ≤ a, b ≤ 1, c, d ∈ R, α, β ∈ [0, 1). Then there exists

ε(a, b, c, d, α, β) ∈ (0, 1) such that

A(1)
n (an+ cnα, bn+ dnβ) <


εn for a+ b 6= 1 ,

εn
α

for a+ b = 1, α > 0, α ≥ β ,

εn
β

for a+ b = 1, β > α ,

for n large enough.

Theorem 3.3.5. Let 0 ≤ a, b ≤ 1, c, d ∈ R, α, β ∈ [0, 1). Then there exists

ε(a, b, c, d, α, β) ∈ (0, 1) such that

A(3)
n (an+ cnα, bn+ dnβ) ≤



εn for a+ b > 1 ,

εn
α

for a+ b = 1, α > β, c > 0 ,

εn
β

for a+ b = 1, β > α, d > 0 ,

εn
α

for a+ b = 1, α = β > 0, c+ d ≥ 0

0 for a+ b < 1 ,

0 for a+ b = 1, α > β, c < 0 ,

0 for a+ b = 1, β > α, d < 0 ,

0 for a+ b = 1, α = β, c+ d < 0 ,

for n large enough.

We have a related result for Sn(A(2)).
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Theorem 3.3.6. Let 0 ≤ a, b ≤ 1, c, d ∈ R, α, β ∈ [0, 1). Let γ = max{α, β}.

Then there exists ε(a, b, c, d, α, β) ∈ (0, 1) such that

A(2)
n (an+ cnα, bn+ dnβ) ≤



εn for b /∈ {2a− 1, 1− 2a} ,

εn
2γ−1

for b ∈ {1− 2a, 2a− 1}, b 6= 1, γ > 1
2
,

εn
γ

for b = 1, a ∈ {0, 1}, α 6= β ,

εn
α

for b = 1, a ∈ {0, 1},

and α = β > 0, 2c /∈ {d,−d}

0 for b = 1, a = 0, α = β = 0,−d < c− 1 ,

0 for b = 1, a = 1, α = β = 0,−d < −c ,

for n large enough.

We also have the following result for A(4).

Theorem 3.3.7. For all 0 ≤ a, b ≤ 1, we have

F (4)(a, b, c, d, α, β) =



0 if a+ b = 1, a ∈ [0, 1) ,

2 if a = 1, b = 0

2 if a = 0 or b = 1

1 otherwise.

As well as analyzing the rate of decay of A
(i)
n (an + cnα, bn + dnβ), we also

analyze the constant on the leading term of A
(i)
n (an+ cnα, bn+ dnβ), denoted by

Li(a, b, c, d, α, β).

Theorem 3.3.8. Let a ∈ [0, 1]. Then

L(1)(a, 1− a, c, d, 0, 0) =


1
3

(
2−|c+d−1| + 2−|c−d|

)
if a ∈ {0, 1}

1
3

(
2−|c+d−1|) otherwise.
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Theorem 3.3.9. Let a, b ∈ [0, 1], c, d ∈ R, α, β ∈ [0, 1). Then for b = 0, we have

L(2)(a, b, c, d, α, β) =



√
2
π

if a = 1
2
, α, β < 1

2
,√

2
π

exp [−2c2] if a = 1
2
, α = 1

2
> β√

2
π

exp
[
−d2

2

]
if a = 1

2
, β = 1

2
> α√

2
π

exp
[
− (d−2c)2

2

]
if a = 1

2
, α = β = 1

2
.

For b = 2a− 1, we have

L(2)(a, b, c, d, α, β) =



√
1

4(1−a)π if b 6= 1, α, β < 1
2
,√

1
4(1−a)π exp

[
− c2

1−a

]
if b 6= 1, α = 1

2
> β√

1
4(1−a)π exp

[
− d2

4(1−a)

]
if b 6= 1, β = 1

2
> α√

1
4(1−a)π exp

[
− (d−2c)2

4(1−a)

]
if b 6= 1, α = β = 1

2
.

For b = 1− 2a < 1, we have

L(2)(a, b, c, d, α, β) =



√
1

4aπ
if α, β < 1

2
,√

1
4aπ

exp
[
− c2

a

]
if α = 1

2
> β√

1
4aπ

exp
[
− d2

4a

]
if β = 1

2
> α√

1
4aπ

exp
[
− (d+2c)2

4a

]
if α = β = 1

2
.

Finally, we have

L(2)(a, b, c, d, α, β) =



√
1

4cπ
if b = 1, a = 0, α = β > 0, 2c = −d ,√

1
−4cπ

if b = 1, a = 1, α = β > 0, 2c = d ,

2d−1
(−d
c−1

)
if b = 1, a = 0, α = β = 0,−d ≥ c− 1 ≥ 0 ,

2d−1
(−d
−c

)
if b = 1, a = 1, α = β = 0,−d ≥ −c ≥ 0 .
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Theorem 3.3.10. Let a ∈ [0, 1]. Then

L(3)(a, 1− a, c, d, 0, 0) =



2−c−d−1 if a /∈ {0, 1}, c+ d ≥ 0 ,

2−c−d−1 if a = 1, c 6= 0, c+ d ≥ 0 ,

2−c−d−1 if a = 0, d 6= 0, c+ d ≥ 0 ,

2−c if a = 0, d = 0 ,

2−d if a = 1, c = 0 .

Theorem 3.3.11. Let a, b ∈ [0, 1]. Then

L(4)(a, b, c, d, α, β) =



2 if a = 0, b < 1 or a > 0, b = 1 ,

2 if a = 1, b = 0 ,

2a if a+ b < 1 ,

b2 if a+ b = 1 ,

2(1− b) if a+ b > 1 .

3.4 Analysis of A(1)-avoiding permutations

3.4.1 Symmetry

The permutations σ ∈ Sn(A(1)) obey some simple symmetry.

Lemma 3.4.1. For all 1 ≤ j, k ≤ n, we have A
(1)
n (j, k) = A

(1)
n (k, j) = A

(1)
n (n +

1− k, n+ 1− j).

Proof. Since 132−1 = 132, and 213−1 = 213, for every σ ∈ Sn(A(1)), we have

σ−1 ∈ Sn(A(1)) as well. Therefore, A
(1)
n (j, k) = A

(1)
n (k, j). Let

σ = (σ(1), σ(2), . . . , σ(n)) ∈ Sn(A(1)) ,
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with σ(j) = k. Then the permutation τ = σr ∈ Sn(A(1)), with τ(n + 1 − k) =

n+ 1− j.

Here we give a lemma which is the main step towards proving Theorem 3.3.1.

Recall that A
(1)
n (j, k) is the probability that a random σ ∈ Sn(A(1)) has σ(j) = k.

Lemma 3.4.2. For all 1 ≤ j, k ≤ n, we have

A(1)
n (j, k) =



2k+j−2+2k−j−1

3·2n−1 j < k, j + k ≤ n+ 1 ,

22n−k−j+2k−j−1

3·2n−1 j < k, j + k > n+ 1 ,

22k−2+2
3·2n−1 j = k, j + k ≤ n+ 1 ,

22n−2k+2
3·2n−1 j = k, j + k > n+ 1 ,

2k+j−2+2j−k−1

3·2n−1 j > k, j + k ≤ n+ 1 ,

22n−k−j+2j−k−1

3·2n−1 j > k, j + k > n+ 1 .

Proof. Due to the symmetry explained in Lemma 3.4.1, it suffices to prove the

first and third cases. First, suppose that j < k and j + k ≤ n + 1. Let σ ∈

Sn(A(1)) with σ(j) = k. Let Aσ = {i < j : σ(i) > k}, let |Aσ| = r, and let

Bσ = {i > j : σ(i) > k}. Since σ avoids 132, Aσ = [r], otherwise a 132 would be

formed with k as the 2. Also, Bσ = {j + 1, . . . , j + (n− k − r)}, since otherwise

σ contains a 213 with k as the 2.

Now for i ∈ N∩ [r+ 1, j+n− k− r], we have σ(i) = i+ k− j, since otherwise

either a 132 or a 213 would be formed. Therefore, to determine σ, we have to

choose the values of σ(i) for i ∈ Aσ ∪ ({j + n− k − r + 1, n} ∩ N).

For r = 0, we must have σ(i) = i+ k− j for 1 ≤ i ≤ j+n− k, while there are

|Sk−j(A(1))| = 2k−j−1

ways to complete σ.
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For 1 ≤ r ≤ j − 1, there are 2r−12k−j+r−1 ways to complete σ. Therefore, the

probability that σ ∈ Sn(A(1)) has σ(j) = k is

A(1)
n (j, k) =

2k−j−1 +
∑j−1

r=1 2r−12k−j+r−1

2n−1

= 2k−j−n

(
1 +

j−1∑
r=1

22r−1

)

= 2k−j−n
(

1 + 2
4j−1 − 1

4− 1

)
=

2k−j−n (2 · 4j−1 + 1)

3

=
2k+j−1−n + 2k−j−n

3
, as desired.

For the third and fourth cases, for j = k, the only difference is that for r = 0,

there is one such permutation σ, instead of 2k−j−1 = 1
2
. Therefore,

A(1)
n (j, k) =

(
21−n)(1 +

k−1∑
r=1

2r−12k−j+r−1

)

=
(
21−n)(1 +

k−1∑
r=1

4r−1

)

=
(
21−n)(1 +

4k−1 − 1

4− 1

)
=

22k−1−n + 22−n

3
, as desired.

In Figure 3.1, we display a random permutation matrix σ ∈ S19(A
(1)). The

typical permutation has almost all of its nonzero entries along the diagonal where

j + k = n+ 1. In Figure 3.2, we display the limit shape of A
(1)
n for n = 250.

3.4.2 Proof of Theorems 3.3.1, 3.3.4, and 3.3.8

The proof follows from two lemmas: one for each case from Theorem 3.3.1.
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σ(j) = k

j

Figure 3.1: Random σ ∈ Sn(A(1))

Figure 3.2: Limit shape of A
(1)
250.

Lemma 3.4.3 (First case). Let a, b ∈ [0, 1], c, d ∈ R, α, β ∈ [0, 1) such that

a + b 6= 1. Then F (1)(a, b, c, d, α, β) = ∞. Moreover, for n sufficiently large, we

have

A(1)
n (an+ cnα, bn+ dnβ) < εn,

where ε is independent of n and 0 < ε < 1.

Observe that this lemma proves Theorem 3.3.4, and one case of Theorem 3.3.1.

Proof. Suppose a + b < 1, and a < b. (We omit the proofs of the other cases,
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since they are very similar.) Then by Lemma 3.4.2, we have

A(1)
n (an+ cnα, bn+ dnβ) =

2an+cnα+bn+dnβ−2 + 2bn+dnβ−an−cnα−1

3 · 2n−1

=
1

6

(
2a+b−1+cnα−1+dnβ−1

)n
+

1

3

(
2b−a−1+dnβ−1−cnα−1

)n
∼ 1

6

(
2a+b−1

)n
+

1

3

(
2b−a−1

)n
,

as n→∞.

Since a+ b < 1, we see that

ε =
2a+b−1 + 1

2
< 1 .

Then for n large enough, we have

A(1)
n (an+ cnα, bn+ dnβ) < εn .

We also get F (1, a, b) =∞, as desired.

Proofs of the cases where a+ b > 1 or a > b are very similar, so we omit them

to avoid repetition.

Lemma 3.4.4 (Second case). Let a ∈ (0, 1), c, d ∈ R, α, β ∈ [0, 1) with α, β not

both equal to 0. Let γ = max{α, β}, so γ > 0. Then we have

F (1)(a, 1− a, c, d, α, β) =∞ .

Furthermore, there exists ε ∈ (0, 1) such that

A(1)
n (an+ cnα, bn+ dnβ) < εn

γ

,

for n large enough.

Observe that this lemma proves the remaining cases of Theorem 3.3.1 for

which

F (1)(a, b, c, d, α, β) =∞ .
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Proof. Suppose that α < β, and d < 0. We omit proofs of the other possible

relationships between α and β, and between c, d and 0, since the proofs are very

similar. As in the proof of Lemma 3.4.3, we use Lemma 3.4.2 to see that

A(1)
n (an+ cnα, (1− a)n+ dnβ) =

2an+cnα+(1−a)n+dnβ−2 + 2(1−a)n+dnβ−an−cnα−1

3 · 2n−1

=
1

6

(
2cn

α+dnβ
)

+
1

3

(
2dn

β−cnα
)

∼ 1

2
2dn

β

,

as n→∞.

Letting

ε =
2d + 1

2
,

we see that

A(1)
n (an+ cnα, (1− a)n+ dnβ) < εn

β

,

for n large enough. Also, we get F (1)(a, 1− a, c, d, α, β) =∞, as desired.

Finally, we examine cases where F 1 6=∞.

Lemma 3.4.5. Let a ∈ [0, 1], c, d ∈ R. Then we have

F (1)(a, 1− a, c, d, 0, 0) = 0 .

Furthermore, for a ∈ (0, 1) we have

L(1)(a, 1− a, c, d, 0, 0) =
1

3
2−|c+d−1| ,

and for a ∈ {0, 1}, we have

L(1)(a, 1− a, c, d, 0, 0) =
1

3

(
2−|c+d−1| + 2−|c−d|

)
.

Proving this lemma will show that entries in permutations which avoid A(1)

only have nonzero probabilities if they are a constant distance away from the

diagonal with a+ b = 1.

81



Proof. We prove two cases of this lemma, and omit the remaining proofs since

they are very similar. First, suppose a ∈ (0, 1
2
), and c + d ≤ 1. Then by

Lemma 3.4.2, we have

A(1)(an+ cnα, bn+ dnβ) =
2an+c+(1−a)n+d−2 + 2(1−a)n+d−an−c−1

3 · 2n−1

=
1

3
2c+d−1 +

1

3
2−2an+d−c

∼ 1

3
2−|c+d−1| ,

as desired.

Second, suppose a = 0, and c+ d ≤ 1. Again, by Lemma 3.4.2, we have

A(1)(an+ cnα, bn+ dnβ) =
2c+n+d−2 + 2n+d−c−1

3 · 2n−1

=
1

3
2c+d−1 +

1

3
2d−c .

Since k ≤ n, and k = n + d, we need d ≤ 0. Also, since j ≥ 1, and

j = 0n+ c = c, we have c ≥ 1. Therefore, d− c ≤ 0. Similarly, c+ d− 1 ≤ 0, so

we see that

A(1)(an+ cnα, bn+ dnβ) =
1

3

(
2−|c+d−1| + 2−|d−c|

)
,

matching the claim in the lemma.

The remaining cases are very similar calculations, and in each possibility we

see that

F (1)(a, 1− a, c, d, 0, 0) = 0 .

This completes all cases of Theorems 3.3.1, 3.3.4, and 3.3.8, as desired.

3.5 Analysis of A(2)-avoiding permutations

Here we analyze the limit shape of Sn(A(2)), where A(2) = {132, 231}. We first

observe a result on symmetry of A
(2)
n (j, k).
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3.5.1 Symmetry and explicit formulas for A(2)-avoiding permutations

Lemma 3.5.1. For all n ∈ N, 1 ≤ j, k ≤ n, we have

A(2)
n (j, k) = A(2)

n (n+ 1− j, k) .

Proof. Since 132 = 231R, we observe that σ ∈ Sn(A(2)) with σ(j) = k implies

that σR ∈ Sn(A(2)), with σR(n+ 1− j) = k. Therefore, A
(2)
n (j, k) = A

(2)
n (n+ 1−

j, k), as desired.

We can observe more about the typical σ ∈ A(2)
n (j, k) as well; any such σ =

(σ(1), . . . , σ(n) must have

σ(1) > σ(2) > . . . σ(i− 1) > 1 = σ(i) < σ(i+ 1) < . . . < σ(n),

for some i.

In the next lemma, we calculate the explicit value of A
(2)
n (j, k) for any j, k.

Lemma 3.5.2. For all n ∈ N, 1 ≤ j, k ≤ n, we have

A(2)
n (j, k) =

(
n−k
n−j

)
+
(
n−k
j−1

)
2n−k+1

,

where
(
a
b

)
= 0 for b < 0 or b > a.

Proof. We prove Lemma 3.5.2 by a counting argument. Let σ ∈ Sn(A(2)) with

σ(j) = k. Let c, d ∈ [k−1]. Since σ avoids 132 and 231, we must have σ−1(c) < j

if and only if σ−1(d) < j. In other words, the values smaller than k must appear

on the same side of k in σ. So either σ−1(1) < j or σ−1(1) > j.

If σ−1(1) < j, then there are 2k−2 ways to arrange the elements in [k − 1].

When arranging the elements d greater than k, we only need to choose which n−j

of them have σ−1(d) > j. This case gives us 2k−2
(
n−k
n−j

)
such possible permutations

σ.
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Figure 3.3: Random σ ∈ Sn(A(2))

The other possibility is σ−1(1) > j. Again, there are 2k−2 ways to arrange

the elements in [k − 1]. When arranging the elements d greater than k, we need

to choose which j − 1 of them have σ−1(d) < j. Overall, there are 2k−2
(
n−k
j−1

)
possibilities for σ.

Therefore, in all, we have

A(2)
n (j, k) =

2k−2
((

n−k
n−j

)
+
(
n−k
j−1

))
2n−1

=

(
n−k
n−j

)
+
(
n−k
j−1

)
2n−k+1

,

as desired.

This argument can be visualized with the help of Figure 3.3. Also, in Fig-

ure 3.4, we display the limit shape of A
(2)
n for n = 250.

Figure 3.4: Limit shape of A
(2)
250.
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3.5.2 Proof of Theorems 3.3.3, 3.3.6, and 3.3.9

The proof of these theorems follows from several lemmas: a technical lemma,

Lemma 3.5.2, and a lemma for each case of Theorem 2.3.3.

Lemma 3.5.3. Let f : [0, 1]2 → R be defined so that

f(x, y) =
(x+ y)(x+y)

(2x)x(2y)y
.

Then f(x, y) achieves a maximum of 1 at x = y, for x ∈ [0, 1].

Proof. First we consider the boundaries of the unit square.

For x = 0, we have

f(0, y) =
yy

(2y)y
=

(
1

2

)y
,

which is maximized at y = 0, with f(0, 0) = 1.

For x = 1, we have

f(1, y) =
(1 + y)(1+y)

2(2y)y
=

1 + y

2

(
1 + y

2y

)y
.

Differentiating with respect to y gives

f ′(1, y) =

(
1 + y

2y

)y (
1

2
+

1 + y

2

(
ln

1 + y

2y
+

y2

1 + y

))
,

which is always positive since each term is positive.

Therefore, f(1, y) is maximized at y = 1, with

f(1, 1) =
22

2(2)
= 1.

The analysis for y = 0 and y = 1 yields the same results, since the function is

symmetrical in x and y.

Finally, we consider f(x, y) with x, y ∈ (0, 1). Here we take partial derivatives

with respect to x and y. We have

∂f

∂x
=

(2x)x(2y)y(x+ y)x+y (ln (x+ y)− ln 2x)

(2x)2x(2y)2y
,
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which is 0 when x = y.

Due to the symmetry of f(x, y), the other partial derivative has the same

behavior. Since

f(x, x) =
(2x)2x

(2x)x(2x)x
= 1,

we have completed the proof.

Lemma 3.5.4. Let a, b ∈ [0, 1], c, d ∈ R, α, β ∈ [0, 1), with b /∈ {1 − 2a, 2a − 1}.

Then

F (2)(a, b, c, d, α, β) =∞ ,

and there exists ε ∈ (0, 1) such that A
(2)
n (a, b, c, d, α, β) < εn for n large enough.

Proof. By applying Lemma 3.5.2 and Stirling’s formula, and using the Taylor

expansion for ln (1 + x), we get

A(2)
n (an+ cnα, bn+ dnβ) ∼

(
(1−b)n−dnβ
(1−a)n−cnα

)
+
(
(1−b)n−dnβ
an+cnα−1

)
2(1−b)n−dnβ+1

∼

√
1− b

8π(1− a)(a− b)n
(f(1− a, a− b))n

×

(
(1− b)−dnβ

(2− 2a)−cnα(2a− 2b)cnα−dnβ

)

× exp

[
−(dnβ − 2cnα)2

4(1− a)n

]
+

√
1− b

8aπ(1− a− b)n
(f(a, 1− a− b))n

×

(
(1− b)−dnβ

(2a)−cnα(2− 2a− 2b)cnα−dnβ

)

× exp

[
−(dnβ + 2cnα)2

4an

]
,

as n→∞.

Since b /∈ {1 − 2a, 2a − 1}, we see that 1 − a 6= a − b and a 6= 1 − a − b.

Therefore, by Lemma 3.5.3, we see that each term decays exponentially with n.
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Letting

ε =
max f(1− a, a− b), f(a, 1− a− b) + 1

2
,

we see that for n large enough we have A
(2)
n (an+cnα, bn+dnβ) < εn. Multiplying

by nr will not change this fact for any positive r, so we have F (2)(a, b, c, d, α, β) =

∞ as well, as desired.

Lemma 3.5.5. Let a, b ∈ [0, 1], c, d ∈ R, α, β ∈ [0, 1) with b 6= 1, b ∈ {1−2a, 2a−

1}. Let γ = max{α, β}, and suppose γ > 1
2
. Then we have

F (2)(a, b, c, d, α, β) =∞ .

Furthermore, there exists ε ∈ (0, 1) such that we have

A(2)(a, b, c, d, α, β) < εn
2γ−1

,

for n large enough.

Proof. We prove the lemma for b = 1 − 2a; the proof for b = 2a − 1 is almost

identical. Since b = 1− 2a, we have either f(1− a, a− b) = 1, by Lemma 3.5.3.

By the same analysis as in the proof of Lemma 3.5.4, we see that

A(2)
n (an+ cnα, bn+ dnβ) =

√
1− b

8π(1− a)(a− b)n
exp

[
−(dnβ − 2cnα)2

4(1− a)n

]
,

+

√
1− b

8aπ(1− a− b)n
(f(a, 1− a− b))n

×

(
(1− b)−dnβ

(2a)−cnα(2− 2a− 2b)cnα−dnβ

)

× exp

[
−(dnβ + 2cnα)2

4an

]
Since γ > 1

2
, the first term grows asymptotically like exp−Cn2γ−1, for some

constant C. Even if the second term has f(a, 1, a, b) 6= 1, we still get

A(2)
n (a, b, c, d, α, β) < εn

2γ−1

,
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for n large enough. Also, as in the previous lemma, multiplying by any positive

power of n does not change this fact, so F (2)(a, b, c, d, α, β) =∞, as desired.

As mentioned before, the argument is very similar if b = 1 − 2a, rather than

b = 2a− 1, so we omit it.

Lemma 3.5.6. Let a, b ∈ [0, 1], c, d ∈ R, α, β ∈ [0, 1). For b ∈ {1−2a, 2a−1}, b 6=

1, α, β ≤ 1
2
, we have

F (2)(a, b, c, d, α, β) =
1

2
.

Furthermore, we have

L(2)(a, b, c, d, α, β) =



√
2
π

b = 0, α, β < 1
2
,√

2
π

exp [−2c2] b = 0, α = 1
2
> β ,√

2
π

exp
[
−d2

2

]
b = 0, β = 1

2
> α ,√

2
π
(exp

[
− (d−2c)2

2

]
+ exp

[
− (d+2c)2

2

]
) b = 0, α = β = 1

2
,

and

L(2)(a, b, c, d, α, β) =



√
1

4(1−a)π b = 2a− 1 > 0, α, β < 1
2
,√

1
4(1−a)π exp

[
− c2

1−a

]
b = 2a− 1 > 0, α = 1

2
> β ,√

1
4(1−a)π exp

[
− d2

4(1−a)

]
b = 2a− 1 > 0, β = 1

2
> α ,√

1
4(1−a)π exp

[
− (d−2c)2

4(1−a)

]
b = 2a− 1 > 0, α = β = 1

2
,√

1
4aπ

b = 1− 2a > 0, α, β < 1
2
,√

1
4aπ

exp
[
− c2

a

]
b = 1− 2a > 0, α = 1

2
> β ,√

1
4aπ

exp
[
−d2

4a

]
b = 1− 2a > 0, β = 1

2
> α ,√

1
4aπ

exp
[
− (d+2c)2

4a

]
b = 1− 2a > 0, α = β = 1

2
,
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Proof. We consider three separate cases of b, α, and β, and omit since the rest

since the proofs are very similar. First, suppose b = 2a− 1 > 0, with α, β < 1
2
.

By the same argument as in the proof of Lemma 3.5.5, we have

A(2)
n (an+ cnα, bn+ dnβ) ∼

√
1− b

8π(1− a)(a− b)n
exp

[
−(dnβ − 2cnα)2

4(1− a)n

]

+

√
1− b

8aπ(1− a− b)n
(f(a, 1− a− b))n

×

(
(1− b)−dnβ

(2a)−cnα(2− 2a− 2b)cnα−dnβ

)

× exp

[
−(dnβ + 2cnα)2

4an

]
.

as n→∞. Since b > 0, we have a 6= 1− a− b, so f(a, 1− a− b) < 1. Also, since

α, β < 1
2
, we have

−(dnβ − 2cnα)2

4(1− a)n
→ 0

as n→∞.

Plugging these in, we see that

nrA(2)
n (an+ cnα, bn+ dnβ) ∼ nr−

1
2

√
1

4π(1− a)
,

so F (2)(a, b, c, d, α, β) = 1
2

and

L(2)(a, b, c, d, α, β) =

√
1

4π(1− a)
,

as desired.

Now, we consider another case with b = 1 − 2a > 0, α = 1
2
> β. As in the

proof of Lemma 3.5.4, we have
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A(2)
n (an+ cnα, bn+ dnβ) ∼

(
(1−b)n−dnβ
(1−a)n−cnα

)
+
(
(1−b)n−dnβ
an+cnα−1

)
2(1−b)n−dnβ+1

∼

√
1− b

8π(1− a)(a− b)n
(f(1− a, a− b))n

×

(
(1− b)−dnβ

(2− 2a)−cnα(2a− 2b)cnα−dnβ

)

× exp

[
−(dnβ − 2cnα)2

4(1− a)n

]
+

√
1− b

8aπ(1− a− b)n
(f(a, 1− a− b))n

×

(
(1− b)−dnβ

(2a)−cnα(2− 2a− 2b)cnα−dnβ

)

× exp

[
−(dnβ + 2cnα)2

4an

]
∼ εn +

√
1− b

8aπ(1− a− b)n
exp

[
−(dnβ + 2cnα)2

4an

]
∼
√

1

4aπn
exp

[
−c

2

a

]
,

as n→∞.

We see that F (2)(a, b, c, d, α, β) = 1
2
, and

L(2)(a, b, c, d, α, β) =

√
1

4aπ
exp

[
−c

2

a

]
,

as desired.

Finally, we consider one more case, with b = 0, a = 1
2
, and α = β = 1

2
. As in
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the previous cases, we see that

A(2)
n (an+ cnα, bn+ dnβ) ∼

(
(1−b)n−dnβ
(1−a)n−cnα

)
+
(
(1−b)n−dnβ
an+cnα−1

)
2(1−b)n−dnβ+1

∼

√
1− b

8π(1− a)(a− b)n
(f(1− a, a− b))n

×

(
(1− b)−dnβ

(2− 2a)−cnα(2a− 2b)cnα−dnβ

)

× exp

[
−(dnβ − 2cnα)2

4(1− a)n

]
+

√
1− b

8aπ(1− a− b)n
(f(a, 1− a− b))n

×

(
(1− b)−dnβ

(2a)−cnα(2− 2a− 2b)cnα−dnβ

)

× exp

[
−(dnβ + 2cnα)2

4an

]
∼
√

1

2πn
exp

[
−(d− 2c)2

2

]
+

√
1

2πn
exp

[
−(d+ 2c)2

2

]
,

as n→∞.

We see that F (2)(a, b, c, d, α, β) = 1
2
, and

L(2)(a, b, c, d, α, β) =

√
1

2π

(
exp

[
−(d− 2c)2

2

]
+ exp

[
−(d+ 2c)2

2

])
,

as desired. The remaining cases are very similar, so we omit their proofs for

brevity.

The remaining cases of Theorems 3.3.3, 3.3.6, and 3.3.9 all involve b = 1.

Lemma 3.5.7. Let a ∈ {0, 1}, c, d ∈ R, α, β ∈ [0, 1). Suppose α 6= β, and let

γ = max{γ}. Then

F (2)(a, 1, c, d, α, β) =∞ ,

91



and there exists ε ∈ (0, 1) such that

A(2)
n (an+ cnα, bn+ dnβ) < εn

γ

,

for n large enough.

Proof. Let a = 0; the proof for a = 1 is very similar, so we omit it. By

Lemma 3.5.2, we have

A(2)
n (an+ cnα, bn+ dnβ) =

( −dnβ
n−cnα

)
+
(−dnβ
cnα−1

)
2−dnβ+1

,

∼
(−dnβ
cnα−1

)
2−dnβ+1

.

This function is 0 for α > β, so we must have α < β. Using Stirling’s formula,

and the Taylor expansion for ln (1 + x), we have

A(2)
n (an+ cnα, bn+ dnβ) ∼ 1

2−dnβ+1

√
1

2πcnα

(
−ed
c
nβ−α

)cnα
.

Letting ε =
1

2−d
+1

2
, we see that

A(2)
n (an+ cnα, bn+ dnβ) < εn

β

,

for n large enough, as desired. Furthermore, multiplying by any positive power

of n will not change this fact, so we have

F (2)(a, b, c, d, α, β) =∞ ,

as desired.

Lemma 3.5.8. Let a ∈ {0, 1}, c, d ∈ R, α ∈ (0, 1), and suppose 2c /∈ {d,−d}.

Then

F (2)(a, 1, c, d, α, α) =∞ ,

and there exists ε ∈ (0, 1) such that

A(2)
n (an+ cnα, bn+ dnβ) < εn

α

,

as n→∞.
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Proof. Let a = 1; again, the proof for a = 0 is very similar so we omit it for

brevity. As in the proof of Lemma 3.5.7, we have

A(2)
n (an+ cnα, bn+ dnβ) ∼

(−dnα
−cnα

)
+
( −dnα
n+cnα−1

)
2−dnα+1

.

For −c > −d, we have A
(2)
n (an+ cnα, bn+ dnβ) = 0. For −c ≤ −d, we have

A(2)
n (an+ cnα, bn+ dnβ) ∼

√
−d

2π(−c)(−d+ c)

(
f(
c

d
, 1− c

d
)
)nα

,

using notation from Lemma 3.5.3. Since 2c 6= d, we have f( c
d
, 1 − c

d
) < 1, and

letting

ε =
f( c

d
, 1− c

d
) + 1

2
,

we see that

A(2)
n (an+ cnα, bn+ dnβ) < εn

α

,

for n large enough, as desired.

Lemma 3.5.9. Let a ∈ {0, 1}, c ∈ R, α ∈ (0, 1). Then we have

F (2)(a, 1, c, 4c

(
a− 1

2

)
, α, α) =

α

2
,

and

L(2)(a, 1, c, d, α, α) =

√
1

4π|c|
.

Proof. Let a = 0, so d = −2c, and c > 0, since an + cnα ≥ 1. As in the proof of

Lemma 3.5.7, and by Stirling’s formula, we have

A(2)
n (an+ cnα, bn+ dnβ) ∼

(
2cnα

n−cnα
)

+
(

2cnα

cnα−1

)
22cnα+1

,

∼ 1

2

√
2cnα

2πc2n2α
=

√
1

4cnα
,

as n→∞. Clearly, we have

F (2)(a, 1, c, 4c

(
a− 1

2

)
, α, α) =

α

2
,
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and

L(2)(a, 1, c, 4c

(
a− 1

2

)
, α, α) =

√
1

4π|c|
,

as desired.

Lemma 3.5.10. Let c, d ∈ R. Then we have

F (2)(0, 1, c, d, 0, 0) =


0 −d ≥ c− 1

∞ −d < c− 1

.

Also, for −d ≥ c− 1 we have

L(2)(0, 1, c, d, 0, 0) = 2d−1

(
−d
c− 1

)
,

and for −d < c− 1 there exists ε ∈ (0, 1) such that

A(2)
n (c, n+ d) = 0 .

for all n.

Proof. By Lemma 3.5.2, we have

A(2)
n (c, n+ d) =

( −d
n−c

)
+
(−d
c−1

)
2−d+1

=


0 −d < c− 1 ,

(−dc−1)
2−d+1 −d ≥ c− 1 ,

as desired.

Lemma 3.5.11. Let c, d ∈ R. Then we have

F (2)(1, 1, c, d, 0, 0) =


0 −d ≥ −c

∞ −d < −c
.

Also, for −d ≥ −c we have

L(2)(1, 1, c, d, 0, 0) = 2d−1

(
−d
−c

)
,
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and for −d < −c there exists ε ∈ (0, 1) such that

A(2)
n (n+ c, n+ d) = 0 .

for all n.

Proof. By Lemma 3.5.2, we have

A(2)
n (n+ c, n+ d) =

(−d
−c

)
+
( −d
n+c−1

)
2−d+1

=


0 −d < −c ,
(−d−c)
2−d+1 −d ≥ −c ,

completing the proof of Lemma 3.5.11, and of Theorems 3.3.3, 3.3.6, and 3.3.9.

3.6 Analysis of A(3)-avoiding permutations

3.6.1 Explicit formulas for A(3)-avoiding permutations

In this section we consider the limit shape of σ ∈ Sn(A(3)), where

A(3) = {123,132} .

We first prove a lemma calculating the explicit value of A
(3)
n (j, k).

Lemma 3.6.1. For all n ∈ N, 1 ≤ j, k ≤ n, we have

A(3)
n (j, k) =



0 j + k < n

21−n j = n, k = n

2−j k = n, j 6= n

2−k j = n, k 6= n

2n−j−k−1 otherwise .
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Proof. Recall that A
(3)
n (j, k) represents the probability of a permutation σ ∈

Sn(A(3)) chosen uniformly at random has σ(j) = k.

We calculate this probability by creating σ uniformly at random by defining

the elements σ(1), σ(2), . . . , σ(n) sequentially . We will show that for each i ≤ n−

1, there are two choices for i, no matter what σ(1), . . . , σ(i−1) are. This matches

the fact that |Sn(A(3))| = 2n−1, and also gives us A
(3)
n (j, k) in the meantime.

The procedure is defined as follows: At step 0, let i = 0 and let ri = n. For

1 ≤ i ≤ n − 1, at step i, with probability 1
2
, choose σ(i) = n − i and choose

ri = ri−1. With probability 1
2
, choose σ(i) = ri−1 and choose ri = n − i. After

n− 1 steps, let σ(n) = rn−1.

Observe that this procedure leads to 2n−1 possible permutations. Also, each

permutation avoids 123 and 132, since at each step i, |{a > i : σ(a) > σ(i)}| ∈

{0, 1}.

Clearly, σ(j) ≥ n−j, so A
(3)
n (j, k) = 0 for k < n−j. Also, A

(3)
n (j, n−j) = 1

2
=

2n−j−(n−j)−1, as desired. For j = k = n, the procedure must select n− i at each

step, so A
(3)
n (n, n) = 21−n. For j = n and k 6= n, we must have rn−1 = k, which

means that the procedure must select σ(n − k) = rn−k−1, and then σ(i) = n − i

for steps i = n−k+1 through i = n−1. Therefore, A
(3)
n (n, k) = 2−(1+k−1) = 2−k.

Similarly, for j 6= n and k = n, we must have σ(i) = n − i for steps i = 1

through i = j − 1, and then σ(j) = k. Therefore, A
(3)
n (j, n) = 2−j. Finally, for

j+k ≥ n+1, with j 6= n and k 6= n, the procedure must select σ(n−k) = rn−k−1,

σ(i) = n− i for steps i = n− k + 1 through i = j − 1, and then σ(j) = rj−1 = k.

The probability of this happening is 2−(j−1−(n−k+1)+1+2) = 2n−k−j−1, as desired.

In Figure 3.5, we display a random σ ∈ Sn(A(3)) to illustrate the limit shape.
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σ(j) = k

j

Figure 3.5: Random σ ∈ Sn(A(3))

Figure 3.6: Limit shape of A
(3)
250.

3.6.2 Proof of Theorems 3.3.2, 3.3.5, and 3.3.10

We prove these theorems in several lemmas, which exhaust all the cases of the

theorem. First, we consider values of a, b with a+ b 6= 1.

Lemma 3.6.2. Let a, b ∈ [0, 1], c, d ∈ R, α, β ∈ [0, 1), such that a+ b 6= 1. Then

F (3)(a, b, c, d, α, β) =∞ .

Moreover, there exists ε ∈ (0, 1) such that

A(3)
n (an+ cnα, bn+ dnβ) < εn .

Proof. First, let a+ b < 1. By Lemma 3.6.1, we see that

A(3)
n (an+ cnα, bn+ dnβ) = 0 ,
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so any ε ∈ (0, 1) would work. Also, multiplying by nr is still zero for all positive

r, so F (3)(a, b, c, d, α, β) =∞, as desired.

Now, consider a+ b > 1. Again, by Lemma 3.6.1, we have

A(3)
n (an+ cnα, bn+ dnβ) ≤ 2n−(an+cnα)−(bn+dnβ)+1 ,

since each nonzero case of Lemma 3.6.1 is no bigger than 2n−j−k+1. Since a+b > 1,

setting ε equal to

ε =
1 + 21−a−b

2

gives us ε ∈ (0, 1), and also gives

A(3)
n (an+ cnα, bn+ dnβ) < εn

for n large enough, as desired.

Now, we have several lemmas corresponding to cases with a+ b = 1.

Lemma 3.6.3. Let a ∈ [0, 1], c, d ∈ R, α, β ∈ [0, 1). Let γ = max{α, β}, and

suppose γ > 0. Then

F (3)(a, 1− a, c, d, α, β) =∞ .

Furthermore, there exists ε ∈ (0, 1) such that

A(3)
n (an+ cnα, bn+ dnβ) < εn

γ

,

for n large enough.

Proof. First, for cnα + dnβ < 0, by Lemma 3.6.1, we have A
(3)
n (an + cnα, (1 −

a)n+ dnβ) = 0, which satisfies the lemma.

Now, consider cnα + dnβ ≥ 0. Again, by Lemma 3.6.1, we have

A(3)
n (an+ cnα, bn+ dnβ) ≤ 2n−(an+cnα)−(bn+dnβ)+1 ,

= 2−cn
α−dnβ+1 .
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Now, suppose α > β. With

ε =
1 + 2−c

2
,

we have

A(3)
n (an+ cnα, bn+ dnβ) < εn

α

,

for n large enough, as desired.

The proofs for α = β and α < β are very similar, so we omit them here for

brevity.

Lemma 3.6.4. Let a ∈ [0, 1], c, d ∈ R. For c+ d < 0, we have

F (3)(a, 1− a, c, d, 0, 0) =∞ ,

with A
(3)
n (an+ c, (1− a)n+ d) = 0. On the other hand, for c+ d ≥ 0, we have

F (3)(a, 1− a, c, d, 0, 0) = 0 ,

and

L(3)(a, 1− a, c, d, 0, 0) =



2−c for a = 0, d = 0 ,

2−d for a = 1, c = 0 ,

2−c−d−1 for a /∈ {0, 1} or a = 1, c 6= 0 ,

or a = 0, d 6= 0 .

Proof. By Lemma 3.6.1, for c+ d < 0 we have A
(3)
n (an+ c, (1− a)n+ d) = 0 for

all n. The other cases all follow from Lemma 3.6.1 as well - we exhibit one clearly

here and omit the others for brevity.

Suppose a = 1, c 6= 0, c+ d ≥ 0. We are analyzing

A(3)
n (an+ cnα, (1− a)n+ dnβ) = A(3)

n (n+ c, d) .
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Since c 6= 0, and since c+ d ≥ 0, Lemma 3.6.1 gives us

A(3)
n (an+ cnα, (1− a)n+ dnβ) = 2−c−d−1 .

Since this is a constant, we also get F (3)(a, 1 − a, c, d, 0, 0) = 0, as desired. This

completes the proof of Lemma 3.6.4 and of Theorems 3.3.2, 3.3.5, and 3.3.10.

3.7 Analysis of A(4)-avoiding permutations

3.7.1 Explicit formulas for A(4)-avoiding permutations

Here we analyze permutations which avoid A(4). Unlike the previous three cases,

we have

|Sn(A(4))| =
(
n

2

)
+ 1 .

We will pay particular attention to Sn(123,231) as we analyze the asymptotics.

Note that unlike when analyzing Sn(A(1)),Sn(A(2)), and Sn(A(3)), the number of

permutations avoiding A(4) only grows quadratically with n, rather than expo-

nentially, so there is no possibility of exponentially small probabilities for specific

values of A
(4)
n (j, k).

The following lemma gives the explicit value of A
(4)
n (j, k).

Lemma 3.7.1. For all n ∈ N, 1 ≤ j, k ≤ n, we have

A(4)
n (j, k) =



j

(n2)+1
j + k ≤ n ,

n+1−k
(n2)+1

j + k > n+ 1 ,

(k−1
2 )+1

(n2)+1
j + k = n+ 1 ,

where
(
k−1
2

)
= 0 for k = 1, 2.
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Before proving the lemma, we first consider what a typical permutation σ ∈

Sn(A(4)) looks like. Since σ avoids 231, all elements ahead of 1 must be in

decreasing order. Similarly, since σ avoids 123, all elements after 1 must be in

decreasing order as well. Therefore, σ consists of two concatenated decreasing

sequences, with the first one ending in 1. As long as σ has this form, it will

avoid 123. Since we also need to avoid 231, the second decreasing sequence must

consist of consecutive elements, since if there is ever a gap between numbers in the

second decreasing sequence, they would form the 3 and the 1 in a 231. One way

to count the permutations is to choose the element one bigger than the starting

element of the second decreasing sequence, and the ending element of the second

decreasing sequence. These numbers are between n+1 and 2, and once these two

elements are chosen the permutation is uniquely determined. Therefore, there are(
n
2

)
choices for the starting and ending point, plus one permutation which comes

when the second decreasing sequence is empty.

Now we are ready to prove the lemma.

Proof. We prove the lemma in cases.

First, let j+k ≤ n, and let σ ∈ Sn(A(4)) with σ(j) = k. Suppose for all r > j,

we have σ(r) < k. There are n− j such r, and only k − 1 numbers smaller than

k. This gives a contradiction, since k − 1 < k ≤ n − j, so not every such r can

have a unique σ(r). Therefore, there must be some r > j with σ(r) > k.

Because of this, k must be in the first decreasing sequence, and in fact, for all

1 ≤ i ≤ k− 1, we must have σ(j+ i) = k− i. Therefore, the length of the second

decreasing sequence is fixed, at n− (j + k − 1) = n+ 1− j − k, which is at least

1 since j + k ≤ n. The value which then determines the permutation is that of

σ(j + k), which must be at least k + (n + 1− j − k) = n + 1− j, and can be at

most n. There are j such values, and each yields exactly one σ ∈ Sn(A(4)) with

σ(j) = k. This completes the first case of the lemma.
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Second, suppose j + k > n + 1. Since j − 1 > n − k, there must be some

r < j such that σ(r) < j. Therefore, σ(j) = k is part of the second decreasing

sequence. Because of this, and the fact that the second decreasing sequence is

consecutive, σ must have σ(j + i) = k − i for all 1 ≤ i ≤ n− j.

In particular, σ(n) = k − (n − j) = k + j − n, so the final element of the

second decreasing sequence (and of σ) is fixed. The value which then determines

the permutation is the element which starts the second decreasing sequence, which

can be any number between k and n. There are n−k+1 options, and each yields

exactly one σ ∈ Sn(A(4)) with σ(j) = k, completing the second case of the lemma.

Finally, suppose j + k = n + 1. Suppose σ−1(1) < j, so σ(j) is part of the

second decreasing sequence. Then for all j + 1 ≤ r ≤ n, we must have σ(r) < k.

There are n− j = k − 1 such r, and exactly k − 1 possible such values for σ(r).

Therefore σ−1(1) > j, and we have a contradiction.

Therefore, σ(j) must be part of the first decreasing sequence. For each 1 ≤ s ≤

j − 1, we must have σ(s) > σ(j) = k. There are exactly n − k = j − 1 possible

values for σ(s), so we must have σ(s) = n + 1 − s for all such s. Therefore

σ = (n, n− 1, . . . , k+ 1, k, τ), where τ ∈ Sk−1(A
(4)). There are

(
k−1
2

)
+ 1 possible

permutations τ , so
(
k−1
2

)
+ 1 possible permutations σ, completing the lemma.

This argument can be visualized with the help of Figure 3.7.

3.7.2 Proof of Theorem 2.3.6

We prove the theorem in cases.

First, suppose a ∈ [0, 1), and consider A
(4)
n (an, (1− a)n). From Lemma 3.7.1,

we know that

A(4)
n (an, (1− a)n) =

(
(1−a)n−1

2

)
+ 1(

n
2

)
+ 1

,
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σ(j) = k

j

Figure 3.7: Random σ ∈ Sn(A(4))

since we are in the case of the lemma where j + k = n+ 1.

Letting n→∞, we see that

A(4)
n (an, (1− a)n)→ (1− a)2 as n→∞ .

Therefore, for any r > 0, we have nrA
(4)
n (an, (1 − a)n) ∼ nr(1 − a)2. Since

0 ≤ a < 1, this quantity is unbounded as n → ∞, so F (4)(a, 1 − a) = 0 for

a ∈ [0, 1), completing the first case of the theorem.

Second, suppose a = 1, b = 0. Again, from Lemma 3.7.1, we know that

nrA(4)
n (n, 1) = nr

(
1−1
2

)
+ 1(

n
2

)
+ 1

∼ 2nr−2 ,

as n→∞. Clearly, F (4)(1, 0) = 2, as desired.

Third, suppose a+ b < 1. From Lemma 3.7.1, we have

A(4)
n (an, bn) =

an(
n
2

)
+ 1

,

since j + k ≤ n.

Multiplying by nr, we get

nrA(4)
n (an, bn) = nr

an(
n
2

)
+ 1

.

Letting n→∞, for a = 0, we have

nrA(4)
n (an, bn) ∼ 2nr−2 ,
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so F (4)(0, b) = 2.

For a > 0, we instead have

nrA(4)
n (an, bn) ∼ 2anr−1 ,

so F (4)(a, b) = 1.

Finally, suppose a+ b > 1. Again, from Lemma 3.7.1, we have

A(4)
n (an, bn) =

(n+1−bn
(n2)+1

)
,

since we have j + k > n+ 1 when n is large.

For b = 1, multiplying by nr and letting n→∞, we get

nrA(4)
n (an, n) = nr

(
1

(n2)+1

)
∼

2nr−2 .

We see that F (4)(a, 1) = 2.

Now consider b < 1. Multiplying by nr and letting n→∞, we get

nrA(4)
n (an, bn) = nr

(1− b)n+ 1(
n
2

)
+ 1

∼ 2(1− b)nr−1 .

Here, we see that F (4)(a, b) = 1, completing the proof of Theorem 2.3.6.

3.8 Expected number of fixed points

As in Chapter 2.9.9, the results in Lemmas 3.4.2, 3.5.2, 3.6.1, 3.7.1 help us prove

results on the expected number of fixed points in each of these permutation

classes.

Theorem 3.8.1. Let σ be chosen uniformly at random in S2n(A(1)), and τ be

chosen uniformly at random in S2n+1(A
(1)). Then as n→∞, we have

E[fp2n(σ)]→ 4

9
,
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and

E[fp2n+1(τ)]→ 5

9
.

Similarly, we have a result for permutations in Sn(A(1)R).

Theorem 3.8.2. Let σ be chosen uniformly at random in Sn(231,312). Then

as n→∞, we have

E[fpn(σ)] ∼ n

3
+

4

9
.

Avoiding 132 and 213 simultaneously makes fixed points less likely to oc-

cur than in an arbitrary permutation, or even an arbitrary permutation avoiding

either 132 or 213 separately. On the other hand, avoiding 231 and 312 simulta-

neously makes the expected number of fixed points linear - in fact each position

has a probability tending to 1
3

of being a fixed point.

For Sn(A(2)), our results are similar, though since A(2) = A(2)R , the expected

number of fixed points equal the expected number of anti-fixed points.

Theorem 3.8.3. Let σ be chosen uniformly at random in Sn(A(2)). Then

E[fpn(σ)]→ 4

3
and E[afpn(σ)]→ 4

3
,

as n→∞.

For Sn(A(3)), we see that the expected number of fixed points depends on the

parity of n, while the expected number of anti-fixed points grows linearly with n.

Theorem 3.8.4. Let σ be chosen uniformly at random in S2n(A(3)), and τ be

chosen uniformly at random in S2n+1(A
(3)). Then

E[fp2n(σ)]→ 2

3
and E[fp2n+1(τ)]→ 1

3
,

as n→∞.
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Theorem 3.8.5. Let σ be chosen uniformly at random in Sn(321,231). Then

E[fpn(σ)] =
n

4
+

1

2
,

for all n ∈ N.

Finally, for Sn(A(4)), we see that the expected number of fixed points again

depends on the parity of n, while the expected number of anti-fixed points grows

linearly with n.

Theorem 3.8.6. Let σ be chosen uniformly at random in S2n(A(4)), and τ be

chosen uniformly at random in S2n+1(A
(4)). Then

E[fp2n(σ)]→ 1

2
and E[fp2n+1(τ)]→ 3

4
,

as n→∞.

Theorem 3.8.7. Let σ be chosen uniformly at random in Sn(321,231). Then

E[fpn(σ)] =
n

3
− 2

3
,

for all n ∈ N.

3.8.1 Proof of Theorem 3.8.1

First, suppose σ is uniform in S2n(A(1)). Then

E[fp2n(σ)] =
2n∑
j=1

A
(1)
2n (j, j) ,
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by linearity of expectation. We evaluate this sum with the help of Lemma 3.4.2.

By symmetry, we see that

E[fp2n(σ)] = 2
n∑
j=1

22j−2 + 2

3 · 22n−1

=
2

3 · 22n−1

(
n∑
j=1

22j−2 +
n∑
j=1

2

)

=
2

3 · 22n−1

(
22n − 1

3
+ 2n

)
=

4

9
+

4n

3 · 22n−1

∼ 4

9
,

as n→∞, as desired.

Now, suppose τ is uniform in S2n+1(A
(1)). Then

E[fp2n+1(τ)] =
2n+1∑
j=1

A
(1)
2n+1(j, j)

again by linearity of expectation. By Lemma 3.4.2, we have

E[fp2n+1(τ)] = A
(1)
2n+1(n+ 1, n+ 1) + 2

n∑
j=1

22j−2 + 2

3 · 22n

=
22n + 2

3 · 22n
+

2

3 · 22n

(
n∑
j=1

22j−2 +
n∑
j=1

2

)

=
1

3
+

2

3 · 22n
+

2

3 · 22n

(
22n − 1

3
+ 2n

)
=

5

9
+

2 + 4n

3 · 22n

∼ 5

9
,

as n→∞, as desired.
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3.8.2 Proof of Theorem 3.8.2

Let τ ∈ Sn(A(1)) be chosen uniformly at random, and let σ = τR. Then

E[fpn(σ)] = E[afpn(τ)] =
n∑
j=1

A(1)
n (j, n+ 1− j) .

We calculate the cases where n is even and odd separately. First, suppose n

is even, so n = 2r. By Lemma 3.4.2, we have

E[fpn(σ)] = 2
r∑
j=1

2n−1 + 2n−2j

3 · 2n−1

=
2

3 · 2n−1

(
r∑
j=1

2n−1 +
r∑
j=1

2n−2j

)

=
2

3 · 2n−1

(
r2n−1 +

2n − 1

3

)
=

2r

3
+

4

9
− 2

9 · 2n−1

∼ n

3
+

4

9
,

as n→∞.

Second, suppose n is odd, so n = 2r + 1, for some integer r. Again, by

Lemma 3.4.2, we have

E[fpn(σ)] = A
(1)
2r+1(r + 1, r + 1) + 2

r∑
j=1

2n−1 + 2n−2j

3 · 2n−1

=
22r + 2

3 · 2n−1
+

2

3 · 2n−1

(
r∑
j=1

2n−1 +
r∑
j=1

2n−2j

)

=
1

3
+

2

3 · 2n−1
+

2

3 · 2n−1

(
r2n−1 +

2n − 1

3

)
=

2r + 1

3
+

4

9
+

4

9 · 2n−1

∼ n

3
+

4

9
,

as n → ∞, as desired. Since this holds for n even and n odd, the proof is

complete.
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3.8.3 Proof of Theorem 3.8.3

First, observe that since A(2) = {132,231} and A(2)R = {231,132} = A(2), we

have E[fpn(σ)] = E[afpn(σ)]. Therefore, it suffices to prove that E[fpn(σ)] → 4
3

as n→∞.

Let σ ∈ Sn(A(2)) be chosen uniformly at random. By Lemma 3.5.2, we have

E[fpn(σ)] =
n∑
j=1

A(2)
n (j, j)

=
n∑
j=1

1

2n−j+1 +
∑n

j=1

(n−jj−1)
2

n−j+1

= 1− 1

2n
+

1

2n−1

n∑
j=1

2j−2

(
n− j
j − 1

)
.

As n → ∞, by Stirling’s formula, we see that there is some ε < 1 such that

expression 2j−n−1
(
n−j
j−1

)
< εn unless j = n

3
+ cnα, with α ≤ 1

2
.

When j = n
3

+ cnα we get

2j−n−1

(
n− j
j − 1

)
∼ 2j−n−12n−j

√
3

πn
exp

[
−27c2

4

]
.

Summing over these values of j from c = −∞ to c =∞, and interpreting this as

a Riemann sum, we obtain

n∑
j=1

2j−n−1

(
n− j
j − 1

)
∼ 1

2

√
3

πn

√
n
√
π

2

3
√

3
=

1

3
.

Therefore, we see that

E[fpn(σ)] ∼ 1 +
1

3
=

4

3
, as n→∞ , as desired.
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3.8.4 Proof of Theorem 3.8.4

Let σ ∈ S2n(A(3)). By Lemma 3.6.1, we have

E[fp2n(σ)] =
2n∑
j=1

A
(3)
2n (j, j)

=
2n−1∑
j=n

22n−2j−1 + A
(3)
2n (2n, 2n)

=
2

3
− 1

6 · 22n
+

1

22n−1

∼ 2

3
, as n→∞ , as desired.

Now, let τ ∈ S2n+1(A
(3)). Again, by Lemma 3.6.1, we have

E[fp2n+1(τ)] =
2n+1∑
j=1

A
(3)
2n+1(j, j)

=
2n∑

j=n+1

22n+1−2j−1 + A
(3)
2n+1(2n+ 1, 2n+ 1)

=
1

3
− 1

3 · 22n
+

1

22n

∼ 1

3
, as n→∞ , as desired.

This completes the proof.

3.8.5 Proof of Theorem 3.8.5

Let τ be chosen uniformly at random in Sn(A(3)), and let σ = τR. Then σ is

uniform in Sn(321,231), and E[fpn(σ)] = E[afpn(τ)].
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Therefore, by Lemma 3.6.1, we have

E[fpn(σ) =
n∑
j=1

A(3)
n (j, n+ 1− j)

= A(3)
n (1, n) + A(3)

n (n, 1) +
n−1∑
j=2

2n−j−(n+1−j)−1

=
1

2
+

1

2
+

n−1∑
j=2

1

4

= 1 +
n− 2

4
=
n

4
+

1

2
,

as desired.

3.8.6 Proof of Theorem 3.8.6

Let σ ∈ S2n(A(4)). By Lemma 3.7.1, we have

E[fp2n(σ)] =
2n∑
j=1

A
(4)
2n (j, j)

=
n∑
j=1

j(
2n
2

)
+ 1

+
2n∑

j=n+1

2n+ 1− j(
2n
2

)
+ 1

=

(
n+1

2

)(
2n
2

)
+ 1

+

(
n+1

2

)(
2n
2

)
+ 1

∼ 2

(
1

4

)
=

1

2
, as n→∞ , as desired.

Now, let τ ∈ S2n+1(A
(4)). Again, by Lemma 3.7.1, we have

E[fp2n+1(τ)] =
2n+1∑
j=1

A
(3)
2n+1(j, j)

=
n∑
j=1

j(
2(n+1)

2

)
+ 1

+ A
(3)
2n+1(n+ 1, n+ 1) +

2n+1∑
j=n+2

2n+ 1− j(
2n+1

2

)
+ 1

=

(
n+1

2

)(
2n+1

2

)
+ 1

+

(
n
2

)
+ 1(

2n+1
2

)
+ 1

+

(
n+1

2

)(
2n+1

2

)
+ 1

∼ 3

(
1

4

)
=

3

4
, as n→∞ , as desired.
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This completes the proof.

3.8.7 Proof of Theorem 3.8.7

Let τ be chosen uniformly at random in Sn(A(4)), and let σ = τR. Then σ is

uniform in Sn(321,132), and E[fpn(σ)] = E[afpn(τ)].

Therefore, by Lemma 3.6.1, we have

E[fpn(σ) =
n∑
j=1

A(4)
n (j, n+ 1− j)

=
n∑
j=1

(
n+1−j−1

2

)
+ 1(

n
2

)
+ 1

=

(
n
3

)
+ n(

n
2

)
+ 1

∼ n− 2

3
,

as n→∞, as desired.
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CHAPTER 4

Avoiding three patterns of length three

simultaneously

4.1 Introduction

We now consider permutations which simultaneously avoid three patterns of

length three.

4.1.1 Symmetries

Let B ⊂ 2Sn such that B ∈ B if and only if |B| = 3. As in the previous chapter,

the sets in B can be partitioned into equivalence classes based on symmetries of

the square. For S, T ∈ B, let S ∼ T if

S ∈ {S, SC , SR, SRC , S−1, (SC)−1, (SR)−1, (SRC)−1}.

Here these actions on sets in B generate all eight symmetries of the square,

and form the dihedral group on the square. Because the complement, reverse,

and inverse of a permutation all maintain the same matrix up to rotation and

reflection, matrices within the same equivalence classes will have the same limit

shape. We summarize this argument in the following lemma.

Proposition 4.1.1. Let B ⊂ 2S3, such that B ∈ B if and only if |B| = 3. Then
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the equivalence classes under ∼ are given by B(1), B(2), B(3), B(4), and B(5), where

B(1) = {123, 132, 213} ∼ {231, 312, 321} ,

B(2) = {123, 132, 231} ∼ {123, 132, 312} ∼ {123, 213, 231}

∼ {123, 213, 312} ∼ {132, 231, 321} ∼ {132, 312, 321}

∼ {213, 231, 321} ∼ {213, 312, 321} ,

B(3) = {132, 213, 231} ∼ {132, 213, 312}

∼ {132, 231, 312} ∼ {213, 231, 312} ,

B(4) = {123, 231, 312} ∼ {132, 213, 321} ,

B(5) = {123, 132, 321} ∼ {123, 213, 321}

∼ {123, 231, 321} ∼ {123, 312, 321} .

Proof. We prove the result for B(2), the other cases are similar. Let B =

{123,132, 231}. Then BR = {123R,132R,231R} = {321,231,132}. Similarly,

BC = {321,312,213}, and BRC = {123,213,312}. Also,

B−1 = {123,132,312} ,

(BR)−1 = {321,312,132} ,

(BC)−1 = {321,231,213} ,

and (BRC)−1 = {123,213,231} .

Therefore,

B(2) = {B,BR, BC , BRC , B−1, (BR)−1, (BC)−1, (BRC)−1}.

By the definition of ∼, we see that B(2) consists precisely of the sets equivalent

to B, as desired.

As above, when calculating the limiting distribution of B(i) it suffices to an-

alyze the first pair of patterns listed, and then rotate the distribution as needed

to calculate for the other pairs of patterns.
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As for sets of length two, Sn(B) was studied and enumerated by Simion and

Schmidt[SS].

Theorem 4.1.2 ([SS]). Let B(1), B(2), B(3), B(4), and B(5) be as above, and let Fn

denote the n th Fibonacci number. Then

|Sn(B(1))| = Fn+1 ,

while |Sn(B(2))| = |Sn(B(3))| = |Sn(B(4))| = n and |Sn(B(5))| = 0 , for n ≥ 5 .

As in the previous chapter, the size of Sn(B) depends on which patterns B

contains. Again, the fact that Sn(B(5)) = ∅ for n ≥ 5 follows from Erdős and

Szekeres’s result on longest increasing and decreasing subsequences [ES].

In the following section, we analyze the limit shapes of Sn(B) for each B ∈ B.

4.2 Main results

In this section we present the main results of the paper.

4.2.1 Shape of B-avoiding permutations

Let 0 ≤ a, b ≤ 1, and c, d ∈ R be fixed constants. Let B
(i)
n (j, k) denote the

probability that a permutation σ chosen uniformly at random from Sn(B(i)) has

σ(j) = k. Define

T i(a, b, c, d) = sup
{
r ∈ R+

∣∣∣ lim
n→∞

nrB(i)
n (an+ c, bn+ d) <∞

}
.

Similarly, let

M(a, b, c, d) = lim
n→∞

nT (a,b,c,d)Bn(an− c+ 1, bn− d) ,

defined for all a, b, c, d as above, for which T (a, b, c, d) < ∞; let M be undefined

otherwise.
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Observe that in the previous chapter, we analyze A
(i)
n (an + cnα, bn + dnβ,

whereas here we are only considering B
(i)
n (an+cn, bn+d), removing the potential

effect of α and β and fixing them at α = 0 and β = 0. This change is due to

the fact that the limit shapes are simple enough that they do not merit the extra

level of complexity in calculation which comes along with allowing α and β to

vary.

The following theorems describe the limit shapes for the different classes of

permutations, Sn(B(i)).

Theorem 4.2.1. Let 0 ≤ a, b ≤ 1, c, d ∈ R. Then we have

T (1)(a, b, c, d) =


∞ for a+ b 6= 1 ,

0 for a+ b = 1, 0 ≤ c+ d ≤ 2 ,

∞ if a+ b = 1, c+ d /∈ [0, 2] .

Since B(1) is the only subset whose size grows exponentially with n, its asymp-

totics are the most interesting. We describe the remaining cases here.

Theorem 4.2.2. Let 0 ≤ a, b ≤ 1, c, d ∈ R. Then we have

T (2)(a, b, c, d) =



1 for a = 1, c = 0 ,

1 for a = 1, b = 0, c+ d = 1 ,

1 for a = 0, b = 1, c+ d = 0 ,

0 for a = 0, b = 1, c+ d = 1 ,

0 for a = 1, b = 0, c+ d = 0 ,

0 for a+ b = 1, a ∈ (0, 1), c+ d ∈ {0, 1}

∞ otherwise .

The behavior for B(3) is similar, as explained here.
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Theorem 4.2.3. Let a, b ∈ [0, 1], c, d ∈ R. Then we have

T (3)(a, b, c, d) =



0 for a+ b = 1, c+ d = 1 and b > 0 ,

1 for a > b, a+ b 6= 1 ,

1 for a > b, a+ b = 1, c+ d 6= 1 ,

1 for a = b, c ≥ d, a+ b 6= 1 ,

1 for a = b, c ≥ d, a+ b = 1, c+ d 6= 1 ,

∞ otherwise .

In this chapter, T i(a, b, c, d) = ∞ means that B
(i)
n (an + c, bn + d) = 0. In

other words, there is no exponential decay in a given square of the matrix unless

the matrix does not have any weight in that square at all.

The following theorems give values of M i(a, b, c, d), for values of a, b, c, d where

T i(a, b, c, d) 6=∞.

Theorem 4.2.4. Let 0 ≤ a ≤ 1 and c, d ∈ R such that 0 ≤ c + d ≥ 2. Then we

have

M (1)(a, 1− a, c, d) =



1
ϕ
√

5
for a ∈ (0, 1), c+ d ∈ {0, 2} ,

1√
5

for a ∈ (0, 1), c+ d = 1 ,

ϕc−1Fd for a = 1, c+ d ∈ {0, 1} ,

ϕdF1−c for a = 1, c+ d = 2 ,

ϕd−1Fc for a = 0, c+ d ∈ {0, 1} ,

ϕdF1−d for a = 0, c+ d = 2 ,

where Fn is the n-th Fibonacci number.
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Theorem 4.2.5. Let a, b ∈ [0, 1], c, d ∈ R. We have

M (2)(a, b, c, d) =



1 for a = 1, b = 0, c+ d = 0 ,

d− 1 for a = 1, b = 0, c+ d = 1 ,

1 for a = 0, b = 1, c+ d = 1 ,

c for a = 0, b = 1, c+ d = 0 ,

a for a ∈ (0, 1), b = 1− a, c+ d = 1 ,

1− a for a ∈ (0, 1), b = 1− a, c+ d = 0 .

Theorem 4.2.6. Let a, b ∈ [0, 1], c, d ∈ R. We have

M (3)(a, b, c, d) =



1− a for a+ b = 1, c+ d = 1, a < 1 ,

d− 1 for a+ b = 1, c+ d = 1, a = 1 ,

1 for a > b, a+ b 6= 1

1 for a = b, a+ b 6= 1, c ≥ d ,

1 for a > 1
2
, a+ b = 1, c+ d 6= 1 ,

1 for a = 1
2
, a+ b = 1, c+ d 6= 1, c ≥ d .

For B4, the behavior is very straightforward, but for completeness we include

the theorem here.

Theorem 4.2.7. For all a, b ∈ [0, 1], c, d ∈ R, we have

T (4)(a, b, c, d) = 1 ,

and

M (4)(a, b, c, d) = 1 .
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4.3 Analysis of B(1)-avoiding permutations

4.3.1 Symmetry

The permutations σ ∈ Sn(B(1)) obey some simple symmetry.

Lemma 4.3.1. For all 1 ≤ j, k ≤ n, we have

B(1)
n (j, k) = B(1)

n (k, j) = B(1)
n (n+ 1− k, n+ 1− j) .

Proof. Since 123−1 = 123, 132−1 = 132, and 213−1 = 213, for every σ ∈

Sn(B(1)), we have σ−1 ∈ Sn(B(1)) as well. Therefore, Bn(1, j, k) = Bn(1, k, j).

Let σ = (σ(1), σ(2), . . . , σ(n)) ∈ Sn(B(1)), with σ(j) = k. Then the permutation

τ = σRC ∈ Sn(B(1)), with τ(n+ 1− k) = n+ 1− j.

Here we give a lemma which is the main step towards proving Theorem 4.2.1.

Recall that Bn(1, j, k) is the probability that a random σ ∈ Sn(B(1)) with σ(j) =

k.

Lemma 4.3.2. For all 1 ≤ j, k ≤ n, we have

Bn(1, j, k) =



FjFk
Fn+1

n ≤ j + k ≤ n+ 1 ,

Fn+1−jFn+1−k
Fn+1

j + k = n+ 2 ,

0 otherwise .

To clarify, permutations in Sn(B(1)) must be almost completely decreasing.

For a permutation matrix B ∈ Sn(B(1)) to have bjk = 1, the sum of the indices

must satisfy j + k ∈ {n, n+ 1, n+ 2}.

Proof. We prove the lemma in cases.

First, let j + k < n, and let σ ∈ Sn(B(1)) with σ(j) = k. Let Bσ = {i < j :

σ(i) > k} and Cσ = {i > j : σ(i) > k}. Together we must have |Bσ|+|Cσ| = n−k.
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Also, we know that |Bσ| ≤ j − 1. Therefore,

|Cσ| ≥ n− k − (j − 1) = n− k − j + 1 > 1,

since j + k < n. Since Cσ is a set, we must have |Cσ| ≥ 2. Let i1 < i2 ∈ Cσ.

Then a 123 or 132 is formed, with k, σ(i1), σ(i2). This is a contradiction, so

Bn(1, j, k) = 0 for j + k < n.

Now suppose j + k > n+ 2. By Lemma 3.4.1, we get Bn(1, j, k) = Bn(1, n+

1− j, n+ 1− k), and since (n+ 1− j) + (n+ 1− k) < n, we get Bn(1, j, k) = 0.

Now, suppose j + k = n. The only way to avoid the contradictions in the

previous case is to have |Cσ| = 1, and |Bσ| = j − 1. Suppose i ∈ Cσ with

i > j + 1. Then a 213 is formed with σ(j), σ(j + 1), σ(i). Therefore i = j + 1.

Similarly, suppose σ(j+1) > k+1. Then σ−1(k+1) < j, so a 213 is formed with

k+1, σ(j), σ(j+1), which is a contradiction. Therefore, we have σ(j+1) = k+1.

The first j−1 elements of the permutation must consist of k+2, k+3, . . . , n, and

the final elements must consist of [k − 1]. Within the first j − 1 elements, there

are Fj ways to permute them, since they must be in Sj−1(B
(1)). Similarly, there

are Fk ways to permute the final k−1 elements, since they must be in Sk−1(B
(1)).

Like in the previous case, for j+k = n+2, we apply Lemma 3.4.1. The result

is that

Bn(1, j, k) =
Fn+1−jFn+1−k

Fn+1

.

Our final case is for j+k = n+ 1. Here, suppose |Cσ ≥ 1. Since |Bσ|+ |Cσ| =

n− k, we get

|Bσ| ≤ n− k − 1 = (j − 1)− 1 = j − 2 < j − 1.

Therefore, there must be some i < j with σ(i) < σ(j). Together with the element

r ∈ Cσ, we have a 123. This is a contradiction, so we must have |Cσ = 0, and

|Bσ = n−k = j−1. Once we know the first j−1 elements of σ are k+1, k+2, . . . , n
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σ(j) = k

j

Figure 4.1: Random σ ∈ Sn(B(1))

and the final n − j elements are [k − 1], we can form an element of Sn(B(1)) as

long as the first j − 1 elements are in Sj−1(B
(1)) and the final n− j elements are

in Sk−1(B
(1)). Therefore, there are FjFk ways to create the entire permutation,

finishing the final case of the lemma.

A sample element of Sn(B(1)) is pictured here.

4.3.2 Proof of Theorem 4.2.1

The proof follows quickly from the previous lemma, and one other.

Lemma 4.3.3 (First case). Let a, b ∈ [0, 1], c, d ∈ R, such that a + b 6= 1. Then

T (1)(a, b, c, d) =∞. Moreover, for n sufficiently large, we have

B(1)
n (an− c, bn− d) < εn,

where ε is independent of n and 0 < ε < 1.

Proof. Suppose a + b < 1, and a < b. (We omit the proofs of the other cases,

since they are very similar.) Analyzing B
(1)
n (an− c+ 1, bn− d), we get

B(1)
n (an− c, bn− d) = 0,

since an− c+ bn− d = (a+ b)n− c− d, and since a+ b < 1, we are in the first
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case of Lemma 3.4.1. Not only do we get the exponential decay described above,

we actually have no permutations σ at all in Sn(B(1)) with σ(j) = k.

Lemma 4.3.4 (Second case). Let a ∈ (0, 1), c, d ∈ R. For c + d ∈ {0, 1, 2}, we

have

T (1)(a, 1− a, c, d) = 0 .

Furthermore, for these values of c and d we have

M (1)(a, 1− a, c, d) =


1

ϕ
√

5
for a ∈ (0, 1), c+ d ∈ {0, 2} ,

1√
5

for a ∈ (0, 1), c+ d = 1 .

On the other hand, for c+ d /∈ {0, 1, 2}, we get T (1)(a, 1− a, c, d) =∞.

Proof. Let a ∈ (0, 1) with c + d = 0. The other cases follow by very similar

arguments.

Recall that Fn = ϕn−(−ϕ)−n√
5

. By Lemma 4.3.2, we have

B(1)
n (an+ c, (1− a)n+ d) =

Fan+cF(1−a)n+d

Fn+1

,

∼ ϕan+c

√
5

ϕ(1−a)n+d

√
5

√
5

ϕn+1
,

∼ ϕn+c+d

ϕn+1
√

5
,

∼ 1

ϕ
√

5
,

as n → ∞. Here we needed the fact that a 6= 0, 1, so that negative powers of ϕ

become negligible as n→∞.

Since Bn is in fact a constant, we see that T (1)(a, 1− a, c, d) = 0, as desired.

For c+ d /∈ {0, 1, 2}, we have j + k /∈ {n, n+ 1, n+ 2}, so Lemma 4.3.2 gives

us B(1)(an+ cn, (1− a)n+ d) = 0 for all n. This gives us T (1)(a, 1− a, c, d) =∞,

as desired.
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Lemma 4.3.5. Let a ∈ {0, 1}, c, d ∈ R such that c+ d ∈ {0, 1, 2}. Then

T (1)(a, 1− a, c, d) = 0 ,

and

M (1)(a, 1− a, c, d) =



ϕc−1Fd√
5

for a = 1, c+ d ∈ {0, 1} ,

ϕdF1−c√
5

for a = 1, c+ d = 2 ,

ϕd−1Fc√
5

for a = 0, c+ d ∈ {0, 1} ,

ϕdF1−d√
5

for a = 0, c+ d = 2 .

Proof. Suppose a = 1, c + d = 2. We prove Lemma 4.3.5 for these values and

omit the other cases for brevity. By Lemma 4.3.2, we get

B(1)
n (an+ c, bn+ d) = B(1)

n (n+ c, d)

=
Fn+cFd
Fn+1

∼ ϕn+c
√

5Fd√
5ϕn+1

∼ ϕc−1Fd ,

as n→∞.

Since this is a constant, and the correct constant, we obtain

T (1)(a, 1− a, c, d) = 0 ,

and

M (1)(a, 1− a, c, d) = ϕc−1Fd .

This completes the proof of all cases of Theorems 4.2.1 and 4.2.4, as desired.

4.4 Analysis of B(2)-avoiding permutations

Here we analyze the limit shape of Sn(B(2)), where B(2) = {123, 132, 231}. As

described in Proposition 4.1.1, this class of permutations is not self-symmetric,

since the complement, reverse, and inverse operations yield eight distinct sets.
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4.4.1 Explicit formulas for B(2)-avoiding permutations

In this lemma, we calculate the explicit value of B
(2)
n (j, k) for any j, k.

Lemma 4.4.1. Let n ∈ N, and 1 ≤ j, k ≤ n. Then we have

B(2)
n (j, k) =



1
n

j = n ,

j
n

j + k = n ,

k−1
n

j + k = n+ 1 and j < n ,

0 j + k < n or (j + k > n+ 1 and j < n) .

Proof. As usual, we prove Lemma 4.4.1 case by case. Let σ ∈ Sn(B(2)) with

σ(j) = k. First, let j = n. Suppose i1 < i2 with σ(i1) < σ(i2). If k < σ(i1), then

a 231 is formed with σ(i1), σ(i2), k. If σ(i1) < k < σ(i2), then a 132 is formed.

If k > σ(i2), then a 123 is formed. Therefore, we must have σ(i1) > σ(i2) for all

i1 < i2. In other words, the only permutation with σ(n) = k is

σ = (n, n− 1, n− 2, . . . , k + 2, k + 1, k − 1, k − 2, . . . , 3, 2, 1, k),

and B
(2)
n (j, k) = 1

n
.

Every permutation σ ∈ Sn(B(2)) must have this form for some k. This allows

us to calculate the remaining cases without much difficulty. Let

σ = (n, n− 1, n− 2, . . . , t+ 2, t+ 1, t− 1, t− 2, . . . , 3, 2, 1, t).

For j + k = n, we have σ(j) = k = n − j. Because of the form of σ, t must

come early enough in the permutation so that σ(j) = n − j and not n − j + 1.

This means that k < t. There are n − k such possible values for t, and since

n− k = j, we get j such possible permutations σ, so

B(2)
n (j, k) =

j

n
.
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σ(j) = k

j

Figure 4.2: Random σ ∈ Sn(B(2))

Now suppose j+k = n+1, with j < n. We have σ(j) = k = n+1− j. Unlike

the previous case, here we need k > t, so that σ(j) = n + 1 − j and not n − j.

There are k− 1 possible choices for t, and this is well-defined since j < n implies

k > 1. Therefore, we have k − 1 possible permutations σ, and

B(2)
n (j, k) =

k − 1

n
.

Finally, if j + k < n, then no σ will have σ(j) = k, since that would imply

σ(j) < n− k. Similarly, if j + k > n+ 1, the only way σ will have σ(j) = k is if

j = n, in which case B
(2)
n (j, k) = 1

n
, as desired.

This argument can be visualized with the help of Figure 4.2.

4.4.2 Proof of Theorems 4.2.2 and 4.2.5

The proof follows from a pair of lemmas, one for each case from the theorem.

Lemma 4.4.2. Let a = 1. For c = 0, we have

T (2)(1, b, 0, d) = 1 , and M (2)(1, b, 0, d) = 1 .
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On the other hand, for c 6= 0, we have

T (2)(1, 0, c, d) =


0 c+ d = 0 ,

1 c+ d = 1 ,

∞ c+ d /∈ {0, 1} ,

and

M (2)(1, 0, c, d) =


1 c+ d = 0 ,

d− 1 c+ d = 1 .

Proof. Applying Lemma 4.4.1 with a = 1, we get

B(2)
n (n, bn+ d) =

1

n
.

This yields T (2)(1, b, 0, d) = 1 and M (2)(1, b, 0, d) immediately.

For c 6= 0, with c+ d = 0, by Lemma 4.4.1, we have

B(2)
n (n+ c, d) =

n+ c

n

∼ 1 ,

as n→∞. This gives T (2)(1, 0, c, d) = 0 and M (2)(1, 0, c, d) = 1, as desired.

For c 6= 0 and c+ d = 1, we have

B(2)
n (n+ c, d) =

d− 1

n
.

This implies T (2)(1, 0, c, d) = 1 and M (2)(1, 0, c, d) = d− 1, as desired.

For c+ d /∈ {0, 1}, we have Bn(n+ c, d) = 0 by Lemma 4.4.1, completing the

proof of Lemma 4.4.2.

Lemma 4.4.3. Let a ∈ [0, 1), b ∈ [0, 1] so that a+ b 6= 1. Then T (2)(a, b) =∞.

Proof. By Lemma 4.4.1, we have

nrB(2)
n (an+ c, bn+ d) = nr(0) ,
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since for n large enough we have an+ c+ bn+ d /∈ {n, n+ 1}. Therefore, for any

r > 0 and for n large enough, we have B
(2)
n (an, bn) = 0, so T (2)(a, b) =∞.

Lemma 4.4.4. Let b = 1, a = 0, c, d ∈ {0, 1} such that c + d ∈ {0, 1}. For

c+ d = 0, we have

T (2)(0, 1, c, d) = 1 and M (2)(0, 1, c, d) = c .

On the other hand, for c+ d = 1, we have

T (2)(0, 1, c, d) = 0 and M (2)(0, 1, c, d) = 1 .

Proof. Each case follows from Lemma 4.4.1, we explain the first carefully and

omit the second for brevity. For c+ d = 1, Lemma 4.4.1 implies that

B(2)
n (an+ c, bn+ d) = B(2)

n (c, n+ d)

=
n+ d− 1

n

∼ 1 ,

as n → ∞. Therefore, we have T (2)(0, 1, c, d) = 0 and M (2)(0, 1, c, d) = 1, as

desired.

For the final case we consider points on the anti-diagonal of the permutation

matrix.

Lemma 4.4.5. Let a ∈ (0, 1), c, d ∈ R such that c+ d ∈ {0, 1}. Then T (2)(a, 1−

a) = 0, and

M (2)(a, 1− a, c, d) =


a c+ d = 1 ,

1− a c+ d = 0 .

Proof. As before, we rely heavily on Lemma 4.4.1. First, suppose c + d = 1. In

this case, we see that

B(2)
n (an+ c, (1− a)n+ d) =

an+ c

n

∼ a ,
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as n→∞. We see that T (2)(a, 1− a, c, d) = 0 and M (2)(a, 1− a, c, d) = a.

Similarly, for c+ d = 0, we get an+ c+ (1− a)n+ d = n, so

B(2)
n (an+ c, (1− a)n+ d) =

(1− a)n+ d− 1

n

∼ (1− a) ,

as n → ∞. This implies T (2)(a, 1 − a, c, d) = 0 and M (2)(a, 1 − a, c, d) = 1 − a.

This completes the proof of Lemma 4.4.5 and of Theorems 4.2.2 and 4.2.5.

4.5 Analysis of B(3)-avoiding permutations

4.5.1 Explicit formulas for B(3)-avoiding permutations

In this section we consider the limit shape of σ ∈ Sn(B(3)), where

B(3) = {132, 213, 231} .

We first prove a lemma calculating the explicit value of B
(3)
n (j, k).

Lemma 4.5.1. For all n ∈ N, 1 ≤ j, k ≤ n, we have

B(3)
n (j, k) =



0 j < k and j + k 6= n+ 1 ,

1
n

j ≥ k and j + k 6= n+ 1 ,

k−1
n

j < k and j + k = n+ 1 ,

k
n

j ≥ k and j + k = n+ 1 .

Proof. Before dealing with a specific case of the lemma, we first examine what

permutations in Sn(B(3)) look like. Let σ ∈ Sn(B(3)) and suppose σ(n) = t. Since

σ avoids 213, all numbers smaller than t must be increasing. Since σ avoids 231,

all numbers larger than t must be decreasing. Since σ avoids 132, all numbers

larger than t must come before all numbers smaller than t. The only permutation
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σ which satisfies these criteria is

σ = (n, n− 1, . . . , t+ 2, t+ 1, 1, 2, . . . , t− 2, t− 1, t) .

Permutations of this form are exactly those in Sn(B(3)). These permutations

either have σ(j) = n + 1 − j for j ≤ n − σ(n), or σ(j) = j + σ(n) − n for

j > n− σ(n).

Now we prove the cases of the lemma. First, suppose j < k with j+k 6= n+1.

Let σ ∈ Sn(B(3)) with σ(j) = k. We know that σ(j) 6= n+1−j, since k 6= n+1−j.

Therefore, σ(j) = j + σ(n) − n = k. However, this gives σ(n) = n + k − j > n,

which is a contradiction, and we must have B
(3)
n (j, k) = 0.

Second, suppose j > k with j + k 6= n + 1. Again, since j + k 6= n + 1, we

must have σ(j) = j+σ(n)−n = k. This gives σ(n) = n+ k− j ≤ n. For a given

j and k, there is only one such permutation, as discussed above. Therefore,

B(3)
n (j, k) =

1

n
.

Third, suppose j < k with j + k = n + 1. Let σ ∈ Sn(B(3)) with σ(j) = k.

Since σ(j) = n+1−j, the permutation σ could have j ≤ n−σ(n), or σ(n) ≤ n−j.

There are n − j = k − 1 possibilities for σ(n), and each of these gives a unique

permutation. As in the first case, we cannot have σ(j) = j + σ(n)−n, since that

would imply j ≥ k. Therefore, we have

B(3)
n (j, k) =

k − 1

n
.

Finally, suppose j ≥ k with j + k = n + 1. Let σ ∈ Sn(B(3)) with σ(j) = k.

As in the previous case, there are k−1 possibilities for σ(n) (each of the elements

of [k − 1]) which give σ(j) = k. Here, we also have another possibility: if σ(n) =

n+ k − j = 2k + 1, then we have one more possibility for σ. Therefore, we have

B(3)
n (j, k) =

k

n
,
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σ(j) = k

j

Figure 4.3: Random σ ∈ Sn(B(3))

completing the final case and the proof.

To help illustrate the limit shape of Sn(B(3)), we include a random permuta-

tion in Figure 4.3.

With the help of Lemma 4.5.1, we are ready to prove the main theorem on

Sn(B(3)).

4.5.2 Proof of Theorems 4.2.3 and 4.2.6

The proof follows from several lemmas corresponding to each case of the theorem.

Lemma 4.5.2. Let a, b ∈ [0, 1], with a+ b 6= 1 and a < b. Then T (3)(a, b, c, d) =

∞.

Proof. By Lemma 4.5.1, we have B
(3)
n (an + c, bn + d) = 0 for n large enough.

Since any r > 0 will still yield nrB
(3)
n (an, bn) = 0, we have T (3)(a, b) =∞.

Lemma 4.5.3. Let a, b ∈ [0, 1] with a+b 6= 1. For a > b, we have T (3)(a, b, c, d) =

1 and M (3)(a, b, c, d) = 1. On the other hand, for a = b, we have

T (3)(a, b, c, d) =


∞ for c < d ,

1 for c ≥ d ,

and M (3)(a, a, c, d) = 1 for c ≥ d.
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Proof. Suppose a+ b 6= 1. Again, Lemma 4.5.1 implies

B(3)
n (an+ c, bn+ d) =

1

n
,

for a > b, or for a = b with c ≥ d. This yields T (3)(a, b, c, d) = 1 and

M (3)(a, b, c, d) = 1, as desired.

For a = b and c < d, we instead have B
(3)
n (an + c, bn + d) = 0. This gives

T (3)(a, b, c, d) =∞, completing the proof.

Lemma 4.5.4. Let a ∈ [0, 1], c, d ∈ R with c+ d = 1. Then

T (3)(a, 1− a, c, d) =


0 for a < 1 ,

1 for a = 1 ,

and

M (3)(a, 1− a, c, d) =


1− a for a < 1

d− 1 for a = 1 .

As in proofs of the previous two lemmas, we consider B
(3)
n (an, (1− a)n).

First, suppose a = 1. By Lemma 4.5.1, we have

B(3)
n (an+ c, (1− a)n+ d) = B(3)

n (n+ c, d)

=
d− 1

n
.

This gives T (3)(a, 1− a, c, d) = 1 and M (3)(a, 1− a, c, d) = d− 1.

On the other hand, for a < 1, we have

B(3)
n (an+ c, (1− a)n+ d) =

(1− a)n+ d− 1

n

∼ 1− a ,

as n→∞. This clearly gives T (3)(a, 1−a, c, d) = 0 and M (3)(a, 1−a, c, d) = 1−a,

as desired.
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Lemma 4.5.5. Let a ∈ [0, 1], c, d ∈ R with c+ d 6= 1. Then we have

T (3)(a, 1− a, c, d) =



∞ for a < 1
2
,

∞ for a = 1
2
, c < d ,

1 for a > 1
2

1 for a = 1
2
, c ≥ d ,

and

M (3)(a, 1− a, c, d) = 1 ,

for a > 1
2

and for a = 1
2
, c ≥ d.

Proof. By Lemma 4.5.1, for a < 1
2
, we have B

(3)
n (an+ c, (1− a)n+ d) = 0, since

j < k for n large enough.

Similarly, for a = 1
2

with c < d, we get

B(3)
n

(
1

2
n+ c,

1

2
n+ d

)
= 0 ,

for the same reason.

For a > 1
2

and for a = 1
2
, c ≥ d, Lemma 4.5.1 gives us

B(3))
n (an+ c, (1− a)n+ d) =

1

n

implying T (3)(a, 1 − a, c, d) = 1 and M (3)(a, 1 − a, c, d) = 1, as desired. This

completes the proof of Lemma 4.5.5 and of Theorems 4.2.3 and 4.2.6.

4.6 Analysis of B(4)-avoiding permutations

4.6.1 Explicit formulas for B(4)-avoiding permutations

In this section, we consider the limit shape of permutations σ ∈ Sn(B(4)), where

B(4) = {123,231,312} .
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After considering what these permutations must look like, the limit shape is

as it turns out very easy to describe. We first prove a lemma which gives the

explicit number of such permutations σ with σ(j) = k.

Lemma 4.6.1. Let n ∈ N. For all 1 ≤ j, k ≤ n, we have

B(4)
n (j, k) =

1

n
.

This lemma implies that the limit shape for B
(4)
n is completely flat, or uniform.

This matches the limit shape of all permutations σ ∈ Sn, since for all j, σ(j) = k

with probability p = 1
n

for all k. In some sense, this limit shape is therefore not

as interesting, but we describe it here for thoroughness.

Proof. Let σ ∈ B(4)
n (j, k). Suppose σ(j) = n.

Since σ avoids 123, we must have σ(r) > σ(s) for all r < s < j. Also, since σ

avoids 312, we must have σ(t) > σ(u) for all j < t < u. Since σ avoids 231, we

must have σ(a) < σ(b), for a < j < b.

These three conditions combined tell us that σ must start with a decreasing

subsequence, followed by another decreasing subsequence starting with σ(j) = n.

Also, the first j− 1 positions of σ must be filled by numbers i with 1 ≤ i ≤ j− 1,

since otherwise σ would contain a 231. Therefore, σ must equal

σ = (j − 1, j − 2, j − 3, . . . , 3, 2, 1, n, n− 1, n− 2, . . . , j + 2, j + 1, j) ,

for some j.

Since there are n possible choices for j, we have verified that

|Sn(B(4))| = n .

Also, observe that for each σ of this form, σ(j) + j is constant modulo n for

each j. This allows us to calculate B
(4)
n (j, k). Let σ ∈ Sn(B(4)) with σ(j) = k.
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σ(j) = k

j

Figure 4.4: Random σ ∈ S19(B
(4))

Therefore, σ(i) ≡ j + k mod n, and there is only one choice for each i, so one

possible permutation σ. The permutation σ must be

σ = (j + k − 1, j + k − 2, . . . , 2, 1, n, n− 1, . . . , j + k + 2, j + k + 1, j + k) ,

where each of these numbers are written modulo n. Since there is only one

possible permutation σ for each j and k, we have

B(4)
n (j, k) =

1

n
,

for all n, j, k, as desired.

A random permutation σ ∈ Sn(B(4)) is exhibited in Figure 4.4.

4.6.2 Proof of Theorem 4.2.7

From Lemma 4.6.1, we get the proof of Theorem 4.2.7 almost immediately.

Proof. Let a, b ∈ [0, 1], c, d ∈ R. By Lemma 4.6.1, we have

B(4)
n (an+ c, bn+ d) =

1

n
.

Therefore, T (4)(a, b, c, d) = M (4)(a, b, c, d) = 1, as desired.
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CHAPTER 5

Grassmannian permutations

5.1 Introduction

In this chapter, we analyze Grassmannian permutations; permutations with at

most one descent. Grassmannian permutations were initially defined in the 1980’s

by Schützenberger, in the context of Schubert polynomials. Since, they have

found to be in bijection with certain classes of Dyck paths, and other combinato-

rial objects as well. We give a characterization of such permutations in terms of

pattern-avoidance, and by analyzing the limit shape, also conclude results about

the limit shape of permutations σ ∈ Sn(123,3412). In previous chapters we

considered permutations which avoid a subset of patterns of length three, while

here we have longer patterns to consider.

Other than that distinction, the analysis we undertake is very similar - the

enumeration of this permutation class is known, so instead we consider these

permutations as n by n {0, 1}matrices. We let n→∞, and calculate the limit of

the probability of an entry in our matrix in row i and column j being nonzero.

By letting i and j grow with n so that i ∼ an+ cnα and j ∼ bn+ dnβ, for some

constants a, b ∈ [0, 1], c, d ∈ R, α, β ∈ [0, 1), we focus on entries in our permutation

matrices which move towards specific coordinates in the unit square. We denote

this limit probability as Gn(an+ cnα, bn+ dnα). As different values of a, b, c, d, α

and β vary, we get probabilities between εn and constant values, showing that

as n→∞, permutation matrices in Gn have a very high probability of having a

135



specific shape.

In 1985, Schützenberger defined the Grassmannian permutations as those

which have at most one descent. In other words, σ ∈ Sn is Grassmannian if

there exists some index i ≤ n such that

σ(1) < σ(2) < . . . < σ(i) > σ(i+ 1) < σ(i+ 2) < . . . < σ(n) .

Let Gn denote the set of Grassmannian permutations of length n, and let G−1
n

denote the set of inverses of Grassmannian permutations of length n. Billey,

Jockusch, and Stanley showed in 1993 [BJS] that

|Sn(321,2143)| = 2n+1 −
(
n+ 1

3

)
− 2n− 1.

Vella gave an argument for this formula using Dyck paths in 2003 [Vel], by arguing

that Sn(321,2143) = Gn ∪G−1
n . An easy counting argument gives

|Gn| = 2n − n = |G−1
n | ,

and |Gn ∩G−1
n | =

(
n+1

3

)
+ 1 .

Many researchers have studied Grassmannian permutations in the last few

decades; even in the last year, new information on Grassmannians is being sub-

mitted [LM].

The resulting limit shape can be visualized with the help of the following

figures. In Figure 5.1, we see that for (a, b) = (0, 1) or (a, b) = (1, 0), we have

Gn(an, bn) = Θ(1). For (a, b) on one of the two dashed lines which cross through

the square, we get

Gn(an, bn) = Θ(n−
1
2 ) ,

as long as α ≤ 1
2

and β ≤ 1
2
. We in fact go beyond this level of analysis, and

include the constant on the leading term n−
1
2 .

If we are not within c
√
n of one of the two dashed lines, then we instead find

that Gn(an, bn) ∼ εn
α
, for some ε ∈ (0, 1), and some α ∈ (0, 1).
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k = bn

j = an

a = 0

a = 1

b = 1b = 0

Figure 5.1: Regions within limit shape of σ ∈ Gn

In Figure 5.2, we can visualize the probability distribution as a surface.

5.2 Main Results

5.2.1 Shape of Grassmannian permutations

Let 0 ≤ a, b ≤ 1, c, d ∈ R, α, β ∈ [0, 1) be fixed constants. Let Gn(j, k) be the

proportion of permutations σ ∈ Gn with σ(j) = k. Define

U(a, b, c, d, α, β) = sup
{
r ∈ R+

∣∣∣ lim
n→∞

nrGn(an+ cnα, bn+ dnβ) <∞
}
.

With this definition, we have the following theorem.

Theorem 5.2.1. Let a, b ∈ [0, 1], c, d ∈ R, β, α ∈ [0, 1) be constants, and let
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Figure 5.2: Limit shape of G250(j, k)

n ∈ N. Let U(a, b, c, d, α, β) be defined as above. Then

U(a, b, c, d, α, β) =



1
2

2a+ b ∈ {1, 2}, a /∈ {0, 1}, α ≤ 1
2
, β ≤ 1

2
,

β
2

a = 0, b = 1, α = β > 0, 2c = −d ,

β
2

a = 1, b = 0, α = β > 0, 2c = −d ,

0 a = 0, b = 1, α = β = 0, d < 0, c+ d ≤ 1 ,

0 a = 1, b = 0, α = β = 0, c < 0, c+ d ≥ 1 ,

∞ otherwise.

Here U(a, b, c, d, α, β) = ∞ means that Gn(an + cnα, bn + dnβ) = o(n−r), for

all r > 0. The following result proves the exponential decay of these probabilities.

Theorem 5.2.2. Let a, b ∈ [0, 1], c, d ∈ R, α, β ∈ [0, 1). Then for n large enough,

138



we have

Gn(an+ cnα, bn+ dnβ) <



εn 2a+ b /∈ {1, 2} ,

εn
2α−1

2a+ b ∈ {1, 2}, α ≥ β, α > 1
2
,

εn
2β−1

2a+ b ∈ {1, 2}, α < β, 1
2
< β ,

εn
β

a+ b = 1, a ∈ {0, 1}, 0 < α = β, 2c 6= −d ,

εn
β

a+ b = 1, a ∈ {0, 1}, α < β ,

εn
α

a+ b = 1, a ∈ {0, 1}, β < α ,

for some ε ∈ (0, 1).

These theorems analyze the growth of Gn(an+cnα, bn+dnβ). We also obtain

the following result detailing the explicit constants on the leading term of the

asymptotic growth of Gn(an + cnα, bn + dnβ), for those values of a, b, c, d, α, β

where U(a, b, c, d, α, β) <∞. Let

V (a, b, c, d, α, β) = lim
n→∞

nU(a,b,c,d,α,β)Gn(an+ cnα, bn+ dnβ) .

Theorem 5.2.3. Let a, b ∈ [0, 1], c, d ∈ R, α, β ∈ [0, 1). Then we have

V (a, b, c, d, α, β) =



1
2
√
aπ

a > 0, 2a+ b = 1, α, β < 1
2
,

1
2
√
aπ

exp
[
− c2

a

]
a > 0, 2a+ b = 1, 1

2
= α > β ,

1
2
√
aπ

exp
[
− d2

4a

]
a > 0, 2a+ b = 1, 1

2
= β > α ,

1
2
√
aπ

exp
[
− (d+2c)2

4a

]
a > 0, 2a+ b = 1, 1

2
= β = α ,

1

2
√

(1−a)π
a < 1, 2a+ b = 2, α, β < 1

2
,

1

2
√

(1−a)π
exp

[
− c2

(1−a)

]
a < 1, 2a+ b = 2, 1

2
= α > β ,

1

2
√

(1−a)π
exp

[
− d2

4(1−a)

]
a < 1, 2a+ b = 2, 1

2
= β > α ,

1

2
√

(1−a)π
exp

[
− (d+2c)2

4(1−a)

]
a < 1, 2a+ b = 2, 1

2
= β = α ,
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and

V (a, b, c, d, α, β) =



1
2
√
cπ

a = 0, b = 1, α = β > 0, 2c = −d ,

1
2
√
−cπ a = 1, b = 0, α = β > 0,−2c = d ,

2d−1
(−d
c−1

)
a = 0, b = 1, α = β = 0, d+ c ≤ 0, c ≥ 1 ,

2−d
(
d−1
−c

)
a = 1, b = 0, α = β = 0, d+ c ≥ 2, c ≤ 0 ,

2c−1 a = 1, b = 0, α = β = 0, d+ c = 1, c ≤ 0 ,

2d−1 a = 0, b = 1, α = β = 0, d+ c = 1, c ≥ 1 .

This theorem shows that even within the regions where the asymptotic growth

of Gn(an+ cnα, bn+ dnβ) is on the same order of magnitude, the constant varies

with the choices of parameters a, b, c, d, α, and β.

5.3 Analysis of Grassmannian permutations

5.3.1 Combinatorics of σ ∈ Gn

In this section, we prove several lemmas regarding Grassmannian permutations.

Lemma 5.3.1. For every n ∈ N, we have

Gn = Sn(123,3412,2413) .

This gives a new way of characterizing Grassmannian permutations, based on

pattern-avoidance. The proof is not complicated, though we include it here for

completeness.

Proof. We prove Lemma 5.3.1 by showing set containment in each direction.

First, let σ ∈ Gn. Then σ has at most one ascent. If σ has no ascents, then

σ = (n, n − 1, . . . , 2, 1) ∈ Sn(123,3412,2413). If σ has a single ascent, then
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there exists 1 ≤ i < n so that σ(1) > σ(2) > . . . > σ(i) < σ(i + 1) > σ(i + 2) >

. . . > σ(n).

Suppose σ contains 123. Then there are indices i1 < i2 < i3 with σ(i1) <

σ(i2) < σ(i3). If i2 ≤ i, then we have a contradiction, since σ(i1) > σ(i2),

Similarly, if i2 > i, then we have a contradiction, since σ(i2) > σ(i3). Therefore,

σ avoids 123.

Now, suppose that σ contains 3412. Then there are indices i1 < i2 < i3 < i4

with σ(i3) < σ(i4) < σ(i1) < σ(i2). First, observe that if i2 ≤ i, then we have

a contradiction, since σ(i1) > σ(i2). Similarly, since if i3 ≥ i + 1, then we again

have a contradiction, since σ(i3) > σ(i4). Therefore, we have i3 ≤ i < i2, which

is also a contradiction. Therefore, σ avoids 3412.

Finally, suppose that σ contains 2413. Then there are indices i1 < i2 < i3 < i4

with σ(i3) < σ(i1) < σ(i4) < σ(i2). If i2 ≤ i, then we have a contradiction, since

σ(i1) > σ(i2). If i3 ≥ i+1, then we again have a contradiction, since σ(i3) > σ(i4).

Therefore, we have i3 ≤ i < i2, which is a contradiction. We see that σ must

avoid 2413. Therefore σ ∈ Sn(123,3412,2413), so

Gn ⊂ Sn(123,3412,2413) .

Second, let σ ∈ Sn(123,3412,2413), and suppose for the sake of contradic-

tion that σ has two ascents, so there exist 1 ≤ j < k < n such that σ(j) < σ(j+1)

and σ(k) < σ(k+1). First, suppose σ(k+1) > σ(j+1). Then σ contains 123, with

σ(j), σ(j+ 1), σ(k+ 1). Second, suppose σ(k+ 1) < σ(j). Then σ contains 3412,

with σ(j), σ(j + 1), σ(k), σ(k + 1). Finally, suppose σ(j) < σ(k + 1) < σ(j + 1).

If σ(j) < σ(k), then σ contains 123, with σ(j), σ(k), σ(k + 1). If σ(j) > σ(k),

then σ contains 2413, with σ(j), σ(j + 1), σ(k), σ(k + 1). Therefore, σ contains

either a 123, a 3412, or a 2413, which is a contradiction. Therefore, σ has at

most one ascent, so σ ∈ Gn,

Sn(123,3412,2413) ⊂ Gn , and Gn = Sn(123,3412,2413) ,
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as desired.

The following lemma regarding symmetry of permutations inGn will be helpful

to simplify our arguments in subsequent sections.

Lemma 5.3.2. Let n ∈ N, and 1 ≤ j, k ≤ n. Then

Gn(j, k) = Gn(n+ 1− j, n+ 1− k) .

Proof. Let ϕ : Gn → Gn be defined so that ϕ(σ) = σRC . Since 123RC =

123,3412RC = 3412, and 2413RC = 2413, we see that ϕ does indeed map

permutations in Gn to other permutations in Gn. Also, ϕ is an involution, since

(σRC)RC = σ. Therefore, permutations σ ∈ Gn with σ(j) = k are equinumerous

with permutations τ ∈ Gn with τ(n+ 1− j) = n+ 1− k, since each permutation

τ = ϕ(σ) for some σ. This completes the proof.

We require one more lemma, in which we exhibit the explicit number of such

permutations σ with σ(j) = k.

Lemma 5.3.3. Let j, k, n ∈ N, and 1 ≤ j, k ≤ n. Let Gn(j, k) be the proportion

of permutations σ ∈ Gn such that σ(j) = k. Then

Gn(j, k) =



2k−1(n−kj−1)
2n−n if j + k ≤ n ,

2n−k(k−1
n−j)

2n−n if j + k > n+ 1 ,

2j−1+2k−1−n
2n−n otherwise.

We prove the lemma by considering the structure of a typical permutation

σ ∈ Gn.

Proof. Let σ ∈ Gn with σ(j) = k, with j + k ≤ n, so we are in the first case of

Lemma 5.3.3. Since σ ∈ Gn, there must be a unique index i which marks the

position of an ascent. Suppose i < j. Then σ(r) > σ(r + 1) for all r ≥ j, so

σ(n) ≤ σ(j)− (n− j) = k−n+ j ≤ 0, which is a contradiction. Therefore, i ≥ j,
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and we must have σ(1) > σ(2) > . . . > σ(j). There are
(
n−k
j−1

)
ways to choose the

j− 1 elements in these first positions, since they must be larger than k and must

be in decreasing order.

Now, since j + k ≤ n, j − 1 is strictly less than n − k. Therefore, there is

some element larger than k which comes after k in σ. We now argue that there

are 2k−1 ways to complete σ. Once we choose the subset of [k − 1] which comes

before position i, we have completely determined σ, since the remaining elements

after the single ascent at position i must be in increasing order. Since there are

2k−1 subsets of [k− 1], there are 2k−1 ways to complete σ, and 2k−1
(
n−k
j−1

)
possible

permutations σ ∈ Gn with σ(j) = k.

By Lemma 5.3.2, we get the second case of Lemma 5.3.3, due to the symmetry

of these permutations. Given σ ∈ Gn, the permutation σRC is also in Gn, and

the formulas in this case hold as well.

For j + k = n + 1, there are a couple cases. First, suppose i < j. Then

we must have σ(j) = k > σ(j + 1) > . . . > σ(n), so σ(n) ≤ k − (n − j) = 1.

Therefore σ(n) = 1, and each of these inequalities must be a difference of only 1,

so every number after k is consecutive. There are 2j−1 − (j − 1) ways to choose

the first j − 1 elements of σ, since they can have at most one ascent. The other

possibility is that i ≥ j. Then the first j − 1 elements must all be bigger than k,

and there are only n−k = j−1 elements bigger than k, so the permutation must

start (n, n − 1, . . . , k + 1, k, . . .). There are 2k−1 − (k − 1) ways to complete the

permutation in this case, since there can be at most one ascent in the final k− 1

elements. To make sure we are not counting any permutation twice, we subtract

1, since the all-decreasing permutation was counted in each case. Therefore, there

are 2j−1 + 2k−1− (j−1)− (k−1)−1 = 2j−1 + 2k−1− (j+k−1) = 2j−1 + 2k−1−n

such permutations, as desired.
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σ(j) = k

j

Figure 5.3: Random σ ∈ Gn

5.3.2 Random σ ∈ Gn

In Figure 5.3, we display a random σ ∈ G19, before proving the main theorems.

5.4 Proof of Theorems 5.2.1, 5.2.2, and 5.2.3

The proof of the three theorems relies on several lemmas. We begin with a

technical lemma.

Lemma 5.4.1. Let f : [0, 1]2 → R be defined so that

f(x, y) =
(x+ y)(x+y)

(2x)x(2y)y
.

Then f(x, y) achieves a maximum of 1 at x = y, for x ∈ [0, 1].

Proof. First we consider the boundaries of the unit square.

For x = 0, we have

f(0, y) =
yy

(2y)y
=

(
1

2

)y
,

which is maximized at y = 0, with f(0, 0) = 1.
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For x = 1, we have

f(1, y) =
(1 + y)(1+y)

2(2y)y
=

1 + y

2

(
1 + y

2y

)y
.

Differentiating with respect to y gives

f ′(1, y) =

(
1 + y

2y

)y (
1

2
+

1 + y

2

(
ln

1 + y

2y
+

y2

1 + y

))
,

which is always positive since each term is positive.

Therefore, f(1, y) is maximized at y = 1, with

f(1, 1) =
22

2(2)
= 1.

The analysis for y = 0 and y = 1 yields the same results, since the function is

symmetrical in x and y.

Finally, we consider f(x, y) with x, y ∈ (0, 1). Here we take partial derivatives

with respect to x and y. We have

∂f

∂x
=

(2x)x(2y)y(x+ y)x+y (ln (x+ y)− ln 2x)

(2x)2x(2y)2y
,

which is 0 when x = y.

Due to the symmetry of f(x, y), the other partial derivative has the same

behavior. Since

f(x, x) =
(2x)2x

(2x)x(2x)x
= 1,

we have completed the proof.

5.4.1 Proof of Theorems 5.2.1, 5.2.2, and 5.2.3

We prove Theorem 5.2.1 case by case: first, suppose a + b ≤ 1, with α ≤ 1
2

and

β ≤ 1
2
. First, suppose b 6= 1, so a+b < 1. This is a position which should be filled
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by an element in the first decreasing sequence. By Lemma 5.3.3 and Stirling’s

formula, we see that

Gn(an+ cnα, bn+ dnβ) =

(
1

2n − n

)
2bn+dnβ−1

(
n− (bn+ dnβ)

an+ cnα − 1

)
,

∼ En(a, b, c, d, α, β)×Kn(a, b, c, d, α, β) ,

where

En(a, b, c, d, α, β) =
(an+ cnα)

((1− b− a)n− dnβ − cnα)

×

√[
2π ((1− b)n− dnβ)

4π2(an+ cnα)((1− b− a)n− dnβ − cnα)

]
and

Kn(a, b, c, d, α, β) =
2bn+dnβ−1

(2n − n) (an+ cnα)an+cnα

×
(
(1− b)n− dnβ

)(1−b)n−dnβ
((1− b− a)n− dnβ − cnα)(1−b−a)n−dnβ−cnα

Simplifying Kn(a, b, c, d, α, β), we see that

Kn(a, b, c, d, α, β) =
2bn+dnβ−1(1− b)(1−b)n−dnβ

(2n − n)aan+cnα(1− b− a)(1−b−a)n−dnβ−cnα

×

(
1(

1 + c
a
nα−1

)an+cnα

)

×

 (
1− d

1−bn
β−1
)(1−b)n−dnβ(

1− c
1−b−an

α−1 − d
1−b−an

β−1
)(1−b−a)n−cnα−dnβ


∼ f(a, 1− b− a)n

(
2dn

β−1−1(1− b− a)dn
β−1+cnα−1

(1− b)dnβ−1acnα−1

)

× exp

[
d2

4a
n2β−1 − c2

2a
n2α−1 − (cnα−1 + dnβ−1)2n

2a

]
∼ f(a, 1− b− a)n

(
2dn

β−1−1(1− b− a)dn
β−1+cnα−1

(1− b)dnβ−1acnα−1

)

× exp

[
−(2cnα + dnβ)2

4an

]
,
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using the Taylor expansion for ln(1 + x) and the notation from Lemma 5.4.1.

Applying Lemma 5.4.1, we see that if a 6= 1−b−a, we have f(a, 1−b−a) < 1.

Let

ε =
f(a, 1− b− a) + 1

2
.

Since none of the other terms in Gn(an+ cnα, bn+ dnβ) are exponential in n, we

see that for n large enough, we have Gn(an + cnα, bn + dnβ) < εn. This fulfills

the first case of Theorem 5.2.2.

For a = 1− b− a, we instead have

Kn(a, b, c, d, α, β) ∼ f(a, a)n

(
2dn

β−1−1adn
β−1+cnα−1

(2a)dnβ−1acnα−1

)
× exp

[
−(2cnα + dnβ)2

4an

]
=

1

2
exp

[
−(2cnα + dnβ)2

4an

]
,

and

En(a, b, c, d, α, β) ∼ a

1− b− a

√
1− b

2a(1− b− a)πn

= n−
1
2

√
1

aπ
.

Therefore,

Gn(an+ cnα, bn+ dnβ) ∼ n−
1
2

√
1

4aπ
exp

[
−(2cnα + dnβ)2

4an

]
.

For α, β < 1
2
, as n→∞, we have

Gn(an+ cnα, bn+ dnβ) ∼ n−
1
2

√
1

4aπ
,

proving the first case of Theorem 5.2.3. The next three cases with α = 1
2

or β = 1
2

follow as well.

Now suppose α > 1
2
, and α > β. We see that

Gn(an+ cnα, bn+ dnβ) ∼ n−
1
2

√
1

4aπ
exp

[
−(2cnα + dnβ)2

4an

]
∼ n−

1
2

√
1

4aπ
exp−4c2n2α−1

4a
.

147



For ε = e−
c2
a +1
2

, we have

Gn(an+ cnα, bn+ dnβ) < εn ,

for n large enough, as desired in the second case of Theorem 5.2.2. We omit

proofs of the cases with α = β > 1
2

and β > α, 1
2
, since they are very similar to

this one, .

Again, the cases with 2a + b = 2 rather than 2a + b = 1 follow from the fact

that Gn(j, k) = Gn(n+ 1− k, n+ 1− j).

Now, suppose α = 1
2
> β. Then

Gn(an+ cnα, bn+ dnβ) ∼ n−
1
2

√
1

4aπ
exp

[
−2cnα + dnβ)2

4an

]
∼ n−

1
2

√
1

4aπ
exp−c

2

a
,

as n → ∞. This matches the second case of Theorem 5.2.3, and also the first

case of Theorem 5.2.1. The results for α = β = 1
2

and β = 1
2
> α are similar.

For cases with 2a + b = 2 and α, β ≤ 1
2
, we get the analogous results by the

symmetry discussed in Lemma 5.3.2.

Now, suppose a = 0, b = 1. We must have d < 0 and c > 0 for Gn(cnα, n+dnβ)

to be defined, and we also need cnα + dnβ ≤ 0 for all n for us to be in the first

case of Lemma 5.3.3. This implies we need α ≤ β. Calculating, we see that

Gn(cnα, n+ dnβ) ∼ 2n+dnβ−1cnα

(2n − n)(−dnβ − cnα)

(
(−dnβ)−dn

β

(cnα)cnα(−dnβ − cnα)dnβ−cnα

)

×

√
−2πdnβ

4π2cnα(−dnβ − cnα)
.

For α < β, we get

Gn(cnα, n+ dnβ) ∼ 2dn
β−1cnα

−dnβ

(
e

(
−d
c
nβ−α − 1

))cnα
.

With ε = 1+2−d

2−d+1 , we see that Gn(cnα, n+ dnβ) < εn for n large enough, as desired

in the final case of Theorem 5.2.2.

148



Now, suppose α = β. Then we have

Gn(cnα, n+ dnβ) ∼ 2dn
β−1cnβ

(−d− c)nβ

(
(−d)−d

cc(−d− c)−d−c

)nβ√ −d
2πc(−d− c)nβ

∼ f(c,−d− c)nβ c

−d− c
n−

β
2

√
−d

8πc(−d− c)
,

where f(c,−d−c) is defined as in Lemma 5.4.1. For c 6= −d−c, by Lemma 5.4.1,

letting

ε =
f(c,−d− c) + 1

2
,

we see that Gn(cnα, n+ dnβ) < εn
β
, for n large enough, fulfilling the fifth case of

Theorem 5.2.2.

On the other hand, for c = −d− c, or 2c = −d, we observe that

Gn(cnα, n+ dnβ) ∼ n−
β
2

√
1

4cπ
,

matching the second case of Theorem 5.2.1.

Finally, consider a = 1 and b = 0. We see that

Gn(an+ cnα, bn+ dnβ) = Gn(n+ cnα, dnβ) ,

and it is only well-defined if c ≤ 0 ≤ d, α ≥ β, and cnα + dnβ ≤ 0.

Analyzing Gn, we have

Gn(n+ cnα, dnβ) =

(
1

2n − n

)
2dn

β−1

(
n− dnβ

n+ cnα − 1

)
∼ 2dn

β−n−1 n+ cnα

−cnα − dnβ − 1

×

(
(n− dnβ)n−dn

β

(n+ cnα)n+cnα(−cnα − dnβ)−cnα−dnβ

)

×

√
2π(n− dnβ)

4π2(n+ cnα)(−cnα − dnβ)
.

Now, supposing α > β, and simplifying by using the Taylor expansion for

ln (1 + x), we see that

Gn(n+ cnα, dnβ) ∼ 2dn
β−n−1n

1−α

−c

(
en1−α

−c

)−cnα−dnβ√
1

−2cπnα
.
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Since the exponent of n only appears on 2 in the denominator, if we let ε = 3
4
,

we see that Gn(n+ cnα, dnβ) < εn, for n large enough, as desired.

The case with α = β is very similar, again we get Gn(n + cnα, dnβ) < εn for

n large enough. This completes the proof of Theorems 5.2.1, 5.2.2, and 5.2.3.

5.5 Corollaries

Knowing the limit shape of permutations in Gn allows us to calculate limit shapes

for permutations in Sn(123,3412), as well. Let Rn(j, k) denote the number of

permutations σ ∈ Sn(123,3412) with σ(j) = k.

Define

Y (a, b, c, d, α, β) = sup
{
r ∈ R+

∣∣∣ lim
n→∞

nrRn(an+ cnα, bn+ dnβ) <∞
}
.

Similarly, let

Z(a, b, c, d, α, β) = lim
n→∞

nY (a,b,c,d,α,β)Rn(an+ cnα, bn+ dnβ) ,

for values of a, b, c, d, α, β with Y (a, b, c, d, α, β) <∞.

We have the following corollaries.

Corollary 5.5.1. Let 0 ≤ a, b ≤ 1, c, d ∈ R, α, β ∈ [0, 1). For a /∈ {0, 1}, we

have

Y (a, b, c, d, α, β) =


1
2

if a+ 2b ∈ {1, 2}, α, β ≤ 1
2
,

1
2

if 2a+ b ∈ {1, 2}, α, β ≤ 1
2
.

∞ otherwise.
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For a ∈ {0, 1}, we have

Y (a, b, c, d, α, β) =


β
2

if a+ b = 1, α = β > 0, 2c = −d or c = −2d ,

0 if a+ b = 1, α = β = 0 ,

∞ otherwise.

Corollary 5.5.2. Let 0 ≤ a, b ≤ 1, c, d ∈ R, α, β ∈ [0, 1) be constants. Then for

n large enough, we have

Hn(an+ cnα, bn+ dnβ) <



εn 2a+ b /∈ {1, 2}, and a+ 2b /∈ {1, 2}

εn
2α−1

2a+ b ∈ {1, 2}, α ≥ β, α > 1
2
,

εn
2α−1

a+ 2b ∈ {1, 2}, α ≥ β, α > 1
2

εn
2β−1

2a+ b ∈ {1, 2}, α < β, 1
2
< β ,

εn
2β−1

a+ 2b ∈ {1, 2}, α < β, 1
2
< β ,

and for a+ b = 1, a ∈ {0, 1}, we have

Hn(an+ cnα, bn+ dnβ) <


εn

β
0 < α = β, 2c /∈ {−d,−4d} ,

εn
β

α < β ,

εn
α

β < α ,

where ε = ε(a, b, c, d, α, β) is independent of n, and 0 < ε < 1.

Corollary 5.5.3. Let 0 ≤ a, b ≤ 1, c, d ∈ R, and α, β ∈ [0, 1) s.t.

Y (a, b, c, d, α, β) <∞ .

Then for a > 0, 2a+ b = 1, a+ 2b 6= 1, we have

Z(a, b, c, d, α, β) =



1
4
√
aπ

for α, β < 1
2
,

1
4
√
aπ

exp
[
− c2

a

]
for , 1

2
= α > β ,

1
4
√
aπ

exp
[
− d2

4a

]
for 1

2
= β > α ,

1
4
√
aπ

exp
[
− (d+2c)2

4a

]
for 1

2
= β = α ,
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and for b > 0, a+ 2b = 1, 2a+ b 6= 1, we have

Z(a, b, c, d, α, β) =



1
4
√
bπ

for α, β < 1
2
,

1
4
√
bπ

exp
[
− c2

b

]
for 1

2
= α > β ,

1
4
√
bπ

exp
[
−d2

4b

]
for 1

2
= β > α ,

1
4
√
bπ

exp
[
− (2d+c)2

4b

]
for 1

2
= β = α .

For 2a+ b = 2, a < 1, a+ 2b 6= 2, we have

Z(a, b, c, d, α, β) =



1

4
√

(1−a)π
for α, β < 1

2
,

1

4
√

(1−a)π
exp

[
− c2

(1−a)

]
for , 1

2
= α > β ,

1

4
√

(1−a)π
exp

[
− d2

4(1−a)

]
for 1

2
= β > α ,

1

4
√

(1−a)π
exp

[
− (d+2c)2

4(1−a)

]
for 1

2
= β = α ,

while for a+ 2b = 2, b < 1, 2a+ b 6= 2, we have

Z(a, b, c, d, α, β) =



1

4
√

(1−b)π
for α, β < 1

2
,

1

4
√

(1−b)π
exp

[
− c2

(1−b)

]
for 1

2
= α > β ,

1

4
√

(1−b)π
exp

[
− d2

4(1−b)

]
for 1

2
= β > α ,

1

4
√

(1−b)π
exp

[
− (2d+c)2

4(1−b)

]
for 1

2
= β = α .

For a = b = 1
3
, we have

Z(a, b, c, d, α, β) =



1
2
√
aπ

α, β < 1
2
,

1
2
√
aπ

exp
[
− c2

a

]
1
2

= α > β ,

1
2
√
aπ

exp
[
− d2

4a

]
1
2

= β > α ,

1
2
√
aπ

exp
[
− (d+2c)2

4a

]
1
2

= β = α .
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For a = b = 2
3
, we have

Z(a, b, c, d, α, β) =



1

2
√

(1−a)π
α, β < 1

2
,

1

2
√

(1−a)π
exp

[
− c2

(1−a)

]
1
2

= α > β ,

1

2
√

(1−a)π
exp

[
− d2

4(1−a)

]
1
2

= β > α ,

1

2
√

(1−a)π
exp

[
− (d+2c)2

4(1−a)

]
1
2

= β = α .

Finally, for a+ b = 1, we have

Z(a, b, c, d, α, β) =



1
4
√
cπ

a = 0, α = β > 0, 2c = −d ,

1
4
√
−dπ a = 0, α = β > 0,−c = 2d ,

1
4
√
−cπ a = 1, α = β > 0,−2c = d ,

1
4
√
dπ

a = 1, α = β > 0, c = −2d ,

2d−2
(−d
c−1

)
a = 0, α = β = 0, d+ c ≤ 0, c ≥ 1 ,

2−c−1
(
c−1
−d

)
a = 0, α = β = 0, d+ c ≥ 2, d ≤ 0 ,

2c−2
( −c
d−1

)
a = 1, α = β = 0, d+ c ≤ 0, d ≥ 1 ,

2−d−1
(
d−1
−c

)
a = 1, α = β = 0, d+ c ≥ 2, c ≤ 0 ,

2c−1 a = 1, α = β = 0, d+ c = 1, c ≤ 0 ,

2d−1 a = 0, α = β = 0, d+ c = 1, c ≥ 1 .

5.5.1 Proof of Corollaries 5.5.1, 5.5.2, and 5.5.3

The proof here relies crucially on the fact that

Sn(123,3412) = Gn ∪G−1
n .

Because of this, we can calculate Rn(j, k), by

Rn(j, k) =
(2n − n)Gn(j, k) + (2n − n)Gn(k, j)−Dn(j, k)

2n+1 − 2n−
(
n+1

3

)
− 1

,
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where Dn(j, k) is the number of permutations σ ∈ Gn ∩G−1
n such that σ(j) = k.

Since Dn(j, k) ≤
(
n+1

3

)
for all n, j, k, we have

Rn(j, k) ∼ Gn(j, k)

2
+
Gn(k, j)

2
+ o(Gn(j, k)) ,

as n→∞. This is because Dn(j, k) = o(2n − n)Gn(k, j).

Therefore, when analyzing Rn(an + cnα, bn + dnβ), we can take the average

of Gn(an + cnα, bn + dnβ) with Gn(bn + dnβ, an + cnα). This has the effect of

adding the limit shape to its reflection about the main diagonal of the matrix.

Corollaries 5.5.1, 5.5.2, and 5.5.3 now follow from Theorems 5.2.1, 5.2.2, and 5.2.3.

This behavior is exhibited in Figure 5.4. The shape that appears comes from

superimposing the limit shape in Figure 5.2 with a version of it which was reflected

about the main diagonal of the square. We describe it as a ”longboat” here, to

distinguish it from the ”canoe” in Figure 8.5. By requiring permutations in

Sn(123) to also avoid permutations in Sn(3412), we find that the canoe becomes

wider. In fact, as n → ∞, the sides of the canoe no longer get narrower and

narrower, instead the relative dimensions of the longboat remain constant as

n→∞.

Figure 5.4: Limit shape of R250(j, k)
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5.6 Results on permutation statistics in Sn(123,3412)

5.6.1 Fixed points in Sn(123,3412)

As in Chapter 2.9.9, we calculate the expected number of fixed points in our

permutation classes.

Theorem 5.6.1. Let σ ∈ Gn, τ ∈ Sn(123,3412) be chosen uniformly at random.

Then

E[fpn(σ)]→ 2

3

and

E[fpn(τ)]→ 2

3
as n→∞ .

Theorem 5.6.2. Let σ ∈ GR
n , τ ∈ Sn(321,2143) be chosen uniformly at random.

Then

E[fpn(σ)],E[fpn(τ)]→ 2, as n→∞ .

For both these permutation classes, the expected number of fixed points is

finite. Perhaps counterintuitively, requiring a permutation in Sn(123) to addi-

tionally avoid 3412 increases the expected number of fixed points from 1
2

to 2
3
.

Similarly, requiring a permutation to avoid 2143 as well as 321 increases the

expected number of fixed points from 1 to 2.

5.6.2 Proof of Theorem 5.6.1

Let σ be chosen uniformly at random from Gn. Then

E[fpn(σ)] =
n∑
j=1

Gn(j, j) .

Letting j = an + cnα, we can apply Theorems 5.2.1, 5.2.2, and 5.2.3. By Theo-

rem 5.2.2, we see that

Gn(an+ cnα, an+ cnα) < εn ,
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unless a ∈ {1
3
, 2

3
}. In fact, even if a ∈ {1

3
, 2

3
}, we need α ≤ 1

2
, for Gn(an+cnα, an+

cnα) to contribute something bigger than εn
2α−1

, for some ε ∈ (0, 1).

By Theorems 5.2.1 and 5.2.2, we obtain

Gn(
n

3
+ c
√
n,
n

3
+ c
√
n) ∼ 1

2
√

1
3
πn

exp

[
−(3c)2

4
3

]
.

Summing from j = n
3
− c
√
n to j = n

3
+ c
√
n, and interpreting the sum as a

Riemann sum, we get

j=n
3
+c
√
n∑

j=n
3
−c
√
n

Gn(j, j) ∼ 1

2
√

1
3
πn

√
n

∫ c

−c
exp

[
−27x2

4

]
dx

∼ 1

2
√

1
3
π

2

3
√

3

∫ c

−c
e−x

2

dx .

We can choose c to be as large as we want, giving

n
2∑
j=1

Gn(j, j) ≥ 1

3
√
π

∫ ∞
−∞

e−x
2

dx

=
1

3
.

A similar argument shows that summing values of j near 2
3
n also yields 1

3
. Since

adding values of Gn(j, j) with |j − n
3
| > c

√
n does not contribute more than a

positive power of ε, we have

2

3
≤

n∑
j=1

Gn(j, j) ≤ 2

3
+ nεn

2α−1

,

as n→∞, where α can be any exponent slightly larger than 1
2
. Since nεn

2α−1 → 0

as n→∞, we get

E[fpn(σ)]→ 2

3

as n→∞, as desired.

Observe that an argument which is almost equivalent works for E[fpn(τ)] as

well, since the values of Hn(j, j) which are greater than a power of ε have exactly
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the same limiting behavior as n→∞. Again, for j near n
3

or 2n
3

, each term is on

the order of n−
1
2 . When the number of terms we sum is on the order of n

1
2 , we

end up getting a constant, which happens to be 2
3
, in this situation.

To make this more precise, we have

E[fpn(τ)] =
n∑
j=1

Hn(j, j)

=
∑

|j−n
3
|≤c
√
n

Hn(j, j) +
∑

|j− 2n
3
|≤c
√
n

Hn(j, j) +
∑

all other j

Hn(j, j) ,

∼ 1

3
√
π

∫ c

−c
e−x

2

dx+
1

3
√
π

∫ c

−c
e−x

2

dx+ o(1) .

Letting c→∞ gives us

E[fpn(τ)]→ 2

3
as n→∞ ,

as desired.

5.6.3 Proof of Theorem 5.6.2

Let ρ be chosen uniformly at random from Gn. Let σ = ρR. Observe that σ is

now uniform in GR
n . Therefore, E[fpn(σ)] = E[afpn(ρ)].

Applying this logic, we get

E[afpn(ρ)] =
n∑
j=1

Gn(j, n+ 1− j) .

By Lemma 5.3.3, for all 1 ≤ j ≤ n, we have

Gn(j, n+ 1− j) =
2j−1 + 2n−j+1−1 − n

2n − n
.

Summing over j, we get
n∑
j=1

Gn(j, n+ 1− j) =
1

2n − n

n∑
j=1

2j + 2n−j − n

=
1

2n − n
(
2n − 1 + 2n − 1− n2

)
∼ 2 ,
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as n→∞. Therefore, we get

E[fpn(σ)] = E[afpn(ρ)] ∼ 2n+2

2n+1
= 2 ,

as n→∞, as desired.

Similarly, since

Hn(j, n+ 1− j) ∼ Gn(j, n+ 1− j) +Gn(n+ 1− j, j)
2

,

when we sum these values from j = 1 to j = n, we get

n∑
j=1

Hn(j, n+ 1− j) ∼
n∑
j=1

Gn(j, n+ 1− j) +Gn(n+ 1− j, j)
2

∼ E[fpn(σ)] + E[fpn(σ)]

2
= E[fpn(σ)] = 2 ,

by the first part of our argument. This completes the proof.
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CHAPTER 6

Avoiding 132 and 4231 simultaneously

6.1 Introduction

We analyze permutations which simultaneously avoid the patterns 132 and 4231.

These permutations were enumerated by Julian West in 1995 [West]. West showed

that

Sn(132,4231) = 1 + (n− 1)2n−2 .

In this chapter, we calculate the number of permutations σ ∈ Sn(132,4231)

with σ(j) = k, for all 1 ≤ j, k ≤ n. We then use this information to calculate

what the ”expected” permutation in Sn(132,4231) looks like, when viewed as a

permutation matrix. As in our previous chapters, we obtain a limit shape for such

permutation matrices. We do this by taking permutations uniformly at random

from Sn(132,4231), letting n → ∞ while rescaling the matrices so they always

remain the same size, and considering the resulting probability distribution.

In Figure 6.1, we depict the regions of the limiting distribution: for j = an

and k = bn, we let a, b vary between 0 and 1. The regions without shading have

exponentially small probabilities of having any nonzero entries in them. Darker

shading implies a region is more likely to have a nonzero entry in a given point.

The shaded regions in the figure correspond to probabilities asymptotically equal

to 1
n
, 2
n
, and 3

n
, as n → ∞. Entries with j = k with j = n− c for some constant

c have probabilities tending to 1
2c+1 as n→∞.

After analyzing the limiting distribution in some detail, we prove a result on
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k = bn

j = an

a = 0

a = 1

b = 1b = 0

Figure 6.1: Regions within limit shape of σ ∈ Sn(132,4231)

the expected number of fixed points and anti-fixed points of a permutation chosen

uniformly at random from Sn(132,4231).

6.2 Main Results

6.2.1 Shape of {132,4231}-avoiding permutations

Let a, b ∈ [0, 1], c, d ∈ R, α, β ∈ [0, 1) be fixed constants. Let Hn(j, k) be the

proportion of permutations σ ∈ Sn(132, 4231) with σ(j) = k. Let Jn(j, k) be the

number of such permutations σ.

Define

W (a, b, c, d, α, β) = sup
{
d ∈ R+

∣∣∣ lim
n→∞

ndHn(an+ cnα, bn+ dnβ) <∞
}
.

Theorem 6.2.1. Let a, b ∈ [0, 1], c, d ∈ R, α, β ∈ [0, 1). Then we have

W (a, b, c, d, α, β) =


0 for a = 1, b = 1, c = d, α = β = 0 ,

∞ for a+ 2b < 1 and 2a+ b < 1 ,

∞ for 2a− b < 1, a+ b > 1, and 2b− a < 1 .
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Also, for 2b− a = 1, we have

W (a, b, c, d, α, β) =


∞ for 2a− b < 1 , a+ b > 1 , α > β , α > 1

2
, c > 0 ,

∞ for 2a− b < 1 , a+ b > 1 , β > α , β > 1
2
, d < 0 ,

∞ for 2a− b < 1 , a+ b > 1 , α = β > 1
2
, 2d− c < 0 ,

and for 2a− b = 1, we have

W (a, b, c, d, α, β) =


∞ for a+ b > 1 , 2b− a < 1 , α > β, α > 1

2
, c < 0 ,

∞ for a+ b > 1 , 2b− a < 1 , β > α, β > 1
2
, d > 0 ,

∞ for a+ b > 1 , 2b− a < 1 , α = β > 1
2
, 2c− d < 0 .

For a+ b = 1, we have

W (a, b, c, d, α, β) =



∞ for 2a− b < 1 , 2b− a < 1 , α > β , c > 0 ,

∞ for 2a− b < 1 , 2b− a < 1 , β > α , d > 0 ,

∞ for 2a− b < 1 , 2b− a < 1 , α = β > 0 , c+ d > 0 ,

∞ for 2a− b < 1 , 2b− a < 1 , α = β = 0 , c+ d > 1 ,

∞ for 2a− b = 1 , 2b− a < 1 , β > α , β > 1
2
, d > 0 ,

∞ for 2a− b = 1 , 2b− a < 1 , β = α > 1
2
,−d < c < d

2
,

∞ for 2a− b < 1 , 2b− a = 1 , α > β, α > 1
2
, c > 0 ,

∞ for 2a− b < 1 , 2b− a = 1 , α = β > 1
2
,−c < d < c

2
,

while for 2a+ b = 1, we have

W (a, b, c, d, α, β) =



∞ for a+ 2b < 1 , α > β , α > 1
2
, c < 0 ,

∞ for a+ 2b < 1 , β > α , β > 1
2
, d < 0 ,

∞ for a+ 2b < 1 , α = β > 1
2
, 2c+ d < 0 ,

∞ for a+ 2b = 1 , α > β , α > 1
2
, c < 0 ,

∞ for a+ 2b = 1 , β > α , β > 1
2
, d < 0 ,

∞ for a+ 2b = 1 , α = β > 1
2
, c+ 2d < 0 , 2c+ d < 0 .
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We also have

W (a, b, c, d, α, β) =



∞ for a+ 2b = 1 , 2a+ b < 1 , α > β , α > 1
2
, c < 0 ,

∞ for a+ 2b = 1 , 2a+ b < 1 , β > α , β > 1
2
, d < 0 ,

∞ for a+ 2b = 1 , 2a+ b < 1 , α = β > 1
2
, c+ 2d < 0 ,

∞ for a = b = 1 , c = d , α = β > 0 ,

∞ for a = b = 1 , 2d < c < d , α = β > 0 ,

∞ for a = b = 1 , 2c < d < cα = β > 0 ,

1 otherwise .

Here W (a, b, c, d, α, β) =∞ means that Hn(an+ cnα, bn+ dnβ) = o(n−s), for

all s > 0. The following result proves the exponential decay of these probabilities.

Theorem 6.2.2. Let a, b ∈ [0, 1], c, d ∈ R, α, β ∈ [0, 1
2
) s.t. a+ 2b < 1, 2a+ b < 1

or 2a− b < 1, a+ b > 1, 2b− a < 1. Then, for n large enough, we have

Hn(an+ cnα, bn+ dnβ) < εn ,

where ε = ε(a, b, c, d, α, β) is independent of n, and 0 < ε < 1. Similarly, for

2b− a = 1, a+ b > 1, we have

Hn(an+ cnα, bn+ dnβ) <



εn
2α−1

for b < 1 , α > β , α > 1
2
, c > 0 ,

εn
2β−1

for b < 1 , β > α , β > 1
2
, d < 0 ,

εn
2α−1

for b < 1 , α = β > 1
2
, 2d− c < 0 ,

εn
2α−1

for a < 1 , α > β, α > 1
2
, c < 0 ,

εn
2β−1

for a < 1 , β > α, β > 1
2
, d > 0 ,

εn
2α−1

for a < 1 , α = β > 1
2
, 2c− d < 0 ,
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and for a+ b = 1, 2b− a < 1, we have

Hn(an+ cnα, bn+ dnβ) <



εn for 2a− b < 1 , α > β , c > 0 ,

εn for 2a− b < 1 , β > α , d > 0 ,

εn for 2a− b < 1 , α = β > 0 , c+ d > 0 ,

εn for 2a− b < 1 , α = β = 0 , c+ d > 1 ,

εn
2β−1

for 2a− b = 1 , β > α , β > 1
2
, d > 0 ,

εn
2α−1

for 2a− b = 1 , β = α > 1
2
,−d < c < d

2
.

For a = 1
3
, b = 2

3
, we have

Hn(an+ cnα, bn+ dnβ) <


εn

2α−1
for α > β, α > 1

2
, c > 0 ,

εn
2α−1

for α = β > 1
2
,−c < d < c

2
.

For 2a+ b = 1, a+ 2b < 1, we also have

Hn(an+ cnα, bn+ dnβ) <


εn

2α−1
for α > β , α > 1

2
, c < 0 ,

εn
2β−1

for β > α , β > 1
2
, d < 0 ,

εn
2α−1

for α = β > 1
2
, 2c+ d < 0 ,

while for a = b = 1
3
, we have

Hn(an+ cnα, bn+ dnβ) <


εn

2α−1
for α > β , α > 1

2
, c < 0 ,

εn
2β−1

for β > α , β > 1
2
, d < 0 ,

εn
2α−1

for α = β > 1
2
, c+ 2d < 0 , 2c+ d < 0 ,

Finally, for a+ 2b = 1, 2a+ b < 1, we have

Hn(an+ cnα, bn+ dnβ) <


εn

2α−1
for α > β , α > 1

2
, c < 0 ,

εn
2β−1

for β > α , β > 1
2
, d < 0 ,

εn
2α−1

for α = β > 1
2
, c+ 2d < 0 ,
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and for a = b = 1, we have

Hn(an+ cnα, bn+ dnβ) <


εn

2α−1
for c = d , α = β > 0 ,

εn
2α−1

for 2d < c < d , α = β > 0 ,

εn
2α−1

for 2c < d < cα = β > 0 ,

for n large enough.

For values of a, b, c, d, α, β with W (a, b, c, d, α, β) < ∞, we give the following

result on the constant on Hn(an+ cnα, bn+ dnβ). Let

X(a, b, c, d, α, β) = lim
n→∞

nW (a,b,c,d,α,β)Hn(an+ cnα, bn+ dnβ) .

Theorem 6.2.3. Let a, b ∈ [0, 1], c, d ∈ R, α, β ∈ [0, 1). For values of a, b, c, d, α,

and β such that W (a, b, c, d, α, β) <∞, we have

X(a, b, c, d, α, β) =



1
2

for a = b = 1, c = d = 0, α = β = 0 ,

1 for a+ b > 1, 2b− a > 1 , or a+ b > 1, 2a− b > 1 ,

or 2a+ b > 1, a+ 2b < 1, 2a− b < 1 ,

or a+ 2b > 1, 2a+ b < 1,−a+ 2b < 1 ,

3 for a+ b < 1, a+ 2b > 1, 2a− b > 1

or a+ b < 1, 2a+ b > 1, 2b− a > 1 ,

2 for a+ 2b < 1, 2a− b > 1 , or 2a+ b < 1, 2b− a > 1 ,

or a+ b < 1, a+ 2b > 1, 2a+ b > 1 ,

and 2a− b < 1, 2b− a < 1 .

Note that here we do not mention the behavior of X(a, b, c, d, α, β) for a, b on

any of the lines a+ b = 1, a+ 2b = 1, 2a+ b = 1, 2a− b = 1,−a+ 2b = 1. There

are many distinct cases, which are listed in the Appendix.

These theorems analyze the growth of Hn(an+ cnα, bn+ dnβ).
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6.3 Analysis of {132,4231}-avoiding permutations

6.3.1 Combinatorics of σ ∈ Sn(132,4231)

As stated in the introduction, West showed in 1995 that

|Sn(132,4231)| = 1 + (n− 1)2n−2.

We first state a lemma exhibiting the explicit number of such permutations σ

with σ(j) = k. Let Dn,k =
(
n−1
n−k

)
+
∑k−1

i=2 2i−2
(
n−i
n−k

)
.

Lemma 6.3.1. Let j, k, n ∈ N, and 1 ≤ j, k ≤ n. Let Jn(j, k) be the number of

permutations σ ∈ Sn(132,4231) such that σ(j) = k. Then for j+ k > n+ 1, we

have

Jn(j, k) =


1 + (j − 2)2j−3 for j = k ,

2j−2Dn−j+1,k−j+1 for j < k ,

2k−2Dn−k+1,j−k+1 for j > k, ,

and for j + k ≤ n+ 1, we have

Jn(j, k) =



Dn,k for j = 1 ,

Dn,j for k = 1 ,

1 + (j − 2)2j−3 + 2j−2Dn−j+1,k

+2k−2Dn−k+1,j − 2j+k−4 for j = k 6= 1 ,

2j−2Dn−j+1,k−j+1 + 2j−2Dn−j+1,k

+2k−2Dn−k+1,j − 2j+k−4 for 1 < j < k ,

2k−2Dn−k+1,j−k+1 + 2j−2Dn−j+1,k

+2k−2Dn−k+1,j − 2j+k−4 for j > k > 1 .

Proof. First, observe that since 132−1 = 132, and 4231−1 = 4231, we must

have Jn(j, k) = Jn(k, j) for all j, k. This allows us to exclusively focus on cases
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where j ≤ k, since the cases where k < j follow by symmetry.

We prove the lemma one case at a time.

First, let σ ∈ Sn(132,4231), with σ(1) = k. Since σ avoids 132, the elements

larger than k must be in increasing order. The elements smaller than k must avoid

231, since σ avoids 4231.

We separate these permutations σ based on the value smaller than k with the

largest index. For example, suppose max{r : σ(r) < k} = t, and σ(t) = i. I claim

that for all u ∈ [i − 1], we have σ(t − u) < i. Suppose for contradiction that

σ(t − u) > i for some u ∈ [i − 1]. Since there are i − 1 elements smaller than i,

at least one of them, say v, must have σ−1(v) < t − (i − 1). But then a 132 is

formed, with v, σ(t− u), and i.

Now, consider elements r with i < r < k. Since σ(t) = i, we must have

σ−1(r) ≤ t − i. Suppose we have some r1, r2 with i < r1 < r2 < k, and

σ−1(r1) < σ−1(r2). This gives a contradiction, since we have a 4231, with

k, r1, r2, s. Therefore, we must have all the elements r between i and k be in

decreasing order.

We are now ready to count the permutations σ. First, suppose i = 1. Then

the elements from 1 to k − 1 are in decreasing order, while the elements from

k + 1 to n are in increasing order. These two subsequences can be combined in

any order, so to count the possibilities, we simply need to choose the positions

of the elements larger than k. There are n − k elements and n − 1 positions, so

there are
(
n−1
n−k

)
ways to complete the permutations.

Now, suppose i > 1. The elements from i + 1 to k − 1 are still in decreasing

order, while the elements from k + 1 to n are still in increasing order. Now,

however, there are 2i−2 ways to order the elements smaller than i, since they

must be in Si−1(A
(2)). When combining the elements of our permutation together,

these elements from 1 to i must be consecutive, so we are essentially considering
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them as one block of elements, which cannot be separated. Therefore, we have

n− k elements larger than n, k − i− 1 elements between i and k, and 1 element

consisting of the elements smaller than s. Overall, we have n − i elements to

order, and once we choose the positions of the elements larger than k, the rest

must be in decreasing order. So there are
(
n−i
n−k

)
ways to order the blocks, and

2i−2
(
n−i
n−k

)
permutations.

Considering all possible values of i between 1 and k − 1, we get

Jn(1, k) =

(
n− 1

n− k

)
+

k−1∑
i=2

2i−2

(
n− i
n− k

)
= Dn,k ,

as desired.

This takes care of the case when k = 1 as well, by symmetry.

Next, let σ ∈ Sn(132,4231), with σ(j) = k, j ≤ k, and j + k > n+ 1. There

are n−k positions after k, and j−1 numbers smaller than j. Since j+k > n+1,

we get j − 1 > n− k, so not every number smaller than k can fit after j. There

must be some i < j with σ(i) < k. Suppose there is also some r < j with

σ(r) > k. If i < r, then we have a 132 with σ(i), σ(r), and k. So we must have

r < i. Let’s count the numbers r which have r > j and σ(r) > σ(j). There can

be at most n− k − 1 of these, since there are k values larger than σ(j), and one

of them is taken by σ(r). There are n− j positions after j, so for j ≤ k, we must

have some s > j with σ(s) < k, since n− j > n− k− 1. Now we compare σ(i) to

σ(s). If σ(i) < σ(s), then we have a 132 with σ(i), k, and σ(s). If σ(i) > σ(s),

then we have a 4231 with σ(r), σ(i), k, and σ(s). Therefore, we cannot have any

r < j with σ(r) > j. Instead, we must have σ(r) < j for all r < j.

Now suppose j = k. In this case, σ must consist of the numbers smaller than

j, followed by j, followed by the numbers larger than j. Since σ avoids 132, the

numbers after j must be in increasing order. The numbers before j can be in

any order, as long as they avoid 132 and 4231. There are 1 + (j − 2)2j−3 such

permutations, as desired.
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Instead, for j < k, not all the elements smaller than k fit before k, so we must

have some r > j with σ(r) < k. Suppose some such r exists with r > j and

k−j < σ(r) < k. This means there can be at most j−2 elements s between k−j

and k with σ−1(s) < j. Since there are j − 1 elements t overall with σ−1(t) < j,

we must have at least one of them with σ−1(t) < j and t ≤ k− j. However, then

we have a 132 with t, k, and σ(r). Therefore, we must have σ−1(r) < j for all

r with k − j < r < k. Consider these first j − 1 elements, consisting of values

between k − j + 1 and k − 1. Since σ−1(k − j) > j, these first j − 1 elements

must avoid 312, and 132. By the enumeration of Sn(A2) in Theorem 6.2.2, there

are 2j−2 such subpermutations. We now know that σ consists of the elements

between k − j + 1 and k − 1, followed by k, followed by everything else. As

long as the first j elements avoid 132 and 312, they cannot contribute to a bad

pattern, since the first j elements are consecutive. Once we make this distinction,

it remains to complete the permutation, and we can consider the first j elements

as a single block, since two elements from within the first j can never each be

part of the same bad pattern. Therefore, once we order the first j elements, we

essentially have n − (j − 1) elements to order, with the k − (j − 1)st element in

the first position. From our proof of the first case, there are Dn−j+1,k−j+1 ways

to complete the permutation, and 2j−2 ways to order the first j − 1 elements.

Together, we get 2j−2Dn−j+1,k−j+1 permutations, as desired.

Now, let σ ∈ Sn(132,4231), with σ(j) = k, j ≤ k, and j + k ≤ n+ 1.

First, suppose there exist r, s with r < s < j with σ(r) < σ(j) < σ(s). We see

immediately that a 132 is formed, so this cannot happen. Second, suppose there

exist r, s with r < s < j with σ(s) < σ(j) < σ(r). We claim that this cannot

happen as well. There are n−j positions after σ(j) = k, and n−k elements larger

than k. Since σ(r) > σ(j) = k, and r < j, we actually have at most n − k − 1

elements larger than k which can occur after k. Since j ≤ k, we have j < k + 1,

so n − j > n − k − 1. This means that we don’t have enough elements larger
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than k to fill the positions after k, so there must be some t > j with σ(t) < k.

Suppose σ(t) > σ(s). Then we have a 132, with σ(s), σ(j) = k, and σ(t), which

is a contradiction. We must then have σ(t) < σ(s). But this gives us a 4231,

with σ(r), σ(s), σ(j) = k, and σ(t), which is again a contradiction. Therefore, if

r < s < j, then σ(r) < σ(j) if and only if σ(s) < j.

To count the possible permutations σ, first suppose σ(r) > σ(j) for all r < j.

For j ≤ k and j + k ≤ n+ 1, let

Pn,j,k = {σ ∈ Sn(132,4231) such that σ(j) = k ,

and for all r, s with r < j < s and σ(j) < σ(s) ,

we have σ(j) < σ(r) < σ(s)} ,

and let

Qn,j,k = {σ ∈ Sn(132,4231) such that σ(j) = k ,

and for all p, q with j < p < q and σ(q) < σ(j) ,

we have σ(p) < σ(j)} .

We now prove a lemma describing the permutations of interest using the

forementioned sets.

Lemma 6.3.2. Let j, k, n ∈ N, and 1 ≤ j, k ≤ n, with j ≤ k and j + k ≤ n+ 1.

Then

{σ ∈ Sn(132,4231) such that σ(j) = k and σ(r) > k for some r < j}

= Pn,j,k ∪Qn,j,k .

Proof. We prove the lemma by contradiction. Suppose there is some permutation

σ ∈ Sn(123,4231) such that σ(j) = k and σ(r) > k for some r < j, and σ /∈

Pn,j,k ∪Qn,j,k. Then there must exist r, s with r < j < s and σ(j) < σ(s) < σ(r),

and there must also exist p, q with j < p < q and σ(q) < σ(j) < σ(p). We will

prove that no such permutations σ can exist.
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Suppose s < q. Then we have a 4231 with σ(r), σ(j), σ(s) and σ(q), which

is a contradiction. . Therefore, we must have r < j < p < q < s. Now

suppose σ(p) > σ(s). Then we have a 132 with σ(j), σ(p), and σ(s), which is

again a contradiction. Therefore, we must have σ(q) < σ(j) < σ(p) < σ(s) <

σ(r). However, we now have a 4231, with σ(r), σ(j), σ(p), and σ(q), which is a

contradiction. So no such σ can exist, completing the proof.

It now remains to calculate |Pn,j,k ∪Qn,j,k|. By the inclusion-exclusion princi-

ple, we know that

|Pn,j,k ∪Qn,j,k| = |Pn,j,k|+ |Qn,j,k| − |Pn,j,k ∩Qn,j,k|.

First, we count Pn,j,k. Let σ ∈ Pn,j,k. Suppose there exists i < j − 1 such

that σ(i) ≥ k + j. Since σ ∈ Pn,j,k, for every s > j with σ(s) > k, we must have

σ(s) > σ(i). There can be at most n − (k + j) such positions s. Also there are

at most k − 1 positions t > j with σ(t) < k since there are only k − 1 elements

smaller than k. Together, we have at most n − (k + j) + k − 1 = n − j − 1

positions after j filled. However, there are n − j positions after j, so we have a

contradiction. Therefore, for every i < j − 1, we must have σ(j) ≥ k + j.

Now, for all i ≤ j − 1, we must have k < σ(i) < k + j. Since each of these

first j − 1 elements in the permutation comes before k and is larger than k, they

must avoid 312, in order to avoid forming a 4231 with k as the 1. Therefore,

by the enumeration of Sn(A2), there are at most 2j−2 orderings for the first j − 1

elements of σ.

Now, since for all i ≤ j, we have k ≤ σ(i) ≤ k + j − 1, we can view these

first j elements of σ as a contiguous block. As long as the permutation of length

n − j + 1 consisting of this block, and the remaining n − j elements of σ avoids

132 and 4231, we must have σ ∈ Pn,j,k. By the first case of this lemma, we know

there are exactly Dn−j+1,k such ways to complete σ, given the first j−1 elements.

Observe that as long as the first j − 1 elements avoid 312 and 132, we can
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combine them with any of our our Dn−j+1,k permutations of length n− j + 1 to

form σ. The only thing that could go wrong is if a 132 or 4231 is formed within

σ, with more than one element coming within the initial block of length j. Since

the block of length j consists of a connected block of j numbers, and it is at the

start of our permutation, the only possibilities are than the block contains the

1, 3, and 2 in a 132, or they contain the 4,2, and 3 or 4,2,3, and 1 in a 4231. We

know the block avoids 132, so the first case cannot occur. Also, since they avoid

312, they cannot contain the 4,2, and 3, let alone the 4,2,3 and 1 in a 4231.

Therefore, any such ordering of the elements in the block which avoid 132 and

312 are legitimate, and do not affect the remaining n− j elements of σ.

Because of this, there are 2j−2Dn−j+1,k possibilities for σ, and

|Pn,j,k| = 2j−2Dn−j+1,k .

Now, to calculate the size of Qn,j,k, let σ ∈ Qn,j,k. Suppose for the sake of

contradiction that there exists i with j < i < j + k such that σ(i) > k. There

are at least n− (j + k) + 1 positions t greater j. Since σ ∈ Qn,j,k, none of these

positions t can have σ(t) < k, since this would contradict the definition of Qn,j,k.

Also, each of the j − 1 positions s with s < j must have σ(s) > k, again by the

definition of Qn,j,k. Therefore, we have at least n − (j + k) + 1 + j − 1 = n − k

positions which each must have σ(s) > k. However, since σ(i) > k, there are

only n − k − 1 remaining elements which can fill the n − k positions. This is a

contradiction, so we must have σ(i) < k for all i with j < i < j + k.

When ordering these k − 1 elements, we realize that they must avoid 231,

since otherwise a 4231 would be formed with k as the 4. Also, they must avoid

132. By the enumeration of Sn(A2), there are 2k−2 ways to order these k − 1

elements. Once these numbers are ordered, they form a block of size k, occupying

positions j through j + k − 1. When combining this block with the remaining

n − k elements, we have a permutation which must avoid 132 and 4231, and
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which has the smallest element in position j. By the first case of this lemma, we

know that there are exactly Dn−k+1,j such ways to complete σ. Observe now that

as long as the elements in positions j through j + k − 1 avoid 132 and 231, we

will have σ ∈ Qn,j,k. Therefore, we have

|Qn,j,k| = 2k−2Dn−k+1,j .

The final step is calculating |Pn,j,k ∩ Qn,j,k|. Let σ ∈ Pn,j,k ∩ Qn,j,k. Then for

s < j, we have k < σ(s) < j + k. Similarly, for t with j < t < j + k, we have

σ(t) < k. Finally, for r > j + k, we must have σ(r) = r, since these numbers are

all greater than k and after k, and must be in increasing order. There are 2j−2

ways to order the j − 1 numbers before j, since they must avoid both 132 and

312. There are 2k−2 ways to order the k − 1 elements after k, since they must

avoid both 132 and 231. Any pair of these combinations works, so in all, we

have

|Pn,j,k ∩Qn,j,k| = 2j−22k−2 = 2j+k−4 .

Our final type of permutation σ is that with σ(r) < k for some r < k, and

therefore for all r < k. First, suppose j = k. Suppose we have some s > j with

σ(s) < k. Then, the n−k elements larger than k cannot all fit after j, since there

are normally n − j = n − k positions after j, but now one of them is filled by

an element smaller than j. This means there must be some t < j with σ(t) > k,

which is a contradiction. Therefore, we must have σ(s) > k for all s > k. Since

σ avoids 132, these numbers must be in increasing order. Therefore, the only

choice we have in determining σ is the order of the first j − 1 elements. Since

elements σ(j), σ(j+ 1), . . . , σ(n) are now determined and are in increasing order,

none of them can be part of a 132 or a 4231 within σ, since they would have

to be the largest element in the pattern, and none of the patterns end with the

largest element. Therefore, as long as the first j−1 elements avoid 132 and 4231,

σ will as well. There are precisely 1 + (j − 2)2j−3 such permutations of length
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j − 1. Combining this with the number of permutations σ with σ(r) > σ(j) for

all r < j, we get

1 + (j − 2)2j−3 + 2j−2Dn−j+1,k + 2k−2Dn−k+1,j − 2j+k−4 ,

as desired.

Now, instead of having j = k, suppose j < k. Suppose σ(s) ≤ k− j, for some

s < j. There are n− j positions t > j, and n− k values greater than k, so there

are still k − j positions t > j such that σ(t) < k. Since σ(s) ≤ k − j, there can

be at most k − j − 1 positions r > j such that σ(r) ≤ k − j. Therefore, there

must be some position t > j with σ(t) > k − j. However, this forms a 132 with

σ(s), σ(j) = k, and σ(t). Therefore, σ(s) > k− j for all s < j. These initial j− 1

values must avoid 132 and 312, since they would form a 4231 with k as the 1

otherwise. Therefore, there are at most 2j−2 orderings for the first j− 1 elements

of σ. Once this ordering is chosen, the first j elements form a block, since they

are consecutive from k−j+1 to k. Viewing these j elements as a block, and each

of the remaining n− j elements separately, we essentially have n− j+ 1 elements

now, which need to avoid 132 and 4231, with the first element having exactly

k − j elements smaller than it. There are precisely Dn−j+1,k−j+1 such elements,

so again, overall, there are 2j−2Dn−j+1,k−j+1 possible permutations σ. In all, this

gives

Jn(j, k) = 2j−2Dn−j+1,k−j+1 + 2j−2Dn−j+1,k + 2k−2Dn−k+1,j − 2j+k−4 ,

as desired. This completes the final case of Lemma 6.3.1.

6.3.2 Example of σ ∈ Sn(132,4231)

As in previous sections, we present an extended example to clarify our reasoning.

Suppose n = 8, with j = 3 and k = 4. We will exhibit here each of the permuta-

tions σ ∈ Sn(132,4231) with σ(j) = k. Since j ≤ k and j + k ≤ n+ 1, we know
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how many permutations there should be. We also know that σ either has

{σ(1), σ(2)} = {2, 3} ,

or σ(r) > 4 for r ∈ {1, 2}. First, suppose {σ(1), σ(2)} = {2, 3}. There are

2j−2 = 23−2 = 2 ways to order the first j elements of the permutation, shown

here:

(324 ∗ ∗ ∗ ∗∗) (234 ∗ ∗ ∗ ∗∗) .

We know that there are Dn−j+1,k−j+1 = D8−3+1,4−3+1 = D6,2 ways to complete

σ. By the expression for D6,2, we see that there are
(
6−1
6−2

)
=
(
5
4

)
= 5 ways to

complete σ, since the elements larger than 4 must be in increasing order, and

must fill four of the five positions r with r > j. Therefore, our permutations of

this type must have the form:

(∗ ∗ 415678) (∗ ∗ 451678) (∗ ∗ 456178) (∗ ∗ 456718) (∗ ∗ 456781) .

In all, there are 10 such permutations. Now, we need to count permutations in

Pn,j,k and Qn,j,k. Permutations in Pn,j,k must start with the elements between k

and k + j − 1, shown here:

(564 ∗ ∗ ∗ ∗∗) (654 ∗ ∗ ∗ ∗∗) .

There are Dn−j+1,k ways to complete σ. First, suppose 1 = σ(max{r : σ(r) < k}).

Then we must have the elements after 4 consisting of a decreasing sequence 3,2,

and 1, interlaced with an increasing sequence 7,8. There are 10 such interlacings,

shown here:

(∗ ∗ 432178) (∗ ∗ 432718) (∗ ∗ 432781) (∗ ∗ 437218) (∗ ∗ 437281)

(∗ ∗ 437821) (∗ ∗ 473218) (∗ ∗ 473281) (∗ ∗ 473821) (∗ ∗ 478321) .

Second, suppose 2 = σ(max{r : σ(r) < k}). Then we must be interlacing the

increasing 7,8 with the decreasing sequence 3, followed by a block of (1,2), which

must be consecutive. There are
(
4
2

)
= 6 such interlacings, shown here:

(∗ ∗ 431278) (∗ ∗ 437128) (∗ ∗ 437812) (∗ ∗ 473128) (∗ ∗ 473812) (∗ ∗ 478312) .
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Finally, suppose 3 = σ(max{r : σ(r) < k}). Here, we must interlace the sequence

7,8 with a block which ends in 3, which there are 23−2 = 2 ways to begin, either

123 or 213. The interlacings are shown here:

(∗ ∗ 412378) (∗ ∗ 421378) (∗ ∗ 471238) (∗ ∗ 472138) (∗ ∗ 478123) (∗ ∗ 478213) .

In all, we get |P8,3,4| = 2(10 + 6 + 6) = 44.

Now, suppose σ ∈ Q8,3,4. First, we order the elements smaller than k = 4.

Since they all must come consecutively after k = 4, and must avoid 132 and 231,

we see the possibilities are

(∗ ∗ 4123 ∗ ∗) (∗ ∗ 4213 ∗ ∗) (∗ ∗ 4312 ∗ ∗) (∗ ∗ 4321 ∗ ∗) .

To complete σ, we need a permutation in S5(132,4231) with σ(3) = 1. There

are D5,3 of these permutations, so we can count them based on whether the first

two elements are increasing or decreasing. If they are decreasing, then we simply

need the final two elements to be increasing. There are
(
4
2

)
ways to choose the

final elements, shown here:

(654 ∗ ∗ ∗ 78) (754 ∗ ∗ ∗ 68) (764 ∗ ∗ ∗ 58) (854 ∗ ∗ ∗ 67) (864 ∗ ∗ ∗ 57) (874 ∗ ∗ ∗ 56) .

If instead, the first two elements are increasing, then they must be consecutive,

in order to avoid a 132. There are
(
3
1

)
ways to choose these, shown here:

(564 ∗ ∗ ∗ 78) (674 ∗ ∗ ∗ 58) (784 ∗ ∗ ∗ 56) .

Therefore, overall we have |Q8,3,4| = 4(6 + 3) = 36.

Finally, to avoid double-counting, we need to enumerate permutations in

P8,3,4∩Q8,3,4. Let σ ∈ P8,3,4∩Q8,3,4. Then there are 23−2 = 2 ways to choose σ(t)

for t < j = 3, either

(564 ∗ ∗ ∗ ∗∗) or (654 ∗ ∗ ∗ ∗∗) .
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Also, there are 24−2 ways to choose σ(s) for j < s ≤ j + k − 1, shown here:

(∗ ∗ 4123 ∗ ∗) (∗ ∗ 4213 ∗ ∗) (∗ ∗ 4312 ∗ ∗) (∗ ∗ 4321 ∗ ∗) .

The final two elements of σ must be increasing, so σ is completely determined.

There are 2(4) = 8 such possible permutations σ ∈ P8,3,4 ∩Q8,3,4, shown here:

(56412378) (56421378) (56431278) (56432178)

(65412378) (65421378) (65431278) (65432178) .

6.4 Proof of theorems 6.2.1 and 6.2.2

The proof of the two theorems relies on several lemmas - two lemmas which

analyze the asymptotic behavior of Dsn+tnγ ,un+vnγ+wnδ , and one more for each

case of Theorem 6.2.1. The first lemma analyzes how binomial coefficients behave

as their inputs grow to infinity.

Lemma 6.4.1. Let a ∈ (0,∞), b ∈ R, α ∈ [0, 1]. Suppose x ∼ bnα, as n → ∞.

Then we have

(
2an− x
an

)
∼


22an−x
√
aπn

α ∈ [0, 1
2
) ,

22an−x
√
aπn

exp
[
− b2

4a

]
α = 1

2
,

22an−x
√
aπn

εn
2α−1

α ∈ (1
2
, 1] ,

as n→∞, where ε = ε(a, b, α) ∈ (0, 1).

Proof. By Stirling’s formula, we have(
2an− x
an

)
∼

√
2π(2an− x)

(2πan)(2π)(an− x)

(
(2an− x)2an−x

(an)an(an− x)an−x

)
,

∼
√

1

aπn

(
(2an)2an−x

(an)an(an)an−x

)
(1− x

2an
)2an−x

(1− x
an

)an−x
,

∼ 22an−x
√
aπn

(1− x
2an

)2an−x

(1− x
an

)an−x
,
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as n→∞.

Using the Taylor expansion for ln (1 + x), we see that

ln

[
(1− x

2an
)2an−x

(1− x
an

)an−x

]
∼ (2an− x)

(
− x

2an
− x2

8a2n2
−O

(
x3

n3

))
− (an− x)

(
− x

an
− x2

2a2n2
−O

(
x3

n3

))
,

∼
(
−x− x2

4an
+

x2

2an
+O

(
x3

n2

))
−
(
−x− x2

2an
+
x2

an
+O

(
x3

n2

))
,

∼ − x2

4an
,

∼ − b
2

4a
n2α−1 ,

as n→∞. Plugging into our first equation, we get(
2an− x
an

)
∼ 22an−x
√
aπn

exp

[
− b

2

4a
n2α−1

]
,

as n→∞. Finally, considering the various cases of α completes the proof.

This second lemma allows us to the calculate the asymptotic behavior of

Hn(an+ cnα, bn+ dnβ) for various values of a, b, c, d, α, and β.

Lemma 6.4.2. Let s, u ∈ [0, 1], t, v, w ∈ R, γ, δ ∈ [0, 1). Then as n → ∞, we

have

Dsn+tnγ ,un+vnγ+wnδ ∼ 2sn+tnγ−1 ,

for 0 < 2u− s < s.

Furthermore, for 2u− s < 0, we have

Dsn+tnγ ,un+vnγ+wnδ < εn ,
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and for 2u− s = 0, we have

Dsn+tnγ ,un+vnγ+wnδ

2sn+tnγ−2
∼



1 γ, δ < 1
2
,

1− erf(t− 2v) γ = 1
2
> δ ,

1− erf(−2w) δ = 1
2
> γ ,

1− erf(t− 2v − 2w) γ = δ = 1
2
,

as well as

Dsn+tnγ ,un+vnγ+wnδ

2sn+tnγ−2
∼



2 δ > 1
2
, δ > γ, w > 0 ,

εn
2δ−1

δ > 1
2
, δ > γ, w < 0 ,

2 δ > γ > 1
2
, w = 0, 2v − t > 0 ,

1 δ > γ > 1
2
, w = 0, 2v − t = 0 ,

εn
2γ−1

δ > γ > 1
2
, w = 0, 2v − t < 0 ,

1− erf(t− 2v) δ > γ = 1
2
, w = 0 ,

1 δ > 1
2
> γ,w = 0 ,

and

Dsn+tnγ ,un+vnγ+wnδ

2sn+tnγ−2
∼



2 γ > 1
2
, γ > δ, 2v − t > 0 ,

εn
2γ−1

γ > 1
2
, γ > δ, 2v − t < 0 ,

2 γ > δ > 1
2
, 2v − t = 0, w > 0 ,

1 γ > δ > 1
2
, 2v − t = 0, w = 0 ,

εn
2δ−1

γ > δ > 1
2
, 2v − t = 0, w < 0 ,

1− erf(−2w) γ > δ = 1
2
, 2v − t = 0 ,

1 γ > 1
2
> δ, 2v − t = 0 ,

2 γ = δ > 1
2
, 2v − t+ 2w > 0 ,

1 γ = δ > 1
2
, 2v − t+ 2w = 0 ,

εn
2γ−1

γ = δ > 1
2
, 2v − t+ 2w < 0
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Similarly, for s = u > 0, we have

Dsn+tnγ ,un+vnγ+wnδ

2sn+tnγ−2
∼



1 + erf(t− v) γ = 1
2
> δ ,

1 + erf(−w) δ = 1
2
> γ ,

1 + erf(t− v − w) δ = γ = 1
2
,

1 δ, γ < 1
2
,

2 γ > 1
2
, γ > δ, v − t < 0 ,

εn
2γ−1

γ > 1
2
, γ > δ, v − t > 0 ,

2 γ > δ > 1
2
, v − t = 0, w < 0 ,

1 γ > δ > 1
2
, v − t = 0, w = 0 ,

εn
2δ−1

γ > δ > 1
2
, v − t = 0, w > 0 ,

1 + erf(−w) γ > δ = 1
2
, v − t = 0 ,

1 γ > 1
2
> δ, v − t = 0 ,

and

Dsn+tnγ ,un+vnγ+wnδ

2sn+tnγ−2
∼



2 δ > γ, δ > 1
2
, w < 0 ,

εn
2δ−1

δ > γ, δ > 1
2
, w > 0 ,

2 δ > γ > 1
2
, w = 0, v − t < 0 ,

1 δ > γ > 1
2
, w = 0, v − t = 0 ,

εn
2γ−1

δ > γ > 1
2
, w = 0, v − t > 0 ,

1 + erf(t− v) δ > γ = 1
2
, w = 0 ,

1 δ > 1
2
> γ,w = 0 ,

2 δ = γ > 1
2
, t− v − w > 0 ,

1 δ = γ > 1
2
, t− v − w = 0 ,

εn
2γ−1

δ = γ > 1
2
, t− v − w < 0 ,
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where each ε = ε(s, t, u, v, w, γ, δ) ∈ (0, 1), and

erf(x) =
2√
π

∫ x

0

e−y
2

dy .

Proof. Let s, u ∈ [0, 1], t, v, w ∈ R, γ, δ ∈ [0, 1). For the remainder of the lemma,

let

D = Dsn+tnγ ,un+vnγ+wnδ .

Then, we have

D =

(
sn+ tnγ − 1

(s− u)n+ (t− v)nγ − wnδ

)
+

un+vnγ+wnδ−1∑
i=2

gi ,

where

gi = 2i−2

(
sn+ tnγ − i

(s− u)n+ (t− v)nγ − wnδ

)
.

We now analyze gi carefully. Let

r = (2u− s)n+ (2v − t)nγ + 2wnδ ,

and let x = i− r. where x ∼ ynz for some y ∈ R, z ∈ [0, 1]. By Lemma 6.4.1, we

see that

gi ∼



2sn+tnγ−2√
(s−u)πn

z ∈ [0, 1
2
) ,

2sn+tnγ−2√
(s−u)πn

exp
[
− y2

4(s−u)

]
z = 1

2
,

2sn+tnγ−2√
(s−u)πn

εn
2z−1

α ∈ (1
2
, 1] .

This lemma says that terms gi only ever contribute to the total sum when

x ∼ ynz with z ≤ 1
2
. For z > 1

2
, the power of ε means that even if we sum

over such terms gi, they will not contribute more than a power of εn
2z−1

to the

total sum. Therefore, we need i to be relatively close to r to have terms which

contribute to the sum.

Note that r needs to be within y
√
n of the allowable values of i, in order for

a term gi to contribute more than a power of ε.
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We are now ready to consider cases.

For 0 < 2u− s < s, we see that r− x is a valid choice for i for any z up to 1.

In other words, we have

D ∼
r−y
√
n−1∑

i=2

gi +

r+y
√
n∑

i=r−y
√
n

gi +
un+vnγ+wnδ−1∑
i=r+y

√
n+1

gi ,

∼ (r − y
√
n)εn +

2sn+tnγ−2√
(s− u)πn

y
√
n∑

x=−y
√
n

exp

[
− y2

4(s− u)

]
+ (un− r)εn ,

∼ 2sn+tnγ−2√
(s− u)πn

y
√
n∑

x=−y
√
n

exp

[
− y2

4(s− u)

]
.

Interpreting this sum as a Riemann sum, and letting y →∞, we have

D ∼ 2sn+tnγ−2√
(s− u)πn

√
n

∫ ∞
−∞

exp

[
− y2

4(s− u)

]
dy ,

∼ 2sn+tnγ−2√
(s− u)π

2
√

(s− u)π ,

∼ 2(2sn+tnγ−2) ,

as desired.

On the other extreme, let 2u− s < 0. The allowable i which is closest to r is

0, but unfortunately this gives r − i ∼ (2u− s)n. By Lemma 6.4.1, we have

D ∼ 22n+tnγ−2

un+vnγ+wnδ∑
i=2

εn ,

< 22n+tnγ−2εn ,

for some other ε ∈ (0, 1).

We now prove one more specific case, omitting proofs of most cases for brevity,

since they are all very similar.

Let 2u− s = 0, γ = 1
2
> δ. Then

r = (2v − t)n
1
2 + 2wnδ .
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We see that gi for i ∈ [2, y
√
n] will contribute more than a power of ε to D.

Letting y →∞, we see that

D ∼
y
√
n∑

i=2

gi ,

∼ 2sn+tnγ−2√
(s− u)πn

√
n

∫ ∞
0

exp

[
−(y − (2v − t))2

4(s− u)

]
dy ,

∼ 2sn+tnγ−2 2√
π

∫ ∞
t−2v

exp
[
−y2

]
dy ,

∼ 2sn+tnγ−2 (1− erf(t− 2v)) ,

as n→∞, as desired.

6.4.1 Proof of Theorems 6.2.1 and 6.2.2

We prove Theorem 6.2.1 case by case: first, let a = 1 and b = 1 and consider

Hn(an+ c, bn+ c). We are in the case of Lemma 6.3.1 with j = k, j + k > n+ 1,

so we know

Hn(an+ c, bn+ c) =
1 + (n+ c− 2)2n+c−3

1 + (n− 1)2n−2
.

We see that

lim
n→∞

ndHn(n, n) = lim
n→∞

2c−1nd ,

which means that W (1, 1, c, c, 0, 0) = 0, and L(1, 1, c, c, 0, 0) = 2c−1, as desired.

We now consider cases whereW (a, b, c, d, α, β) =∞. For the next two lemmas,

we prove cases of Theorem 6.2.2, as well as Theorem 6.2.1. The next case requires

a lemma.

Lemma 6.4.3. Let a, b ∈ [0, 1] such that a + 2b < 1 and 2a + b < 1. Then

W (a, b, c, d, α, β) =∞.

Proof. Let a, b ∈ [0, 1] satisfying the conditions of the lemma, with a = b. Suppose

a = 0, so b = 0, Then Jn(an + cnα, bn + dnβ) = 1, since there is only one
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permutation σ with σ(1) = 1, namely σ = (1, 2, 3, . . . , n− 1, n). Clearly,

ndHn(an+ cnα, bn+ dnβ) ∼ nd

n2n−2
,

and W (0, 0, c, d, α, β) =∞. The conclusion of Theorem 6.2.2 is satisfied as well,

with ε = 1
2
.

Now, suppose a > 0. We must have a < 1
3
, since otherwise a + 2b ≥ 1. We

are in the case of Lemma 6.3.1 with j + k ≤ n+ 1 and j = k.

By Lemma 6.3.1, we have

Jn(an+ cnα, bn+ dnβ) = 1 + (an− 2)2an−3 + 2an−2Dn−an+1,an

+ 2an−2Dn−an+1,an − 2an+an−4 .

Since 2an < (1− a)n, by applying Lemma 6.4.2 to Dn−an+1,an, we see that

ndRn(an, an) <
nd2an−2

(
1
2
an− 1 + 2εn−an+1 − 2an−2

)
1 + (n− 1)2n−2

= Θ

(
nd−1

(ε
2

)n−an+1
)
,

implying that F (a, a) =∞, and Rn(an, an) < ε
2
(1−a)n, as desired.

Next, we consider a < b. For a = 0, we see that Jn1, bn = Dn,bn. Since

a + 2b < 1, we must have b < 1
2
. By Lemma 6.4.2, we obtain Hn1, bn < εn, for

some ε < 1. Therefore, we get

ndR(1, bn) < nd
(ε

2

)n
,

so F (0, b) =∞ and Rn(an, bn) < ε
2
n, as desired.

Finally, we suppose 0 < a < b. We are now in the case where j + k ≤ n + 1,

and j < k. By Lemma 6.3.1, we see that

Jn(an, bn) = 2an−2Dn−an+1,bn−an+1+2an−2Dn−an+1,bn+2bn−2Dn−bn+1,an−2an+bn−4 .

To analyze the asymptotics of Hn(an, bn), we need to first consider the ap-

propriate Dx,y terms. Since 2b < 1 − a < 1 + a, we have 2b − 2a < 1 − a, so by
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Lemma 6.4.2, we see that

Dn−an+1,bn−an+1 = Dn(1−a)+1,n(b−a)+1 < ε
n(1−a)+1
1 ,

for some ε1 < 1. Similarly, we know 2b < 1− a, so by Lemma 6.4.2, we observe

Dn(1−a)+1,bn < ε
n(1−a)+1
2 ,

for some ε2 < 1. Finally, 2a + b < 1 implies 2a < 1 − b, so by Lemma 6.4.2, we

have

Dn(1−b)+1,an < ε
n(1−b)+1
3 ,

for some ε3 < 1. Let ε = max{ε1, ε2, ε3}. Applying these results, we have

ndRn(an, bn) <
nd

2

(ε
2

)n−an+1

+
nd

2

(ε
2

)n−an+1

+
nd

2

(ε
2

)n−bn+1

− nd

2(1−a−b)n+4
.

Therefore, W (a, b, c, d, α, β) = ∞, and Rn(an, bn) <
(
ε
2

)(1−a)n
for n large

enough, as desired.

The only cases we have not yet considered are for a > b, but these follow by

symmetry, so the proof is complete.

We prove another lemma for the second region where W (a, b, c, d, α, β) =∞.

Lemma 6.4.4. Let a, b ∈ [0, 1] such that 2a − b < 1, a + b > 1, and 2b − a < 1.

Then W (a, b, c, d, α, β) =∞.

Proof. Let a, b satisfy the conditions of the lemma, and consider Jn(an, bn). First,

suppose a = b. The case where a = b = 1 is dealt with in the first case of

Theorem 6.2.1, so we assume here a < 1. We are in the case of Lemma 6.3.1 with

j = k and j + k > n+ 1, so

ndHn(an, an) = nd
Jn(an, an)

1 + (n− 1)2n−2
=
nd (1 + (an− 2)2an−3)

1 + (n− 1)2n−2
∼ and2n(a−1) ,

so F (a, a) =∞, and Hn(an+ cnα, an+ dnβ) < 2(a−1)n, for n large enough.
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Now, suppose a < b. The case with a > b follows by symmetry. For a < b,

we are in the case of Lemma 6.3.1 with j < k and j + k > n + 1. We now have

Jn(an, bn) = 2an−2Dn−an+1,bn−an+1. Since 2b − a < 1, we have 2b − 2a < 1 − a.

By Lemma 6.4.2, we see that as n→∞, we get

Dn−an+1,bn−an+1 < εn−an+1 ,

for some ε < 1. Therefore, we have

ndHn(an+ cnα, bn+ dnβ) =
nd

2

(ε
2

)n−an+1

.

This immediately gives W (a, b, c, d, α, β) =∞, and Hn(an+ cnα, bn+ dnβ) <(
ε
2

)n
, as desired.

The remaining values of a, b, c, d, α, β have W (a, b, c, d, α, β) = 1. We prove

some of these cases, and omit proofs of the others, since they are very similar to

these. on the cases of Theorem 6.3.1.

Lemma 6.4.5. Let a, b ∈ [0, 1] such that a + b > 1, and 2a − b ≥ 1 or 2b −

a ≥ 1. Then W (a, b, c, d, α, β) = 1. For 2a − b > 1 or 2b − a > 1, we have

L(a, b, c, d, α, β) = 1. For 2a − b = 1 or 2b − a = 1 and α, β < 1
2
, we have

L(a, b, c, d, α, β) = 1
2
.

Proof. Let a, b ∈ [0, 1] such that a+ b > 1 and 2b− a > 1. The proof of the case

for 2a− b ≥ 1 will follow by symmetry. By Lemma 6.3.1, we see that

Wn(an+ cnα, bn+ dnβ) = 2an+cnα−2Dn−an−cnα+1,bn+dnβ−an−cnα+1 .

Since 2b− a > 1 implies 2(b− a) > (1− a), by Lemma 6.4.2, we see that

Dn−an−cnα+1,bn+dnβ−an−cnα+1 ∼ 2 ∗ 2(n−an−cnα)−1 as n→∞ .

Therefore,

ndWn(an+ cnα, bn+ dnβ) ∼ nd2an+cnα−22n−an−cn
α

1 + (n− 1)2n−2
∼ nd−1 .
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Clearly, W (a, b, c, d, α, β) = 1 and L(a, b) = 1.

For 2b − a = 1, we instead have Dn−an−cnα+1,bn+dnβ−an−cnα+1 depending on

c, d, α, and β, as n→∞. By Lemma 6.4.2, for α, β < 1
2
, then we get

D ∼ 2n−an−cn
α+1−2 ,

implying that

ndHn(an, bn) ∼ nd2an+cnα−22n−an−cnα−1

1 + (n− 1)2n−2
∼ nd−1

2
.

We see that W (a, b, c, d, α, β) = 1 and L(a, b) = 1
2
, as desired. For other val-

ues of α, β, the asymptotics work differently, but they can be checked by using

Lemma 6.4.2.

The cases where 2a − b ≥ 1 follow by symmetry, so we have completed the

proof.

Lemma 6.4.6. Let a, b ∈ [0, 1] such that a + 2b ≥ 1, 2a + b ≤ 1, 2b − a ≤ 1,

or a + 2b ≤ 1, 2a + b ≥ 1, 2a − b ≤ 1. Then W (a, b, c, d, α, β) = 1. Also,

L(a, b, c, d, α, β) = 1 if all the inequalities are strict.

Proof. Let a, b ∈ [0, 1] satisfy the conditions of the first case of the lemma, with

the inequalities strict. Therefore, we have a < b. By Lemma 6.3.1, we have

Jn(an+ cnα, bn+ dnβ) = 2an−2(Dn−an+1,bn−an+1 +Dn−an+1,bn)

+ 2bn−2Dn−bn+1,an − 2an+bn−4 .

Since 2b− a < 1, we have 2b− 2a < 1− a. By Lemma 6.4.2, we have

Dn−an+1,bn−an+1 < εn−an+1
1 ,

for some ε1 < 1. Also, since 2a + b < 1, we have 2a < 1 − b. Again, by

Lemma 6.4.2, we have Dn−bn+1,bn−an+1 < εn−bn+1
2 , for some ε2 < 1. Also, since

a+ b < 1, we have 2an+bn−4 = o(2n).
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On the other hand, since 2b+ a > 1, we get 2b > 1− a, so Dn−an+1,bn ∼ 2n−an

by Lemma 6.4.2. Applying these facts, we get

Jn(an+ cnα, bn+ dnβ) ∼ 2an+cnα−22n−an−cn
α

= 2n−2 ,

as n → ∞. This immediately gives ndHn(an + cnα, bn + dnβ) ∼ nd−1, so

W (a, b, c, d, α, β) = 1 and L(a, b, c, d, α, β) = 1, as desired.

Lemma 6.4.7. Let a, b ∈ [0, 1] such that a + b ≤ 1, a + 2b ≥ 1, 2a − b ≥ 1, or

a + b ≤ 1, 2a + b ≥ 1, 2b − a ≥ 1. Then W (a, b, c, d, α, β) = 1. Also, L(a, b) = 3

if the inequalities are strict.

Proof. Let a, b ∈ [0, 1] such that a+b ≤ 1, 2a+b ≥ 1, 2b−a ≥ 1. By Lemma 6.3.1,

we have

Jn(an, bn) = 2an−2Dn−an+1,bn−an+1+2an−2Dn−an+1,bn+2bn−2Dn−bn+1,an−2an+bn−4 .

Since 2b− a ≥ 1, we have 2b− 2a ≥ 1− a. Therefore, by Lemma 6.4.2, we have

Dn−an+1,bn−an+1 ∼ 2n−an ,

as n→∞. Also, since 2b− a ≥ 1, 2b ≥ 1− a, and

Dn−an+1,bn ∼ 2n−an ,

as n→∞. Finally, since 2a+ b ≥ 1, we have 2a ≥ 1− b, so

Dn−bn+1,an ∼ 2n−bn ,

as n→∞. Since a+ b ≤ 1, we have 2an+bn−4 = o(2n).

Applying these facts, we see that

Jn(an, bn) ∼ 2an−22n−an + 2an−22n−an + 2bn−22n−bn = 3(2n−2) .

Therefore,

ndHn(an+ cnα, bn+ dnβ) ∼ 3nd−1 ,

giving W (a, b, c, d, α, β) = 1 and L(a, b) = 3, as desired.
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Lemma 6.4.8. Let a, b ∈ [0, 1] such that 2a − b ≥ 1, 2b + a ≤ 1, or 2b − a ≥

1, 2a + b ≤ 1. Then W (a, b, c, d, α, β) = 1. Also, if the inequalities are strict, we

have L(a, b) = 2.

Proof. Let a, b ∈ [0, 1] such that 2b − a ≥ 1, 2a + b ≤ 1. The other case follows

by symmetry. By Lemma 6.3.1, we see that

Jn(an+ cnα, bn+ dnβ) = 2an−2 (Dn−an+1,bn−an+1 +Dn−an+1,bn)

+ 2bn−2Dn−bn+1,an − 2an+bn−4 .

Since 2b− a ≥ 1, we get 2b− 2a ≥ 1− a. By Lemma 6.4.2, we have

Dn−an+1,bn−an+1 ∼ 2n−an ,

as n→∞.

Also, since 2a+ b ≤ 1, we get 2a ≤ 1− b. By Lemma 6.4.2, we have

Dn−bn+1,an < εn−bn+1 ,

for some ε < 1.

Finally, since 2b − a ≥ 1, we also have 2b + a ≥ 1, so 2b ≥ 1 − a. Again, by

Lemma 6.4.2, we have

Dn−an+1,bn ∼ 2n−an ,

as n→∞.

Since 2a+ b ≤ 1, we have a+ b ≤ 1, so 2an+bn−4 = o(2n).

Therefore, we have

ndHn(an+ cnα, bn+ dnβ) =
ndJn(an+ cnα, bn+ dnβ)

1 + (n− 1)2n−2

∼ nd−1

2n−2

(
2an−22n−an + 2an−22n−an

)
∼ 2nd−1 .

We clearly see that W (a, b, c, d, α, β) = 1, and when these inequalities are strict,

L(a, b) = 2, as desired.
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Lemma 6.4.9. Let a, b ∈ [0, 1] with a + 2b ≥ 1, 2a + b ≥ 1, 2a− b ≤ 1, 2b− a ≤

1, a + b ≤ 1. Then W (a, b, c, d, α, β) = 1. When these inequalities are strict, we

have L(a, b) = 2.

Proof. First, suppose a = b. Then we have 1
3
≤ a ≤ 1

2
. We are in the case of

Lemma 6.3.1 with j = k, j + k ≤ n+ 1, so

Jn(an+ cnα, bn+ dnβ) = 1 + (an− 2)2an−3 + 2an−2Dn−an+1,an

+ 2an−2Dn−an+1,an − 2an+an−4 .

Since 3a ≥ 1, we have 2a ≥ 1− a. By Lemma 6.4.2, we have

Dn−an+1,an ∼ 2n−an ,

as n→∞.

On the other hand, we have (an − 2)2an−3 = o(2n), and 2an+an−4 = o(2n) as

well, as long as a < 1
2
.

Therefore, we have

Jn(an+ cnα, bn+ dnβ) ∼ 2
(
2an−22n−an

)
= 2n−1 ,

and ndHn(an, bn) ∼ 2nd−1. We see that W (a, b, c, d, α, β) = 1 and L(a, b) = 2, as

desired.

Second, suppose a < b. The case with a > b will hold by symmetry. By

Lemma 6.3.1, we have

Jn(an+ cnα, bn+ dnβ) = 2an−2 (Dn−an+1,bn−an+1 +Dn−an+1,bn)

+ 2bn−2Dn−bn+1,an − 2an+bn−4 .

Since 2b− a ≤ 1, we have 2b− 2a ≤ 1− a. By Lemma 6.4.2, we see that

Dn−an+1,bn−an+1 < εn−an+1 ,

for some ε < 1.
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Since 2b+ a ≥ 1, we have 2b ≥ 1− a. By Lemma 6.4.2, we see that

Dn−an+1,bn ∼ 2n−an ,

as n→∞.

Since 2a+ b ≥ 1, we have 2a ≥ 1− b. By Lemma 6.4.2, we see that

Dn−bn+1,an ∼ 2n−bn

as n→∞.

Finally, we know that 2an+bn−4 = o(2n), for a+ b < 1
2
.

Therefore, we get

ndHn(an, bn) ∼ nd−1

2n−2

(
2an−22n−an + 2bn−22n−bn

)
= 2nd−1 ,

yielding W (a, b, c, d, α, β) = 1 and L(a, b) = 2, as desired.

The following figure shows a sample permutation in S19(132,4231). The

second figure displays the limit shape for n = 100, and the third shows the shape

for n = 100 with the peak at a = b = 1 ignored.

6.5 Results on permutation statistics in Sn(132,4231)

6.5.1 Fixed points in Sn(132,4231)

As in Chapter 2.9.9, we calculate the expected number of fixed points in our

permutation classes.

Theorem 6.5.1. Let σ ∈ Sn(132,4231) be chosen uniformly at random. Then

E[fpn(σ)]→ 4

3
, as n→∞ .
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σ(j) = k

j

Figure 6.2: Random σ ∈ Sn(132,4231)

Figure 6.3: Limit shape of H100(j, k)

Theorem 6.5.2. Let σ ∈ Sn(231,1324) be chosen uniformly at random. Then

E[fpn(σ)]→ 7

6
, as n→∞ .

6.5.2 Proof of Theorem 6.5.1

Let σ ∈ Sn(132,4231) be chosen uniformly at random. Clearly,

E[fpn(σ)] =
n∑
j=1

Hn(j, j) =
1

1 + (n− 1)2n−2

n∑
j=1

Jn(j, j) .
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Figure 6.4: Limit shape of H100(j, k), with the corner at j = k = 100 ignored

We therefore analyze the sum of Jn(j, j). We see that

n∑
j=1

Jn(j, j) = Dn,1 +

bn+1
2
c∑

j=2

1 + (j − 2)2j−3 + 2j−1Dn−j+1,j − 22j−4

+
n∑

j=bn+1
2
c+1

1 + (j − 2)2j−3

= 1 +
n∑
j=2

1 + (j − 2)2j−3 +

bn+1
2
c∑

j=2

2j−1Dn−j+1,j − 22j−4 .

Observe that
∑n

j=2 1 + (j − 2)2j−3 = (n− 3)2n−2 + n, by induction. Also,

bn+1
2
c∑

j=2

−22j−4 = −1

3
22bn+1

2
c−2 = o(n2n) ,

so it suffices to calculate
bn+1

2
c∑

j=2

2j−1Dn−j+1,j .

Let j = an. As seen in Lemmas 6.4.2 and 6.4.2, we know that

Dn−j+1,j < εn−j+1 for a <
1

3
,

and

Dn−j+1,j ∼ 2n−j for
1

3
< a <

1

2
,
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as n→∞.

Therefore, we see that

bn+1
2
c∑

j=2

2j−1Dn−j+1,j ∼
n

6
2j−12n−j =

n

3
2n−2 .

Plugging into our complete sum, we have

n∑
j=1

Jn(j, j) ∼ (n− 3)2n−2 +
n

3
2n−2 ∼ 4

3
n2n−2 .

Therefore, we have

E[fpn(σ)] ∼ 1

n2n−2

(
4

3
n2n−2

)
=

4

3
,

as n→∞, as desired.

6.5.3 Proof of Theorem 6.5.2

Let τ be chosen uniformly at random from Sn(132,4231). Let σ = τ r. Observe

that σ is now uniform in Sn(231,4231). Therefore, E[fpn(σ)] = E[afpn(τ)].

Applying this logic, we get

E[afpn(τ)] =
n∑
j=1

Hn(j, n+ 1− j) =
1

1 + (n− 1)2n−2

n∑
j=1

Jn(j, n+ 1− j) ,

so it suffices to consider Jn(j, n+ 1− j) for all j.

By Lemma 6.3.1, for j < n+ 1− j, we have

Jn(j, n+ 1− j) = 2j−2Dn−j+1,(n+1−j)−j+1 + 2j−2Dn−j+1,n−j+1

+ 2(n−j+1)−2Dj,j − 2j+(n−j+1)−4

= 2j−2Dn−j+1,n−2j+2 + 2j−2Dn−j+1,n−j+1 + 2n−j−1Dj,j − 2n−3 .
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A quick calculation shows us that Dx,x = 2x−2, so by plugging this in, we get

Jn(j, n+ 1− j) = 2j−2Dn−j+1,n−2j+2 + 2(2j−22n−j−1)− 2n−3

= 2j−2Dn−j+1,n−2j+2 + 2n−3 .

Let a ∈ [0, 1
2
). Let j = an. By Lemmas 6.4.2 and 6.4.2, we know that there

exists ε < 1 such that

Dn−j+1,n−2j+2 < εn−j+1 , for
1

2
> a >

1

3
,

and that

Dn−j+1,n−2j+2 ∼ 2n−j for a <
1

3
, as n→∞ .

Applying this to our sum where j < n+ 1− j, we see that

n
2∑
j=1

2j−2Dn−j+1,n−2j+2 + 2n−3 ∼ n

2
2n−3 +

n

3
2j−22n−j ∼ 7

12
n2n−2 ,

as n→∞. Since Jn(j, k) = Jn(j, k), when we sum over all values of j from 1 to

n, we get
n∑
j=1

Jn(j, n+ 1− j) ∼ 7

6
n2n−2 , as n→∞ .

Since

E[fpn(σ)] ∼ 1

n2n−2

(
7

6
n2n−2

)
as n→∞ ,

we get E[fpn(σ)]→ 7
6
, as desired.
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CHAPTER 7

Combinatorial proofs of results by Liouville and

Andrews

7.1 Introduction

In this chapter, we consider the natural problem of counting the number of pos-

itive integer solutions to x1x2 + x2x3 + . . . + xkxk+1 = n. Let Lk(n) be defined

as

Lk(n) := |{(x1, . . . , xk+1) ∈ Zk+1|

such that

x1x2 + x2x3 + . . .+ xkxk+1 = n , and x1, x2, . . . , xk+1 > 0 .

Somewhat surprisingly, even today, the values of this function are only known for

1 ≤ k ≤ 5. The first instance of this problem appearing in the literature is by

Liouville, in the 1860’s [Lou].

Let

Di(n) =
∑
d|n

di ,

and

Di1,i2,...,ir(n) =
∑

j1+j2+...+jr=n
j1,j2,...,jr≥1

Di1(j1)Di2(j2) . . . Dir(jr) .

After defining these functions, we state Liouville’s result.
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x1

x3

x2 x4

x5

Figure 7.1: Area is x1x2 + x2x3 + x3x4 + x4x5 = n

x1

x3

x2

x4

x5

x6

Figure 7.2: Area is x1x2 + x2x3 + x3x4 + x4x5 + x5x6 = n

Theorem 7.1.1. (Liouville) Let n ∈ N. Then

L4(n) = D2(n)− nD0(n)−D0,0(n) .

This can be visualized in Figure 7.1; the total area of the four rectangles is n,

and the number of such configurations with area n is L4(n).

In 1998, Andrews [And] gave the following formula for L5(n).

Theorem 7.1.2. (Andrews) Let n ∈ N. Then

L5(n) =
1

6
D0,0,0(n) +D0,0(n) +

1

2
D0,1(n) +

(
2n− 1

6

)
D0(n)− 11

6
D2(n) .

A visualization of the situation in Theorem 7.1.2 is given in Figure 7.2; as An-

drews mentions in [And], the rectangles start to form a ”staircase” configuration.

In this chapter, we give combinatorial proofs of Theorems 7.1.1 and 7.1.2. In

Section 7.2, we prove formulae for L1(n), L2(n), and L3(n). Section 7.3 contains

the proof of Theorem 7.1.1, and Section 7.4 the proof of Theorem 7.1.2.
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7.2 Smaller values of k

For completeness, we state and prove expressions for Lk(n) with k < 4, all three

of which are old results.

Theorem 7.2.1. Let Lk(n) be defined as above. Then

L1(n) = D0(n) ,

L2(n) = D1(n)−D0(n)

L3(n) =
1

2
D0,0(n)− 1

2
D1(n) +

1

2
D0(n) .

We now prove the preceding theorem.

Proof. For k = 1, we have Lk(n) = D0(n) by definition of each function.

For k = 2, we see that the number of solutions to x1x2 + x2x3 = n is equal

to the number of solutions to (x1 + x3)x2 = n. Each solution of this form comes

from splitting an integer divisor of n into two positive integers. Therefore, the

number of such solutions is

L2(n) =
∑
d|n

d− 1 =
∑
d|n

d−
∑
d|n

1 = D1(n)−D0(n) ,

as desired.

For k = 3, we are counting solutions to x1x2 + x2x3 + x3x4 = n, or (x1 +

x3)x2 + x3x4 = n. In other words, we want to split n into the sum of two smaller

integers, each of which is written as a product of two divisors. We also want the

first divisor of the first integer to be larger than the first divisor of the second

integer. We see that

L3(n) =
n−1∑
i=1

∑
dx2=i

x3x4=n−i
d>x3

1 .

Clearly, by symmetry, L3(n) is also equal to the same double sum, where d < x3.

If we consider the double sum with d = x3, we are calculating the number of
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solutions to dx2 +dx4 = n, which is L2(n). Summing all three of these cases gives

us D0,0(n), by definition, so we have

D0,0(n) = 2L3(n) + L2(n) ,

implying that

L3(n) =
D0,0(n)− L2(n)

2
=
D0,0(n)

2
+
D0(n)

2
− D1(n)

2
,

as desired.

This completes the proof of Theorem 7.2.1.

7.3 Proof of Theorem 7.1.1

The proof depends heavily on a lemma, which we present here.

Lemma 7.3.1. We have

∑
wx+xy+yz=n
w,x,y,z≥1

y =
1

2
D2(n) +

1

2
D1(n)− nD0(n) .

Proof. First, observe that

∑
wx+xy+yz=n
w,x,y,z≥1

y =
∑

wx+xy+yz=n
w,x,y,z≥1

w + y − z ,

since as we sum over all solutions to wx + xy + yz = n, w and z range over the

same values. In other words, we have an involution ϕ which acts on solutions by

mapping (w0, x0, y0, z0) 7→ (z0, y0, x0, w0). This can be visualized in Figure 7.3.

Now, suppose we have a solution (w, x, y, z) where z - x. We can write x =

qz + r in a unique way, where q ≥ 0 and 0 < r < z. Observe that (z − r, (q +

198



w

y
x z

z

x

y w

ϕ

Figure 7.3: Summing y is equivalent to summing y+w−z, as shown by the above

involution ϕ.

w

y
zr z z

ψ

r
z − r

y y + w y + w y + w

Figure 7.4: For each z - x, we have an involution ψ which maps w + y − z to

−(w + y − z), showing that these configurations contribute nothing to the total

sum.

1)y + qw, r, w + y) is also a solution, with

(z − r)((q + 1)y + qw) + ((q + 1)y + qw)r + r(w + y)

= z(q + 1)y + zqw + rw + ry

= zy + (qz + r)(w + y)

= zy + xw + xy = n ,

as desired. Also, this solution has the same property as the original (w, x, y, z),

since w+y does not divide (q+ 1)y+ qw. The first solution contributes w+y− z

to our sum, while the second contributes z− r+ r− (w+ y) = −(w+ y− z). We

essentially have an involution ψ on solutions where z - x which changes positive

values of w+ y− z to negative values, so summing over all of these solutions will

contribute nothing. In Figure 7.4, we depict the involution ψ.

We can therefore restrict our sum to solutions where z divides x, as shown
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here. ∑
wx+xy+yz=n
w,x,y,z≥1

w + y − z =
∑

wx+xy+yz=n
w,x,y,z≥1

z|x

w + y − z +
∑

wx+xy+yz=n
w,x,y,z≥1

z-x

w + y − z

=
∑

wqz+qzy+yz=n
w,y,z,q≥1

w + y − z + 0 ,

where qz = x. Our equation becomes z(wq + qy + y) = z(q(w + y) + y) = n.

Therefore, z is a divisor of n, and w + y is some integer smaller than n/z but

which does not divide n/z, since we have y as a remainder.

We can therefore express the sum as∑
z(q(w+y)+y)=n

w + y − z =
∑
zδ=n

∑
1≤r≤δ
r-δ

r − z . (**)

We now argue that summing over values of r which do divide δ does not

contribute to the overall sum. In other words, showing that∑
zδ=n

∑
r|δ

r − z = 0

allows us to write the sum on the right side of (**). To do this, consider some z

such that zδ = n and some r which divides δ, so δ = sr. We essentially have a

triple (z, r, s) with zrs = n, and each such triple contributes r− z. Given such a

triple, we can switch the entries in the first two coordinates, giving (r, z, s), which

will contribute z − r = −(r − z) instead. This gives a sign-reversing involution,

and its only fixed points are triples with r = z which contribute r− z = 0 to the

sum as well.

Therefore,

∑
zδ=n

∑
1≤r≤δ
r-δ

r − z =
∑
zδ=n

δ∑
r=1

r − z ,

giving us a sum which we can now evaluate.
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Evaluating the sum on the right, we see that

∑
zδ=n

δ∑
r=1

r − z =
∑
zδ=n

(
δ + 1

2

)
− zδ

=
∑
zδ=n

δ2

2
+
δ

2
− n

=
1

2
D2(n) +

1

2
D1(n)− nD0(n) ,

completing the proof of Lemma 7.3.1.

7.3.1 Proof of Theorem 7.1.1

We are now ready to complete the proof of Theorem 7.1.1.

Proof. Let A(n) = {(x1, x2, x3, x4, x5) ∈ Z5 s.t. x1x2 + x2x3 + x3x4 + x4x5 =

n, x1, x2, x4, x5 > 0, x3 ≥ 0}. Since

D0,0(n) =
n−1∑
i=1

D0(i)D0(n− i)

=
n−1∑
i=1

|{(x1, x2, x4, x5) ∈ Z4

such that x1x2 = i, x4x5 = n− i, x1, x2, x4, x5 > 0}|

= |{(x1, x2, x4, x5) ∈ Z4 s.t. x1x2 + x4x5 = n, x1, x2, x4, x5 > 0}| ,

we see that

|A(n)| = L4(n) +D0,0(n) .

Figure 7.5 helps visualize the argument.

We can partition A(n) by comparing x1 to x5, so A(n) = A<(n) + A>(n) +

A=(n), where

A<(n) = {(x1, x2, x3, x4, x5) ∈ A(n)|x1 < x5} ,
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x1

x2 x4

x5

Figure 7.5: If x3 = 0, the area is x1x2 +x4x5 = n, and there are D0,0(n) solutions.

x1

x3

x2 x4

x5
x5

x3

x4x2

x1

Figure 7.6: The number of solutions with x1 < x5 is equal to the number with

x1 > x5, due to this bijection.

and A>(n) and A=(n) are defined similarly. We can biject between A<(n) and

A>(n) by mapping a solution (x1, x2, x3, x4, x5) 7→ (x5, x4, x3, x2, x1), as shown in

Figure 7.6.

Therefore |A(n)| = 2|A<(n)|+ |A=(n)|.

To calculate |A=(n)|, realize that we are counting solutions to

x1x2 + x2x3 + x3x4 + x4x1 = (x1 + x3)(x2 + x4) = n .

The number of such solutions is∑
dδ=n

d=x1+x3,δ=x2+x4

d(δ − 1) =
∑
dδ=n

n− d = nD0(n)−D1(n) .

Note that there are d choices for x3 since 0 ≤ x3 < d, while there are δ−1 choices

for x2, since 0 < x2 < δ. This can be visualized with the help of Figure 7.7.

Therefore, to complete the proof, we need to show that

2|A<(n)| = L4(n) +D0,0(n)− |A=(n)|

= (D2(n)− nD0(n)−D0,0(n)) +D0,0(n)− (nD0(n)−D1(n))

= D2(n) +D1(n)− 2nD0(n) .
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x1

x3

x2 x4

x5

Figure 7.7: The number of solutions with x1 = x5 is nD0(n) − D1(n), since for

each choice of d = x1 +x3 there are d options for x3 and (n/d− 1) options for x2.

Summing over d which are divisors of n gives us nD0(n)−D1(n).

Since

|A<(n)| = |{(x1, x2, x3, x4, x5) ∈ Z5|x1x2 + x2x3 + x3x4 + x4x5 = n ,

such that x5 > x1 > 0, x2, x4 > 0, x3 ≥ 0}|

= |{(x1, x2, x3, x4, x5) ∈ Z5 such that

(x5 − x1)x4 + x4(x1 + x3) + (x1 + x3)x2 = n ,

and x5 > x1 > 0, x2, x4 > 0, x3 ≥ 0}|

=
∑

(x5−x1)x4+x4(x1+x3)+(x1+x3)x2=n
x5−x1,x4,x1,x2≥1

x3≥0

1

=
∑

wx+xy+yz=n
w,x,y,z≥1
x1+x3=y
x1≥1
x3≥0

1 .

Since for each such solution w, x, y, z we have y options for x3, we in fact have

|A<(n)| =
∑

wx+xy+yz=n
w,x,y,z≥1

y .

Now applying Lemma 7.3.1 gives us exactly what we need, and the proof is

complete.
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7.4 Proof of Theorem 7.1.2

The proof will heavily involve analyzing positive integer solutions to

d1δ1 + d2δ2 + d3δ3 = n . (*)

We first need two lemmas which classify and count the number of such solutions.

Clearly, D0,0,0(n) is defined as the number of solutions to (*). We can split this

into cases based on the relationship between d1, d2 and d3.

Lemma 7.4.1. Let B1(n) represent the number of solutions to (*) where d1 =

d2 = d3. Let B2(n) represent the number of solutions to (*) where d1 = d2, but

neither are equal to d3. Let B3(n) represent the number of solutions to (*) where

d1 6= d2 6= d3. Then

D0,0,0(n) = B1(n) + 3B2(n) +B3(n) .

Proof. This fact is almost immediate - the only step to verify is why the coefficient

3 appears on B2(n). The coefficient appears because B2(n) could also count the

number of solutions to (*) with d1 = d3 6= d2, or with d2 = d3 6= d1, due to the

symmetry of the expression d1δ1 + d2δ2 + d3δ3 = n.

Lemma 7.4.2. Let n ∈ N. Then

B1(n) =
1

2
D2(n)− 3

2
D1(n) +D0(n) , and

B2(n) = D0,1(n)−D0,0(n)−B1(n) .

Proof. The function B1(n) counts the number of solutions to

d1δ1 + d1δ2 + d1δ3 = n , or d1(δ1 + δ2 + δ3) = n .

Since we need δ1, δ2, δ3 > 0, for each d1, there are
(
n/d1−1

2

)
possible ways to define
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δ1, δ2, δ3. Therefore,

B1(n) =
∑
dδ|n

(
δ − 1

2

)

=
∑
dδ|n

δ2

2
− 3δ

2
+ δ

=
1

2
D2(n)− 3

2
D1(n) +D0(n) ,

as desired.

The function B2(n) counts the number of solutions to

d1δ1 + d1δ2 + d3δ3 = n , or d1(δ1 + δ2) + d3δ3 = n ,

where d1 6= d3.

Temporarily ignoring the condition that d1 6= d3, we see that the number of

solutions to d1(δ1 + δ2) + d3δ3 = n is

∑
d1r+d3δ3=n
δ1+δ2=r

1 =
∑

d1r+d3δ3=n

r − 1

=
∑

d1r+d3δ3=n

r −
∑

d1r+d3δ3=n

1

= D0,1(n)−D0,0(n) .

The case where d1 = d3 is counted by B1(n), so if we want to ensure that

d1 6= d3, we see that B2(n) = D0,1(n)−D0,0(n)−B1(n), as desired.

7.4.1 Proof of Theorem 7.1.2

By definition,

L5(n) =
∑

d1δ1+d2δ2+d3δ3=n
d1=x1+x3
d2=x3+x5
d3=x5
δ1=x2
δ2=x4
δ3=x6

1 .
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d1

d2

δ1 δ2

d3

δ3

⇐⇒d1

d2

δ1 δ2 δ3

d3

Figure 7.8: Solutions to (*) with d2 < d3 are equinumerous with solutions to (*)

with d2 > d3.

Clearly, we need d2 > d3 and d1 + d3 > d2. Changing variables, we can calculate

L5(n) by looking at all the solutions to (*), and excluding those with d2 ≤ d3 or

d1 + d3 ≤ d2.

By definition, the number of solutions to (*) with no restrictions is D0,0,0(n).

As in the previous proof, we can partition these solutions based on whether

d2 < d3.

Let C<(n) be the number of solutions to (*) with d2 < d3, and let C>(n) and

C=(n) be defined similarly. Given a solution with d2 < d3 counted by C<(n), we

can get a solution with d2 > d3 by switching δ2 and δ3, as seen in Figure 7.8.

Since this map is an involution, we get C<(n) = C>(n).

For d2 = d3, since d1 can either equal d2 or not, we have C=(n) = B1(n) +

B2(n). By Lemma 7.4.2, this is D0,1(n)−D0,0(n). Therefore, we have

D0,0,0(n) = 2C<(n) +D0,1(n)−D0,0(n) ,

and

C<(n) =
D0,0,0(n)−D0,1(n) +D0,0(n)

2
.

Let F (n) be the number of solutions to (*), with d1 + d3 ≤ d2. Then we

have L5(n) = D0,0,0(n) − C<(n) − C=(n) − F (n). We can separate solutions

counted by F (n) into those where d1 + d3 = d2 and those where d1 + d3 < d2, so

F (n) = F<(n) + F=(n), as seen in Figure 7.9.
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F=(n)⇒
d1

d2

δ1 δ2

d3

δ3

⇐ F<(n)

d1

d2

δ1 δ2

d3

δ3

Figure 7.9: Solutions to (*) with d1 + d3 ≤ d2 are counted either by F=(n) or

F<(n).

G>(n)⇒
d1

d2

δ1 δ2

d3

δ3

⇐ G<(n)

d1

d2

δ1 δ2

d3

δ3

Figure 7.10: Solutions to (*) counted by G<(n) are equinumerous with solutions

to (*) counted by G>(n).

We see that

F=(n) =
∑

d1δ1+d2δ2+d3δ3=n
d1+d3=d2

1 =
∑

δ1d1+d1δ2+δ2d3+d3δ3=n

1 = L4(n) ,

by definition of L4(n).

On the other hand, we can split F<(n) into terms based on how δ1 and δ3

compare to each other. Let G<(n) be the number of solutions to (*), with both

d1 + d3 < d2 and δ1 < δ3, and let G=(n) and G>(n) be defined similarly. Then

F<(n) = G<(n) +G=(n) +G>(n).

Consider the map (d1, δ1, d2, δ2, d3, δ3) 7→ (d3, δ3, d2, δ2, d1, δ1). Here solutions

counted by G<(n) are in one-to-one correspondence with to those counted by

G>(n), as seen in Figure 7.10, so G<(n) = G>(n).
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G=(n)⇒
d1

d2

δ1 δ2

d3

δ3

⇐ A<(n)− L3(n)
x1 x5

x4

x3

x2

Figure 7.11: Solutions to (*) counted by G=(n) are equinumerous with A<(n)−

L3(n), with x3 = d3, x1 = d1, x2 = δ3, x4 = δ2, and x5 = d2 − d1.

We see that

G=(n) =
∑

d1δ1+d2δ2+d3δ3=n
d1+d3<d2
δ1=δ3

1

=
∑

d1δ1+d3δ1+d1δ2+d3δ2+rδ2=n
r=d2−d1−d3

1

=
∑

δ1s+sδ2+δ2r=n
s=d1+d3

1

=
∑

δ1s+sδ2+δ2r=n

s− 1

=
∑

δ1s+sδ2+δ2r=n

s −
∑

δ1s+sδ2+δ2r=n

1

= A<(n)− L3(n) ,

as seen in Figure 7.11.

By Lemma 7.3.1 and Theorem 7.2.1, we have

G=(n) =

(
1

2
D2(n) +

1

2
D1(n)− nD0(n)

)
−
(
D0,0(n)

2
+
D0(n)

2
− D1(n)

2

)
.
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It suffices to calculate G<(n). By the definition of this value, we have

G<(n) =
∑

d1δ1+d2δ2+d3δ3=n
d1+d3<d2
δ1<δ3

1

=
∑

d3t+uδ1+d2δ2=n
t=δ3−δ1

u=d1+d3<d2

1

=
∑

d3t+uδ1+d2δ2=n
d3<u<d2

1

=
B3(n)

6
.

The last equality above comes from the fact that we are now imposing a strict

order condition on the values of d3, u, and d2. Since these elements play the same

role in the equation d3t + uδ1 + d2δ2 = n, the total number of solutions with

d3 6= u 6= d2 is given by B3(n), but these solutions are partitioned equally into

six parts, one corresponding to any specific order of d3, u, and d2. Since here we

are requiring d3 < u < d2, the number of such solutions is G<(n) = 1
6
B3(n).

Solving for B3(n)
6

in Lemma 7.4.1 and applying Lemma 7.3.1 gives

G<(n) =
D0,0,0(n)

6
− B1(n)

6
− B2(n)

2

=
D0,0,0(n)

6
− B1(n)

6
− D0,1(n)−D0,0(n)−B1(n)

2

=
D0,0,0(n)

6
+
B1(n)

3
− D0,1(n)

2
+
D0,0(n)

2

=
D0,0,0(n)

6
+
D2(n)

6
− D1(n)

2
+
D0(n)

3
− D0,1(n)

2
+
D0,0(n)

2
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We are finally ready to compute L5(n). Plugging in all our results, we get

L5(n) = D0,0,0(n)− C<(n)− C=(n)− F (n)

= D0,0,0(n)−
(
D0,0,0(n)−D0,1(n) +D0,0(n)

2

)
−
(
D0,1(n)

2
− D0,0(n)

2

)
− (F<(n) + F=(n))

=
D0,0,0(n)

2
− D0,1(n)

2
+
D0,0(n)

2
− (2G<(n) +G=(n) + L4(n))

=
D0,0,0(n)

2
− D0,1(n)

2
+
D0,0(n)

2

− 2

(
D0,0,0(n)

6
+
D2(n)

6
− D1(n)

2
+
D0(n)

3
− D0,1(n)

2
+
D0,0(n)

2

)
−
((

1

2
D2(n) +

1

2
D1(n)− nD0(n)

)
−
(
D0,0(n)

2
+
D0(n)

2
− D1(n)

2

))
− (D2(n)− nD0(n)−D0,0(n))

=
1

6
D0,0,0(n) +

1

2
D0,1(n) +D0,0(n)− 11

6
D2(n) + (2n− 1

6
)D0(n) ,

as desired.
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CHAPTER 8

Appendix: Numerical calculations and extended

Theorem 6.2.3

8.1 Extended Theorem 6.2.3

Here we include the extended version of Theorem 6.2.3, which has too many cases

to fit comfortably in the body of Chapter 6.

Theorem 8.1.1. Let a, b ∈ [0, 1], c, d ∈ R, α, β ∈ [0, 1). For values of a, b, c, d, α,

and β such that W (a, b, c, d, α, β) <∞, we have

X(a, b, c, d, α, β) =



1
2

for a = b = 1, c = d = 0, α = β = 0 ,

1 for a+ b > 1, 2b− a > 1 , or a+ b > 1, 2a− b > 1 ,

or 2a+ b > 1, a+ 2b < 1, 2a− b < 1 ,

or a+ 2b > 1, 2a+ b < 1,−a+ 2b < 1 ,

3 for a+ b < 1, a+ 2b > 1, 2a− b > 1

or a+ b < 1, 2a+ b > 1, 2b− a > 1 ,

2 for a+ 2b < 1, 2a− b > 1 , or 2a+ b < 1, 2b− a > 1 ,

or a+ b < 1, a+ 2b > 1, 2a+ b > 1 ,

and 2a− b < 1, 2b− a < 1 .
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For 2a− b = 1, a+ b > 1, a < 1, we have

X(a, b, c, d, α, β) =



1 for α > β, α > 1
2
, c > 0 ,

1 for α > β > 1
2
, c = 0, d < 0 ,

1 for α = β > 1
2
, 2c− d > 0 ,

1 for β > α > 1
2
, d = 0, c > 0 ,

1 for β > α, β > 1
2
, d < 0 ,

1
2

for 1
2
> α, β ,

1
2

for α > 1
2
> β , c = 0 ,

1
2

for β > 1
2
> α , d = 0 ,

1
2

for α > β > 1
2
, c = d = 0 ,

1
2

for β > α > 1
2
, c = d = 0 ,

1
2

for α = β > 1
2
, 2c− d = 0 ,

1−erf(d)
2

for β = 1
2
> α ,

1−erf(−2c)
2

for α = 1
2
> β ,

1−erf(d−2c)
2

for α = β = 1
2
,

1−erf(d)
2

for α > β = 1
2
, c = 0 ,

1−erf(−2c)
2

for β > α = 1
2
, d = 0 .
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For 2a− b = 1, a+ b < 1, a+ 2b > 1, we have

X(a, b, c, d, α, β) =



3 for α > β, α > 1
2
, c > 0 ,

3 for α > β > 1
2
, c = 0, d < 0 ,

3 for α = β > 1
2
, 2c− d > 0 ,

3 for β > α > 1
2
, d = 0, c > 0 ,

3 for β > α, β > 1
2
, d < 0 ,

5
2

for 1
2
> α, β ,

5
2

for α > 1
2
> β , c = 0 ,

5
2

for β > 1
2
> α , d = 0 ,

5
2

for α > β > 1
2
, c = d = 0 ,

5
2

for β > α > 1
2
, c = d = 0 ,

5
2

for α = β > 1
2
, 2c− d = 0 ,

5−erf(d)
2

for β = 1
2
> α ,

5−erf(−2c)
2

for α = 1
2
> β ,

5−erf(d−2c)
2

for α = β = 1
2
,

5−erf(d)
2

for α > β = 1
2
, c = 0 ,

5−erf(−2c)
2

for β > α = 1
2
, d = 0 .
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For 2a− b = 1, a+ 2b < 1, a > 0, we have

X(a, b, c, d, α, β) =



2 for α > β, α > 1
2
, c > 0 ,

2 for α > β > 1
2
, c = 0, d < 0 ,

2 for α = β > 1
2
, 2c− d > 0 ,

2 for β > α > 1
2
, d = 0, c > 0 ,

2 for β > α, β > 1
2
, d < 0 ,

3
2

for 1
2
> α, β ,

3
2

for α > 1
2
> β , c = 0 ,

3
2

for β > 1
2
> α , d = 0 ,

3
2

for α > β > 1
2
, c = d = 0 ,

3
2

for β > α > 1
2
, c = d = 0 ,

3
2

for α = β > 1
2
, 2c− d = 0 ,

3−erf(d)
2

for β = 1
2
> α ,

3−erf(−2c)
2

for α = 1
2
> β ,

3−erf(d−2c)
2

for α = β = 1
2
,

3−erf(d)
2

for α > β = 1
2
, c = 0 ,

3−erf(−2c)
2

for β > α = 1
2
, d = 0 .
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For 2b− a = 1, a+ b > 1, b < 1, we have

X(a, b, c, d, α, β) =



1 for α > β, α > 1
2
, c < 0 ,

1 for α > β > 1
2
, c = 0, d > 0 ,

1 for α = β > 1
2
, 2d− c > 0 ,

1 for β > α > 1
2
, d = 0, c < 0 ,

1 for β > α, β > 1
2
, d > 0 ,

1
2

for 1
2
> α, β ,

1
2

for α > 1
2
> β , c = 0 ,

1
2

for β > 1
2
> α , d = 0 ,

1
2

for α > β > 1
2
, c = d = 0 ,

1
2

for β > α > 1
2
, c = d = 0 ,

1
2

for α = β > 1
2
, 2d− c = 0 ,

1−erf(−2d)
2

for β = 1
2
> α ,

1−erf(c)
2

for α = 1
2
> β ,

1−erf(−2d+c)
2

for α = β = 1
2
,

1−erf(−2d)
2

for α > β = 1
2
, c = 0 ,

1−erf(c)
2

for β > α = 1
2
, d = 0 .
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For 2b− a = 1, a+ b < 1, 2a+ b > 1, we have

X(a, b, c, d, α, β) =



3 for α > β, α > 1
2
, c < 0 ,

3 for α > β > 1
2
, c = 0, d > 0 ,

3 for α = β > 1
2
, 2d− c > 0 ,

3 for β > α > 1
2
, d = 0, c < 0 ,

3 for β > α, β > 1
2
, d > 0 ,

5
2

for 1
2
> α, β ,

5
2

for α > 1
2
> β , c = 0 ,

5
2

for β > 1
2
> α , d = 0 ,

5
2

for α > β > 1
2
, c = d = 0 ,

5
2

for β > α > 1
2
, c = d = 0 ,

5
2

for α = β > 1
2
, 2d− c = 0 ,

5−erf(−2d)
2

for β = 1
2
> α ,

5−erf(c)
2

for α = 1
2
> β ,

5−erf(d−2c)
2

for α = β = 1
2
,

5−erf(c)
2

for α > β = 1
2
, c = 0 ,

5−erf(−2d)
2

for β > α = 1
2
, d = 0 .
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For 2b− a = 1, 2a+ b < 1, a > 0, we have

X(a, b, c, d, α, β) =



2 for α > β, α > 1
2
, c < 0 ,

2 for α > β > 1
2
, c = 0, d > 0 ,

2 for α = β > 1
2
, 2d− c > 0 ,

2 for β > α > 1
2
, d = 0, c < 0 ,

2 for β > α, β > 1
2
, d > 0 ,

3
2

for 1
2
> α, β ,

3
2

for α > 1
2
> β , c = 0 ,

3
2

for β > 1
2
> α , d = 0 ,

3
2

for α > β > 1
2
, c = d = 0 ,

3
2

for β > α > 1
2
, c = d = 0 ,

3
2

for α = β > 1
2
, 2d− c = 0 ,

3−erf(−2d)
2

for β = 1
2
> α ,

3−erf(c)
2

for α = 1
2
> β ,

3−erf(c−2d)
2

for α = β = 1
2
,

3−erf(−2d)
2

for α > β = 1
2
, c = 0 ,

3−erf(c)
2

for β > α = 1
2
, d = 0 .
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For a+ b = 1, 2a− b < 1,−a+ 2b < 1, we have

X(a, b, c, d, α, β) =



2 for α > β, α > 1
2
, c < 0 ,

2 for α > β > 1
2
, c = 0, d < 0 ,

2 for α = β > 1
2
, c+ d < 0 ,

2 for β > α > 1
2
, d = 0, c < 0 ,

2 for β > α, β > 1
2
, d < 0 ,

1 for 1
2
> α, β ,

1 for α > 1
2
> β , c = 0 ,

1 for β > 1
2
> α , d = 0 ,

1 for α > β > 1
2
, c = d = 0 ,

1 for β > α > 1
2
, c = d = 0 ,

1 for α = β > 1
2
, c+ d = 0 ,

1 + erf(−c) for β = 1
2
> α ,

1 + erf(−d) for α = 1
2
> β ,

1 + erf(−c− d) for α = β = 1
2
,

1 + erf(−d) for α > β = 1
2
, c = 0 ,

1 + erf(−c) for β > α = 1
2
, d = 0 .
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For a+ b = 1, 2a− b > 1, a < 1, we have

X(a, b, c, d, α, β) =



3 for α > β, α > 1
2
, c < 0 ,

3 for α > β > 1
2
, c = 0, d < 0 ,

3 for α = β > 1
2
, c+ d < 0 ,

3 for β > α > 1
2
, d = 0, c < 0 ,

3 for β > α, β > 1
2
, d < 0 ,

2 for 1
2
> α, β ,

2 for α > 1
2
> β , c = 0 ,

2 for β > 1
2
> α , d = 0 ,

2 for α > β > 1
2
, c = d = 0 ,

2 for β > α > 1
2
, c = d = 0 ,

2 for α = β > 1
2
, c+ d = 0 ,

2 + erf(−c) for β = 1
2
> α ,

2 + erf(−d) for α = 1
2
> β ,

2 + erf(−c− d) for α = β = 1
2
,

2 + erf(−d) for α > β = 1
2
, c = 0 ,

2 + erf(−c) for β > α = 1
2
, d = 0 ,
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For a+ b = 1,−a+ 2b > 1, b < 1, we have

X(a, b, c, d, α, β) =



3 for α > β, α > 1
2
, c < 0 ,

3 for α > β > 1
2
, c = 0, d < 0 ,

3 for α = β > 1
2
, c+ d < 0 ,

3 for β > α > 1
2
, d = 0, c < 0 ,

3 for β > α, β > 1
2
, d < 0 ,

2 for 1
2
> α, β ,

2 for α > 1
2
> β , c = 0 ,

2 for β > 1
2
> α , d = 0 ,

2 for α > β > 1
2
, c = d = 0 ,

2 for β > α > 1
2
, c = d = 0 ,

2 for α = β > 1
2
, c+ d = 0 ,

2 + erf(−c) for β = 1
2
> α ,

2 + erf(−d) for α = 1
2
> β ,

2 + erf(−c− d) for α = β = 1
2
,

2 + erf(−d) for α > β = 1
2
, c = 0 ,

2 + erf(−c) for β > α = 1
2
, d = 0 ,
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For a+ 2b = 1, 2a− b > 1, a < 1, we have

X(a, b, c, d, α, β) =



3 for α > β, α > 1
2
, c > 0 ,

3 for α > β > 1
2
, c = 0, d > 0 ,

3 for α = β > 1
2
, c+ 2d > 0 ,

3 for β > α > 1
2
, d = 0, c > 0 ,

3 for β > α, β > 1
2
, d > 0 ,

5
2

for 1
2
> α, β ,

5
2

for α > 1
2
> β , c = 0 ,

5
2

for β > 1
2
> α , d = 0 ,

5
2

for α > β > 1
2
, c = d = 0 ,

5
2

for β > α > 1
2
, c = d = 0 ,

5
2

for α = β > 1
2
, c+ 2d = 0 ,

5
2

+ erf(2d) for β = 1
2
> α ,

5
2

+ erf(c) for α = 1
2
> β ,

5
2

+ erf(c+ 2d) for α = β = 1
2
,

5
2

+ erf(c) for α > β = 1
2
, c = 0 ,

5
2

+ erf(2d) for β > α = 1
2
, d = 0 ,
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For a+ 2b = 1, 2a− b < 1, 2a+ b > 1, we have

X(a, b, c, d, α, β) =



2 for α > β, α > 1
2
, c > 0 ,

2 for α > β > 1
2
, c = 0, d > 0 ,

2 for α = β > 1
2
, c+ 2d > 0 ,

2 for β > α > 1
2
, d = 0, c > 0 ,

2 for β > α, β > 1
2
, d > 0 ,

3
2

for 1
2
> α, β ,

3
2

for α > 1
2
> β , c = 0 ,

3
2

for β > 1
2
> α , d = 0 ,

3
2

for α > β > 1
2
, c = d = 0 ,

3
2

for β > α > 1
2
, c = d = 0 ,

3
2

for α = β > 1
2
, c+ 2d = 0 ,

3
2

+ erf(2d) for β = 1
2
> α ,

3
2

+ erf(c) for α = 1
2
> β ,

3
2

+ erf(c+ 2d) for α = β = 1
2
,

3
2

+ erf(c) for α > β = 1
2
, c = 0 ,

3
2

+ erf(2d) for β > α = 1
2
, d = 0 ,
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For a+ 2b = 1, a > 0, 2a+ b < 1, we have

X(a, b, c, d, α, β) =



1 for α > β, α > 1
2
, c > 0 ,

1 for α > β > 1
2
, c = 0, d > 0 ,

1 for α = β > 1
2
, c+ 2d > 0 ,

1 for β > α > 1
2
, d = 0, c > 0 ,

1 for β > α, β > 1
2
, d > 0 ,

1
2

for 1
2
> α, β ,

1
2

for α > 1
2
> β , c = 0 ,

1
2

for β > 1
2
> α , d = 0 ,

1
2

for α > β > 1
2
, c = d = 0 ,

1
2

for β > α > 1
2
, c = d = 0 ,

1
2

for α = β > 1
2
, c+ 2d = 0 ,

1
2

+ erf(2d) for β = 1
2
> α ,

1
2

+ erf(c) for α = 1
2
> β ,

1
2

+ erf(c+ 2d) for α = β = 1
2
,

1
2

+ erf(c) for α > β = 1
2
, c = 0 ,

1
2

+ erf(2d) for β > α = 1
2
, d = 0 ,
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For 2a+ b = 1, 2b− a > 1, b < 1, we have

X(a, b, c, d, α, β) =



3 for α > β, α > 1
2
, c > 0 ,

3 for α > β > 1
2
, c = 0, d > 0 ,

3 for α = β > 1
2
, 2c+ d > 0 ,

3 for β > α > 1
2
, d = 0, c > 0 ,

3 for β > α, β > 1
2
, d > 0 ,

5
2

for 1
2
> α, β ,

5
2

for α > 1
2
> β , c = 0 ,

5
2

for β > 1
2
> α , d = 0 ,

5
2

for α > β > 1
2
, c = d = 0 ,

5
2

for β > α > 1
2
, c = d = 0 ,

5
2

for α = β > 1
2
, 2c+ d = 0 ,

5
2

+ erf(d) for β = 1
2
> α ,

5
2

+ erf(2c) for α = 1
2
> β ,

5
2

+ erf(2c+ d) for α = β = 1
2
,

5
2

+ erf(2c) for α > β = 1
2
, c = 0 ,

5
2

+ erf(d) for β > α = 1
2
, d = 0 ,
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For 2a+ b = 1, 2b− a < 1, a+ 2b > 1, we have

X(a, b, c, d, α, β) =



2 for α > β, α > 1
2
, c > 0 ,

2 for α > β > 1
2
, c = 0, d > 0 ,

2 for α = β > 1
2
, 2c+ d > 0 ,

2 for β > α > 1
2
, d = 0, c > 0 ,

2 for β > α, β > 1
2
, d > 0 ,

3
2

for 1
2
> α, β ,

3
2

for α > 1
2
> β , c = 0 ,

3
2

for β > 1
2
> α , d = 0 ,

3
2

for α > β > 1
2
, c = d = 0 ,

3
2

for β > α > 1
2
, c = d = 0 ,

3
2

for α = β > 1
2
, 2c+ d = 0 ,

3
2

+ erf(d) for β = 1
2
> α ,

3
2

+ erf(2c) for α = 1
2
> β ,

3
2

+ erf(2c+ d) for α = β = 1
2
,

3
2

+ erf(2c) for α > β = 1
2
, c = 0 ,

3
2

+ erf(d) for β > α = 1
2
, d = 0 ,
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For 2a+ b = 1, b > 0, a+ 2b < 1, we have

X(a, b, c, d, α, β) =



1 for α > β, α > 1
2
, c > 0 ,

1 for α > β > 1
2
, c = 0, d > 0 ,

1 for α = β > 1
2
, 2c+ d > 0 ,

1 for β > α > 1
2
, d = 0, c > 0 ,

1 for β > α, β > 1
2
, d > 0 ,

1
2

for 1
2
> α, β ,

1
2

for α > 1
2
> β , c = 0 ,

1
2

for β > 1
2
> α , d = 0 ,

1
2

for α > β > 1
2
, c = d = 0 ,

1
2

for β > α > 1
2
, c = d = 0 ,

1
2

for α = β > 1
2
, 2c+ d = 0 ,

1
2

+ erf(d) for β = 1
2
> α ,

1
2

+ erf(2c) for α = 1
2
> β ,

1
2

+ erf(2c+ d) for α = β = 1
2
,

1
2

+ erf(2c) for α > β = 1
2
, c = 0 ,

1
2

+ erf(d) for β > α = 1
2
, d = 0 ,

8.2 Figures and numerical calculations
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Figure 8.1: Values of P62(k, k). Figure 8.2: Values of P125(k, k).

Figure 8.3: Values of P250(k, k). Figure 8.4: Values of P500(k, k).

Figure 8.5: Surface of P250(j, k). Figure 8.6: Surface of Q250(j, k).

Figure 8.7: A closer look at P250(j, k),

201 ≤ j + k ≤ 301.

Figure 8.8: A closer look at Q250(j, k),

201 ≤ j + k ≤ 301.
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