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Conjecture (Square Peg Problem)
Every Jordan curve C ⊂ R

2 has four points which form a square.

C
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History outline

1. O. Toeplitz, 1911 (convex case, claimed)

2. A. Emch, 1913 (convex case, proved)

3. L. G. Shnirelman, 1929, 1944 (continuous curvature, incomplete)

4. C. S. Ogilvy, 1959 (most general, totally wrong)

5. R. P. Jerrard, 1960 (analytic)

6. H. Guggenheimer, 1965 (Shnirelman corrected, +bounded var.)
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History outline (continued)

7. R. Fenn, 1970 (the table theorem)

8. E. H. and P. B. Kronheimer, 1981 (more table theorem)

9. W. Stromquist, 1989 (local monotone)

10. H. B. Griffiths, 1991 (C1 curves)

11. M. J. Nielsen, 1995 (rectangles in Jordan curves)

12. V. V. Makeev, 2005 (rhombi in space curves, sort of)
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Ogilvy’s “proof” (find three mistakes even in the PL case)

1) Fix line ℓ. Move (u1u2)‖ℓ from y to z.
2) Take intersections of L⊥ℓ through midpoint of [u1, u2].

Do this until you have an inscribed rhombus.
3) Rotate ℓ continuously from 0 to π/2. Wait for a square.
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Three mistakes

1) the “meandering” issue

2) the “connectivity” issue

3) the “uniqueness” issue
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Theorem (Emch, 1913)
Every convex curve has an inscribed square.

Idea: the above scheme works for convex curves.
The uniqueness follows by elementary arguments.

Theorem (Nielsen, 1995)
Every Jordan curve in the plane has an inscribed rhombus

with a diagonal ‖ℓ.

Idea: use the mountain climbing lemma.
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Mountain climbing lemma

Let f1, f2 : [0, 1] → [0, 1] be two continuous piecewise linear functions
with f1(0) = f2(0) = 0 and f1(1) = f2(1) = 1. Then there exist two
continuous piecewise linear functions g1, g2 : [0, 1] → [0, 1], such that
g1(0) = g2(0) = 0, g1(1) = g2(1) = 1, and

f1(g1(t)) = f2(g2(t)) for every t ∈ [0, 1].
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Main theorem

Every simple polygon in the plane has an inscribed square.

We give two new proofs of this result. Some ideas are classical.
Most details are new.

(1) Proof via inscribed triangles (based on Jerrard’s approach)

(2) Proof by deformation (based on Shnirelman’s approach)
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Inscribed triangles

Theorem For every simple polygon X ⊂ R
2 and a point z in the

interior of an edge in X, there exists an equilateral triangle inscribed

into X with z as a vertex.
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Proof via inscribed squares
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Proof steps

0) It suffices to proves the result for generic polygons with
angles between π/2 and 3π/2. Use the limit argument.

1) Let U = {(y, z) ⊂ C2 such that u ∈ C}.
Let V = {(y, z) ⊂ C2 such that v ∈ C}.
We need to prove that U ∩ V 6= ∅.

2) Check that sets U and V are disjoint unions of polygons.

3) Use a parity argument to find curves U ◦ ⊂ U and V ◦ ⊂ U .

4) Describe the topology of U ◦, V ◦ ⊂ T when U ◦ ∩ V ◦ = ∅

5) Find the smallest inscribed right isosceles triangle.
Obtain a contradiction.
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Set U on a torus T and the sequence of regions A, B, C ⊂ T .
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The smallest inscribed right isosceles triangle and its two labelings.
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Minor extension

Theorem. Every generic simple polygon has an odd number of in-

scribed squares.

Lemma (Hebbert, 1914) Let ℓ1, ℓ2, ℓ3 and ℓ4 be four lines in R
2 in

general position. Then there exists a unique square A = [a1a2a3a4]
such that xi ∈ ℓi and A is oriented clockwise. Moreover, the map

(ℓ1, ℓ2, ℓ3, ℓ4) → (a1, a2, a3, a4) is continuously differentiable, where de-

fined.
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Proof of the Lemma
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Proof by deformation

1) Subdivide the edges of a polygon so that all inscribed squares must
have vertices on different edges.

2) Show that a polygon can be deformed to the near-interval so that
all intermediate polygons satisfy 1).

3) Show that the parity of the number of inscribed squares is unchanged
under the deformation.

4) Check that near-interval convex polygons have a unique inscribed
square.
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Deformation of a square
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Deformation of a polygon
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∆
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Extensions and generalizations (polygons)

(1) (Kakeya, 1916) Every convex polygon has at least two inscribed

rectangles with given aspect ratio 6= 1.

(2) (Griffiths, 1991) Every simple polygon has an inscribed rectangle

with given aspect ratio.

(3) (Conjecture) Every simple polygon has an inscribed trapezoid

similar to a given isosceles trapezoid.

Note: only isosceles trapezoids can be inscribed into both cycles and
near intervals.

(4) (Stromquist, 1989) Every space polygon has an inscribed quadri-

lateral with equal angles and edge lengths.

(5) (Makeev, 2005) Every space polygon has an inscribed flat rhombus.

Note: this implies the square peg problem for simple polygons in the
plane.
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Extensions and generalizations (polyhedra)

(1) (Kakutani, 1942) Every convex body in R
3 has an outscribed cube.

(2) (Guggenheimer, 1965) Prove that every convex polytope P ⊂ R
3

has an inscribed regular octahedron.

(3) (Kramer, 1980) Every convex polytope in R
3 win general po-

sition with respect to the orthogonal axes has an inscribed equihedral

octahedron with its diagonals parallel to the axes.

(4) (Modified table theorem) Every convex polytope in R
3 symmetric

with respect to a plane H has an inscribed cube symmetric with respect

to H.


