Problems: New, Old and Unusual

Igor Pak, UCLA

National University of Ireland Galway, Ireland, December 1, 2009

Generating random group elements problem:

★ Given a finite black box $G = \langle g_1, \ldots, g_k \rangle$, generate random (nearly uniform) group elements.

Can: algorithm with $\operatorname{Poly}(\log |G|, k)$ time. Want: algorithm with $O(k \log |G|)$ time.

We can: always assume $k = O(\log |G|)$. We want: have k = O(1).

 $\mathbf{2}$

Three algorithms:

1. Babai algorithm (1991)

time: $O(\log^5 |G|)$ [Babai], $O(\log^4 |G|)$ [Pak'00] space: $\ell = O(\log |G|)$ (in both cases)

Idea: Take $\ell = O(\log |G|)$ repeated r.w. on G of length L. Keep adding endpoints of r.w.'s to your generating set. The last r.w. gives random group elements.

Better bounds?

For a lazy r.w. on Γ =Cayley(G, S), with $\langle S \rangle = G$, |S| = k

Known bounds:

1) mixing time = $O(\Delta^2 k \log |G|)$, where $\Delta = \operatorname{diam}(\Gamma)$. [Alon, Babai, Chung, Jerrum-Sinclair, Diaconis-Strook] 2) mixing time = $O(\Delta N k \log |G|)$, where $N = N(\Gamma)$ is a maximal

2) mixing time = $O(\Delta N \kappa \log |G|)$, where N = N(1) is a maximal multiplicity of an element in shortest paths [Diaconis & Saloff-Coste]

Conjecture [Diaconis, Peres] mixing time = $O(\Delta^2 k)$.

Conjecture [Pak] mixing time = $O(\Delta Nk \log \log |G|)$.

This would give $O^*(\log^3 |G|)$ bound for the Babai Algorithm

2. Product replacement algorithm (1995, 2002)

(Leedham-Green & Soicher, [CLMNO], Leedham-Green & Murray)

space: $\Omega(k + \log \log |G|)$ [Pak, Lubotzky, Detomi-Lucchini-Morini] (that's what it takes to avoid the bias discovered in [Babai-Pak])

time: $O^*(\log^9 |G|)$ [Pak'00], $O^*(\log^5 |G|)$ [Pak, unpublished] space: $O^*(\log |G|)$ (in both cases)

time: $O(k \log |G|)$, space: O(k) [Lubotzky-Pak, + more] (very special cases, or very special assumptions)

Idea: take a r.w. on generating ℓ -tuples (g_1, \ldots, g_ℓ) : Repeatedly use random substitutes $g_i \leftarrow g_i g_j^{\pm 1}$ or $g_i \leftarrow g_j^{\pm 1} g_i$ Output random components of the ℓ -tuple

3. Random subproducts algorithm [Cooperman'02]

time: $O(\log^2 |G|)$ [Dixon'08] space: $O(\log |G|)$

Idea: Take repeated random subproducts

 $g = g_1^{\varepsilon_1} \cdots g_k^{\varepsilon_k}, \quad \varepsilon_i \in \{0, 1\}$

Add new subproducts to your generating set; Repeat this $O(\log |G|)$ times.

6

Making k smaller

Problem: Does there exist a $Poly(\log |G|)$ time algorithm with space $\ell = O(k)$?

Conjecture 1. Yes, if G is simple, k = O(1).

In fact, PRA will probably work for simple groups of Lie type. Moreover, even Babai Algorithm will probably work in this case.

Conjecture 2. No, for general finite G and k. If I had to guess, take $G = (A_n)^{n!/8}$, where $n \to \infty$, and k = 2.

Complexity theory: even the case $\ell = (\log |G|)^{\alpha}$ with $\alpha < 1$, does not follow from known results.

What is known:

8

Conjecture [Babai]: The diameter of *every* Cayley graph of a simple group is $O(\log^c |G|)$.

Now known for SL(n, q), [Dinai, 2006], [Helfgott, 2008]

This implies that a single round of length $L = O(\log^c |G|)$ in the Babai Algorithm will suffice for Conjecture 1.

Prediction: Eventually (in the next 10 years) Babai conjecture will be established for all simple groups of Lie type.

For A_n there is much less hope, despite recent polynomiality results of [Babai-Beals-Seress], [Babai-Heyes].

Conjecture^{*} [Lubotzky]: The *every* Cayley graph of a simple group of Lie type with bounded rank, is an *expander*.

In particular, the diameter of Cayley graphs is $O(\log |G|)$ then. Also implies that PRA works in *linear time* [Gamburd-Pak]

Has been established in [Brouillard-Gamburd'09+] for SL(2, p), some p. (based on [Gamburd-Shahshahani], [Bourgain-Gamburd], [Helfgott])

Theorem [Brouillard-Gamburd + Gamburd-Pak] For infinitely many primes p, the PRA on SL(2, p) with $\ell \geq 8$ takes linear time $O(\log p)$.

Sum / products ideas

Conjecture [Erdős-Szemerédi] For every finite $A \subset \mathbb{N}$ (also \mathbb{F}_q , \mathbb{C}) either |A + A| = O(|A|), or $|A \cdot A| = O(|A|)$.

Open, but $|A + A| \cdot |A \cdot A| = O(|A|^3)$ is known, as well as many versions over the finite field [Bourgain-Katz-Tao, Konyagin, Tao, Solymozi, etc.]

Lemma [Helfgott] For $A \subset SL(2, p)$, $|A| < p^{3-\delta}$, we have $|A \cdot A \cdot A| > |A|^{1+\varepsilon}$ for some $\varepsilon = \varepsilon(\delta) > 0$.

10

Other groups?

Open Problem: Variation for S_n ???

Theorem [Freiman]

For every finite group G with the generating set S, and $A \subset G$, either $|A \cdot A| > \frac{4}{3}|A|$, or $|S \cdot A \cdot A| > 2|A|$.

This result lies in the heart of Dixon's analysis of the random subproduct algorithm.

Lemma [Freiman] Suppose that G is a group and that $B \subseteq G$ is a set with $|B \cdot B^{-1}| < \frac{4}{3}|B|$. Then $B \cdot B^{-1}$ is a subgroup of G.

Proof: For every $b_1, b_2 \in B$ we have $|Bb_1^{-1} \cap Bb_2^{-1}| > \frac{2}{3}|B|$. Thus, there are more than $\frac{2}{3}|B|$ pairs $(x_1, x_2) \in B^2$ with $x_1^{-1}x_2 = b_1^{-1}b_2$. In particular, we have $|B^{-1} \cdot B| < \frac{3}{2}|B|$. From here, for every fixed $b_1, b_2 \in B$ we have $|b_1^{-1}B \cap b_2^{-1}B| > \frac{1}{2}|B|$. Thus, there are more than $\frac{1}{2}|B|$ pairs $(x_1, x_2) \in B^2$ with $x_1x_2^{-1} = b_1b_2^{-1}$.

Similarly for any fixed b_3, b_4^{-1} there are more than $\frac{1}{2}|B|$ pairs $(x_3, x_4) \in B^2$ with $x_3x_4^{-1} = b_3b_4^{-1}$. By the pigeonhole principle we may choose (x_1, x_2) and (x_3, x_4) so that $x_2 = x_3$, which means that $(b_1b_2^{-1})(b_3b_4^{-1}) = x_1x_4^{-1} \in B \cdot B^{-1}$. \Box

Thank you!

