Problems: New, Old and Unusual

Igor Pak, UCLA

National University of Ireland
Galway, Ireland, December 1, 2009

Generating random group elements problem:

\star Given a finite black box $G=\left\langle g_{1}, \ldots, g_{k}\right\rangle$, generate random (nearly uniform) group elements.

Can: algorithm with $\operatorname{Poly}(\log |G|, k)$ time.
Want: algorithm with $O(k \log |G|)$ time.

We can: always assume $k=O(\log |G|)$.
We want: have $k=O(1)$.

Three algorithms:

1. Babai algorithm (1991)
time: $O\left(\log ^{5}|G|\right)$ [Babai], $O\left(\log ^{4}|G|\right)$ [Pak'00] space: $\ell=O(\log |G|) \quad$ (in both cases)

Idea: Take $\ell=O(\log |G|)$ repeated r.w. on G of length L.
Keep adding endpoints of r.w.'s to your generating set.
The last r.w. gives random group elements.

Better bounds?

For a lazy r.w. on $\Gamma=\operatorname{Cayley}(G, S)$, with $\langle S\rangle=G,|S|=k$

Known bounds:

1) mixing time $=O\left(\Delta^{2} k \log |G|\right)$, where $\Delta=\operatorname{diam}(\Gamma)$.
[Alon, Babai, Chung, Jerrum-Sinclair, Diaconis-Strook]
2) mixing time $=O(\Delta N k \log |G|)$, where $N=N(\Gamma)$ is a maximal multiplicity of an element in shortest paths [Diaconis \& Saloff-Coste]

Conjecture [Diaconis, Peres] mixing time $=O\left(\Delta^{2} k\right)$.
Conjecture [Pak] mixing time $=O(\Delta N k \log \log |G|)$.
This would give $O^{*}\left(\log ^{3}|G|\right)$ bound for the Babai Algorithm

2. Product replacement algorithm (1995, 2002)

(Leedham-Green \& Soicher, [CLMNO], Leedham-Green \& Murray)
space: $\Omega(k+\log \log |G|)$ [Pak, Lubotzky, Detomi-Lucchini-Morini] (that's what it takes to avoid the bias discovered in [Babai-Pak])
time: $O^{*}\left(\log ^{9}|G|\right)$ [Pak'00], $O^{*}\left(\log ^{5}|G|\right)$ [Pak, unpublished] space: $O^{*}(\log |G|) \quad$ (in both cases)
time: $O(k \log |G|)$, space: $O(k)$ [Lubotzky-Pak, + more] (very special cases, or very special assumptions)

Idea: take a r.w. on generating ℓ-tuples $\left(g_{1}, \ldots, g_{\ell}\right)$: Repeatedly use random substitutes $g_{i} \leftarrow g_{i} g_{j}^{ \pm 1}$ or $g_{i} \leftarrow g_{j}^{ \pm 1} g_{i}$ Output random components of the ℓ-tuple

3. Random subproducts algorithm [Cooperman'02]

$$
\begin{aligned}
& \text { time: } O\left(\log ^{2}|G|\right) \quad \text { [Dixon'08] } \\
& \text { space: } O(\log |G|)
\end{aligned}
$$

Idea: Take repeated random subproducts

$$
g=g_{1}^{\varepsilon_{1}} \cdots g_{k}^{\varepsilon_{k}}, \quad \varepsilon_{i} \in\{0,1\}
$$

Add new subproducts to your generating set; Repeat this $O(\log |G|)$ times.

Making k smaller

Problem: Does there exist a Poly $(\log |G|)$ time algorithm with space $\ell=O(k)$?

Conjecture 1. Yes, if G is simple, $k=O(1)$.
In fact, PRA will probably work for simple groups of Lie type.
Moreover, even Babai Algorithm will probably work in this case.

Conjecture 2. No, for general finite G and k.
If I had to guess, take $G=\left(A_{n}\right)^{n!/ 8}$, where $n \rightarrow \infty$, and $k=2$.
Complexity theory: even the case $\ell=(\log |G|)^{\alpha}$ with $\alpha<1$, does not follow from known results.

What is known:

Conjecture [Babai]: The diameter of every Cayley graph of a simple group is $O\left(\log ^{c}|G|\right)$.

Now known for SL (n, q), [Dinai, 2006], [Helfgott, 2008]
This implies that a single round of of length $L=O\left(\log ^{c}|G|\right)$ in the Babai Algorithm will suffice for Conjecture 1.

Prediction: Eventually (in the next 10 years) Babai conjecture will be established for all simple groups of Lie type.

For A_{n} there is much less hope, despite recent polynomiality results of [Babai-Beals-Seress], [Babai-Heyes].

Conjecture* [Lubotzky]: The every Cayley graph of a simple group of Lie type with bounded rank, is an expander.

In particular, the diameter of Cayley graphs is $O(\log |G|)$ then. Also implies that PRA works in linear time [Gamburd-Pak]

Has been established in [Brouillard-Gamburd'09+] for SL($2, p$), some p. (based on [Gamburd-Shahshahani], [Bourgain-Gamburd], [Helfgott])

Theorem [Brouillard-Gamburd + Gamburd-Pak]
For infinitely many primes p, the $P R A$ on $\mathrm{SL}(2, p)$ with $\ell \geq 8$ takes linear time $O(\log p)$.

Sum / products ideas

Conjecture [Erdős-Szemerédi] For every finite $A \subset \mathbb{N}\left(\right.$ also $\left.\mathbb{F}_{q}, \mathbb{C}\right)$ either $|A+A|=O(|A|)$, or $|A \cdot A|=O(|A|)$.

Open, but $|A+A| \cdot|A \cdot A|=O\left(|A|^{3}\right)$ is known, as well as many versions over the finite field [Bourgain-Katz-Tao, Konyagin, Tao, Solymozi, etc.]

Lemma [Helfgott]
For $A \subset \operatorname{SL}(2, p),|A|<p^{3-\delta}$, we have

$$
|A \cdot A \cdot A|>|A|^{1+\varepsilon}
$$

for some $\varepsilon=\varepsilon(\delta)>0$.

Other groups?

Open Problem: Variation for S_{n} ???
Theorem [Freiman]
For every finite group G with the generating set S, and $A \subset G$, either $|A \cdot A|>\frac{4}{3}|A|$, or $|S \cdot A \cdot A|>2|A|$.

This result lies in the heart of Dixon's analysis of the random subproduct algorithm.

Lemma [Freiman] Suppose that G is a group and that $B \subseteq G$ is a set with $\left|B \cdot B^{-1}\right|<\frac{4}{3}|B|$. Then $B \cdot B^{-1}$ is a subgroup of G.

Proof: For every $b_{1}, b_{2} \in B$ we have $\left|B b_{1}^{-1} \cap B b_{2}^{-1}\right|>\frac{2}{3}|B|$. Thus, there are more than $\frac{2}{3}|B|$ pairs $\left(x_{1}, x_{2}\right) \in B^{2}$ with $x_{1}^{-1} x_{2}=b_{1}^{-1} b_{2}$. In particular, we have $\left|B^{-1} \cdot B\right|<\frac{3}{2}|B|$. From here, for every fixed $b_{1}, b_{2} \in$ B we have $\left|b_{1}^{-1} B \cap b_{2}^{-1} B\right|>\frac{1}{2}|B|$. Thus, there are more than $\frac{1}{2}|B|$ pairs $\left(x_{1}, x_{2}\right) \in B^{2}$ with $x_{1} x_{2}^{-1}=b_{1} b_{2}^{-1}$.

Similarly for any fixed b_{3}, b_{4}^{-1} there are more than $\frac{1}{2}|B|$ pairs $\left(x_{3}, x_{4}\right) \in$ B^{2} with $x_{3} x_{4}^{-1}=b_{3} b_{4}^{-1}$. By the pigeonhole principle we may choose $\left(x_{1}, x_{2}\right)$ and $\left(x_{3}, x_{4}\right)$ so that $x_{2}=x_{3}$, which means that $\left(b_{1} b_{2}^{-1}\right)\left(b_{3} b_{4}^{-1}\right)=$ $x_{1} x_{4}^{-1} \in B \cdot B^{-1}$.

Thank you!

