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Generating random group elements problem:

⋆ Given a finite black box G = 〈g1, . . . , gk〉,
generate random (nearly uniform) group elements.

Can: algorithm with Poly(log |G|, k) time.

Want: algorithm with O(k log |G|) time.

We can: always assume k = O(log |G|).

We want: have k = O(1).
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Three algorithms:

1. Babai algorithm (1991)

time: O(log5 |G|) [Babai], O(log4 |G|) [Pak’00]
space: ℓ = O(log |G|) (in both cases)

Idea: Take ℓ = O(log |G|) repeated r.w. on G of length L.

Keep adding endpoints of r.w.’s to your generating set.

The last r.w. gives random group elements.
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Better bounds?

For a lazy r.w. on Γ =Cayley(G, S), with 〈S〉 = G, |S| = k

Known bounds:

1) mixing time = O(∆2k log |G|), where ∆ = diam(Γ).
[Alon, Babai, Chung, Jerrum-Sinclair, Diaconis-Strook]

2) mixing time = O(∆N k log |G|), where N = N(Γ) is a maximal
multiplicity of an element in shortest paths [Diaconis & Saloff-Coste]

Conjecture [Diaconis, Peres] mixing time = O(∆2k).

Conjecture [Pak] mixing time = O(∆Nk log log |G|).

This would give O∗(log3 |G|) bound for the Babai Algorithm
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2. Product replacement algorithm (1995, 2002)
(Leedham-Green & Soicher, [CLMNO], Leedham-Green & Murray)

space: Ω(k + log log |G|) [Pak, Lubotzky, Detomi-Lucchini-Morini]
(that’s what it takes to avoid the bias discovered in [Babai-Pak])

time: O∗(log9 |G|) [Pak’00], O∗(log5 |G|) [Pak, unpublished]
space: O∗(log |G|) (in both cases)

time: O(k log |G|), space: O(k) [Lubotzky-Pak, + more]
(very special cases, or very special assumptions)

Idea: take a r.w. on generating ℓ-tuples (g1, . . . , gℓ) :
Repeatedly use random substitutes gi ← gig

±1
j or gi ← g±1

j gi

Output random components of the ℓ-tuple
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3. Random subproducts algorithm [Cooperman’02]

time: O(log2 |G|) [Dixon’08]
space: O(log |G|)

Idea: Take repeated random subproducts

g = gε1

1 · · · g
εk

k , εi ∈ {0, 1}

Add new subproducts to your generating set;
Repeat this O(log |G|) times.
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Making k smaller

Problem: Does there exist a Poly(log |G|) time algorithm

with space ℓ = O(k)?

Conjecture 1. Yes, if G is simple, k = O(1).

In fact, PRA will probably work for simple groups of Lie type.

Moreover, even Babai Algorithm will probably work in this case.

Conjecture 2. No, for general finite G and k.

If I had to guess, take G = (An)
n!/8, where n→∞, and k = 2.

Complexity theory: even the case ℓ = (log |G|)α with α < 1,

does not follow from known results.
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What is known:

Conjecture [Babai]: The diameter of every Cayley graph of a simple
group is O(logc |G|).

Now known for SL(n, q), [Dinai, 2006], [Helfgott, 2008]

This implies that a single round of of length L = O(logc |G|) in the

Babai Algorithm will suffice for Conjecture 1.

Prediction: Eventually (in the next 10 years) Babai conjecture will be
established for all simple groups of Lie type.

For An there is much less hope, despite recent polynomiality results of

[Babai-Beals-Seress], [Babai-Heyes].
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Conjecture∗ [Lubotzky]: The every Cayley graph of a simple group
of Lie type with bounded rank, is an expander.

In particular, the diameter of Cayley graphs is O(log |G|) then.

Also implies that PRA works in linear time [Gamburd-Pak]

Has been established in [Brouillard-Gamburd’09+] for SL(2, p), some p.

(based on [Gamburd-Shahshahani], [Bourgain-Gamburd], [Helfgott])

Theorem [Brouillard-Gamburd + Gamburd-Pak]

For infinitely many primes p, the PRA on SL(2, p) with ℓ ≥ 8 takes

linear time O(log p).
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Sum / products ideas

Conjecture [Erdős-Szemerédi] For every finite A ⊂ N (also Fq, C)

either |A + A| = O(|A|), or |A · A| = O(|A|).

Open, but |A+A| · |A ·A| = O(|A|3) is known, as well as many versions
over the finite field [Bourgain-Katz-Tao, Konyagin, Tao, Solymozi, etc.]

Lemma [Helfgott]

For A ⊂ SL(2, p), |A| < p3−δ, we have

|A · A · A| > |A|1+ε

for some ε = ε(δ) > 0.
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Other groups?

Open Problem: Variation for Sn ???

Theorem [Freiman]

For every finite group G with the generating set S, and A ⊂ G,

either |A · A| > 4

3
|A|, or |S · A · A| > 2|A|.

This result lies in the heart of Dixon’s analysis of the random
subproduct algorithm.
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Lemma [Freiman] Suppose that G is a group and that B ⊆ G is a set

with |B · B−1| < 4

3
|B|. Then B · B−1 is a subgroup of G.

Proof: For every b1, b2 ∈ B we have |Bb−1
1 ∩ Bb−1

2 | >
2

3
|B|. Thus,

there are more than 2

3
|B| pairs (x1, x2) ∈ B2 with x−1

1 x2 = b−1
1 b2. In

particular, we have |B−1 ·B| < 3

2
|B|. From here, for every fixed b1, b2 ∈

B we have |b−1
1 B ∩ b−1

2 B| > 1

2
|B|. Thus, there are more than 1

2
|B| pairs

(x1, x2) ∈ B2 with x1x
−1
2 = b1b

−1
2 .

Similarly for any fixed b3, b
−1
4 there are more than 1

2
|B| pairs (x3, x4) ∈

B2 with x3x
−1
4 = b3b

−1
4 . By the pigeonhole principle we may choose

(x1, x2) and (x3, x4) so that x2 = x3, which means that (b1b
−1
2 )(b3b

−1
4 ) =

x1x
−1
4 ∈ B ·B−1. �
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Thank you!


