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The future is already here — it’s just not

very evenly distributed.

William Gibson
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Q1: What are combinatorial bijections?

Q2: What is Combinatorics?

Q3: What is Mathematics?

Answer: see next page...



Harvard University:

Mathematics is an art!



My answer:

Bijective combinatorics is an art!

Past: bijections as essays or short stories.

Future: bijections as long form storytelling, bordering on novels.



Common features of long bijection stories:

• they are long and occasionally technical;

• they begin as basic observations which are later greatly generalized;

• throughout the work or its followups, they have common characters, threads

or features going to the heart of the bijection in the simplest case;

• they reveal new underlying (combinatorial, algebraic, geometric, etc.)

structure of the objects of study, which was not previously transparent.



Examples of long form bijective stories:

1) Involution principle and the followup applications to the Andrews identities:

[Garsia & Milne, 1981], [Remmel, 1982], [Gordon, 1983], [O’Hara, 1988], [KP, 2009]

2) Dyson’s rank and Rogers–Ramanujan identities:

[Dyson, 1944,’69,’88], [Bressoud & Zeilberger, 1988], [Boulet & P., 2006], [Boulet, 2010]

3) MacMahon’s Master Theorem and GLZ’s quantum generalization:

[Cartier & Foata, 1969], [P., Postnikov & Retakh, 1995], [KP, 2007]

4) Bijections for planar maps and Tutte formulas:

[Cori & Vauquelin, 1981], [Schaeffer, 1998], [Poulalhon & Schaeffer, 2006], [Fusy, Poulalhon,
& Schaeffer, 2008], [Bernardi & Fusy, 2011+]



5) RSK, jeu-de-taquin, Littlewood-Robinson map, tableaux switching,
Schützenberger involution, fundamental symmetry for LR-coefficients:

[ ... too many to list ... ], [P. & Vallejo, 2010]

6) Hook walks and weighted hook walks:

[Green, Nijenhuis & Wilf, 1979,’84], [Sagan, 1980], [Zeilberger,1984]

[Ciocan-Fontanine, KP, 2010,’11], [Konvalinka, 2010,’11+]

......... =⇒ future.



What to expect today: two long bijection stories

0) Motivating problem: Cayley theorem and Braun’s conjecture on

Cayley polytopes.

1) From statistics on trees and graph polynomials to dissections of

Cayley polytopes.

2) Cayley compositions, partitions, and integer points in

Cayley polytopes.

3) How these stories come together: a new explanation of the

Cayley polytopes.



Motivating Problem



Cayley’s Theorem (1857)

The number of integer sequences (a1, . . . , an) such that

1 ≤ a1 ≤ 2 , and 1 ≤ ai+1 ≤ 2ai for 1 ≤ i < n,

is equal to the total number of partitions of integers ≤ 2n − 1

into parts 1, 2, 4, . . . , 2n−1.

These are called Cayley compositions An and Cayley partitions Bn.

Example: n = 2, |A2| = |B2| = 6

A2 =
{
(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (2, 4)

}
,

B2 =
{
21, 13, 2, 12, 1, ∅

}
.



Braun’s Conjecture (2011)

Define Cayley polytope Cn ⊂ Rn by inequalities:

1 ≤ x1 ≤ 2, and 1 ≤ xi ≤ 2xi−1 for i = 2, . . . , n,

so that An are integer points in Cn.

Theorem 1. [Formerly Braun’s Conjecture]

volCn = Cn+1/n!,

where Cn is the number of connected labeled graphs on n vertices.

Remark: Polytope Cn is combinatorially equivalent to a n-cube.

{Cn} is A001187 in Sloane’s Encyclopedia of Integer Sequences:

1, 1, 4, 38, 728, 26704, 1866256, 251548592, 66296291072, 34496488594816, . . .



First Story



First prequel: Tutte’s external activities

Theorem [Tutte, 1954]: |C(G)| =
∑
τ∈G

2ea(τ), where

− G is a connected graph with a fixed ordering ≺ of edges,

− τ are spanning trees in G,

− ea(τ) is the number of externally active edges in τ ,

− C(G) is the set of connected subgraphs in G.

Bijection: [Crapo, 1969]

◦ Let φ : H → τ be the minimal spanning tree (MST) map.

◦ Observe that edges in H − τ are externally active edges (to τ).

◦ Conclude that
∣∣φ−1(τ)

∣∣ = 2ea(τ).



Second prequel: tree inversions and DFS

Theorem [Mallows & Riordan, 1968]: Cn =
∑
τ∈Kn

2inv(τ), where

− Kn is a complete graph on {1, . . . , n},
− τ are spanning trees in Kn,

− inv(τ) is the number of inversions in τ ,

− Cn is the number of connected subgraphs in Kn.

Bijection: [Gessel & Wang, 1979]

◦ Let φ : H → τ be the depth first search (DFS) tree.

◦ Observe that edges in Kn − τ correspond to inversions in τ .

◦ Conclude that
∣∣φ−1(τ)

∣∣ = 2inv(τ).



Third prequel: neighbor-first search (NFS)

NFS Algorithm

Input: graph G on {1, . . . , n}.
Start at n. Make node n active. Do:

• Visit unvisited neighbors of the active node in decreasing order of their labels;
make the one with the smallest label the new active vertex.

• If all the neighbors of the active vertex have been visited, backtrack to the last
visited vertex that has not been an active vertex, and make it the new active vertex.

Repeat: until all vertices have been active.

Output: the resulting search tree τ = Φ(G).

Remark: The NFS is a mixture of BFS and DFS.



Example: Graph G and its NFS tree Φ(G).
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Theorem [Gessel & Sagan, 1996]: Cn =
∑
τ∈G

2α(τ), where α(τ) is the number of

cane paths in τ , defined as follows:

Key observation: The number of graphs G with a given NFS search tree τ ,

is equal to 2α(τ).

Remarks: See also [Gilbert, 1959] and [Kreveras, 1980]



Proof idea: an explicit triangulation into orthoschemes

Conjecture [Hadwiger, 1956]

Every convex polytope in Rd can be dissected into a finite number of orthoschemes.

Remark: Suffices to prove for simplices. Known for d ≤ 6.

e
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e
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e
3

Figure 1. An example of an orthoscheme (path-simplex).



Triangulation Construction:
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The simplex Sτ ∈ R11 corresponding to a labeled tree τ ∈ K11 is given by
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We have α(τ) = 21, and vol(Sτ ) = 221/11!.

Rules: Label nodes according to NFS. Take xi/2
ki to be the coordinate

corresponding to v ∈ τ , where ki is the number of cane paths in τ that

start in v. For inequalities, use the original ordering of labels in τ .



Example: Our triangulation of Cayley polytope C3 from two different angles:

Note: There are 16 orthoschemes in the triangulation, each of volume 2k/3!,

where k varies. In general, there are (n+ 1)n−1 orthoschemes (Cayley’s formula).



Sequel: extension to other values of the Tutte polynomial

Cn = TKn(1, 2), where TG(x, y) is the Tutte polynomial of graph G :

TG(x, y) =
∑
H⊆G

(x− 1)k(H)−k(G)(y − 1)e(H)−|V |+k(H) ,

where k(H) is the number of connected components in H. Also:

TG(x, y) =
∑
τ∈G

xia(τ)yea(τ) ,

where the summation is over all spanning trees τ in G,

ia(τ) is the number of internally active edges in τ ,

ea(τ) is the number of externally active edges in τ .



Tutte polytope

For every 0 < q ≤ 1 and t > 0, define Tutte polytope Tn(q, t) ⊂ Rn by inequalities:

xn ≥ 1− q, and

xi ≤ (1 + t)xi−1 − t(1− q)

q
(1− xj−1), where 1 ≤ j ≤ i ≤ n and x0 = 1.

Theorem: Tutte polytopes Tn(q, t) have 2n vertices.

Example: Compare the vertex coordinates of C3 and T3(q, t) :

2 4 8
2 4 1
2 1 2
2 1 1
1 2 4
1 2 1
1 1 2
1 1 1

1 + t (1 + t)2 (1 + t)3

1 + t (1 + t)2 1− q
1 + t 1 1 + t
1 + t 1− q 1− q
1 1 + t (1 + t)2

1 1 + t 1− q
1 1 1 + t

1− q 1− q 1− q



Main Theorem

Let Tn(q, t) ⊂ Rn be the Tutte polytope defined above, 0 < q ≤ 1, t > 0. Then:

volTn(q, t) = tnTKn+1(1 + q/t, 1 + t)/n!,

where TH(x, y) denotes the Tutte polynomial of graph H.

Remark: Cayley polytopes are limits of Tutte polytopes:

limq→0+ Tn(q, 1) = Cn .

This follows from the explicit form of vertex coordinates.

Since TKn(1, 2) = Cn, Main Theorem implies Braun’s Conjecture.



Proof of Main Theorem:
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Figure 2. A triangulation of the Tutte polytope T2(q, t).



Second Story



First prequel: geometric partition identities

Theorem [Andrews, Paule & Riese, 2001]:

Let π(n) be the number of convex partitions of n, defined by the inequalities

λ1 − λ2 ≥ λ2 − λ3 ≥ λ3 − λ4 ≥ . . . Then:

1 +
∞∑
n=1

π(n)tn =
∞∏
k=2

1

1− t(
k
2)
.

Bijective proof [Corteel & Savage, 2004] (see also [P., 2004])

◦ Think of convex partitions as an integer cone with “triangular basis”:

ψ : (m1,m2,m3, . . .) → m1 · (1, 0, 0, . . .) +m2 · (2, 1, 0, . . .) +m3 · (3, 2, 1, . . .) + . . .

◦ Check that ψ is a bijection.

N.B. Zeilberger called ψ, “brilliant”, “human generated” (Aug 98), “extremely elegant” (Mar ’01).



Second prequel: combinatorics of LR-coefficients

Theorem [Berenstein & Zelevinsky, 1988], [Knutson & Tao, 1999]

The number of LR-tableaux LR(λ, µ, ν) is equal to the number of

Hives H(λ, µ, ν) and the number of BZ-triangles BZ(λ, µ, ν) (= cνλ,µ).

Hard bijective proofs: [Carré, 1991], [Fulton, 1997]

Using RSK, fundamental symmetry, etc.

Easy, natural bijective proofs: [P. & Vallejo, 2005]

1) Write each set as set of integer points in certain polyhedra.

2) Compute is a unique affine linear map between polyhedra.

3) Observe that these maps map integer points into integer points.



Further results in this direction (almost all non-bijective!)

⋄ [Bousquet-Mélou & Eriksson, 1997,’99], [Yee, 2001,’02]

(“lecture hall” partition identities via integer points in polytopes)

⋄ [Corteel, Savage, & Wilf, 2005], [Corteel, Lee & Savage, 2007]

(enumeration of partitions and compositions defined by inequalities)

⋄ [Andrews, Paule, Riese & Strehl, 2001] (“MacMahon’s Omega” series V)

Cayley theorem revived and reproved (first new proof in 144 years)

⋄ [Beck, Braun & Le, 2011] (Braun’s conjecture is stated, among other things)



Cayley’s Theorem

The number of integer sequences (a1, . . . , an) such that

1 ≤ a1 ≤ 2 , and 1 ≤ ai+1 ≤ 2ai for 1 ≤ i < n,

is equal to the total number of partitions of integers ≤ 2n − 1

into parts 1, 2, 4, . . . , 2n−1.

These are Cayley compositions An and Cayley partitions Bn.

≪ Now think of An,Bn ⊂ Rn. ≫

Example: n = 2, |A2| = |B2| = 6.

A2 =
{
(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (2, 4)

}
,

B2 =
{
(1, 1), (0, 3), (1, 0), (0, 2), (0, 1), (0, 0)

}
.



Polytope of Cayley partitions

Observe: Bn is the set of integer points in simplex Qn:

y1, . . . , yn ≥ 0, 2n−1y1 + . . .+ 2yn−1 + yn ≤ 2n − 1

Theorem 2. Let Pn ⊂ Rn be the convex hull of Bn.

Then volPn = volCn (and thus = Cn+1/n!).

Sketch of proof: Define φ : Rn → Rn as follows:

φ : (a1, a2, a3, . . .) → (2− a1, 2a1 − a2, 2a2 − a3, . . .).

Observe that φ is volume-preserving. Now check that φ : Cn → Pn. �



First ever bijective proof of Cayley’s theorem:

Proof. Observe that φ : An → Bn is a bijection. �

Example: Bijection φ : A2 → B2 is then as follows:

(1, 1) → (1, 1) = 21, (1, 2) → (1, 0) = 2, (2, 1) → (0, 3) = 13 ,

(2, 2) → (0, 2) = 12 , (2, 3) → (0, 1) = 1, (2, 4) → (0, 0) = ∅.

Corollary: The number of Cayley partitions of m in Bn is equal to the

number of Cayley compositions (a1, . . . , an) ∈ An, such that an = 2n −m.



The merge of two stories



Parking functions polytope [Stanley & Pitman, 2002]

Let Πn

(
θ1, . . . , θn

)
be defined by the inequalities:

Πn

(
θ1, . . . , θn

)
=

{
(x1, . . . , xn) : xi ≥ 0, x1 + . . .+ xi ≤ θ1 + . . .+ θi, ∀i

}
.

Theorem [Stanley & Pitman, 2002]

volΠn

(
θ1, . . . , θn

)
=

1

n!

∑
(a1,...,an)∈Park(n)

θa1 · · · θan

Corollary: volΠn

(
1, q, q2 . . . , qn−1

)
=

1

n!2(
n
2)

· Tn(1, 1/q)



Second proof of Braun’s Conjecture [KP, 2011+]

Corollary: volΠn

(
1,

1

2
,
1

4
, . . .

)
=

q(
n
2)

n!Cn

Proof of Braun’s Conjecture:

♡ Use map φ to write explicit inequalities for Bn.

♡ Check that Bn is a scaled version of Πn

(
1, 1

2
, 1
4
, . . .

)
. �



Application to asymptotic combinatorics

Idea: Use the nice and explicit geometric structure of Pn ⊂ Qn

to estimate volBn from above and below.

Theorem: The number Cn of connected labeled graphs on n nodes satisfies

Cn = 2n(n−1)/2

(
1 − n

2n−1
+
O(n2)

22n

)
.

This slightly improves the classical bound in [Gilbert, 1959]

Cn = 2n(n−1)/2

(
1 − n

2n−1
+
O(n2)

23n/2

)
.



Thank you!


