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What is Enumerative Combinatoris?

Seleted ombinatorial sequenes (from OEIS):

A000001: 1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14, . . . ← �nite groups

A000040: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, . . . ← primes

A000041: 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, . . . ← p(n)

A000045: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 232, . . . ← Fib(n)

A000085: 1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, . . . ← involutions in Sn

A000108: 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, . . . ← Cat(n)

A000088: 1, 1, 4, 38, 728, 26704, 1866256, 251548592, . . . ← onneted

labeled graphs

Main question: Is there a formula?



What is a formula?

(A) The most satisfatory form of f(n) is a ompletely ex-

pliit losed formula involving only well-known funtions, and

free from summation symbols. Only in rare ases will suh a for-

mula exist. As formulas for f(n) beome more ompliated, our

willingness to aept them as �determinations� of f(n) dereases.

Rihard Stanley, Enumerative Combinatoris, (1986)

(B) Formula = Algorithm working in time Poly(n).

Herb Wilf, What is an answer? (1982)

(C) Asymptoti formula

(A) ⇒ (B) , (C) ??



Asymptoti formulas:

Fib(n) ∼ 1√
5
φn, where φ = (1 +

√
5)/2 [de Moivre, . 1705℄

Cat(n) ∼ 4n√
πn3/2

[Euler + Stirling, 1751℄

pn ∼ n logn [Hadamard, Vallée-Poussin, 1896℄

#{integer partitions ofn} ∼ 1

4
√
3n

eπ
√

2n/3
[Hardy, Ramanujan, 1918℄

#{involutions inSn} ∼
1√
2e1/4

(n

e

)n/2

e
√
n

[Chowla, 1950℄

#{groups of order ≤ n} ∼ n
2

27
(log

2
n)2

[Pyber, 1993℄

#{graphs on n verties} ∼ 2(
n

2)
[⇔ random graph is onneted w.h.p.℄



Fibonai numbers:

F (n) = number of 0-1 sequenes of length n− 1 with no (11).

F (3) = 3, {00, 01, 10}. F (4) = 5, {000, 001, 010, 100, 101}.

(1) F (n + 1) = F (n) + F (n− 1)

(2) F (n) =

⌊n/2⌋
∑

i=0

(

n− i

i

)

(3) F (n) =
1√
5

(

φn + (−1/φ)n
)

Observe: �Closed formula� (3) is not useful for the exat om-

putation, but (1) is the best.

Moral: What's the best �losed formula� is ompliated!



Derangement numbers:

D(n) = number of σ ∈ Sn s.t. σ(i) 6= i for all 1 ≤ i ≤ n

D(2) = 1, {21}. D(2) = 2, {231, 312}. D(3) = 9, D(4) = 44, ...

(1) D(n) =
[

n!/e
]

(2) D(n) =
n
∑

k=0

(−1)k n!
k!

(3) D(n) = nD(n− 1) + (−1)n

Observation: Formula (1) is neither ombinatorial nor useful
for the exat omputation. Summation formula (2) explains (⋄),
but the reursive formula (3) is most useful for omputation.



Ménage numbers:

M(n) = number of ways to seat n ouples at a dining table so that

men and women alternate and spouses do not seat together.

M(2) = 0. M(3) = 12, e.g. [2a3b1℄ if ouples are 1a, 2b, 3

Formulas: M(n) = 2n!a(n), where a(n) ∼ n!/e3

(1) a(n) =
n
∑

k=0

(−1)k 2n

2n− k

(

2n− k

k

)

(n− k)!

(2) a(n) = nAn−1 + 2An−2 − (n− 4)An−3 − An−4

Here (2) by Luas (1891) and (1) by Touhard (1934).

Of ourse, (2) is better even if (1) is more expliit!



Generating Funtions

Let {an} be a ombinatorial sequene. De�ne

A(t) =
∑

n

ant
n

Question: Does A(t) have a losed formula?

1) Let an = F (n). Then:

A(t) =
1

1− t− t2

2) an = Cat(n) = 1
n+1

(

2n
n

)

. Then:

A(t) =
1−
√
1− 4t

2t



More examples

3) an= number of involutions σ ∈ Sn i.e. σ2 = 1.

an = an−1 + (n− 1)an−2

∑

n

an
n!

tn = et+t2/2

4) p(n)= number of integer partitions of n, e.g. p(4) = 5

4 = 4 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

∑

n

p(n)tn =

∞
∏

k=1

1

1− tk



Classes of ombinatorial sequenes

(1) rational if g.f. A(t) = P (t)/Q(t), P,Q ∈ Z[t]

Equivalent: c0an+ c1an−1+ . . .+ ckan−k = 0 for some ci ∈ Z.

Examples: 2n, Fibonai numbers, Lah numbers, et.

(2) algebrai if g.f. c0Ak + c1Ak−1 + . . .+ ck = 0, ci(t) ∈ Z[t]

Examples: Catalan numbers, Motzkin numbers, et.

(3) Binomial sums . For αi, βi : Z
d → Z linear funtions:

an =
∑

v∈Zd

cα0(v,n)
(

α1(v, n)

β1(v, n)

)

· · ·
(

αr(v, n)

βr(v, n)

)

Examples: derangement numbers, ménage numbers, et.



P-reursive sequenes

(4) D-�nite g.f. c0A + c1A′ + . . . + ckA(k) = 0, ci(t) ∈ Z[t]

Equivalent: r0(n)an+ r1(n)an−1+ . . .+ rk(n)an−k, ri(n) ∈ Z[n]

Sequenes {an} are alled polynomially (P-) reursive .

Observation: P-reursive sequenes are omputable in poly time.

Examples: n!, Fibonai numbers, Catalan numbers, number

of involutions, ménage numbers, et.

Theorem: (1), (2), (3) ⊂ (4)

Non-examples: primes, number of partitions, number of on-

neted graphs



Asymptotis of P-reursive sequenes

Claim [Birkho�, et.℄ Let {an} be P=reursive. Then:
an ∼ C (n!)sλneQ(n1/m)nα(log n)β

where Q(z) is a polynomial of deg < m, λ ∈ Q, α, s ∈ Q, β,m ∈ N

Theorem [many people℄

If {an} be P-reursive, an ∈ N and an < Cn
. Then:

an ∼ Cλnnα(log n)β

where λ ∈ Q, α ∈ Q, β ∈ N.

Note: this inludes all of (3).



Algebrai Di�erential Equations

(5) ADE g.f. Q(t,A,A′, . . . ,A(k)) = 0, Q ∈ Z[t, x0, x1, . . . , xk]

Observation: ADE sequenes are omputable in poly time.

Example: an = #{σ(1) < σ(2) > σ(3) < ... ∈ Sn}. E.g. a3 = 2,

{132, 231}. These are alled alternating permutations. Then the

e.g.f.

2A′ = A2 + 1, A(t) = tan(t) + sec(t)

Note: Jaobi proved in 1848 that the Dirihlet theta funtion

θ(t) :=
∑

n

tn
2
satis�es an expliit form ADE.

Curiously, for

∑

n tn
3

this is open, but onjetured false.



Permutation lasses

Permutation σ ∈ Sn ontains ω ∈ Sk if Mω is a submatrix of Mσ.

Otherwise, σ avoids ω. Suh ω are alled patterns.

For example, (5674123) ontains (321) but avoids (4321).
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For a set of patterns F ⊂ Sk, denote Cn(F) the set of σ ∈ Sn

avoiding eah ω ∈ F . Let Cn(F) = |Cn(F)|.



Notable examples:

(1) Cn(123) = Cn(213) = Cat(n) [MaMahon, 1915℄ and [Knuth, 1973℄.

(2) Cn(123, 132, 213) = Fib(n+ 1) [Simion, Shmidt, 1985℄

(3) Cn(2413, 3142) =Shröder(n) [Shapiro, Stephens, 1991℄

(4) Cn(1234) = Cn(2143) is P=reursive [Gessel, 1990℄

(5) Cn(1342) is algebrai [Bona, 1997℄

(6) Cn(3412, 4231) is algebrai [Bousquet-Mélou, Butler, 2007℄

ounts the number of smooth Shubert varieties Xσ, σ ∈ Sn,

by [Lakshmibai, Sandhya, 1990℄.



Main result

Noonan�Zeilberger Conjeture:

For every F ⊂ Sk, the sequene {Cn(F)} is P-reursive.
(Equivalently, the g.f. for {Cn(F)} is D-�nite).

Theorem 1. [Garrabrant, P., 2015+℄

NZ Conjeture is false. To be preise, there is a set F ⊂ S80,

|F| < 31000, s.t. {Cn(F)} is not P-reursive.



A bit of history

• First stated as an open problem by Gessel (1990)

• Upgraded to a onjeture and extended to ount opies

ontained of eah pattern, by Noonan and Zeilberger (1996)

• Atkinson redued the extended version to the original (1999)

• In 2005, Zeilberger hanges his mind, onjetures that

{Cn(1324)} is not P-reursive [this is still open℄

• In 2014, Zeilberger hanges his mind half-way bak, writes:

�if I had to bet on it now I would give only a 50% hane�.



As bad as it gets!

Main Lemma [here X is LARGE, to be lari�ed below℄

Let ξ : N→ N be a funtion in X. Then there exist k, a, b ∈ N

and sets of patterns F ,F ′ ⊂ Sk, s.t.

ξ(n) = Can+b(F)− Can+b(F ′) mod 2 for all n.

Note: Here mod 2 an me hanged to any mod p but annot be ompletely

removed. For example, Cn(F) = 0 implies Cn+1(F) = 0, whih does not hold

for funtions ξ ∈ X.

Theorem 2. [Garrabrant, P., 2015+℄

The problem whether Cn(F)− Cn(F ′) = 0 mod 2 for all n ≥ 1,

is undeidable.



Not onvined yet?

Corollary 1. For all k large enough, there exists F ,F ′ ⊂ Sk suh

that the smallest n for whih Cn(F) 6= Cn(F ′) mod 2 satis�es

n > 22
22

22
k

.

Corollary 2. There exist two �nite sets of patterns F and F ′,
suh that the problem of whether Cn(F) = Cn(F ′) mod 2

for all n ∈ N, is independent of ZFC.



Computational Complexity Classes

⊕P = parity version of the lass of ounting problem #P

e.g. ⊕Hamiltonian yles in G ∈ ⊕P

P 6= ⊕P is similar to P 6= NP

In fat, P = ⊕P implies PH = NP = BPP [by Toda's theorem℄

EXP = exponential time

⊕EXP = exponential time version of ⊕P
e.g. ⊕Hamiltonian 3-onneted graphs on n verties ∈ ⊕EXP

EXP 6= ⊕EXP is similar to P 6= ⊕P
believed to be orret for more tehnial CC reasons,



Complexity Impliations

Theorem 3. [Garrabrant, P., 2015+℄

If EXP 6= ⊕EXP, then there exists a �nite set of patterns F ,
suh that the sequene {Cn(F)} annot be omputed in time

polynomial in n.

Remark 1: All sequenes with D-�nite g.f. an be omputed in

time polynomial in n.

Remark 2: This also answers to Wilf's question (1982):

Can one desribe a reasonable and natural family of ombinatorial

enumeration problems for whih there is provably no polynomial-

in-n time formula or algorithm to ompute f(n)?



Two-stak Automata

In the Main Lemma, X = {ξΓ}, where ξΓ(n) = number of

balaned paths of some two-stak automaton Γ.

PSfrag replaements

x1

x1

x2 x−1

1

x−1

2

Γ

Here ξ(1) = ξ(2) = ξ(3) = 0, ξ(4) = 1, ξ(5) = 0, ξ(6) = 1.

Note: Two-stak automata are as powerful as Turing mahines.



How not to be P-reursive

Lemma 1. Let {an} be a P-reursive sequene, and let α =
(α1, α2, . . .) ∈ {0, 1}∞, αi = ai mod 2. Then there is a �nite

binary word w ∈ {0, 1}∗ whih is NOT a subword of α.

Lemma 2. There is a two-stak automaton Γ s.t. the number of

balaned paths ξΓ(n) is given by the sequene

0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, . . .

Now Lemma 1, Lemma 2 and Main Lemma imply Theorem 1.



Main Lemma: outline

(0) Allow general partial patterns (retangular 0-1 matries

with no two 1's in the same row or olumn).

(1) Fix a su�iently large �alphabet� of �inomparable� matries

Spei�ally, we take all simple 10-permutations whih ontain (5674123).

Arbitrarily name them P,Q,B,B′, E, T1, . . . , Tv, Z1, . . . , Zm.

(2) Thinking of Ti's as verties of Γ and Zj as variables xp, yq,

selet blok matries F to simulate Γ. Let F ′ = F ∪ {B,B′}.

(3) De�ne involution Ψ on Cn(F)r Cn(F ′) by B ↔ B′. Chek

that �xed points of Ψ are in bijetion with balaned paths in Γ.



Sample of forbidden matries in F :



















◦ ◦ Ti ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ Tj ◦ ◦
L ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ Zp

◦ ◦ ◦ ◦ ◦ ◦ Tk ◦
◦ B′ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ R ◦ ◦ ◦
◦ ◦ ◦ Zp ◦ ◦ ◦ ◦































◦ ◦ Ti ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ T2

L ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ E ◦ ◦
◦ ◦ ◦ ◦ Q ◦
◦ B′ ◦ ◦ ◦ ◦













( ◦ ◦ Tj

Zp ◦ ◦
◦ Zq ◦

)

Final ount:

PSfrag replaements C(F)

C(F ′)

Ψ Fix(Ψ)



Example

M =























































































◦ ◦ ◦ ◦ T1 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ P ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ E ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ T3 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
B ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ Z1 ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ T5 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ B ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ Z2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ T3 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ B ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ Z1 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ T6 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ B ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ Z2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ T4 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ B ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ Z1 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ T2 ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ B ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ E ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ T4 ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ B ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ Z1 ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ T2

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ B ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ E ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ Q ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ B ◦ ◦ ◦ ◦
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Notes on the proof

(i) We use exatly 6854 partial patterns.

(ii) Automaton Γ in Lemma 2 uses 31 verties, whih is why

the alphabet has size 10× 10 only.

(iii) The largest matrix in F has 8× 8 bloks,

whih is why Theorem 1 has permutations in S80.

(iv) Proof of Lemma 1 has 2 paragraphs, but it took over a year

of hard work to state. Natural extensions remain open.

Conjeture 0. [Garrabrant, P.℄ Let α be as in Lemma 1.

Then α has O(n) subwords of length n.



The non-ADE extension

Theorem 1

′
. [Garrabrant, P., in preparation℄

There is a set F ⊂ S80, s.t. the g.f. for {Cn(F)} is not ADE.

Lemma 1

′
. Let {an} be an integer sequene, and let {ni} be the

sequenes of indies with odd an. Suppose

1) for all b, c ∈ N, there exists k suh that nk = b mod 2c,

2) nk/nk+1 → 0 as k →∞.

Then the g.f. for {an} is not ADE.

Corollary. Let {an} be an integer sequene, s.t. an is odd if only

if n = k! + k, for some k. Then the g.f. for {an} is not ADE.

Note: f. EC2, Ex. 6.63.



First prequel: Wang tilings

Long and lassial story going bak to 1960s (Wang, Berger, Robin-

son, et.) Key result: tileability of the plane with �xed set of Wang

tiles is undeidable. Deliate part: ensuring that the �seed tile�

must be present in a tiling. This is what we do by introduing F ′.



Seond prequel: Kontsevih's problem

Let G be a group and Z[G] denote its group ring. Fix u ∈ Z[G].

Let an = [1]un, where [g]u denote the value of u on g ∈ G.

In 2014, Maxim Kontsevih asked whether {an} is always
P-reursive when G ⊆ GL(k,Z).

Theorem 4. [Garrabrant, P., 2015+℄

There exists an element u ∈ Z[SL(4,Z)], suh that the sequene

{ [1]un} is not P-reursive.

Note: Proof uses the same Lemma 1(!)

When G = Zk
or G = Fk, the sequene {an} is known to be

P-reursive for all u ∈ Z[G] (Haiman, 1993).



Open problems:

Conjeture 1. The Wilf-equivalene problem of whether

Cn(F1) = Cn(F2) for all n ∈ N is undeidable.

Conjeture 2. For forbidden sets with a single permutation

|F| = |F ′| = 1, the Wilf-equivalene problem is deidable.

Conjeture 3. Sequene {Cn(1324)} is not P-reursive.

Conjeture 4. There exists a �nite set of patterns F , s.t.
omputing {Cn(F)} is #EXP-omplete, and

omputing {Cn(F) mod 2} is ⊕EXP-omplete.



Grand Finale:

A story how Doron Zeilberger lost faith and then lost $100.



Thank you!


