Enumeration of permutations

Igor Pak, UCLA
Joint work with Scott Garrabrant

Yandex, Moscow, Russia

September 21, 2015

What is Enumerative Combinatorics?

Selected combinatorial sequences (from OEIS):

$$
\begin{aligned}
& \text { A000001: } 1,1,1,2,1,2,1,5,2,2,1,5,1,2,1,14, \ldots \leftarrow \text { finite groups } \\
& \text { A000040: } 2,3,5,7,11,13,17,19,23,29,31,37,41, \ldots \leftarrow \text { primes } \\
& \text { A000041: } 1,1,2,3,5,7,11,15,22,30,42,56,77,101, \ldots \leftarrow p(n) \\
& \text { A0000045: } 1,1,2,3,5,8,13,21,34,55,89,144,232, \ldots \leftarrow F i b(n) \\
& \text { A000085: } 1,1,2,4,10,26,76,232,764,2620,9496, \ldots \leftarrow \text { involutions in } S_{n} \\
& \text { A000108: } 1,2,5,14,42,132,429,1430,4862,16796, \ldots \leftarrow \text { Cat }(n) \\
& \text { A0000088: } 1,1,4,38,728,26704,1866256,251548592, \ldots \leftarrow \begin{array}{c}
\text { connected } \\
\text { labeled graphs }
\end{array}
\end{aligned}
$$

Main question: Is there a formula?

What is a formula?

(A) The most satisfactory form of $f(n)$ is a completely explicit closed formula involving only well-known functions, and free from summation symbols. Only in rare cases will such a formula exist. As formulas for $f(n)$ become more complicated, our willingness to accept them as "determinations" of $f(n)$ decreases.

Richard Stanley, Enumerative Combinatorics, (1986)
(B) Formula $=$ Algorithm working in time $\operatorname{Poly}(n)$.

Herb Wilf, What is an answer? (1982)
(C) Asymptotic formula

$$
(\mathrm{A}) \Rightarrow(\mathrm{B}),(\mathrm{C}) ? ?
$$

Asymptotic formulas:
$\operatorname{Fib}(n) \sim \frac{1}{\sqrt{5}} \phi^{n}, \quad$ where $\phi=(1+\sqrt{5}) / 2 \quad$ [de Moivre, c. 1705]
$\operatorname{Cat}(n) \sim \frac{4^{n}}{\sqrt{\pi} n^{3 / 2}} \quad[$ Euler + Stirling, 1751]
$p_{n} \sim n \log n \quad$ [Hadamard, Vallée-Poussin, 1896]
$\#\{$ integer partitions of $n\} \sim \frac{1}{4 \sqrt{3} n} e^{\pi \sqrt{2 n / 3}}$
[Hardy, Ramanujan, 1918]
$\#\left\{\right.$ involutions in $\left.S_{n}\right\} \sim \frac{1}{\sqrt{2} e^{1 / 4}}\left(\frac{n}{e}\right)^{n / 2} e^{\sqrt{n}} \quad$ [Chowla, 1950]
$\#\{$ groups of order $\leq n\} \sim n^{\frac{2}{27}\left(\log _{2} n\right)^{2}} \quad$ [Pyber, 1993]
$\#\{$ graphs on n vertices $\} \sim 2^{\binom{n}{2}} \quad[\Leftrightarrow$ random graph is connected w.h.p. $]$

Fibonacci numbers:

$F(n)=$ number of $0-1$ sequences of length $n-1$ with no (11). $F(3)=\mathbf{3}, \quad\{00,01,10\} . \quad F(4)=\mathbf{5}, \quad\{000,001,010,100,101\}$.
(1) $\quad F(n+1)=F(n)+F(n-1)$
(2) $\begin{gathered}F(n)=\sum_{i=0}^{\lfloor n / 2\rfloor}\binom{n-i}{i} \\ F(n)=\frac{1}{\sqrt{5}}\left(\phi^{n}+(-1 / \phi)^{n}\right)\end{gathered}$

Observe: "Closed formula" (3) is not useful for the exact computation, but (1) is the best.

Moral: What's the best "closed formula" is complicated!

Derangement numbers:

$D(n)=$ number of $\sigma \in S_{n}$ s.t. $\sigma(i) \neq i$ for all $1 \leq i \leq n$ $D(2)=\mathbf{1},\{21\} . D(2)=\mathbf{2},\{231,312\} . D(3)=\mathbf{9}, D(4)=\mathbf{4 4}, \ldots$

$$
\text { (1) } \quad D(n)=[n!/ e]
$$

$$
\text { (2) } \quad D(n)=\sum_{k=0}^{n}(-1)^{k} \frac{n!}{k!}
$$

(3) $\quad D(n)=n D(n-1)+(-1)^{n}$

Observation: Formula (1) is neither combinatorial nor useful for the exact computation. Summation formula (2) explains (\diamond), but the recursive formula (3) is most useful for computation.

Ménage numbers:

$M(n)=$ number of ways to seat n couples at a dining table so that men and women alternate and spouses do not seat together.
$M(2)=\mathbf{0} . \quad M(3)=\mathbf{1 2}$, e.g. [2a3b1c] if couples are 1a, 2b, 3c
Formulas: $M(n)=2 n!a(n)$, where $a(n) \sim n!/ e^{3}$

$$
\begin{equation*}
a(n)=\sum_{k=0}^{n}(-1)^{k} \frac{2 n}{2 n-k}\binom{2 n-k}{k}(n-k)! \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
a(n)=n A_{n-1}+2 A_{n-2}-(n-4) A_{n-3}-A_{n-4} \tag{2}
\end{equation*}
$$

Here (2) by Lucas (1891) and (1) by Touchard (1934).
Of course, (2) is better even if (1) is more explicit!

Generating Functions

Let $\left\{a_{n}\right\}$ be a combinatorial sequence. Define

$$
\mathcal{A}(t)=\sum_{n} a_{n} t^{n}
$$

Question: Does $\mathcal{A}(t)$ have a closed formula?

1) Let $a_{n}=F(n)$. Then:

$$
\mathcal{A}(t)=\frac{1}{1-t-t^{2}}
$$

2) $a_{n}=\operatorname{Cat}(n)=\frac{1}{n+1}\binom{2 n}{n}$. Then:

$$
\mathcal{A}(t)=\frac{1-\sqrt{1-4 t}}{2 t}
$$

More examples

3) $a_{n}=$ number of involutions $\sigma \in S_{n}$ i.e. $\sigma^{2}=1$.

$$
\begin{gathered}
a_{n}=a_{n-1}+(n-1) a_{n-2} \\
\sum_{n} \frac{a_{n}}{n!} t^{n}=e^{t+t^{2} / 2}
\end{gathered}
$$

4) $p(n)=$ number of integer partitions of n, e.g. $p(4)=5$
$4=4+1=2+2=2+1+1=1+1+1+1$.

$$
\sum_{n} p(n) t^{n}=\prod_{k=1}^{\infty} \frac{1}{1-t^{k}}
$$

Classes of combinatorial sequences

(1) rational if g.f. $\mathcal{A}(t)=P(t) / Q(t), \quad P, Q \in \mathbb{Z}[t]$

Equivalent: $c_{0} a_{n}+c_{1} a_{n-1}+\ldots+c_{k} a_{n-k}=0$ for some $c_{i} \in \mathbb{Z}$. Examples: 2^{n}, Fibonacci numbers, Lah numbers, etc.
(2) algebraic if g.f. $c_{0} \mathcal{A}^{k}+c_{1} \mathcal{A}^{k-1}+\ldots+c_{k}=0, \quad c_{i}(t) \in \mathbb{Z}[t]$

Examples: Catalan numbers, Motzkin numbers, etc.
(3) Binomial sums. For $\alpha_{i}, \beta_{i}: \mathbb{Z}^{d} \rightarrow \mathbb{Z}$ linear functions:

$$
a_{n}=\sum_{v \in \mathbb{Z}^{d}} c^{\alpha_{0}(v, n)}\binom{\alpha_{1}(v, n)}{\beta_{1}(v, n)} \cdots\binom{\alpha_{r}(v, n)}{\beta_{r}(v, n)}
$$

Examples: derangement numbers, ménage numbers, etc.

P-recursive sequences

(4) D-finite g.f. $c_{0} \mathcal{A}+c_{1} \mathcal{A}^{\prime}+\ldots+c_{k} \mathcal{A}^{(k)}=0, \quad c_{i}(t) \in \mathbb{Z}[t]$

Equivalent: $r_{0}(n) a_{n}+r_{1}(n) a_{n-1}+\ldots+r_{k}(n) a_{n-k}, \quad r_{i}(n) \in \mathbb{Z}[n]$ Sequences $\left\{a_{n}\right\}$ are called polynomially (P_{-}) recursive.

Observation: P-recursive sequences are computable in poly time.
Examples: n!, Fibonacci numbers, Catalan numbers, number of involutions, ménage numbers, etc.

Theorem: (1), (2), (3) $\subset(4)$
Non-examples: primes, number of partitions, number of connected graphs

Asymptotics of P-recursive sequences

Claim [Birkhoff, etc.] Let $\left\{a_{n}\right\}$ be $\mathrm{P}=$ recursive. Then:

$$
a_{n} \sim C(n!)^{s} \lambda^{n} e^{Q\left(n^{1 / m}\right)} n^{\alpha}(\log n)^{\beta}
$$

where $Q(z)$ is a polynomial of $\operatorname{deg}<m, \lambda \in \overline{\mathbb{Q}}, \alpha, s \in \mathbb{Q}, \beta, m \in \mathbb{N}$

Theorem [many people]

If $\left\{a_{n}\right\}$ be P-recursive, $a_{n} \in \mathbb{N}$ and $a_{n}<C^{n}$. Then:

$$
a_{n} \sim C \lambda^{n} n^{\alpha}(\log n)^{\beta}
$$

where $\lambda \in \overline{\mathbb{Q}}, \alpha \in \mathbb{Q}, \beta \in \mathbb{N}$.
Note: this includes all of (3).

Algebraic Differential Equations

(5) $\boldsymbol{A D E}$ g.f. $Q\left(t, \mathcal{A}, \mathcal{A}^{\prime}, \ldots, \mathcal{A}^{(k)}\right)=0, Q \in \mathbb{Z}\left[t, x_{0}, x_{1}, \ldots, x_{k}\right]$

Observation: ADE sequences are computable in poly time.
Example: $a_{n}=\#\left\{\sigma(1)<\sigma(2)>\sigma(3)<\ldots \in S_{n}\right\}$. E.g. $a_{3}=2$, $\{132,231\}$. These are called alternating permutations. Then the e.g.f.

$$
2 \mathcal{A}^{\prime}=\mathcal{A}^{2}+1, \quad \mathcal{A}(t)=\tan (t)+\sec (t)
$$

Note: Jacobi proved in 1848 that the Dirichlet theta function $\theta(t):=\sum_{n} t^{n^{2}}$ satisfies an explicit form ADE.

Curiously, for $\sum_{n} t^{n^{3}}$ this is open, but conjectured false.

Permutation classes

Permutation $\sigma \in S_{n}$ contains $\omega \in S_{k}$ if M_{ω} is a submatrix of M_{σ}. Otherwise, σ avoids ω. Such ω are called patterns.

For example, (5674123) contains (321) but avoids (4321).

$$
\left(\begin{array}{ccccccc}
\cdot & \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot & \cdot
\end{array}\right) \quad\left(\begin{array}{ccccccc}
. & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right)
$$

For a set of patterns $\mathcal{F} \subset S_{k}$, denote $\mathcal{C}_{n}(\mathcal{F})$ the set of $\sigma \in S_{n}$ avoiding each $\omega \in \mathcal{F}$. Let $C_{n}(\mathcal{F})=\left|\mathcal{C}_{n}(\mathcal{F})\right|$.

Notable examples:

(1) $C_{n}(123)=C_{n}(213)=\operatorname{Cat}(n)$ [MacMahon, 1915] and [Knuth, 1973].
(2) $C_{n}(123,132,213)=\operatorname{Fib}(n+1)$ [Simion, Schmidt, 1985]
(3) $C_{n}(2413,3142)=\operatorname{Schröder}(n) \quad[S h a p i r o$, Stephens, 1991]
(4) $C_{n}(1234)=C_{n}(2143)$ is $\mathrm{P}=$ recursive [Gessel, 1990]
(5) $C_{n}(1342)$ is algebraic [Bona, 1997]
(6) $C_{n}(3412,4231)$ is algebraic [Bousquet-Mélou, Butler, 2007] counts the number of smooth Schubert varieties $X_{\sigma}, \sigma \in S_{n}$, by [Lakshmibai, Sandhya, 1990].

Main result

Noonan-Zeilberger Conjecture:

For every $\mathcal{F} \subset S_{k}$, the sequence $\left\{C_{n}(\mathcal{F})\right\}$ is P-recursive.
(Equivalently, the g.f. for $\left\{C_{n}(\mathcal{F})\right\}$ is D-finite).

Theorem 1. [Garrabrant, P., 2015+]
NZ Conjecture is false. To be precise, there is a set $\mathcal{F} \subset S_{80}$,
$|\mathcal{F}|<31000$, s.t. $\left\{C_{n}(\mathcal{F})\right\}$ is not P-recursive.

A bit of history

- First stated as an open problem by Gessel (1990)
- Upgraded to a conjecture and extended to count copies contained of each pattern, by Noonan and Zeilberger (1996)
- Atkinson reduced the extended version to the original (1999)
- In 2005, Zeilberger changes his mind, conjectures that $\left\{C_{n}(1324)\right\}$ is not P-recursive [this is still open]
- In 2014, Zeilberger changes his mind half-way back, writes: "if I had to bet on it now I would give only a 50% chance".

As bad as it gets!

Main Lemma [here \mathbb{X} is LARGE, to be clarified below]
Let $\xi: \mathbb{N} \rightarrow \mathbb{N}$ be a function in \mathbb{X}. Then there exist $k, a, b \in \mathbb{N}$ and sets of patterns $\mathcal{F}, \mathcal{F}^{\prime} \subset S_{k}$, s.t.
$\xi(n)=C_{a n+b}(\mathcal{F})-C_{a n+b}\left(\mathcal{F}^{\prime}\right) \bmod 2$ for all n.

Note: Here $\bmod 2$ can me changed to any $\bmod p$ but cannot be completely removed. For example, $C_{n}(\mathcal{F})=0$ implies $C_{n+1}(\mathcal{F})=0$, which does not hold for functions $\xi \in \mathbb{X}$.

Theorem 2. [Garrabrant, P., 2015+]
The problem whether $C_{n}(\mathcal{F})-C_{n}\left(\mathcal{F}^{\prime}\right)=0 \bmod 2$ for all $n \geq 1$, is undecidable.

Not convinced yet?

Corollary 1. For all k large enough, there exists $\mathcal{F}, \mathcal{F}^{\prime} \subset S_{k}$ such that the smallest n for which $C_{n}(\mathcal{F}) \neq C_{n}\left(\mathcal{F}^{\prime}\right) \bmod 2$ satisfies

$$
n>2^{2^{2^{2^{2^{2^{k}}}}}}
$$

Corollary 2. There exist two finite sets of patterns \mathcal{F} and \mathcal{F}^{\prime}, such that the problem of whether $C_{n}(\mathcal{F})=C_{n}\left(\mathcal{F}^{\prime}\right) \bmod 2$ for all $n \in \mathbb{N}$, is independent of ZFC.

Computational Complexity Classes

$\oplus \mathrm{P}=$ parity version of the class of counting problem \#P e.g. \oplus Hamiltonian cycles in $G \in \oplus \mathrm{P}$
$P \neq \oplus P$ is similar to $P \neq N P$
In fact, $\mathrm{P}=\oplus \mathrm{P}$ implies $\mathrm{PH}=\mathrm{NP}=$ BPP [by Toda's theorem]
EXP $=$ exponential time
$\oplus E X P=$ exponential time version of $\oplus P$
e.g. \oplus Hamiltonian 3-connected graphs on n vertices $\in \oplus$ EXP

EXP $\neq \oplus E X P$ is similar to $P \neq \oplus P$
believed to be correct for more technical CC reasons,

Complexity Implications

Theorem 3. [Garrabrant, P., 2015+]
If EXP $\neq \oplus$ EXP, then there exists a finite set of patterns \mathcal{F}, such that the sequence $\left\{C_{n}(\mathcal{F})\right\}$ cannot be computed in time polynomial in n.

Remark 1: All sequences with D-finite g.f. can be computed in time polynomial in n.

Remark 2: This also answers to Wilf's question (1982):
Can one describe a reasonable and natural family of combinatorial enumeration problems for which there is provably no polynomial-in-n time formula or algorithm to compute $f(n)$?

Two-stack Automata

In the Main Lemma, $\mathbb{X}=\left\{\xi_{\Gamma}\right\}$, where $\xi_{\Gamma}(n)=$ number of balanced paths of some two-stack automaton Γ.

Here $\xi(1)=\xi(2)=\xi(3)=0, \xi(4)=1, \xi(5)=0, \xi(6)=1$.
Note: Two-stack automata are as powerful as Turing machines.

How not to be P-recursive

Lemma 1. Let $\left\{a_{n}\right\}$ be a P-recursive sequence, and let $\bar{\alpha}=$ $\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in\{0,1\}^{\infty}, \alpha_{i}=a_{i} \bmod 2$. Then there is a finite binary word $w \in\{0,1\}^{*}$ which is NOT a subword of $\bar{\alpha}$.

Lemma 2. There is a two-stack automaton Γ s.t. the number of balanced paths $\xi_{\Gamma}(n)$ is given by the sequence $0,1,0,0,0,1,1,0,1,1,0,0,0,0,0,1,0,1,0, \ldots$

Now Lemma 1, Lemma 2 and Main Lemma imply Theorem 1.

Main Lemma: outline

(0) Allow general partial patterns (rectangular 0-1 matrices with no two 1's in the same row or column).
(1) Fix a sufficiently large "alphabet" of "incomparable" matrices Specifically, we take all simple 10-permutations which contain (5674123).
Arbitrarily name them $P, Q, B, B^{\prime}, E, T_{1}, \ldots, T_{v}, Z_{1}, \ldots, Z_{m}$.
(2) Thinking of T_{i} 's as vertices of Γ and Z_{j} as variables x_{p}, y_{q}, select block matrices \mathcal{F} to simulate Γ. Let $\mathcal{F}^{\prime}=\mathcal{F} \cup\left\{B, B^{\prime}\right\}$.
(3) Define involution Ψ on $\mathcal{C}_{n}(\mathcal{F}) \backslash \mathcal{C}_{n}\left(\mathcal{F}^{\prime}\right)$ by $B \leftrightarrow B^{\prime}$. Check that fixed points of Ψ are in bijection with balanced paths in Γ.

Sample of forbidden matrices in \mathcal{F} :

$$
\left(\begin{array}{cccccccc}
\circ & \circ & T_{i} & \circ & \circ & \circ & \circ & \circ \\
\circ & \circ & \circ & \circ & \circ & T_{j} & \circ & \circ \\
L & \circ \\
\circ & Z_{p} \\
\circ & \circ & \circ & \circ & \circ & \circ & T_{k} & \circ \\
\circ & B^{\prime} & \circ & \circ & \circ & \circ & \circ & \circ \\
\circ & \circ & \circ & \circ & R & \circ & \circ & \circ \\
\circ & \circ & \circ & Z_{p} & \circ & \circ & \circ & \circ
\end{array}\right) \quad\left(\begin{array}{cccccc}
\circ & \circ & T_{i} & \circ & \circ & \circ \\
\circ & \circ & \circ & \circ & \circ & T_{2} \\
L & \circ & \circ & \circ & \circ & \circ \\
\circ & \circ & \circ & E & \circ & \circ \\
\circ & \circ & \circ & \circ & Q & \circ \\
\circ & B^{\prime} & \circ & \circ & \circ & \circ
\end{array}\right) \quad\left(\begin{array}{ccc}
\circ & \circ & T_{j} \\
Z_{p} & \circ & \circ \\
\circ & Z_{q} & \circ
\end{array}\right)
$$

Final count:

Example

Notes on the proof

(i) We use exactly 6854 partial patterns.
(ii) Automaton Γ in Lemma 2 uses 31 vertices, which is why the alphabet has size 10×10 only.
(iii) The largest matrix in \mathcal{F} has 8×8 blocks, which is why Theorem 1 has permutations in S_{80}.
(iv) Proof of Lemma 1 has 2 paragraphs, but it took over a year of hard work to state. Natural extensions remain open.

Conjecture 0. [Garrabrant, P.] Let $\bar{\alpha}$ be as in Lemma 1. Then $\bar{\alpha}$ has $O(n)$ subwords of length n.

The non-ADE extension

Theorem 1'. [Garrabrant, P., in preparation]
There is a set $\mathcal{F} \subset S_{80}$, s.t. the g.f. for $\left\{C_{n}(\mathcal{F})\right\}$ is not ADE.
Lemma 1^{\prime}. Let $\left\{a_{n}\right\}$ be an integer sequence, and let $\left\{n_{i}\right\}$ be the sequences of indices with odd a_{n}. Suppose

1) for all $b, c \in \mathbb{N}$, there exists k such that $n_{k}=b \bmod 2^{c}$,
2) $n_{k} / n_{k+1} \rightarrow 0$ as $k \rightarrow \infty$.

Then the g.f. for $\left\{a_{n}\right\}$ is not ADE.
Corollary. Let $\left\{a_{n}\right\}$ be an integer sequence, s.t. a_{n} is odd if only if $n=k!+k$, for some k. Then the g.f. for $\left\{a_{n}\right\}$ is not ADE.

Note: cf. EC2, Exc. 6.63c.

First prequel: Wang tilings

Long and classical story going back to 1960s (Wang, Berger, Robinson, etc.) Key result: tileability of the plane with fixed set of Wang tiles is undecidable. Delicate part: ensuring that the "seed tile" must be present in a tiling. This is what we do by introducing \mathcal{F}^{\prime}.

Second prequel: Kontsevich's problem

Let G be a group and $\mathbb{Z}[G]$ denote its group ring. Fix $u \in \mathbb{Z}[G]$.
Let $a_{n}=[1] u^{n}$, where $[g] u$ denote the value of u on $g \in G$.
In 2014, Maxim Kontsevich asked whether $\left\{a_{n}\right\}$ is always
P-recursive when $G \subseteq \mathrm{GL}(k, \mathbb{Z})$.
Theorem 4. [Garrabrant, P., 2015+]
There exists an element $u \in \mathbb{Z}[\operatorname{SL}(4, \mathbb{Z})]$, such that the sequence $\left\{[1] u^{n}\right\}$ is not P-recursive.

Note: Proof uses the same Lemma 1(!)
When $G=\mathbb{Z}^{k}$ or $G=F_{k}$, the sequence $\left\{a_{n}\right\}$ is known to be P-recursive for all $u \in \mathbb{Z}[G]$ (Haiman, 1993).

Open problems:

Conjecture 1. The Wilf-equivalence problem of whether $C_{n}\left(\mathcal{F}_{1}\right)=C_{n}\left(\mathcal{F}_{2}\right)$ for all $n \in \mathbb{N}$ is undecidable.

Conjecture 2. For forbidden sets with a single permutation $|\mathcal{F}|=\left|\mathcal{F}^{\prime}\right|=1$, the Wilf-equivalence problem is decidable.

Conjecture 3. Sequence $\left\{C_{n}(1324)\right\}$ is not P-recursive.
Conjecture 4. There exists a finite set of patterns \mathcal{F}, s.t. computing $\left\{C_{n}(\mathcal{F})\right\}$ is \#EXP-complete, and computing $\left\{C_{n}(\mathcal{F}) \bmod 2\right\}$ is \oplus EXP-complete.

Grand Finale:

A story how Doron Zeilberger lost faith and then lost $\$ 100$.

Thank you!

