Enumeration of permutations

Igor Pak, UCLA Joint work with Scott Garrabrant

Yandex, Moscow, Russia

September 21, 2015

1

What is Enumerative Combinatorics?

Selected combinatorial sequences (from OEIS):

A000001: 1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14, ... \leftarrow finite groups A000040: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, ... \leftarrow primes A000041: 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, ... $\leftarrow p(n)$ A000045: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 232, ... $\leftarrow Fib(n)$ A000085: 1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, ... \leftarrow involutions in S_n A000108: 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, ... $\leftarrow Cat(n)$ A000088: 1, 1, 4, 38, 728, 26704, 1866256, 251548592, ... \leftarrow connected labeled graphs

Main question: Is there a formula?

What is a formula?

(A) The most satisfactory form of f(n) is a **completely explicit closed formula** involving only well-known functions, and free from summation symbols. Only in rare cases will such a formula exist. As formulas for f(n) become more complicated, our willingness to accept them as "determinations" of f(n) decreases.

Richard Stanley, Enumerative Combinatorics, (1986)

(B) Formula = **Algorithm** working in time Poly(n).

Herb Wilf, What is an answer? (1982)

(C) Asymptotic formula

 $(A) \ \Rightarrow \ (B) \ , \ (C) \ \ref{eq:alpha}$

Asymptotic formulas:

$$\begin{aligned} Fib(n) &\sim \frac{1}{\sqrt{5}} \phi^n, \quad \text{where} \quad \phi = (1 + \sqrt{5})/2 \qquad [\text{de Moivre, c. 1705}] \\ Cat(n) &\sim \frac{4^n}{\sqrt{\pi} n^{3/2}} \qquad [\text{Euler + Stirling, 1751}] \\ p_n &\sim n \log n \qquad [\text{Hadamard, Vallée-Poussin, 1896}] \\ \#\{\text{integer partitions of } n\} &\sim \frac{1}{4\sqrt{3}n} e^{\pi\sqrt{2n/3}} \qquad [\text{Hardy, Ramanujan, 1918}] \\ \#\{\text{involutions in } S_n\} &\sim \frac{1}{\sqrt{2}e^{1/4}} \left(\frac{n}{e}\right)^{n/2} e^{\sqrt{n}} \qquad [\text{Chowla, 1950}] \\ \#\{\text{groups of order} \leq n\} &\sim n^{\frac{2}{27}(\log_2 n)^2} \qquad [\text{Pyber, 1993}] \\ \#\{\text{graphs on } n \text{ vertices}\} &\sim 2^{\binom{n}{2}} \qquad [\Leftrightarrow \text{ random graph is connected w.h.p.}] \end{aligned}$$

Fibonacci numbers:

F(n) = number of 0-1 sequences of length n - 1 with no (11). F(3) = 3, {00, 01, 10}. F(4) = 5, {000, 001, 010, 100, 101}.

(1)
$$F(n+1) = F(n) + F(n-1)$$

(2)
$$F(n) = \sum_{i=0}^{\lfloor n/2 \rfloor} {n-i \choose i}$$

(3)
$$F(n) = \frac{1}{\sqrt{5}} \left(\phi^n + (-1/\phi)^n \right)$$

Observe: "Closed formula" (3) is not useful for the exact computation, but (1) is the best.

Moral: What's the best "closed formula" is complicated!

Derangement numbers:

$$D(n) = \text{number of } \sigma \in S_n \text{ s.t. } \sigma(i) \neq i \text{ for all } 1 \leq i \leq n$$

$$D(2) = \mathbf{1}, \{21\}. \quad D(2) = \mathbf{2}, \{231, 312\}. \quad D(3) = \mathbf{9}, D(4) = \mathbf{44}, \dots$$

$$(1) \qquad D(n) = [n!/e]$$

$$(2) \qquad D(n) = \sum_{k=0}^{n} (-1)^k \frac{n!}{k!}$$

$$(3) \qquad D(n) = nD(n-1) + (-1)^n$$

Observation: Formula (1) is neither combinatorial nor useful for the exact computation. Summation formula (2) explains (\diamond) , but the recursive formula (3) is most useful for computation.

Ménage numbers:

(

M(n) = number of ways to seat n couples at a dining table so that men and women alternate and spouses do not seat together. $M(2) = \mathbf{0}$. $M(3) = \mathbf{12}$, e.g. [2a3b1c] if couples are 1a, 2b, 3c

Formulas: M(n) = 2n!a(n), where $a(n) \sim n!/e^3$

(1)
$$a(n) = \sum_{k=0}^{n} (-1)^k \frac{2n}{2n-k} {2n-k \choose k} (n-k)!$$

2) $a(n) = nA_{n-1} + 2A_{n-2} - (n-4)A_{n-3} - A_{n-4}$

Here (2) by Lucas (1891) and (1) by Touchard (1934).

Of course, (2) is better even if (1) is more explicit!

Generating Functions

Let $\{a_n\}$ be a combinatorial sequence. Define

$$\mathcal{A}(t) = \sum_{n} a_{n} t^{n}$$

Question: Does $\mathcal{A}(t)$ have a *closed formula*?

1) Let
$$a_n = F(n)$$
. Then:

$$\mathcal{A}(t) = \frac{1}{1 - t - t^2}$$
2) $a_n = \operatorname{Cat}(n) = \frac{1}{n+1} {2n \choose n}$. Then:

$$\mathcal{A}(t) = \frac{1 - \sqrt{1 - 4t}}{2t}$$

More examples

3) a_n = number of involutions $\sigma \in S_n$ i.e. $\sigma^2 = 1$.

$$a_n = a_{n-1} + (n-1)a_{n-2}$$

 $\sum_n \frac{a_n}{n!} t^n = e^{t+t^2/2}$

4) p(n)= number of integer partitions of n, e.g. p(4) = 54 = 4 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

$$\sum_{n} p(n)t^{n} = \prod_{k=1}^{\infty} \frac{1}{1-t^{k}}$$

Classes of combinatorial sequences

- (1) *rational* if g.f. $\mathcal{A}(t) = P(t)/Q(t)$, $P, Q \in \mathbb{Z}[t]$ Equivalent: $c_0 a_n + c_1 a_{n-1} + \ldots + c_k a_{n-k} = 0$ for some $c_i \in \mathbb{Z}$. Examples: 2^n , Fibonacci numbers, Lah numbers, etc.
- (2) algebraic if g.f. $c_0 \mathcal{A}^k + c_1 \mathcal{A}^{k-1} + \ldots + c_k = 0$, $c_i(t) \in \mathbb{Z}[t]$ Examples: Catalan numbers, Motzkin numbers, etc.
- (3) **Binomial sums**. For $\alpha_i, \beta_i : \mathbb{Z}^d \to \mathbb{Z}$ linear functions:

$$a_n = \sum_{v \in \mathbb{Z}^d} c^{\alpha_0(v,n)} \binom{\alpha_1(v,n)}{\beta_1(v,n)} \cdots \binom{\alpha_r(v,n)}{\beta_r(v,n)}$$

Examples: derangement numbers, ménage numbers, etc.

P-recursive sequences

(4) **D-finite** g.f.
$$c_0 \mathcal{A} + c_1 \mathcal{A}' + \ldots + c_k \mathcal{A}^{(k)} = 0, \quad c_i(t) \in \mathbb{Z}[t]$$

Equivalent: $r_0(n)a_n + r_1(n)a_{n-1} + \ldots + r_k(n)a_{n-k}, r_i(n) \in \mathbb{Z}[n]$

Sequences $\{a_n\}$ are called **polynomially** (**P**-) recursive.

Observation: P-recursive sequences are computable in poly time.

Examples: n!, Fibonacci numbers, Catalan numbers, number of involutions, ménage numbers, etc.

Theorem: $(1), (2), (3) \subset (4)$

Non-examples: primes, number of partitions, number of connected graphs

Asymptotics of P-recursive sequences

Claim [Birkhoff, etc.] Let $\{a_n\}$ be P=recursive. Then: $a_n \sim C(n!)^s \lambda^n e^{Q(n^{1/m})} n^{\alpha} (\log n)^{\beta}$

where Q(z) is a polynomial of deg $< m, \lambda \in \overline{\mathbb{Q}}, \alpha, s \in \mathbb{Q}, \beta, m \in \mathbb{N}$

Theorem [many people] If $\{a_n\}$ be P-recursive, $a_n \in \mathbb{N}$ and $a_n < C^n$. Then: $a_n \sim C \lambda^n n^{\alpha} (\log n)^{\beta}$ where $\lambda \in \overline{\mathbb{Q}}, \ \alpha \in \mathbb{Q}, \ \beta \in \mathbb{N}.$

Note: this includes all of (3).

Algebraic Differential Equations

(5) **ADE** g.f.
$$Q(t, \mathcal{A}, \mathcal{A}', \dots, \mathcal{A}^{(k)}) = 0, \ Q \in \mathbb{Z}[t, x_0, x_1, \dots, x_k]$$

Observation: ADE sequences are computable in poly time.

Example: $a_n = \#\{\sigma(1) < \sigma(2) > \sigma(3) < ... \in S_n\}$. E.g. $a_3 = 2$, $\{132, 231\}$. These are called *alternating permutations*. Then the e.g.f.

$$2\mathcal{A}' = \mathcal{A}^2 + 1, \qquad \mathcal{A}(t) = \tan(t) + \sec(t)$$

Note: Jacobi proved in 1848 that the *Dirichlet theta function* $\theta(t) := \sum_{n} t^{n^2}$ satisfies an explicit form ADE.

Curiously, for $\sum_{n} t^{n^3}$ this is open, but conjectured false.

Permutation classes

Permutation $\sigma \in S_n$ contains $\omega \in S_k$ if M_{ω} is a submatrix of M_{σ} . Otherwise, σ avoids ω . Such ω are called *patterns*.

For example, (5674123) contains (321) but avoids (4321).

1			•		1		. \	(.					•	•)	•
									•				1	•	
	•	•	•	•	•	•	1	.	•	•	•	•	•	•	1
	•	•	•	1	•	•	•	.	•	•	1	•	•	•	.
	1	•	•	•	•	•	•	.	•	•	•	•	•	•	
	•	1	•	•	•	•	•	.	1	•	•	•	•	·	
	•	·	1	·	•	•	•)	(.	•	•	•	•	•	•)	/

For a set of patterns $\mathcal{F} \subset S_k$, denote $\mathcal{C}_n(\mathcal{F})$ the set of $\sigma \in S_n$ avoiding each $\omega \in \mathcal{F}$. Let $C_n(\mathcal{F}) = |\mathcal{C}_n(\mathcal{F})|$.

Notable examples:

- (1) $C_n(123) = C_n(213) = \text{Cat}(n)$ [MacMahon, 1915] and [Knuth, 1973].
- (2) $C_n(123, 132, 213) = \text{Fib}(n+1)$ [Simion, Schmidt, 1985]
- (3) $C_n(2413, 3142) =$ Schröder(n) [Shapiro, Stephens, 1991]
- (4) $C_n(1234) = C_n(2143)$ is P=recursive [Gessel, 1990]
- (5) $C_n(1342)$ is algebraic [Bona, 1997]
- (6) $C_n(3412, 4231)$ is algebraic [Bousquet-Mélou, Butler, 2007] counts the number of smooth Schubert varieties $X_{\sigma}, \sigma \in S_n$, by [Lakshmibai, Sandhya, 1990].

Main result

Noonan–Zeilberger Conjecture:

For every $\mathcal{F} \subset S_k$, the sequence $\{C_n(\mathcal{F})\}$ is P-recursive. (Equivalently, the g.f. for $\{C_n(\mathcal{F})\}$ is D-finite).

Theorem 1. [Garrabrant, P., 2015+]

NZ Conjecture is false. To be precise, there is a set $\mathcal{F} \subset S_{80}$,

 $|\mathcal{F}| < 31000$, s.t. $\{C_n(\mathcal{F})\}$ is **not** P-recursive.

A bit of history

- First stated as an open problem by Gessel (1990)
- Upgraded to a conjecture and extended to count copies contained of each pattern, by Noonan and Zeilberger (1996)
- Atkinson reduced the extended version to the original (1999)
- In 2005, Zeilberger changes his mind, conjectures that $\{C_n(1324)\}$ is not P-recursive [this is still open]
- In 2014, Zeilberger changes his mind half-way back, writes: "if I had to bet on it now I would give only a 50% chance".

As bad as it gets!

Main Lemma [here X is LARGE, to be clarified below] Let $\xi : \mathbb{N} \to \mathbb{N}$ be a function in X. Then there exist $k, a, b \in \mathbb{N}$ and sets of patterns $\mathcal{F}, \mathcal{F}' \subset S_k$, s.t. $\xi(n) = C_{an+b}(\mathcal{F}) - C_{an+b}(\mathcal{F}') \mod 2$ for all n.

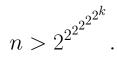
Note: Here mod 2 can me changed to any mod p but cannot be completely removed. For example, $C_n(\mathcal{F}) = 0$ implies $C_{n+1}(\mathcal{F}) = 0$, which does not hold for functions $\xi \in \mathbb{X}$.

Theorem 2. [Garrabrant, P., 2015+]

The problem whether $C_n(\mathcal{F}) - C_n(\mathcal{F}') = 0 \mod 2$ for all $n \ge 1$, is undecidable.

Not convinced yet?

Corollary 1. For all k large enough, there exists $\mathcal{F}, \mathcal{F}' \subset S_k$ such that the smallest n for which $C_n(\mathcal{F}) \neq C_n(\mathcal{F}') \mod 2$ satisfies



Corollary 2. There exist two finite sets of patterns \mathcal{F} and \mathcal{F}' , such that the problem of whether $C_n(\mathcal{F}) = C_n(\mathcal{F}') \mod 2$ for all $n \in \mathbb{N}$, is independent of ZFC.

Computational Complexity Classes

 $\oplus \mathsf{P}$ = parity version of the class of counting problem $\#\mathsf{P}$ e.g. \oplus Hamiltonian cycles in $G \in \oplus \mathsf{P}$

 $\mathsf{P} \neq \oplus \mathsf{P}$ is similar to $\mathsf{P} \neq \mathsf{NP}$

In fact, $P = \oplus P$ implies PH = NP = BPP [by Toda's theorem]

 $\mathsf{EXP} = \operatorname{exponential time}$

 $\oplus \mathsf{EXP} =$ exponential time version of $\oplus \mathsf{P}$

e.g. \oplus Hamiltonian 3-connected graphs on *n* vertices $\in \oplus \mathsf{EXP}$

 $\mathsf{EXP} \neq \oplus \mathsf{EXP}$ is similar to $\mathsf{P} \neq \oplus \mathsf{P}$

believed to be correct for more technical CC reasons,

Complexity Implications

Theorem 3. [Garrabrant, P., 2015+]

If $\mathsf{EXP} \neq \oplus \mathsf{EXP}$, then there exists a finite set of patterns \mathcal{F} , such that the sequence $\{C_n(\mathcal{F})\}$ cannot be computed in time polynomial in n.

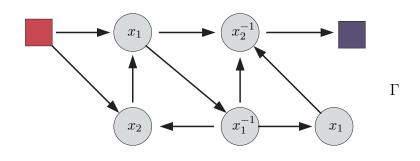
Remark 1: All sequences with D-finite g.f. can be computed in time polynomial in n.

Remark 2: This also answers to Wilf's question (1982):

Can one describe a reasonable and natural family of combinatorial enumeration problems for which there is provably no polynomialin-n time formula or algorithm to compute f(n)?

Two-stack Automata

In the Main Lemma, $\mathbb{X} = \{\xi_{\Gamma}\}$, where $\xi_{\Gamma}(n) =$ number of balanced paths of some two-stack automaton Γ .



Here $\xi(1) = \xi(2) = \xi(3) = 0$, $\xi(4) = 1$, $\xi(5) = 0$, $\xi(6) = 1$.

Note: Two-stack automata are as powerful as Turing machines.

How not to be P-recursive

Lemma 1. Let $\{a_n\}$ be a P-recursive sequence, and let $\overline{\alpha} = (\alpha_1, \alpha_2, \ldots) \in \{0, 1\}^{\infty}$, $\alpha_i = a_i \mod 2$. Then there is a finite binary word $w \in \{0, 1\}^*$ which is NOT a subword of $\overline{\alpha}$.

Lemma 2. There is a two-stack automaton Γ s.t. the number of balanced paths $\xi_{\Gamma}(n)$ is given by the sequence

 $0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, \ldots$

Now Lemma 1, Lemma 2 and Main Lemma imply Theorem 1.

Main Lemma: outline

(0) Allow general **partial patterns** (rectangular 0-1 matrices with no two 1's in the same row or column).

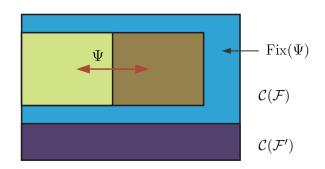
(1) Fix a sufficiently large "alphabet" of "incomparable" matrices Specifically, we take all simple 10-permutations which contain (5674123). Arbitrarily name them $P, Q, B, B', E, T_1, \ldots, T_v, Z_1, \ldots, Z_m$.

(2) Thinking of T_i 's as vertices of Γ and Z_j as variables x_p, y_q , select block matrices \mathcal{F} to simulate Γ . Let $\mathcal{F}' = \mathcal{F} \cup \{B, B'\}$.

(3) Define involution Ψ on $\mathcal{C}_n(\mathcal{F}) \smallsetminus \mathcal{C}_n(\mathcal{F}')$ by $B \leftrightarrow B'$. Check that fixed points of Ψ are in bijection with balanced paths in Γ .

Sample of forbidden matrices in ${\mathcal F}$:

Final count:



Example

	100	0 0	T_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	o \	
	$\circ P$	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	00	Εo	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	00	0 0	0	0	0	T_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	$B \circ \phi$	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	00																											
	00																											
	00																											
	00																											
	00																											
	00																											
	00																											
	00																											
	00																											
M =	00	0 0	0	٠	0	0	Z_2	•	•	٠	•	•	•	0	0	٠	0	0	0	0	0	٠	0	0	0	0	0	•
	00	0 0	0	•	0	0	0	0	0	•	0	0	0	0	0	•	0	T_4	0	0	0	•	0	0	0	0	0	
	00																											
	00																											
	00																											
	00																											
	00																											
	00																											
	00																											
	00																											
	00																											
	00																											
	00																											
	00																											
	$(\circ \circ)$	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	В	0	0	0	° /	

Notes on the proof

(i) We use exactly 6854 partial patterns.

(ii) Automaton Γ in Lemma 2 uses 31 vertices, which is why the alphabet has size 10×10 only.

(iii) The largest matrix in \mathcal{F} has 8×8 blocks, which is why Theorem 1 has permutations in S_{80} .

(iv) Proof of Lemma 1 has 2 paragraphs, but it took over a year of hard work to state. Natural extensions remain open.

Conjecture 0. [Garrabrant, P.] Let $\overline{\alpha}$ be as in Lemma 1. Then $\overline{\alpha}$ has O(n) subwords of length n.

The non-ADE extension

Theorem 1'. [Garrabrant, P., in preparation]

There is a set $\mathcal{F} \subset S_{80}$, s.t. the g.f. for $\{C_n(\mathcal{F})\}$ is **not** ADE.

Lemma 1'. Let $\{a_n\}$ be an integer sequence, and let $\{n_i\}$ be the sequences of indices with **odd** a_n . Suppose

1) for all $b, c \in \mathbb{N}$, there exists k such that $n_k = b \mod 2^c$,

2)
$$n_k/n_{k+1} \to 0$$
 as $k \to \infty$.

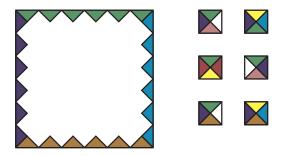
Then the g.f. for $\{a_n\}$ is **not** ADE.

Corollary. Let $\{a_n\}$ be an integer sequence, s.t. a_n is odd if only if n = k! + k, for some k. Then the g.f. for $\{a_n\}$ is **not** ADE.

Note: cf. EC2, Exc. 6.63c.

First prequel: Wang tilings

Long and classical story going back to 1960s (Wang, Berger, Robinson, etc.) Key result: tileability of the plane with fixed set of Wang tiles is undecidable. Delicate part: ensuring that the "seed tile" must be present in a tiling. This is what we do by introducing \mathcal{F}' .



Second prequel: Kontsevich's problem

Let G be a group and $\mathbb{Z}[G]$ denote its group ring. Fix $u \in \mathbb{Z}[G]$. Let $a_n = [1]u^n$, where [g]u denote the value of u on $g \in G$. In 2014, Maxim Kontsevich asked whether $\{a_n\}$ is always P-recursive when $G \subseteq \operatorname{GL}(k, \mathbb{Z})$.

Theorem 4. [Garrabrant, P., 2015+] There exists an element $u \in \mathbb{Z}[SL(4,\mathbb{Z})]$, such that the sequence $\{[1]u^n\}$ is not P-recursive.

Note: Proof uses the same Lemma 1(!) When $G = \mathbb{Z}^k$ or $G = F_k$, the sequence $\{a_n\}$ is known to be P-recursive for all $u \in \mathbb{Z}[G]$ (Haiman, 1993).

Open problems:

Conjecture 1. The *Wilf-equivalence* problem of whether $C_n(\mathcal{F}_1) = C_n(\mathcal{F}_2)$ for all $n \in \mathbb{N}$ is undecidable.

Conjecture 2. For forbidden sets with a single permutation $|\mathcal{F}| = |\mathcal{F}'| = 1$, the Wilf-equivalence problem is decidable.

Conjecture 3. Sequence $\{C_n(1324)\}$ is not P-recursive.

Conjecture 4. There exists a finite set of patterns \mathcal{F} , s.t. computing $\{C_n(\mathcal{F})\}$ is $\#\mathsf{EXP}$ -complete, and computing $\{C_n(\mathcal{F}) \mod 2\}$ is $\oplus\mathsf{EXP}$ -complete.

Grand Finale:

A story how Doron Zeilberger lost faith and then lost \$100.

Thank you!

