Can irrational tilings give Catalan numbers?

Igor Pak, UCLA

(joint work with Scott Garrabrant)

Stanley's 70th Birthday Conference, MIT

June 24, 2014

1

Biographical tidbit

My best investment ever: 2.38 roubles \implies [new world].

Extraterrestrial research: a modest proposal

Carl Sagan: We should communicate with aliens using prime numbers.

SETI: Systematically sends prime number sequence to outer space.

My proposal: Start sending Catalan numbers!

Hey, You Never Know!

Difficult Question:

Can there be a world without Catalan numbers?

In other words, maybe there is a model of computation which is powerful enough, yet is unable to count any Catalan objects?

Answer: Maybe! Consider the world of 1-dimensional irrational tilings!

Tilings of $[1 \times n]$ rectangles

Fix a finite set $T = {\tau_1, \ldots, \tau_k}$ of *rational* tiles of height 1.

Let $a_n = a_n(T)$ the number of tilings of $[1 \times n]$ with T.

Transfer-matrix Method: $A_T(t) = \sum_n a_n t^n = P(t)/Q(t)$, where $P, Q \in \mathbb{Z}[t]$.

Therefore, *NO* Catalan numbers!

Irrational Tilings of $[1\times(n+\varepsilon)]$ rectangles

Fix $\varepsilon > 0$ and a finite set $T = {\tau_1, \ldots, \tau_k}$ of *irrational tiles* of height 1. Let $a_n = a_n(T, \varepsilon)$ the number of tilings of $[1 \times (n + \varepsilon)]$ with T.

Observe: we can get *algebraic* g.f.'s $A_T(t)$.

Main Conjecture:

Let F denote the class of g.f. $A_T(t)$ enumerating irrational tilings. *Then:*

$$
C(t) \notin \mathcal{F}
$$
, where $C(t) = \frac{1 - \sqrt{1 - 4t}}{2t}$.

In other words, there is no set T of irrational tiles and $\varepsilon>0,$ s.t.

$$
a_n(T,\varepsilon) = C_n
$$
 for all $n \ge 1$, where $C_n = \frac{1}{n+1} {2n \choose n}$.

Diagonals of Rational Functions

Let
$$
G \in \mathbb{Z}[[x_1,\ldots,x_k]]
$$
. A diagonal is a g.f. $B(t) = \sum_n b_n t^n$, where

$$
b_n = [x_1^n,\ldots,x_k^n] G(x_1,\ldots,x_k).
$$

Theorem 1. *Every* $A(t) \in \mathcal{F}$ *is a diagonal of a rational function* P/Q *, for some polynomials* $P, Q \in \mathbb{Z}[x_1, \ldots, x_k]$ *.*

For example,

$$
\binom{2n}{n} = [x^n y^n] \frac{1}{1-x-y}.
$$

Proof idea: Say, $\tau_i = [1 \times \alpha_i], \alpha_i \in \mathbb{R}$. Let $V = \mathbb{Q}\langle \alpha_1, \dots, \alpha_k \rangle, d = \dim(V)$. We have natural maps $\varepsilon \mapsto (c_1, \ldots, c_d), \ \alpha_i \mapsto v_i \in \mathbb{Z}^d \subset V.$

Interpret irrational tilings as walks $O \to (n + c_1, \ldots, n + c_d)$ with steps $\{v_1, \ldots, v_k\}.$

Properties of Diagonals of Rational Functions

- (1) must be D*-finite*, see [Stanley, 1980], [Gessel, 1981].
- (2) when $k = 2$, must be *algebraic*, and
- (2') every algebraic $B(t)$ is a diagonal of $P(x, y)/Q(x, y)$, see [Furstenberg, 1967].

No surprise now that Catalan g.f. $C(t)$, $tC(t)^{2} - C(t) + 1 = 0$, is a diagonal:

$$
C_n = [x^n y^n] \frac{y(1 - 2xy - 2xy^2)}{1 - x - 2xy - xy^2},
$$

see e.g. [Rowland–Yassawi, 2014].

Moral: Theorem 1 is not strong enough to prove the Main Conjecture.

N-Rational Functions \mathcal{R}_k

Definition: Let \mathcal{R}_k be the smallest set of functions $F(x_1, \ldots, x_k)$ which satisfies

- (1) $1, x_1, \ldots, x_k \in \mathcal{R}_k$,
- (2) $F, G \in \mathcal{R}_k \implies F + G, F \cdot G \in \mathcal{R}_k,$
- (3) $F \in \mathcal{R}_k$, $F(0) = 0 \implies 1/(1 F) \in \mathcal{R}_k$.

Note that all $F \in \mathcal{R}_k$ satisfy: $F \in \mathbb{N}[[x_1, \ldots, x_k]],$ and $F = P/Q$, for some $P, Q \in \mathbb{Z}[x_1, \ldots, x_k]$.

Let N be a class of diagonals of $F \in \mathcal{R}_k$, for some $k \geq 1$. For example,

$$
\sum_{n} \binom{2n}{n} t^n \in \mathcal{N} \qquad \text{because} \qquad \frac{1}{1-x-y} \in \mathcal{R}_2 \, .
$$

N-rational functions of one variable:

Word of caution: \mathcal{R}_1 is already quite complicated, see [Gessel, 2003].

For example, take the following $F,G\in\mathbb{N}[[t]]$:

$$
F(t) = \frac{t + 5t^2}{1 + t - 5t^2 - 125t^3}, \qquad G(t) = \frac{1 + t}{1 + t - 2t^2 - 3t^3}.
$$

Then $F \notin \mathcal{R}_1$ and $G \in \mathcal{R}_1$; neither of these are obvious.

The proof follows from results in [Berstel, 1971] and [Soittola, 1976] , see also [Katayama–Okamoto–Enomoto, 1978].

Main Theorem: $\mathcal{F} = \mathcal{N}$.

In other words, every tile counting function $A_T \in \mathcal{F}$ *is a diagonal of an* N-rational function $F \in \mathcal{R}_k$, $k \geq 1$, and vice versa.

Mail Lemma: Both $\mathcal F$ and $\mathcal N$ coincide with a class of g.f. $F(t) = \sum_n f(n)t^n$, where $f : \mathbb{N} \to \mathbb{N}$ is given as finite sums $f = \sum g_j$, and each g_j is of the form

$$
g_j(m) = \begin{cases} \sum_{v \in \mathbb{Z}^{d_j}} \prod_{i=1}^{r_j} {\alpha_{ij}(v,n) \choose \beta_{ij}(v,n)} & \text{if } m = p_j n + k_j, \\ 0 & \text{otherwise,} \end{cases}
$$

for some $\alpha_{ij} = a_{ij}v + a'_{ij}n + a''_{ij}$, $\beta_{ij} = b_{ij}v + b'_{ij}n + b''_{ij}$, and $p_j, k_j, r_j, d_j \in \mathbb{N}$.

Asymptotic applications

Corollary 2. There exist $\sum_{n} f_n$, $\sum_{n} g_n \in \mathcal{F}$, s.t.

$$
f_n \sim \frac{\sqrt{\pi}}{\Gamma(\frac{5}{8}) \Gamma(\frac{7}{8})} 128^n
$$
, $g_n \sim \frac{\Gamma(\frac{3}{4})^3}{\sqrt[3]{2} \pi^{5/2}} n^{-3/2} 384^n$

Proof idea: Take

$$
f_n := \sum_{k=0}^n 128^{n-k} {4k \choose k} {3k \choose k}.
$$

Note: We have $b_n \sim B n^{\beta} \gamma^n$, where $\beta \in \mathbb{N}$, and $B, \gamma \in \mathbb{A}$, for all $\sum_n b_n t^n = P/Q$.

Conjecture 3. For every $\sum_{n} f_n \in \mathcal{F}$, we have $f_n \sim \text{B}n^{\beta} \gamma^n$, where $\beta \in \mathbb{Z}/2, \gamma \in \mathbb{A}$, *and* B *is spanned by values of* ${}_{p}\Phi_{q}(\cdot)$ *at rational points, cf.* [Kontsevich–Zagier, 2001].

Back to Catalan numbers

Recall

$$
C_n \sim \frac{1}{\sqrt{\pi}} n^{-3/2} 4^n.
$$

Corollary 4. *There exists* $\sum_{n} f_n t^n \in \mathcal{F}$, *s.t.* $f_n \sim \frac{3\sqrt{3}}{\pi} C_n$. *Furthermore*, $\forall \epsilon > 0$, *there exists* $\sum_{n} f_n t^n \in \mathcal{F}$, *s.t.* $f_n \sim \lambda C_n$ *for some* $\lambda \in [1 - \epsilon, 1 + \epsilon]$ *.*

Moral: Main Conjecture cannot be proved via rough asymptotics. However:

Conjecture 5. *There is no* $\sum_{n} f_n t^n \in \mathcal{F}$, *s.t.* $f_n \sim C_n$.

Note: Conj. 5 does not follow from Conj. 3; probably involves deep number theory.

Bonus applications

Proposition 6: For every $m \geq 2$, there is $\sum_{n} f_n t^n \in \mathcal{F}$, s.t.

$$
f_n = C_n \mod m, \quad \text{for all} \ \ n \ge 1.
$$

Proposition 7: For every prime $p \geq 2$, there is $\sum_n g_n t^n \in \mathcal{F}$, s.t.

$$
\operatorname{ord}_p(g_n)=\operatorname{ord}_p(C_n), \quad \text{for all} \ \ n\geq 1,
$$

where $\text{ord}_p(N)$ *is the largest power of* p *which divides* N.

Moral: Elementary number theory doesn't help either to prove the Main Conjecture. Note: For $\mathrm{ord}_p(C_n)$, see [Kummer, 1852], [Deutsch–Sagan, 2006].

Proof idea: Take

$$
f_n = \binom{2n}{n} + (m-1)\binom{2n}{n-1}.
$$

In summary:

As promised, we created a rich world of tile counting functions, which may have Catalan objects, but probably not!

Happy Birthday, Richard!

