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Biographical tidbit

My best investment ever: 2.38 roubles =⇒ [new world].



Extraterrestrial research: a modest proposal

Carl Sagan: We should communicate with aliens using prime numbers.

SETI: Systematically sends prime number sequence to outer space.

My proposal: Start sending Catalan numbers!

Hey, You Never Know!



Difficult Question:

Can there be a world without Catalan numbers?

In other words, maybe there is a model of computation which is powerful

enough, yet is unable to count any Catalan objects?

Answer: Maybe! Consider the world of 1-dimensional irrational tilings!



Tilings of [1× n] rectangles

Fix a finite set T = {τ1, . . . , τk} of rational tiles of height 1.

Let an = an(T ) the number of tilings of [1× n] with T .

Transfer-matrix Method: AT (t) =
∑

n an t
n = P (t)/Q(t), where P,Q ∈ Z[t].

Therefore, NO Catalan numbers!
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Irrational Tilings of [1× (n + ε)] rectangles

Fix ε > 0 and a finite set T = {τ1, . . . , τk} of irrational tiles of height 1.

Let an = an(T, ε) the number of tilings of [1× (n+ ε)] with T .

Observe: we can get algebraic g.f.’s AT (t).
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Main Conjecture:

Let F denote the class of g.f. AT (t) enumerating irrational tilings.

Then:

C(t) /∈ F , where C(t) =
1−

√
1− 4t

2t
.

In other words, there is no set T of irrational tiles and ε > 0, s.t.

an(T, ε) = Cn for all n ≥ 1, where Cn =
1

n + 1

(

2n

n

)

.



Diagonals of Rational Functions

Let G ∈ Z[[x1, . . . , xk]]. A diagonal is a g.f. B(t) =
∑

n bn t
n, where

bn =
[

xn
1 , . . . , x

n
k

]

G(x1, . . . , xk).

Theorem 1. Every A(t) ∈ F is a diagonal of a rational function P/Q,

for some polynomials P,Q ∈ Z[x1, . . . , xk].

For example,
(

2n

n

)

= [xnyn]
1

1− x− y
.

Proof idea: Say, τi = [1× αi], αi ∈ R. Let V = Q〈α1, . . . , αk〉, d = dim(V ).

We have natural maps ε 7→ (c1, . . . , cd), αi 7→ vi ∈ Zd ⊂ V .

Interpret irrational tilings as walks O → (n+ c1, . . . , n+ cd) with steps {v1, . . . , vk}.



Properties of Diagonals of Rational Functions

(1) must be D-finite, see [Stanley, 1980], [Gessel, 1981].

(2) when k = 2, must be algebraic, and

(2′) every algebraic B(t) is a diagonal of P (x, y)/Q(x, y), see [Furstenberg, 1967].

No surprise now that Catalan g.f. C(t), tC(t)2 − C(t) + 1 = 0, is a diagonal:

Cn = [xnyn]
y (1− 2xy − 2xy2)

1− x− 2xy − xy2
,

see e.g. [Rowland–Yassawi, 2014].

Moral: Theorem 1 is not strong enough to prove the Main Conjecture.



N-Rational Functions Rk

Definition: Let Rk be the smallest set of functions F (x1, . . . , xk) which satisfies

(1) 1, x1, . . . , xk ∈ Rk ,

(2) F,G ∈ Rk =⇒ F +G, F ·G ∈ Rk ,

(3) F ∈ Rk, F (0) = 0 =⇒ 1/(1− F ) ∈ Rk .

Note that all F ∈ Rk satisfy: F ∈ N[[x1, . . . , xk]], and F = P/Q,

for some P,Q ∈ Z[x1, . . . , xk].

Let N be a class of diagonals of F ∈ Rk, for some k ≥ 1. For example,

∑

n

(

2n

n

)

tn ∈ N because
1

1− x− y
∈ R2 .



N-rational functions of one variable:

Word of caution: R1 is already quite complicated, see [Gessel, 2003].

For example, take the following F,G ∈ N[[t]] :

F (t) =
t+ 5t2

1 + t− 5t2 − 125t3
, G(t) =

1 + t

1 + t− 2t2 − 3t3
.

Then F /∈ R1 and G ∈ R1 ; neither of these are obvious.

The proof follows from results in [Berstel, 1971] and [Soittola, 1976] ,

see also [Katayama–Okamoto–Enomoto, 1978].



Main Theorem: F = N .

In other words, every tile counting function AT ∈ F is a diagonal

of an N-rational function F ∈ Rk, k ≥ 1, and vice versa.

Mail Lemma: Both F and N coincide with a class of g.f. F (t) =
∑

n f(n)t
n,

where f : N → N is given as finite sums f =
∑

gj , and each gj is of the form

gj(m) =















∑

v∈Zdj

rj
∏

i=1

(

αij(v, n)

βij(v, n)

)

if m = pjn+ kj ,

0 otherwise,

for some αij = aijv + a′ijn+ a′′ij , βij = bijv + b′ijn+ b′′ij, and pj, kj , rj , dj ∈ N.



Asymptotic applications

Corollary 2. There exist
∑

n fn ,
∑

n gn ∈ F , s.t.

fn ∼
√
π

Γ
(

5
8

)

Γ
(

7
8

) 128n, gn ∼ Γ
(

3
4

)3

3
√
2π5/2

n−3/2 384n

Proof idea: Take

fn :=

n
∑

k=0

128n−k

(

4k

k

)(

3k

k

)

.

Note: We have bn ∼ Bnβ γn, where β ∈ N, and B, γ ∈ A, for all
∑

n bn t
n = P/Q.

Conjecture 3. For every
∑

n fn ∈ F , we have fn ∼ Bnβγn, where β ∈ Z/2, γ ∈ A,

and B is spanned by values of pΦq(·) at rational points, cf. [Kontsevich–Zagier, 2001].



Back to Catalan numbers

Recall

Cn ∼ 1√
π
n−3/2 4n .

Corollary 4. There exists
∑

n fn t
n ∈ F , s.t. fn ∼ 3

√
3

π
Cn . Furthermore, ∀ǫ > 0,

there exists
∑

n fn t
n ∈ F , s.t. fn ∼ λCn for some λ ∈ [1− ǫ, 1 + ǫ].

Moral: Main Conjecture cannot be proved via rough asymptotics. However:

Conjecture 5. There is no
∑

n fn t
n ∈ F , s.t. fn ∼ Cn .

Note: Conj. 5 does not follow from Conj. 3; probably involves deep number theory.



Bonus applications

Proposition 6: For every m ≥ 2, there is
∑

n fn t
n ∈ F , s.t.

fn = Cn mod m, for all n ≥ 1.

Proposition 7: For every prime p ≥ 2, there is
∑

n gn t
n ∈ F , s.t.

ordp(gn) = ordp(Cn), for all n ≥ 1,

where ordp(N) is the largest power of p which divides N .

Moral: Elementary number theory doesn’t help either to prove the Main Conjecture.

Note: For ordp(Cn), see [Kummer, 1852], [Deutsch–Sagan, 2006].

Proof idea: Take

fn =

(

2n

n

)

+ (m− 1)

(

2n

n− 1

)

.



In summary:

As promised, we created a rich world of tile counting functions,

which may have Catalan objects, but probably not!



Happy Birthday, Richard!


