Can irrational tilings give Catalan numbers?

Igor Pak, UCLA

(joint work with Scott Garrabrant)

Stanley's 70th Birthday Conference, MIT

June 24, 2014

1

Biographical tidbit

My best investment ever: $2.38 \text{ roubles} \implies [\text{new world}].$

Extraterrestrial research: a modest proposal

Carl Sagan: We should communicate with aliens using prime numbers.

SETI: Systematically sends prime number sequence to outer space.

My proposal: Start sending Catalan numbers!

Hey, You Never Know!

Difficult Question:

Can there be a world without Catalan numbers?

In other words, maybe there is a model of computation which is powerful enough, yet is unable to count any Catalan objects?

Answer: Maybe! Consider the world of 1-dimensional irrational tilings!

Tilings of $[1 \times n]$ rectangles

Fix a finite set $T = \{\tau_1, \ldots, \tau_k\}$ of *rational* tiles of height 1.

Let $a_n = a_n(T)$ the number of tilings of $[1 \times n]$ with T.

Transfer-matrix Method: $A_T(t) = \sum_n a_n t^n = P(t)/Q(t)$, where $P, Q \in \mathbb{Z}[t]$.

Therefore, NO Catalan numbers!

Irrational Tilings of $[1 \times (n + \varepsilon)]$ rectangles

Fix $\varepsilon > 0$ and a finite set $T = \{\tau_1, \ldots, \tau_k\}$ of *irrational tiles* of height 1. Let $a_n = a_n(T, \varepsilon)$ the number of tilings of $[1 \times (n + \varepsilon)]$ with T.

Observe: we can get *algebraic* g.f.'s $A_T(t)$.

Main Conjecture:

Let \mathcal{F} denote the class of g.f. $A_T(t)$ enumerating irrational tilings. Then:

$$C(t) \notin \mathcal{F}$$
, where $C(t) = \frac{1 - \sqrt{1 - 4t}}{2t}$.

In other words, there is no set T of irrational tiles and $\varepsilon>0,$ s.t.

$$a_n(T,\varepsilon) = C_n$$
 for all $n \ge 1$, where $C_n = \frac{1}{n+1} {\binom{2n}{n}}.$

Diagonals of Rational Functions

Let
$$G \in \mathbb{Z}[[x_1, \ldots, x_k]]$$
. A diagonal is a g.f. $B(t) = \sum_n b_n t^n$, where
 $b_n = [x_1^n, \ldots, x_k^n] G(x_1, \ldots, x_k).$

Theorem 1. Every $A(t) \in \mathcal{F}$ is a diagonal of a rational function P/Q, for some polynomials $P, Q \in \mathbb{Z}[x_1, \ldots, x_k]$.

For example,

$$\binom{2n}{n} = [x^n y^n] \frac{1}{1 - x - y}.$$

Proof idea: Say, $\tau_i = [1 \times \alpha_i], \alpha_i \in \mathbb{R}$. Let $V = \mathbb{Q}\langle \alpha_1, \dots, \alpha_k \rangle, d = \dim(V)$. We have natural maps $\varepsilon \mapsto (c_1, \dots, c_d), \alpha_i \mapsto v_i \in \mathbb{Z}^d \subset V$.

Interpret irrational tilings as walks $O \to (n + c_1, \dots, n + c_d)$ with steps $\{v_1, \dots, v_k\}$.

Properties of Diagonals of Rational Functions

- (1) must be D-finite, see [Stanley, 1980], [Gessel, 1981].
- (2) when k = 2, must be *algebraic*, and
- (2') every algebraic B(t) is a diagonal of P(x, y)/Q(x, y), see [Furstenberg, 1967].

No surprise now that Catalan g.f. C(t), $tC(t)^2 - C(t) + 1 = 0$, is a diagonal:

$$C_n = [x^n y^n] \frac{y(1 - 2xy - 2xy^2)}{1 - x - 2xy - xy^2},$$

see e.g. [Rowland–Yassawi, 2014].

Moral: Theorem 1 is not strong enough to prove the Main Conjecture.

\mathbb{N} -Rational Functions \mathcal{R}_k

Definition: Let \mathcal{R}_k be the smallest set of functions $F(x_1, \ldots, x_k)$ which satisfies

- (1) $1, x_1, \ldots, x_k \in \mathcal{R}_k$,
- (2) $F, G \in \mathcal{R}_k \implies F + G, F \cdot G \in \mathcal{R}_k$,
- (3) $F \in \mathcal{R}_k, F(0) = 0 \implies 1/(1-F) \in \mathcal{R}_k.$

Note that all $F \in \mathcal{R}_k$ satisfy: $F \in \mathbb{N}[[x_1, \dots, x_k]]$, and F = P/Q, for some $P, Q \in \mathbb{Z}[x_1, \dots, x_k]$.

Let \mathcal{N} be a class of diagonals of $F \in \mathcal{R}_k$, for some $k \geq 1$. For example,

$$\sum_{n} \binom{2n}{n} t^{n} \in \mathcal{N} \quad \text{because} \quad \frac{1}{1 - x - y} \in \mathcal{R}_{2}.$$

\mathbb{N} -rational functions of one variable:

Word of caution: \mathcal{R}_1 is already quite complicated, see [Gessel, 2003].

For example, take the following $F, G \in \mathbb{N}[[t]]$:

$$F(t) = \frac{t + 5t^2}{1 + t - 5t^2 - 125t^3}, \qquad G(t) = \frac{1 + t}{1 + t - 2t^2 - 3t^3}.$$

Then $F \notin \mathcal{R}_1$ and $G \in \mathcal{R}_1$; neither of these are obvious.

The proof follows from results in [Berstel, 1971] and [Soittola, 1976], see also [Katayama–Okamoto–Enomoto, 1978].

Main Theorem: $\mathcal{F} = \mathcal{N}$.

In other words, every tile counting function $A_T \in \mathcal{F}$ is a diagonal of an \mathbb{N} -rational function $F \in \mathcal{R}_k$, $k \geq 1$, and vice versa.

Mail Lemma: Both \mathcal{F} and \mathcal{N} coincide with a class of g.f. $F(t) = \sum_n f(n)t^n$, where $f : \mathbb{N} \to \mathbb{N}$ is given as finite sums $f = \sum g_j$, and each g_j is of the form

$$g_j(m) = \begin{cases} \sum_{v \in \mathbb{Z}^{d_j}} \prod_{i=1}^{r_j} \begin{pmatrix} \alpha_{ij}(v,n) \\ \beta_{ij}(v,n) \end{pmatrix} & \text{if } m = p_j n + k_j \\ 0 & \text{otherwise}, \end{cases}$$

for some $\alpha_{ij} = a_{ij}v + a'_{ij}n + a''_{ij}$, $\beta_{ij} = b_{ij}v + b'_{ij}n + b''_{ij}$, and $p_j, k_j, r_j, d_j \in \mathbb{N}$.

Asymptotic applications

Corollary 2. There exist $\sum_n f_n$, $\sum_n g_n \in \mathcal{F}$, s.t.

$$f_n \sim \frac{\sqrt{\pi}}{\Gamma(\frac{5}{8})\Gamma(\frac{7}{8})} 128^n, \qquad g_n \sim \frac{\Gamma(\frac{3}{4})^3}{\sqrt[3]{2}\pi^{5/2}} n^{-3/2} 384^n$$

Proof idea: Take

$$f_n := \sum_{k=0}^n 128^{n-k} \binom{4k}{k} \binom{3k}{k}.$$

Note: We have $b_n \sim B n^{\beta} \gamma^n$, where $\beta \in \mathbb{N}$, and $B, \gamma \in \mathbb{A}$, for all $\sum_n b_n t^n = P/Q$.

Conjecture 3. For every $\sum_n f_n \in \mathcal{F}$, we have $f_n \sim Bn^{\beta}\gamma^n$, where $\beta \in \mathbb{Z}/2, \gamma \in \mathbb{A}$, and B is spanned by values of ${}_p\Phi_q(\cdot)$ at rational points, cf. [Kontsevich–Zagier, 2001].

Back to Catalan numbers

Recall

$$C_n \sim \frac{1}{\sqrt{\pi}} n^{-3/2} 4^n.$$

Corollary 4. There exists $\sum_{n} f_n t^n \in \mathcal{F}$, s.t. $f_n \sim \frac{3\sqrt{3}}{\pi} C_n$. Furthermore, $\forall \epsilon > 0$, there exists $\sum_{n} f_n t^n \in \mathcal{F}$, s.t. $f_n \sim \lambda C_n$ for some $\lambda \in [1 - \epsilon, 1 + \epsilon]$.

Moral: Main Conjecture cannot be proved via rough asymptotics. However:

Conjecture 5. There is no $\sum_n f_n t^n \in \mathcal{F}$, s.t. $f_n \sim C_n$.

Note: Conj. 5 does not follow from Conj. 3; probably involves deep number theory.

Bonus applications

Proposition 6: For every $m \ge 2$, there is $\sum_n f_n t^n \in \mathcal{F}$, s.t.

$$f_n = C_n \mod m$$
, for all $n \ge 1$.

Proposition 7: For every prime $p \ge 2$, there is $\sum_n g_n t^n \in \mathcal{F}$, s.t.

$$\operatorname{ord}_p(g_n) = \operatorname{ord}_p(C_n), \quad \text{for all } n \ge 1,$$

where $\operatorname{ord}_p(N)$ is the largest power of p which divides N.

Moral: Elementary number theory doesn't help either to prove the Main Conjecture. Note: For $\operatorname{ord}_p(C_n)$, see [Kummer, 1852], [Deutsch–Sagan, 2006].

Proof idea: Take

$$f_n = \binom{2n}{n} + (m-1)\binom{2n}{n-1}.$$

In summary:

As promised, we created a rich world of tile counting functions, which may have Catalan objects, but probably not!

Happy Birthday, Richard!

