The story of MacMahon's Master Theorem

Igor Pak, UCLA
UCLA Combinatorics Seminar
May 27, 2010

MacMahon's Master Theorem

Let $A=\left(a_{i j}\right)_{m \times m}, \quad a_{i j} \in \mathbb{C}$, be a complex matrix, x_{1}, \ldots, x_{m} be a set of commuting variables,

$$
G\left(k_{1}, \ldots, k_{m}\right)=\left[x_{1}^{k_{1}} \cdots x_{m}^{k_{m}}\right] \prod_{i=1}^{m}\left(a_{i 1} x_{1}+\ldots+a_{i m} x_{m}\right)^{k_{i}} .
$$

Let t_{1}, \ldots, t_{m} be another set of commutative variables, and $T=\left(\delta_{i j} t_{i}\right)_{m \times m}$ a diagonal matrix. Then:

$$
\sum_{\left(k_{1}, \ldots, k_{m}\right)} G\left(k_{1}, \ldots, k_{m}\right) t_{1}^{k_{1}} \cdots t_{m}^{k_{m}}=\frac{1}{\operatorname{det}(I-T A)}
$$

where the summation is over all nonnegative integer vectors $\left(k_{1}, \ldots, k_{m}\right)$.

Main result:

Let $q_{i j} \in \mathbb{C}, q_{i j} \neq 0$, where $1 \leq i<j \leq m$. Suppose variables x_{1}, \ldots, x_{m} are \mathbf{q}-commuting:

$$
x_{j} x_{i}=q_{i j} x_{i} x_{j}, \text { for all } i<j,
$$

Suppose also that the variables $a_{i j} \mathbf{q}$-commute within columns:

$$
a_{j k} a_{i k}=q_{i j} a_{i k} a_{j k}, \text { for all } i<j,
$$

commute with $x_{s}, 1 \leq s \leq m$, and satisfy:
$a_{j k} a_{i l}-q_{i j} a_{i k} a_{j l}+q_{k l} a_{j l} a_{i k}-q_{k l} q_{i j} a_{i l} a_{j k}=0$, for all $i<j, k<l$.
Define

$$
\operatorname{det}_{\mathbf{q}}(I-A)=\sum_{J \subseteq[m]}(-1)^{|J|} \operatorname{det}_{\mathbf{q}} A_{J},
$$

where

$$
\operatorname{det}_{\mathbf{q}} A=\sum_{\sigma \in S_{m}}\left(\prod_{p<r: \sigma(p)>\sigma(r)} q_{r p}^{-1}\right) a_{\sigma(1) 1} \cdots a_{\sigma(k) k}
$$

Theorem [Konvalinka-P.] Let

$$
G\left(k_{1}, \ldots, k_{m}\right)=\left[x_{1}^{k_{1}} \cdots x_{m}^{k_{m}}\right] \prod_{i=1 . . m}^{\vec{m}}\left(a_{i 1} x_{1}+\ldots+a_{i m} x_{m}\right)^{k_{i}} .
$$

Then

$$
\sum_{\left(k_{1}, \ldots, k_{m}\right)} G\left(k_{1}, \ldots, k_{m}\right)=\frac{1}{\operatorname{det}_{\mathbf{q}}(I-A)}
$$

This talk

Question: How can prove such a generalization of MMT?
Answer: You need to find a really good proof of MMT - the rest is easy (both the statement and the proof of the theorem).

Followup Question: How can one come up with such a proof?
Answer: You need to see and understand the underlying algebra. To do that, I need to tell the full story of MacMahon's Master Theorem, as we understand it now.

Hint: Such proof is part bijective and part algebraic.

Starting point:

Percy A. MacMahon, Combinatory analysis, Vol. 1, Cambridge University Press, 1915.

About the author:

Major Percy Alexander MacMahon (1854-1929)

- Second son of Brigadier-General, served in British Army in India
- Taught at Royal Military Academy, retired a Major
- Fellow of the Royal Society
- Sylvester Medal, Morgan Medal, Queen's Medal by the Royal Society
- President of the London Mathematical Society

MacMahon is the father of combinatorics.

- [Jonathan Borwein]

MacMahon's expertise lay in combinatorics, a sort of glorified dicethrowing, and in it he had made contributions original enough to be named a Fellow of the Royal Society.

- [certain MIT professor]

MMT:

$$
\begin{gathered}
A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 m} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m m}
\end{array}\right), \quad T=\left(\begin{array}{ccc}
t_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & t_{m}
\end{array}\right) \\
G\left(k_{1}, \ldots, k_{m}\right):=\left[x_{1}^{k_{1}} \cdots x_{m}^{k_{m}}\right] \prod_{i=1}^{m}\left(a_{i 1} x_{1}+\ldots+a_{i m} x_{m}\right)^{k_{i}} \\
\text { (®) } G\left(k_{1}, \ldots, k_{m}\right)=\left[t_{1}^{k_{1}} \cdots t_{m}^{k_{m}}\right] \frac{1}{\operatorname{det}(I-T A)}
\end{gathered}
$$

First quick example:

$$
A=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right), \quad I-T A=\left(\begin{array}{cccc}
1-t_{1} & 0 & \ldots & 0 \\
0 & 1-t_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1-t_{m}
\end{array}\right)
$$

Then

$$
\begin{gathered}
G\left(k_{1}, \ldots, k_{m}\right)=\left[x_{1}^{k_{1}} \ldots x_{m}^{k_{m}}\right]\left(x_{1}\right)^{k_{1}} \cdots\left(x_{m}\right)^{k_{m}}=1, \\
\operatorname{det}(I-T A)=\left(1-t_{1}\right)\left(1-t_{2}\right) \cdots\left(1-t_{m}\right) .
\end{gathered}
$$

The MMT now says:

$$
\sum_{\left(k_{1}, \ldots, k_{m}\right)} t_{1}^{k_{1}} \cdots t_{m}^{k_{m}}=\frac{1}{\left(1-t_{1}\right) \cdots\left(1-t_{m}\right)}
$$

Second quick example:

$$
A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

Then

$$
G(n, n, n)=\left[x_{1}^{n} x_{2}^{n} x_{3}^{n}\right]\left(x_{2}+x_{3}\right)^{n}\left(x_{1}+x_{3}\right)^{n}\left(x_{1}+x_{2}\right)^{n}
$$

is the number of derangements of $x_{1}^{n} x_{2}^{n} x_{3}^{n}$, i.e. permutations of the letters with no fixed points. Observe (see the figure):

$$
G(n, n, n)=\sum_{k=0}^{n}\binom{n}{k}^{3}
$$

On the other hand, the MMT gives:

$$
\begin{aligned}
& G(n, n, n)=\left[t_{1}^{n} t_{2}^{n} t_{3}^{n}\right] \operatorname{det}^{-1}\left(\begin{array}{ccc}
1 & -t_{1} & -t_{1} \\
-t_{2} & 1 & -t_{2} \\
-t_{3} & -t_{3} & 1
\end{array}\right) \\
& \quad=\left[t_{1}^{n} t_{2}^{n} t_{3}^{n}\right] \frac{1}{1-t_{1} t_{2}-t_{1} t_{3}-t_{2} t_{3}-2 t_{1} t_{2} t_{3}}
\end{aligned}
$$

Third quick example:

$$
A=\left(\begin{array}{ccc}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right)
$$

Then

$$
G(n, n, n)=\left[x_{1}^{n} x_{2}^{n} x_{3}^{n}\right]\left(x_{2}-x_{3}\right)^{n}\left(x_{1}-x_{3}\right)^{n}\left(x_{1}-x_{2}\right)^{n}
$$

and we similarly have

$$
G(n, n, n)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{3}
$$

which implies that $G(n, n, n)=0$ for odd n.

On the other hand, for $n=2 m$, the MMT gives:

$$
\begin{aligned}
G(n, n, n) & =\left[t_{1}^{n} t_{2}^{n} t_{3}^{n}\right] \operatorname{det}^{-1}\left(\begin{array}{ccc}
1 & -t_{1} & t_{1} \\
t_{2} & 1 & -t_{2} \\
-t_{3} & t_{3} & 1
\end{array}\right) \\
& =\left[t_{1}^{n} t_{2}^{n} t_{3}^{n}\right] \frac{1}{1+t_{1} t_{2}+t_{1} t_{3}+t_{2} t_{3}} \\
& =\left[t_{1}^{2 m} t_{2}^{2 m} t_{3}^{2 m}\right](-1)^{m}\left(t_{1} t_{2}+t_{1} t_{3}+t_{2} t_{3}\right)^{3 m} \\
& =(-1)^{m}\binom{3 m}{m, m, m}
\end{aligned}
$$

We obtain Dixon's identity:

$$
\sum_{k=0}^{2 m}(-1)^{k}\binom{2 m}{k}^{3}=(-1)^{m}\binom{3 m}{m, m, m} .
$$

How about q-MMT?

Finding q-MMT was an open problem for over 50 years.
Here is the q-Dixon identity:

$$
\sum_{k=0}^{m}(-1)^{k} q^{k(3 k+1) / 2}\left[\begin{array}{c}
2 m \\
m+k
\end{array}\right]_{q}^{3}=\left[\begin{array}{c}
3 m \\
m, m, m
\end{array}\right]_{q}
$$

where

$$
\left[\begin{array}{c}
n \\
k
\end{array}\right]_{q}=\frac{n!_{q}}{k!_{q}(n-k)!_{q}}, \quad n!_{q}=(n)_{q} \cdots(1)_{q}, \quad(r)_{q}=\frac{q^{r}-1}{q-1} .
$$

Lagrange Inversion Theorem (1768)

Let $f(t)=t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+\ldots$ Suppose

$$
f(t)=t\left(1+c_{1} f(t)+c_{2} f(t)^{2}+c_{3} f(t)^{3}+\ldots\right)
$$

Then:

$$
a_{n}=\frac{1}{n} \cdot\left[z^{n-1}\right] \Phi(z)^{n},
$$

where $\Phi(z)=1+c_{1} z+c_{2} z^{2}+\ldots$.

Remark: This is a small special case of what is known in the literature as Lagrange Inversion Theorem. Also, $\Phi(z)$ is uniquely determined by $f(t)$.

Quick examples:

(1) $a_{n}=\#$ binary trees with n vertices, $f(t)=t(1+f(t))^{2}$,

$$
\Phi(z)=(1+z)^{2}, \quad a_{n}=\frac{1}{n}\left[z^{n-1}\right](1+z)^{2 n}=\frac{1}{n}\binom{2 n}{n-1} .
$$

[Catalan numbers]
(2) $a_{n}=\frac{1}{n!} \#$ rooted labeled trees with n vertices, $f(t)=t \exp f(t)$,

$$
\Phi(z)=e^{z}, \quad a_{n}=\frac{1}{n}\left[z^{n-1}\right] e^{n z}=\frac{1}{n} \cdot \frac{n^{n-1}}{(n-1)!}=\frac{1}{n!} \cdot n^{n-1} .
$$

[Cayley formula]

Life of MMT as an analytic result

I. J. Good observation (1962): MMT immediately follows from the multivariate Lagrange Inversion Theorem.

Fallout: For generations, combinatorialists looked for q-MMT via the q-Lagrange inversion results.

Minor obstacle: There are many inequivalent (multivariate) q-LIT. There are even several non-commutative LIT. None gives a q-MMT.

Timeline of q-Lagrange Inversion theorems:

- L. Carlitz (1974, stated as open problem)
- G. Andrews (1980)
- I. Gessel $(1980,+$ a non-commutative version)
- A. Garsia (1981)
- J. Hofbauer (1984)
- C. Krattenthaler (1984)
- A. Garsia, J. Remmel (1986)
- I. Gessel, D. Stanton (1986)
- D. Singer (1995, unification result)

Further generalizations:

- IP, A. Postnikov, V. Retakh (1995, non-commutative version via quasi-determinants)
- I. Gessel, G. Labelle (1995, Lagrange inversion for species)
- C. Lenart (2000, symmetric functions and q-version)
- J.-C. Novelli, J.-Y. Thibon (2008, non-commutative symmetric functions + unification)

One application

For a tree τ in K_{n} with root at 1, define the number of inversions

$$
\operatorname{inv}(\tau)=\#(i, j) \text { such that }\left[i \rightarrow_{\tau} j \rightarrow_{\tau} 1\right], 1<i<j \leq n
$$

Let

$$
J_{n}(q)=\sum_{T \in K_{n}} q^{\operatorname{inv}(T)}, \text { so that } J_{n}(1)=n^{n-2}
$$

Theorem [Mallows, Riordan, 1968]

$$
\sum_{n=1}^{\infty}(q-1)^{n-1} J_{n}(q) \frac{z^{n}}{n!}=\log \left[\sum_{k=0}^{\infty} q^{\binom{k}{2}} \frac{z^{k}}{k!}\right]
$$

Proof idea: Use recurrence relations to show that $J_{n}(q)=T_{K_{n}}(1, q)$. Use that $T_{K_{n}}(1,1+y)$ counts connected subgraphs of K_{n} by the number of edges.

Theorem [Gessel, 1982]

$$
\sum_{n=1}^{\infty} J_{n}(q) \frac{z^{n}}{n!}=\frac{\sum_{k=0}^{\infty} q^{-\binom{k+1}{2}}\left(1+q+\cdots+q^{k}\right)^{k} \frac{z^{k}}{k!}}{\sum_{k=0}^{\infty} q^{-\binom{k+1}{2}}\left(1+q+\cdots+q^{k-1}\right)^{k} \frac{z^{k}}{k!}}
$$

Proof idea: Use Gessel's q-Lagrange inversion applied to

$$
\mathbf{J}(z)=\sum_{k=1}^{\infty} q^{\binom{k}{2}} \mathbf{J}(z) \cdot \mathbf{J}(q z) \cdots \mathbf{J}\left(q^{k-1} z\right),
$$

where

$$
\mathbf{J}(z)=\sum_{n=1}^{\infty} J_{n}(q) \frac{z^{n}}{n!} .
$$

Theorem [P., Postnikov, Retakh, 1995]
Let $a_{1}, a_{2}, a_{3}, \ldots$ be non-commuting formal variables, and let R be the ring generated by them. Suppose $f \in R$ satisfies

$$
f=a_{0}+a_{1} f+a_{2} f^{2}+a_{3} f^{3}+\ldots
$$

Then $f=P \cdot Q^{-1}$, where

$$
P=a_{0}+\sum_{i_{1}+i_{2}+\cdots+i_{\ell+1}=\ell} a_{i_{1}} a_{i_{2}} \cdots a_{i_{\ell+1}}
$$

and

$$
Q=1+\sum_{i_{1}+i_{2}+\cdots+i_{\ell}=\ell} a_{i_{1}} a_{i_{2}} \cdots a_{i_{\ell}} .
$$

Remark: To obtain Gessel's formula, use $a_{i}=g_{i} x^{i} y$, where g_{i} commute with everything, and $x y=q y x$.

Proof idea:

Take a nearly upper triangular Toeplitz matrix:

$$
A:=\left(\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & a_{4} & \cdots \\
a_{0} & a_{1} & a_{2} & a_{3} & \cdots \\
0 & a_{0} & a_{1} & a_{2} & \cdots \\
0 & 0 & a_{0} & a_{1} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Prove:

$$
f=\left(\frac{1}{I-A}\right)_{11} a_{0}=\left(I+A+A^{2}+A^{3}+\ldots\right)_{11} a_{0}
$$

For that, use tools for working with non-commutative (quasi-)determinants and explicit combinatorial calculations.

Back to MMT

- P. Cartier, D. Foata (1968, partially commutative matrix entries)
- D. Foata, D. Zeilberger (1988, powers of matrices)
- C. Krattenthaler, M. Schlosser (1999, q-multiplying operators)

Breakthrough:

- S. Garoufalidis, T. Lê, D. Zeilberger (2006, quantum MMT)

Remark: In 1980, Zeilberger introduced a highly technical "operator elimination" technique which he used to prove MMT. In [GLZ], the authors extend this technique to get a quantum extension.

Back story:

- J. Bernstein, M. Sato (1971, independently, D-modules and holonomic systems)
- V. Jones (1983, Jones polynomial of knots)
- L. Faddeev, M. Jimbo, V. Drinfeld, etc. (late 1980's, quantum groups)
- N. Reshetikhin, V. Turaev (1990, Jones polynomial from quantum groups)
- D. Zeilberger (1990, holonomic systems and binomial identities)
- S. Garoufalidis, T. Lê (2005, colored Jones polynomial is q-holonomic)

The algebraic proof of MMT:

Observe that:

$$
\sum_{k_{1}+\ldots+k_{m}=n} G\left(k_{1}, \ldots, k_{m}\right)=\operatorname{tr} S^{n} A,
$$

Now MMT can be reduced to a basic result in linear algebra:

$$
(M M T) \quad \sum_{n=0}^{\infty} \operatorname{tr} S^{n} A=\frac{1}{\operatorname{det}(I-A)}
$$

Follow the standard scheme:

1) MMT is trivial for diagonal matrices (see first quick example).
2) Check that $(M M T)$ is invariant under conjugation $B A B^{-1}$.
3) Extend to general matrices by continuity.

Life of MMT as an algebraic result

- D. Foata, G.-N. Han (2007-8, 3 papers, 2 new algebraic proofs, various quantum extensions)
- P. Hai and M. Lorenz (2007, Koszul duality proof)
- M. Konvalinka, IP (2007, quantum extensions to Manin matrices)
- P. Etingof, IP (2008, extension to Berger's N-homogeneous algebras, proof uses known generalized Koszul duality)
- P. Hai, B. Kriegk, M. Lorenz (2008, extension to N-homogeneous superalgebras)
- A. Molev, E. Ragoucy (2009, right quantum superalgebras)

Combinatorial proof of MMT:

Recall that:

$$
\left(B^{-1}\right)_{11}=\frac{\operatorname{det} B^{11}}{\operatorname{det} B}
$$

Use $B=I-A$ to rewrite the r.h.s. of $(M M T)$:

$$
\begin{gathered}
\frac{1}{\operatorname{det}(I-A)}=\frac{\operatorname{det}\left(I-A^{11}\right)}{\operatorname{det}(I-A)} \cdot \frac{\operatorname{det}\left(I-A^{12,12}\right)}{\operatorname{det}\left(I-A^{11}\right)} \cdot \frac{\operatorname{det}\left(I-A^{123,123}\right)}{\operatorname{det}\left(I-A^{12,12}\right)} \cdots \\
=\left(\frac{1}{I-A}\right)_{11}\left(\frac{1}{I-A^{11}}\right)_{22}\left(\frac{1}{I-A^{12,12}}\right)_{33} \cdots \frac{1}{1-a_{m m}} \\
=\left(I+A+A^{2}+\ldots\right)_{11}\left(I+A^{11}+\left(A^{11}\right)^{2}+\ldots\right)_{22} \\
\quad \times\left(I+A^{12,11}+\left(A^{12,12}\right)^{2}+\ldots\right)_{33} \cdots
\end{gathered}
$$

Now both l.h.s. and r.h.s. of ($M M T$) are positive sums of monomials in $\left\{a_{i j}\right\}$. Konvalinka and IP provide an explicit bijection proving MMT.

Remark: To obtain the proof of quantum generalizations we extend this bijection and use the theory of non-commutative and quantum determinants by GelfandRetakh, Etingof-Retakh and Manin.

One final application

Denote by $L_{m, k}(n)$ the number of sequences $\left(i_{1} \ldots i_{n}\right), i_{r} \in\{1, \ldots, m\}$, such that no k subsequent indices are strictly decreasing.

Corollary [Etingof, P.]

$$
\begin{gathered}
1+\sum_{n=1}^{\infty} L_{m, k}(n) t^{n}= \\
\left(1-m t+\binom{m}{k} t^{k}-\binom{m}{k+1} t^{k+1}+\binom{m}{2 k} t^{2 k}-\binom{m}{2 k+1} t^{2 k+1}+\ldots\right)^{-1}
\end{gathered}
$$

Question: An easy combinatorial proof for $k>2$?

Thank you!

