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Generating Functions
and Recursions

3.1. RULES AND PROPERTIES

If ug, uy, uy,...,un,... is a sequence of numbers, we may associate with this
sequence a generating function g(x) by the rule

gX) = ug + ugx + x>+ -+ uX + 00 (3.1.1)

If this series has a circle of convergence with a radius R > 0, then it may happen
that the properties of the function g(x) enable us to evaluate the coeflicients
u, (or at least give estimates of their order of magnitude) or perhaps find other
information of value, If h(x) is the generating function of the sequence v, v,
UgyeevyUpy.-.,then

h(x) = 0o + 03X + ;%2 + " + 0, X" + -, (3.1.2)
If we add (3.1.1) multiplied by ¢, and (3.1.2) multiplied by d, we have
¢g(x) + dh(x) = (cug + dvg) + (cuy + dvy)x + - + (cu, + dv,)x" + -, (3.1.3)
and if we multiply, we have
gOIh(x) = wo + wyx + wox? + - + wx" + -, (3.1.4)
where foreveryn =1,2,3,...,
Wy = Ugly + UgUp—g + *°° + Uy 0y + Uy, (3.1.5)
Even if the series for g(x) and h(x) are not convergent, we may regard (3.1.3),
(3.1.4), and (3.1.5) as defining formal operations on formal series. In these
terms we easily verify that the addition, multiplication by scalars, and series

multiplication satisfy the associative, commutative, and distributive laws.
Furthermore, if 4, # 0and if we take v, = ug ', we may use (3.1.5) to determine
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vy, U2, - . . TECUrsively to make g(x)h(x) = 1.
Instead of the generating function g(x) associated with ug, uy,..., Uy .-,
we may associate an exponential generating function, G(x), by the rule

2 n

G(x) = o + X + u22>|c T "n’f (3.1.6)
Similarly, let H(x) be associated with vy, v, ... by
v, x2 T px"
H(x)=vo+v,x+~—2——!—— S (3.1.7)
Then, for the product G(x)H(x) = K(x),
wyx? w,x"
G(x)H(x)=K(x)=wo+w,x+—§—|-— —;;'-—+"-, (3.1.8)

where

n n n
W, = Ugv, + (l) Ugly—g + - + ( )u,v,._, + +( )u,.vo, (3.1.9)
¥ n

or symbolically,
w'=(u + )" (3.1.10)
In the symbolic formula {3.1.10), it is to be understood that after expansion of

(# + v)" by the binomial formula, all exponents are to be replaced by subscripts.

Suppose that a sequence uy, u,, u,,..., u4,, ... satisfies the recurrence of rth
order:

Ungr = A Up4p-q + QlUpsp-z + - + auy, n=20,1,2,..., 31.11)

where the a;, i = 1,..., r are constants. Then, if g(x) is the generating function
for the sequence {u,}, and if we take k(x) as the polynomial

k(x) =1 —a;x — a,x*> — - — a,x, (3.1.12)
we find that
gkx) =co + e x + ex2 + 4+ ¢,y X = C(x),  (3.1.13)

where C(x) is a polynomial of degree at most r — 1, sinceif ¢, .., is the coefficient
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of x"*", n = 0, in the product g(x)k(x), we find
Cotr = Upsr — QqlUpyreq”"" — AU, =0, (3~]~l4)

using the recursion (3.1.11). Thus, for a sequence {u,} satisfying the linear
recurrence (3.1.11), the generating function g(x) is a rational function

C(x)

g(x)=7(-(;)—.

(3.1.15)
With the linear recurrence (3.1.11) we associate the characteristic polynomial
f(x) given by

fX)=x" —ax" ! - —a,. (3.1.16)
Without loss of generality we shall assume that a, # 0, since if a, = 0, the

recurrence is not truly of order r but is of lower order. Let the factorization of
f(x) into linear factors be

S(x) = (x — o) (x — @) - (x — &), ey +ey++e=r (3117

where a,,...,q; are the (possibly) complex roots of f(x). Comparing f(x) of
(3.1.16) and k(x) of (3.1.12), we see that

k(x) = xf (i—) (3.1.18)

and corresponding to the factorization (3.1.17) of f(x), we have the factorization
of k(x):

kix) = (1 — ogx)t - (1 — oex), ey t+ey+-+e=r (3119

We may express the rational function g(x) = C(x)/k(x) in terms of partial
fractions ,

Cx) & &
g(x) = k—--= LXa —ocx)"’ (3.1.20)

i=1 k=
where the f’s are appropriate constants.

Thus, (3.1.20) expresses the generating function as a sum of functions of the
form

B

m = ﬂ(l - ozx)"". (3.1.21)
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We may easily expand (3.1.21) by the binomial formula to find

Bl —ax)™* = ﬁ(l +(—k)(—ax) + -~

+ (3.1.22)

n!

_k [ _k_ +l _ ]
SRCTIEL e
In this, the coefficient of x" is

Bn+k—1)-(k) , (n+k—1\, (m+k-1),
— a_p( ) )a_ﬁ( o >a. (3.1.23)

We note that

i B (n - l) af = Py(n)of, (3.1.24)
k=1 k—1

where P;(n) is a polynomial of degree at most ¢; — | in n, and that any poly-
nomial P;(n) can be obtained by using an appropriate choice of constants fj.
Substituting back in (3.1.20), we have

O

g(x) = Z unx'l
n=0

Mh

Py(n)aix", (3.1.25)

O

oi

i}

n 1

and comparing coefficients of x", we have
Uy = Y, Pin)od, (3.1.26)
i=1

where Py(n) is degree at most ¢; — 1.
We shall state this result as a theorem.

Theorem 3.1.1. Suppose a sequence uq, u,, Us,...,u,, ... satisfies the linear
recurrence with constant coefficients '

Uppr = QulUys,—q + -7 + a,u,, nz0.

Let us call f(x) = x" —a,x"~! — -+ — a, the characteristic polynomial of this
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recurrence and let
f(x)=(x'”al)e"”(x_as)e’a e t+e+ -+ e =r
be the factorization of f(x) as a product of linear factors. Then
s
u” = Z P,-(n)df
i=1
Jor all n, where P(n) is a polynomial of degree at most ¢; — 1 inn. The coefficients

of the polynomials Py(n) are determined by the initial values ug, uy,..., 4, of
the sequence {u,}.

3.2. COMBINATORIAL PROBLEMS

Let us consider a combinatorial problem whose solution depends on a linear
recurrence. Let u, t > 2, be the number of ways of finding a permutation
a,d;,...,q,0f1,2,...,tsuch that for each i, g; is in the ith column of the array:

1 2 t—3 t—2 t-1
1 2 3 - t—-2 t—-1 t (3.2.1)
2 3 4 t—1 t .

Here we find directly that u, = 2, u; = 3, u, = 5. The number ¢ must be used
in either the tth or (¢ — 1)th column, Thus, our two choices are

1 t—3 -2 @
12 3 t—2 t—1 (3.2.2)
23 4 -+ t—1
or
L2 o3 D @D
123 - -2 (3.2.3)
2 3 4 --

In both cases chosen numbers have been circled. In (3.2.2) we have omitted
the t from the (¢ — 1)th column, since it cannot be used there. In (3.2.3), having
chosen ¢ from the (t — 1)th column, we must choose t — 1 from the tth column
and then omit ¢t — 1 from the (t — 2)th column. The number of choices in
(3.22)for 1,2,...,t — 1 is 4,_,, and the number of choices in (3.2.3) is u,_,.
Hence, as these combine to give all choices in (3.2.1), we have

u‘ = ul—l + u‘_.z, (32-4)
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a linear recurrence of second order for u,. Although the combinatorial problem
is not meaningful for t = 0 or 1, the values u, = 1, 4; = | are consistent with
the recurrence (3.2.4) and the succession of values uo =1, u; =1, u, =2,
u3 = 3,u, = 5,.... The characteristic polynomial of (3.2.4) is

J6=x2 —x— 1= (x — ax — ay), (32.5)

where

U=—""> %= (3.2.6)
We easily find from Theorem 3.1.1 and our initial values that
1 + +1
U, = —=-(@* — a3t h). (327

JS

Another, more natural, combinatorial problem can be reduced to the
evaluation of u, just made. What is the number z,, n = 3, of permutations
aja,---a,of 1,2,...,nsuch that q; is in the ith column of the following array?

1 2 3 n—3 n—2 n—1 n
2 34 - n—-2 n—1 n 1 (3.2.8)
3 45 n—1 n 1 2

The complete set of choices can be subdivided according to the choice of
column in which # is selected, and if this is not the (n — 1)th column, the choice
ofn — 1 or 1 is in the (n — 1)th column. These choices may be indicated by the
circled values shown in the last three columns as follows:

-2 G_D (@ ® n-2 n—1 O

-1 n 1 n—1 n 1

" 1 2 n (D 2
© n=2n-1n @ n-2n-1n @ n-2G@-_Dn
n-1 () 1 n—1 n 1 n—1 noo1
n 1 2 » @O 2 O) 12

(3:29)

@ n
n

In case (a) there is exactly one choice, namely, the top row of (3.2.8), for only
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a single 1 remains to be chosen, and this is in the first column. Having chosen
this 1, only the 2 in the second column remains, and similarly the choices of
3,4,...,n — 2 in the first row are forced. In case (b) we are to choose from

2 3 - n—3 n-=-2
2 3 4 - n=-2 n-1 (3.2.10)
345 - n—-1

and this number is u,..,. In (c) the choices are from the array for u,_,. In (d)
there is exactly one choice, namely, the third row, since only one n — 1 remains
to be chosen and thatisin the(n — 3)th column; similarly, then — 2,n — 3,...,2
in the third row must be chosen. In (e) the choices are from the array for u,_ ,.
Hence, the total number of choices for (3.2.8), z,, is given by

zZ, = 1 +u,,_2+u,,_1 + 1 +u”_.2

=U, + Uy_y +2 .
— o+l +2, (3:211)
where
a1=1+\£§ , a2=1—2J§
as before.

The number u, of derangements of 1,2,. .., n evaluated in (2.1.6) may also be
found recursively. Consider a derangement

2 e
(l " ) (32.12)
a a, " a,
If a; = j, we consider the partial permutation
2 .o i e
( J " ) (32.13)
a a4 - a,

Two cases are to be considered here. First are cases with a; # 1, and second
those with a; = 1. These cases are collectively exhaustive and mutually ex-
clusive. In the first case we have

2 .. - P 3 PR
( ' J "), i (32.14)
aZ v as l e aj cee aﬂ
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which may be associated with the derangement of 2,.. ., n:

(2 “ae l. e .] e n >‘ (3'2'15)
a - j ovoa; o a,
Conversely, every derangement of 2,...,n such as (3.2.15) leads to (n — 1)

derangements of 1, 2,...,n of this first kind by taking j as 2,...,n in turn.
In the second case, with a; = 1, the partial permutation of (3.2.13) takes the form

(2 A "). (3.2.16)
aZ e l .. an

If we delete the ({), thisisa derangement of 2,...,j — 1,j + 1,..., n; conversely,
for each j = 2,..., n, such derangements of (n — 2) numbers lead to derange-

ments of 1,...,n of the second type. These two cases combine to give us the
recursion

U= — Duy_y + (n — Du,.,. (3.2.17)

We may easily verify that this recursion yields thc same numbers as (2.1.6).

A sequence x,x, "X, may be combined in this order by a binary non-
associative product in a number of ways. What is this number u,? For n = 3,4
we have the possibilities

x4(x2x3), (x3x2)x33
X4(x2(x3%4)), X1((x2x3)x4); (32.18)
(x1x2); (x3x4)

(4(x2x3))x4, ((x1x2)x3)x4-

Thus, u3 = 2, u, = 5. We also have u, = 1 and will take u, = 1 as a con-
vention. The last product will be some composite of the first r letters multiplied
by some composite of the last (n — r), of the form (a,--a,{a,+ """ a,). The
first r can be combined in u, ways (here the convention u, = 1 fits) and the last
(n — r)in u,_, ways. Thus

Uy = Uglly—y + Ugllyo s+ + U,_ gy, nz2. (3.2.19)
Let us write the generating function f(x) as

FO) = uyx + upx? + -+ ux" + -, (3.2.20)

postponing the consideration of its convergence. The recursion (3.2.19) is
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equivalent formally to the relation

()P = —x + f(x) (3.221)

We note that 4, = 1 and that the recursion (3.2.19) holds only for n > 2 and
must account for this by the —x on the right-hand side of (3.2.21). Solving
(3:2.21) for f(x) as a quadratic equation, we have

f(x) = 1-?—1/21—-153‘-. (32.22)

Here we take the minus sign, since the series for f(x) has no constant -term.
Expanding (3.2.22) as a power series, we find the coefficient of x" to be v,,, where

b B=H--- G- 2n)/2)(—4)"(—%).

n n!

(3.2.23)

This simplifies to

_ (@2n=2)

= e D (3.2.24)

We may now observe that the series for f(x) as given by (3.2.22) must con-
verge for [x| < 4, and for these values the equation (3.2.21)—and hence the
recursion (3.2.19)—with v, in place of 4, must hold. But as 4, = v, = 1, we
have u, = v, for all n = 1, and so our solution is

_ (@2n-=2)

for all n = 2. We observe that an attempt to prove the convergence of (3.2.20)
on the basis of (3.2.19) alone is exceedingly difficult.

PROBLEMS

1. The Fibonacci numbers are the sequence of numbers uy, u,,...,4,,...
with 4y =0, 4, =1, and u,+, = U,+, + u,. Show that every positive
integer N has a unique representation

o
N=3Y ay
i=1

withg; =0orlandaga,, =0,i> 1.
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2. Numbers s(n, r) and S(n, 1), called the Stirling numbers of the first and
second kind, respectively, are defined by the rules

) = x(x—1)-- (x~—n+l=i s(n, r)x’, n>0

and
= Z S(n, r)(x),, n>0.
r=0

Here we take x° = (x), = 1. Show that
Y. S(n, Ds(r, m) = 8,

the Kronecker delta, where §,, = 1, 8,, = 0 if n # m. From this, show
that each of the two relations

(a) a, =Y, s(n, nb,, n=12...,

r

(b) by=Y Smna, n=12...,

implies the other.

3. Use the relation (x),+; = (x — m)(x), to derive the recursions for the
Stirling numbers of the first and second kind:

s(n + 1,r) = s(n,r — 1) — ns(n, r),

S(n + l, r) = S(nv r— l) + rS(n, I').

4. Let P,= )7, (), this being the total number of permutations of n
distinct objects, without repetitions.

{(a) Show that P, satisfies the recurrence P, =nP,_, + Ln = 1, P, = L.

(b) Show that P, = n!),_, 1/r! and conclude that for n > 2, P, is the
nearest integer to nle.

(c) Show that ) =, P,x"/n! = €*/(1 — x).

5. A Dirichlet generating function A(s) for a sequence of numbers q,, a;,. ..
is a formal series

A(s) = ; 2
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If

o
=

Ms
L |

£
it

-
=

B(s) =

we define
AGs) + Bls) = C(5) = f &,
where ¢, = a, + b, and
ASBO) =V () = ¥ =,
wherei';

asb,,
U= ) ——.
Py

(a) Prove that this product rule is commutative and associative.

(b) Show that ifi, = 1,0 = i, = i3 = -- -, the series I(s) is a unit for this

multiplication.

(c) Show that if a, # 0, the series A(s) has an inverse B(s) satisfying
A(s)B(s) = I(s).

Define the zeta function as
(o) = i :
oon

Show that the inverse of {(s) is the series

(o = 3 4,

where the function u(n) is the Mobius function defined in (2.1.10). If q, =
g(n), b, = f(n) for all n, and B(s) = A(s){(s), then A(s) = B(s){(s)"'. Show
that this corresponds to the Mébius inversion formula of Theorem 2.1.1.



