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On the Partitions of a Polygon. By Professor CAvLEY.
[Read March 12th, 1891.]

1. The partitions are made by non-intersecting diagonals; the
problems which have been successively considered are (1) to find the
number of partitions of an r-gon into triangles, (2) to find the num-
ber of partitions of an »-gon into % parts, and (8) to find the number
of partitions of an 7-gon into p-gons,  of the form » (p—2)+2.

Problem (1) is a particular case of (2) ; and it is also a particular
case of (8); but the problems (2) and (3) are outside each other;
for problem (3) a very elegant solution, which will be here repro-
duced, is given in the paper, H. M. Taylor and R. C. Rowe, ‘ Note on
a Geometrical Theorem,” Proc. Lond. Math. Soc., t. xur (1882),
pp. 102-106, and this same paper gives the history of the solution
of (1). S . ’

The solution of (2) is given in the memoir, Kirkman * On the
k-partitions of the r-gon and r-ace,” Phil. Trans., t. 147 (for 1857),
p. 225 ; viz,, he there gives for the number.of partitions of the r-gon
into &k parts (or, what is the same thing, by means of k—1 non-

. intersecting diagonals) the expression

[r+k—2]*"' [r—8]*"
P e=17"

but there is no complete demonstration of this result.

If k= r—2, we have the solution of the problem (1); viz., the
number of partitions of the r-gon into triangles is

= [2r—4]"" + [r—2]"".

_The present paper relates chiefly to the foregoing problem (2), the
determination of the number of partitions of the r-gon into % parts,
or, what is the same thing, 'by means of k—1 non-intersecting
diagonals. ‘
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238 Professor Cayley on the [March 12,

2. Assuming for the moment the foregoing result, then for k=1,
the number of partitions is _ 1
=%
—r.r=3

for k=21t is 5

_r+l.r.r—8.r—-4
- 12 .

for k=38 it is

and so on. As a simple verification, % = 2, the number of partitions
is equal to the number of diagonals, viz., this is number of pairs of
summits less number of sides, that is

tr(r=1)—r, =3r(r-3)

For convenience I give the Table on next page, which is &
tabulation of the functions

U =2+ o'+ &+ 4.2,

U,= Ot 4 50+ 9m°+...%1%§z',
- : 128 m'r+1.fr.r—3.'r—4 ,
Uy 8 +215'+ 3221
— 4 m'r+2.r+1.r.r-3.r-&-4.fr—5 .
Us UL+ 4.3.2.3.8.1 oL
U = r43.042.7r+1l.r.r—8.r—4.r—5.r—6
5= . @,

5.4.8.2.4.5.2.1

8. And in connexion herewith I give the Table on page 240,5

which is a tabulation of the functions

V= o®+2+ 32+ 4o, +1 f;—%"",

Vo= 4144320, 42 L8 rmd

3.2.1
V,= 1408+ 722°... r+2.r+1.r—8.r—4.r—=5 ...
‘ * +3 43321 2%
Vi= 482°... 4r+3"r+2""+1-""'3-9'—4:.7'—5.'r—6 re2
B et 5.4.3.4.83.2.1 ams

&e.
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1891.] Purtitions of a Polygon. 241

4. These functions, U and V, are particular values satisfying tho
equation

M+ V+ V' +..0) = (U + Uy + U + Ut +...)%

that this is so will appear from the following general investigation.

5. Taking =z, y as independent variables, denoting by X an
arbitrary funetion of #, and using accents to denote differentiations
in regard to z, we requive the following identity :

2 X+ __."L._ (X3 4 2=

1.2 1.2.3 X"+

13641

= {x+ Ly ooy

1"%

which I prove as follows. Writing U to denote thoe same function of
w which X is of @, I start from the equation
uw=zx+yU,

which determines « as a function of the independent variables z, y.

‘We have 4lu e :
. 1 .

_ (1 —yU) =T, v gy AT =1,

where the accent denotes differentiation in regard to « ; hence

du _ giln _n—2 du or sav 1 du _ u—)° du
dy  dw y  de’ Y ‘/d de’
Writing w, = [uds,
and therefore iy u,
de
this equation may be written
APy duy _ dn ———a dw
Tdady  de " i de’

or, integrating with vespect to x, we have

dn
1 1

—u, = Ju'~un,
dy

VOL. XXII.—No0. 414, R
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242 Professor Cayley on the [March 12,

2 dny 2 (u—4o") _ (u—2z)

.orsay. y dy 7 Ty
. a (wm—3a’\ _ (u—2)
that is, 2dy( y )— Py

6. But, from the equation

u=a+yU,

we have u=a+yX + (X’) + (X" +...

123

and thence w, = %m“+yX + —L—X"-}- ¢ %—3 (X' +..

if for a moment X, is written for [ Xdv. And hence, from the relation
obtained above, we have the required identity

6y?
1.2.3.4

e Xi + 41/

8
12 i2.3 &)+

5 X0+

¥ rye -3\% !
{x+ (x)+123 ‘)+”}.
This of course gi'vcs the scries of identities

2 yo g1
13X =%

(X% =%, X (X?),

12% 1z

. ”__ > 3\ ._J_. ') r},_
21'1«(A’) 1’3‘\()&)-&-{1.2(}&) ’
or say X =X

(X)) = 21X (X,

(X)"= 4 X (X" + (X',

iny of which may be easily verified.
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1891.] Partitions of a Polygon.

7. T multiply each side of the identity by z* and write

2
Ul=$.X, V’—ﬂs-i-—2
U, =o L (X V, =2 (XY
1=\ 1 =123
U, =5 — (X" V=0 (X",
8 1.2.3 ’ ¢ 1.2.3.4 ’
— 1 6"” —_ __ﬁ___ 51;1:
UVi=2 13333 V=21 535357

243

Wo thus obtain two sets of functions U, V, satisfying bho boforo-

mentioned equation. = Wo havo
M+yVs+y'Ve+..) = (Ui +yUs+4' U +...)%
and it will be observed that we have, moreover, tho relations

U, =3z (2* Va)lv Uy = {z (27*V,), =3 (3_2 D e

8. In particular, if X=-2_,

then the general term

in X is 2™, the first term occurring when » =3, ...

in X? is (r—3) 2, . ” r=4, ..

. . r—3.r—4

inXis — o, . ” r =5,
1.2

. r—3.r—4.r=0 . \

in X*ig —U0 Tt » . r=0, ...

1.2.8

from which it appears that, for this value of X, U, U,, U,, U,, &e.

have the before-mentioned values (No. 2), and further that V,, V,, V,

Vi, &c. have also the before-mentioned values (No. 3).
R 2

L3
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244 Professor Cayley on the [March 12,

9. We do not absolutely requiro, but it is interesting to obtain, the
finite expressions of these functions. We bhave

(1—2) U, =2*(l),

(1—2)* U, = of (2—2),

(1—2)* U, = o (5—da+a?),

(1—a)" U, = 2 (14— 1+ ' —2),

(1—2)° U, = of (42— 480 + 27a'— 8+ 2%),

(1—2)" U, = 2 (132 — 1652+ 11007 — e+ 1028 —F) ;

(—a)* ¥, =2 (1),

(1—a)* Vy = o (4—2z),

(A-2)V, =2 (14—1224 3%,

(1—2)* V, = 2° (48— b4z + 242 — 4a?),
(1=z)"Vy = 2" (165 — 220+ 1322° — 40a* 4 5a*),

and here the factors in () satisfy the scrics of relations
1=18
4—2n =2 (2—u),
14—122+ 32" = 2.1 (5— 4w +2') + (2 —2)%,
48— 5dw + 2t — 4 = 2.1 (14— lda + G2 —2*) +2 (2= 2) (5 —du +2%),

corvesponding to V,=U,, V,=20,U, &e.,

given by the before-mentioned equation (No. 7), between the functions
V oaud U.

10. 1t is to be shown that, tuking 17, 1/,, U,, ... for the functions
which helong to the pariitions of the r-gon (assamed to be unknown
functions of » and the suflixes), and counceting them with w sct of
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1891.] Partitions of a Polygon. 245

functions V,, V;, V,, ... by the relations
U, =32V, Uy=1x@?Vy), U,=3}z(@"V), &,
then we have the forcgoing identical equation
(Ve Vyy+ Vi +..) = (Ui + Uy + Uy’ + Ugy* + ..
This implies the relations .
V,= Ui,
Vs =2U, U,
V,=SU, U+ U3,
V, =20, U, +2U,U,
&e.

Thus, if U, is known, the equation
V.= Uiz

determines ¥V, and then

U,= 'é‘w (=~* 2)’

determines Uj, so that U,, U, are known ; and we thence in the same
way find successively Uy and Vi, Uy and V,, and so on; that is,
assuming only that U, has the before-mentioned value,

U,=a*+a'+2"+ ...+ ...,

it follows that all the remaining functions U and ¥V must have their
before-mentioned values. DBut the function

U,=a*+a'+a"+...,

where each cocflicient is = 1, is evidently the proper expression for
the gencrating function of the number of partitions of the »-gon into
a single part; and we thus arrive at the proof that the remaining
functions U, which are the gencrating functions for the number of
partitions of the »-gon iuto 2, 38,4, ... k, parts, have their bLefore-
mentioned values.

11. Considering, then, the pavtition problem from the point of view
just referred to, I write 4,, I, C,, ... for the number of partitions of
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246 Professor Cayley on the [March'12,
an r-gon into 1 pﬁrt, 2 parts, 3 parts, &c., and form therewith the
generating functions

Uy=A4a°+ A .+ A2 ...,

U, = Bt L+ . B,z ...,

U, = O+ O ...,

. 4 .
and also tae functions

wherc obscrve that the functions U, V are such that
Uy=12(?V), Up=1z(@?V,), U,=iz(?V)), &e

To fix the ideas, consider an r-gon which is to be divided into six
parts. Choosing any particular summit, and from this summit
drawing a diagonal successively to each of the non-adjacent »—3
summits, wo divide the 7-gon into two parts in »—3 different ways ;
viz., the two parts are

a 3-gon and (r—1)-gon,
4-gon and (r—2)-gon,

(r—1)-gon and 3-gon ;
say any one of these ways is
an a-gon and B-gon, a+B=r-2.
Next, writing a+b =06,
that is, e, b=1,15,
2, 4,
3,3,
4, 2,
51,
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1891.] Partitions of a Polygon. 247

‘we divide in every possiblo way the a-gon into a parts, and the

{3-gon into b parts (so dividing the r-gon into six parts). Observing

that 4, B, 0, D, B, I' aro the letters belonging to the numbers 1, 2,
3, 4, 5, 6, respectively, the number of parts which we thus obtain
(corresponding to the different values of a, b) are

A,E,+B.D,+0,C,+D,B,+E,A4,,

and summing for the different values of a, 3 (a+8 = r+2), the
whole number of parts is

= coeff. &’ in.(U, Uy + U, U, + U, U, + U Uy + U U,
that is, in (2U,Us+20,U,+ U3).

12, To obtain the whole number of the partitions of the r-gon into
six parts, we must perform the foregoing process successively with
each summit of the r-gon as the summit from which is drawn the
diagonal which divides the r-goninto two parts; that is, the number
found as above is to be multiplied by . We thus obtain all the parti-
tions repeated a certain number of times, viz., each partition into six
parts is a partition by means of five diagonals, and is thus obtainable
by the foregoing process, taking any one of the ten extremities of
these diagonals as the point from which is drawn the diagonal which
divides the r-gon into two parts; that is, we have to divide the fore-
going product by 10. The final result thus is

10

~ F, = coeff. &"** in (2U, U, +20,U,+ U}),
where - —I—QF,. is = coeff. 2”*? in Vj;
r
we thus have Vo =201+ 20U, U+ U":

13. The reasoning is perfectly goneral ; and applying it successively
to the partitions into two parts, three parts, &c., we have

V,=1U;,

v, = 2U,U,,
V.=2U0,U,+ US,
V, = 2U,U,+2U, U,
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248 Professor Cayley on the [March 12,

where any function V is related to the corresponding function U as
above. The value of U, is obviously
2.

U, =a+z*+a’+... = -"—;
l-2

and hence the several functions U and V have the values above
written down; the gencral term of U, is

[r4+k—2]*"[r—3]*"!

O (=17 7

and the number of partitions of the r-gon inte & parts is equal to the
coefficient of 2 in this general term.

14. In the investigations which next follow, I consider, without
using the method of generating functions, the problem of the partition
of the r-gon into 2, 3, 4 or 5 parts ; it will be convenient to state the
results as follows:

Number of Partitions.

i<

2 parts 4,

3 parts 24,

r
4
4 parts % (34+2B),

5 parts —g— (44+8B+20C);

where the capital letters refer to different * diagonal-types,” thus:

2 parts, 8 parts, 4 parts,
or ldiagonal. | or 2 diagonals. | or 3 diagonals.

A A A B A B L
41 11

A NI
viz.: if, in a polygon divided into & parts by means of k—1 dingonals,
we delete all the sides of the polygon, leaving only the diagonals, then

these will present themsclves under distinct forms, which are what I
call “ diagonal-types”; for instance,

6 parts, or 4 diagonals.

=4,
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1891.] Partitions of a Polygon. 249

there are the two types 4 and B shown in the above diagram for
four parts.

15. It is to be observed that we have sub-types corresponding to
the coalescence of the terminal points of different diagonals; thus,

I = 4.

Writing now A° and I#° to denote the forms withont conlescences, we
bave the sub-types A°, A’y A” and I°, I}, I, ", B™, as follows:

4 parts, or 3 diagonals.
N Iy A ) B B’ 8"
A NN N A A A

where observe that under A4” arc included two distinct forms, which,

nevertheless, by reason that there is in each of them the same number

(=2) of coalescences, are reckoned as belonging to the same sub-type.

16. The numbers called 4, B, C, &c. have values which may be
directly determined. I write down as follows:

-3

1 diagonal A = ——1——,

2 dmgona,]s A= M —_ 1:.__3 = :&_45(7_’. l)_

Calculation is r—2.r—1 =1+*—3r+2

—0 —6
P —3r—4
=¢r—4d.r+1.

3 diagonals

_r=3.0=2.r—=1.rr+1 'r-—3.r—2.'r—1_t-_3)_'r—3
4= 120 2( 6 1

_r=3.r—2.r—1.7r7r41 _2')'——3.7'—2.1'—-1
120 6

= r=3.7 3.r—4.r-=5
120

—E+Tr+2).

0202 JoqUIBAON 2 UO J8sn 10N AG $28085 1/2E2/1/22-1S/PIKe/sw|d/woo"dnoojwspese//:sdpy Wwoly papeojumoq



250 Professor Cayley on the [March 12,

Calculation is
r=2r—lorr+l=1"=2"— 4+ 2
—~40.r—2.7—1 —407*4-120r—~ 80
+120 +120
*—2— 417 +122r+ 40
=r—4.r—5.r+7r+2.
D= r—5r—4.r—-8.r-2.90-1

120
_r=8r—4.r-6, .
=T 120 (r=1.r-2)
4 diaconals 4 = r—8.r—=2.r—1.r.r4+1.74+2.743
e - 5040
r—=3.r—=2.r—=1.r.7r+41 r—3.r—2.r—1 r—3
3 120 +3 6 17

_r—3.r—4.r—5.r—6
5040

Calculation is
r—2.0r=1.rr+1l.0942.048=°"4+83"— 5r'— 1522+ 4’4+ 12¢

(**+18:* +657).

—126.r—2.7—~1.r.r+1 ~126:4 425278+ 126+ — 252¢
+2520.r—2.r -1 42520 —7560r + 5040
—5040 —5040

70437 —131+4+ 237+ 4265077 — 7800~
=r—4.r—5.r—6.72+18:1+ 65r.

B _r=5.r—4.r—3.r—2.r—1.7.7+1 7r=5.r—4.r—3.r—2.7r—1
- 5040 120
r—3.r—4.7r—5.r—0
= - -~ (r=1.r-2.
5500 (r—1.r r+17),
C__r—?.r—6.r—5.7-—4:.r—3.'r—-2.r—1
- 5040
r—3.r—d.r—=5.r—06 -
= =040 (r—=1.r—2.r=7).
Calculation is r.r+1 =7"4r
—42 —49
P 4r—42

=r—06.7417.
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1891.] Partitions of a Polygon. 251

17. To explain the formation of these expressions, observe that :
One diagonal.—There must be on each side of the diagonal, or say
in cach of the two “intervals” formed by the diagomnal, two sides;
there remain r—4 sides which may be distributed at pleasure between
the two intervals, and the number of ways in which this can be done
_r=3
o
Two diagonals.—There must be on each side of the two diagonals, or
say in two of the four intervals formed by the diagonals, two sides;

there remain #—4 sides to be distributed between the same four
intorvals, and the number of ways in which this can be done is

is

_r=3.r-2.r—1

=—=" .
But we must cxeclude the distributions where there is 0 side in tho
one interval and 0 side in the other interval between the two dingonals;
tho number of these is that for tho case of the coalescence of tho two
diagonals into u single diagonal, viz., it is '

_r-3

1 ’

and thus the number requived is

r—3.0—2.r—1 r—3

6 1

18, Three diagonals, A.—There must be on each side of the three
diagonals, that is, in two of the six intervals formed by the dingonals,
two sides ; thore remain r—4 sides to be distributed betweon the same
six intervals, and the number of ways in which this can be done is

_r—38.r—2.r=1l.r.r+1
- 120

_ But we must exclude distributions which would permit the coalescence
of the first and sccond, or of the sccond and third, or of all three of
the diagonals. Nor the couléscence of the first und sccond diagonals
(the third diagonal not coulescing) the term to be subtracted is

r—=3.r—=2.r—1 r=—3,
6 1’

and the samo number for tho coalescenco of tho sccond and third
dingonals (the first diagoual not coalescing) ; that is, the lust-mentioned
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252 Professor Cayley on the [March 12,

number is to be multiplied by 2; and for the coalescence of all three
dingonals the number to be subtracted is

we have thus the foregoing value

r=8.r=2r—lrotl o r=8.7-2.7-1 ,7-3
120 2 6 e
where it will be observed that we have the binomial coefficients 1, 2, 1
with the signs +, —, +.

Three diagonals, B.—Therc must be outside each of the threo
dingonals, that ix, in three of the six intervals formed by the diagonals,
two sides; and there remain »—6 sides to be distributed between the six
intervals; the number of ways in which this can be done is

_r—5.r—4.r~3.r—2.r—1

- 120 ’
and there is here no coalescence of diagonals, ‘o that this is the
number required.

19. Four diagonals, 4.—There must be on each side of the four
dingonals, that is, in two of the eight intervals formed by the diagonals,
two sides; there remain r—4 sides to be distributed between the
eight intervals, and the number of ways in which this can be done is

r—3.r—2.7r—1.r.r4+1.74+2.74+3
5040 )
But this number requires to be corrected for coalescences, as in the case
Three diagonals, A4, and the required number is thus found to be
r—=3.r=2.r~1.r.r4+1.7r4+2.743 -3 r—3.r=2.r—1.r.7+1
5040 120
r—3

r—3.r—2.r—1 -
— +1 T

+3

Four diagonals, B.—There must be outside of three of the diagonals,
that is, in each of three of the cight intervals formed by the diagonals,
two sides; therc remain r—6 sides to be distributed between tho
cight inlervals, and the number of ways in which this can be done is

r=5.7—4.7r—=3.7—2.0—1.rr+1

oU40

0202 JoqUIBAON 2 UO J8sn 10N AG $28085 1/2E2/1/22-1S/PIKe/sw|d/woo"dnoojwspese//:sdpy Wwoly papeojumoq



1891.] . Partitions of @ Polygon. 253
T'here is a correction for the coalescence of two of the diagonals, giving
rise to a form such as Three diagonals, B, and consequently a term

_r=5r—4.r-8.r=2.9+—1
120 ?

which, with the first-mentioned term, gives the required number.

Four diagonals, C.—There must be ountside of cach of the diagonals,
that is, in each of four of the eight intervals formed by the diagonals,
two sides ; there remain »—8 sides to be distributed between the cight
intervals, and the number of ways in which this can be done is

r—7.7-~0.r—57r—4.r—3.r—2.r—1
5040 i

which is the required number.

20. In the expressions of No. 14, A, 24, 34+2B, 44+8DB+20C,
if we regard the terminals of the diagonals as given points, then (1)
we.have two summits, which can be joined in one way only, giving
rise to the diagonal-type 4; (2) we have four summits, which can be
joined in two ways only, so as to give rise to the diagonal-type 4 ;
(3) we have six summits, which can be joined in three ways so as to
giverise to a diagonal-type 4, and in two ways so as to give rise to a
diagonal-type B ; and (4) we have eight summits, which can be joined
in four ways so as to give rise to a diagonal-type 4, in eight ways so
as to give rise to a diagonal-type B, and in two ways so as to giverise
to a diagonal-type C; we have thus the linear forms in question. To

" obtain the number of partitions, we have in each case to multiply
by v. To explain this, after the polygon is drawn, imagine the
summits to be numbered 1, 2, 3, ... rin succession (the numbering may
begin at any one of the » summits), and, regarding each of these
numberings as giving a different partition, we should have the factor 7.
But in fact the partitions so obtained are not all of them distinct, but
we have in each casc a system of partitions repeated as many times as
there arc summits of the diagonals, that is, a number of times equal
to twice the number of the diugonals ; and we have thus, after the
multiplidation by 7, to divide by the numbers 2, 4, 6, 8, in the four
cases respectively.

21. We hence have immediutely
Two purts, number of partitions

r ror—3
— A=
2 2.1 7
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Three parts, number of partitions

l.r.r—8.r-4
A='r+ r.r 7 ;

r
2 3.2.2.1

Four parts, number of partitions

r+2.r+1.r.r~83.r—4.r-56
4.3.2.3.2.1 !

—"—(;—(3A+2B) =

the calculation being
3(P+7r+2)= 8°421lr+ 6
+2.r—1.r—2 +27— 6r+ 4
= bd.r+l.7r42;

Five parts, number of partitions

T _r+3.r4+2.r41.7r.r—3.r—4.r—5.r—6
=g (44+85+20) = 5.4.3.2.4.3.2.1 ’

the calculation being
4(rP+18°+65r) = o472+ 2607
+8.r—1.r—2747 +8°+32=152r4+112
+2.r=1.r—2.r—7 +2°—-20+ 46r— 28
= 142 +84°+154r+ 84
= 14(P+65+ 11r+6)
= l4r+lr+2.7+3.

To complete the theory, it would be in the first instance necessary
“to find for any given uumber of diagonals, ¥ —1, whatever, the iumber
and form of the diagonal-types, 4, B, C, &c.; this is itself an
interesting question in the Theory of Partitions, but I have not.
considered it.

22. Although the foregoing process (which, it will be ohserved,
deals with tho diagonal-types, without any consideration of the
sub-types) is the most simple for the determination of the numbers
A, B, U, &c., yet it is interesting to give a sceond process.  Consider-
ing the several cases in order :
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1891.] Partitions of a Polygon. 255

One diagonal, A.—The diagonal has two summits ; we must have on
each side of it one summit, and there romain r—4 summits which may
bo distribuied between the two intervals formed by the diagomnals.

This can be done in 7‘;13 ways, or we have, as before,

r—38
1
Two diagonals, A.—The diagonals have four summits; we must

have outside each diagonal one summit, and there remain r—6

summits to be distributed between the four intervals formed by the

r—5.r—4%.r—3
6

value for A°. DBut the two top summits of the diagonals, or the two

bottom summits, may coalesce ; in either case the diagonals have three

summits. We must have outsidc each dingonal one summit, and there
remain r—5 summits to be distributed between the three intervals
formed by the diagonals; the number of ways in which this can be

4=

diagonals; this can be done in ways, or we have this

. —4.r-3
done is . | = L—-J \
say this is the value of A”. And we then have 4 = 4°+24,
= Zi_l_'ﬂ_ii_’":{ as before.
Tha calculation is r—5+6 =1r+1.

23. Three diagonals, 4.—See No. 15 for the figures of the sub-types.
We have A= A°+44'+44",

where the coefficients, 4 and 4, are the number of ways in which
A" and A” respectively can be derived from A° by coalescences of
summits. For A° the diagonals have six summits, and there must
"be outside of two diagonals one summit ; there remain *—8 summits
tobe distributed between the six intervals formed by the diagonals,
and we have '

r—7.r—6.r—5.r—4.r—3
4° =" .
120
For A’ the diagonals bave five summits, and we must have outside of
each of two diagonals, one summit; there remain —7 summits to be
distributed between the five intervals formed by the diagonals; we
thus have
o __r—6.r=5.r—4.r—3

4= 24 "

For A" the diagonals have four summits; there must be outside of each
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of two diagonals one summit, and there remain r—6 summits to be
distributed between the four intervals formed by the diagonals; we
thus have
” —5.?'—4'."‘—3
47 =22 77d
6

The foregoing values give

A= 'r—-3.';;O4s.'r—5 (r’+7’r4—2),

as before. The calculation is

r—0.r—7=7r=18r+ 42
+20.7—6 +20r—120
+80 + 80

r+ Tr+ 2

Three diagonals, B.—See No. 15 for the figures of the sub-types. We
have

B = B°+8B'+3D"+B".

For B° the diagonals have six summits, and there must be outside
cach of the three diagonals one summit ; there remain r—9 summits
to be distributed between the six intervals formed by the diagonals.

‘We thus havo '
B = r—8.r—7.r—6.r=5.r—4
- 120 .

Similarly,

= r—6.r—5.r—4 B = r—5.r—4

24 ’ -6 2

B = r—7.r—6.r—5.r—4

D= r—5.r—4.r—3.r—2.r—1

Hence 190 ,

as before. The calculation is

=G0 —7.7r—8 = 1*—21+14-146r— 336
+15.7—6.r=7 +1573—19574 630
+60.7—6 + GUr—360

+ 60 + 60

= 6+ 1lr— 6

= 7—1.";'—2.1'—3.
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24. Four diagonals, A.—The figures of the sub-types of 4, B, 0 can

be supplied without difficulty. We have
A=A4°4+64"+124" 484",

where I remark that the numerical coefficients 1, 6,12, 8 are the

terms of (1, 2)%. We have

n =9 —8r—7.r—6.r—5.r—4.r—3
- ’

5040
A = r—8.r—7.r—6.7r—5.r—4.r—3
- 720 ’
v _ r—=7.7r-6.r—5.r—4.r—3
A" = 120 ’
m_ r—6.7—8 r—4.v—3
47 = 24 &

ondthence 4 =T=3:7 —5%2‘0_5""-6 (#*+ 18 +657),

as before. Tho calcalation is
r—9.7r—8.r—7 = "—24"+191r— 504
+42.r—8.r—=7 +427'—630r 42352
+504. 7—7 +504r—3528
+1680 +1680

#+18r + Gor

Four diagonals, B.—We have
B=DI+5B+9B"+73"+2B",

where the cocflicients, 1, 5,9, 7,2, are the terms of (1, 1)3 (1, 2).

havo

B _r=10.r—90.r=8.r~-7r—6.r=5.r—4
- 5040 ’

_ r—9.r—8r—7.r—6.r—5.r—4

B = TR0 ’
B = r—Rr—7.r—6.r—5.r—4
120 ’

B = r—7.7r—06.r—5.r—4
2k '’

—G.r—5.r—4

By = r—G.r—a.7 ’

3
VOL. XXIT.—N0. 415, s )

" We
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B= r—3.r—4,r—=5.r—6

5040 r=1.r=2.r4+7

and thence

as before. The calculation is

r—10.7—9.7r—8.7=7 = *—~34:* + 431~ 2414r 4 5040
+35.r—~9.r—8.r=7% + 3578 — 840+ 4- 6685r — 17640

+378.r—8.r—7 + 378 —5670r 421168
+1470.r—7 +1470r — 10290
+1680 + 1680

PS4+ P~ 31+ Tlr— 42
=7r=8.r—2.r—1.747.
Four diagonals, 0.—We have
0 = (C°+40'+6C"+40"+10",

where the coefficients are the terms of (1, 1)%. We have

c° = 'r—l1.'r--]0.9‘—9.7’—8.9‘—7.7—-6.1‘-—:5

5040 ’

o = r--10.r—9.7—8.r—7.r—6.r—5
s 720 ’
o = r—9.r -8.r—7.r—6.r—5
- 120 ’
v r—8.r—T.r—6.r—5
0= , 24 ’
w r—7.r—6.r—=5
o = ——

r—7.r~6.r=5.r—4.7—=3.7r—2.r—1
5040 )

and thence C=

I omit the calculation, as the equation is at once seen to be a particular
case of a known factorial formula.

25. We may analyse the partitions of an r-gon into a given number
of parts, according to the nature of the parts, that is the numbers of
the sides of the several component polygons. It is for this purpose
convenicent to introduce the notion of  weight’’; say a triangle has
the weight 1, then a quadrangle, as divisible into two triangles, has
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1891.] Partitions of a Polygon. 259

the weight 2, a pentagon, as divisible into three triangles, has the
weight 3, ... and generally an 7-gon, as divisible into r—2 triangles,
has the weight r—2. It at once follows that, if

W =w+w, or =w+w'+w’, &c,

then a polygon of weight W is divisible into two polygons of the
weights w, w', or into three polygons of the weights w, w’, w” respec-
tively; and so on. Thus the 2-partitions of an B-gon (weight = 6)
ave 15, 24, and 33 ; the 3-partitions are 114, 123, 222, and so on. Df
course the number of the partitions 15, 24, 33, is equal to the whole

number of the 2-partitions of the 8-gon, that is = 20; the number of
the partitions 114, 123, 222, is equal to the whole number of thke

3-partitions of the 8-gon, that is it is = 120; &nd so in other chses.
1t is easy to derive in order one from the other the numbers of the
partitions of each several kind of the polygons of the several weights
2, 3, 4, 5, 6, &c.; and I write down the accompanying Table (No. 26),
facing page 260, the process for the construction being as follows :

27. The first column (2 parts) is at once obtained. For a polygon
of an odd number of sides, for instance the 9-gon (weight =7),
imagining the summits numbered in order 1, 2, ... 9, we divide this
into a triangle and octagon, or obtain the partitions 16, by drawing the
diagonals 13, 24, ... 81, 92: viz., the number is = 9. In the Table
this is written, 16 = 9; and so in other cases. Similarly wedivide it
into a quadrangle and heptagon, or obtain the partitions 25, by drawing
the diagonals 14, 25, ... 82, 93: viz., the number is again = 9; and
we divide it into a pentagon and a hexagon, or obtain the partitions
34, by drawing the diagonals 15, 26, ... 83,94 : viz,, the number is =9,

and here 94949 =27,

the whole number of 2-partitions of the 9-gon. For a polygon of an
even number of sides, for instance the 10-gon (wcight = 8), the
process is a similar one, the only difference being that for the division
into two hexagons (that is, for the partitions 44) each partition is thus
obtained twice, or the number of such partitions is 110, = 5; the
numbers for the partitions 17, 26, 35, 44, thus are 10, 10, 10, 5; and

h
e bave 10+10+10+5 = 35,
the whole number of the 2-partitions of the 10-gon.
28. To obtain the sccond column (3 parts)—suppose, for instance,

the 8-partitions of the 9-gon ; thesenre 115,124, 183, 233.  We obtain
$2
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the number of the partitions 115 from the terms
16=9 and 25=9

of the first column : viz., in 16, changing the 6 into 15, that is, dividing
the polygon of weight 6 into two parts of weights 1 and 5 respectively ;
this can be done in eight ways (see, higher up, 15 = 8 in the first
column), and we thus obtain the number of partitions

I9x8=72;

and again, in 25, changing the 2 into 11, thatis, dividing the polygon
of weight 2 into two parts each of weight 1; this can be done in two
ways (sce, higher up, 11 = 2 in the first column), and we thus obtain
the number of partitions
Ix2=18;
we should thus have, for the number of partitions 115, the sum
72+18 = 90,

only, as it is easy to see, each partition is obtained twice, and the
number of the partitions 115 is tho half of this, =45. And by the
like process it is found that the numbers of the partitions 124, 133,
233 are cqual to 90, 495, 45 respectively; and then, as a verification

we have 45+ 90 +4H+45 = 225,

the whole number of the 3-partitions of the 9-gon.

29. The third column (4 parts) is derived in like manner from the
second column by aid of the first columin ;. and 86 in general each column
18 derived in like manner from the column which immediately precedes
it, by aid of the first columnu. Aiid we have for the numbers in cach
compartment of any column the verification that the sum of theso

numbers is eqnal to the whole nnmber (for the proper values of:

k und r) of the k-partitions of the »-gon.

Tt might be possible, by an application of the method of generating
functions, to find & law for the numbers in any compartment of a column
of the table; but I have not attempted to make this investigation.

30. In the table in No. 2, the numbers 1, 2, 5, 14, 42, &c., of the
diagonal line show the number of partitions of the triangle, the quad-
rangle, the 5-gon, ... r-gon into triangles: viz., these numbers show
the number of partitions of the r-gon into-r —2 parts, that is, into tri-
angles; and, for the 7-gon, writing

k=r-2
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the number is = [2r—41
[r—2)-*"

If, as above, taking the weight of the triangle to be 1, we write
r—2=uw,
then the number is — [2w]"!
[w]w-l ’

viz., this is the expression for the number of partitions of the polygon
of weight w, or (w+2)-gon, into triangles.

31. The question considered by Taylor and Rowe, in the paper

referred to in No. 1, is that of the partition of the r-gon into p-gons, for’

p, o given number > .8 ;. this implics a restriction on the form of 7,
viz., we must have r—2 divisible by p—2. In fact (generalizing the
definition of w), if we attribute to a p-gon the weight 1, and accord-
ingly to a polygon divisible into w p-gons the weight w, then, r being
the number of summits, we must have

r=(p—2)w+2.

In particular, if p = 4, or the r-gon is to be divided into quadrangles,
then 7 is necessarily even, and for the values

w=1 23, ..,
we have r=4,6,8, ....

32. To fix the ideas, I assume p = 4, ‘or consider the problem of

the division of the (2w+2)-gon into quadrangles. Writing
w—1=a+b+e,

we take at pleasure any onc side of the (2w+ 2)-gon, making this the
first side of a quadrangle, the second, third, and fourth sides being
diagonals of the polygon such that outside the sccond side we have a
polygon of weight a, outside the third side a polygon of weight b,
and outside the fourth side a polygon of weight ¢, Any one or more of
the numbars @, b, ¢ may be = 0 (they caunot be each of them = Q
except in the case w = 1).” The meaning is that the corresponding side
of the quadrangle, instcad of being 'a dingonal, is a side of the
(2w + 2)-gon, viz., there is no polygon outside such side.  Suppose in
goneral that P, is the number of ways in which a polygon of weight
w can be divided in quadrangles, and let each of the polygons of
weights a, b, ¢ respectively, be divided into quadrangles, the number
of ways in which this can be doue is P,P,P,; and it is to be noticed
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262 On the Partitions of a Polygon. [March 12,

that, if for instance ¢ =0, then the number is = P,P,, viz., the
formula remains true if only we assume P,=1. The number of
partitions thus obtained is P, P,P,, whers the summation extends to
all the partitions of w—1 into the parts a, b, ¢ (zeros admissible and
the order of the parts being attended to). Aund we thus obtain all the
partitions of the (2w+2)-gon into w parts; for first the partitions sb
obtained are all distinct from each other, and next every partition of
the (2w +2)-gon into w parts is a partition in which the selected ride
of the (2w +2)-gon is a side of some one of the quadrangles. Thatis,

wo have P, =3P,PP, (a,b, c as above);

and it hence appears that, considering the generating function
f= 1+P,m+P,a:’+P,z"+..._ ,

we have f=1+2

The reasoning is precisely the same if, instead of a division into
quadrangles, we have a division into p-gous; the only difference is
that instead of the three parts a, b, ¢, we have the p—1parts a, b, c ...,
and the equation for f thus is

f=1+azfr"

33. Writing for a moment
f=utaf,
and expanding by Lagrange’s theorem, we have

mﬂ

1.2...w

f=u+ %(uv-').{. li’é(“m'”)'""*' (uote=nyttemn

viz., after the differentiation, writing « = 1, we have

p, = p=1) w]*"

where it will bo recollected that for the number of sides of the polygon,

we have r=(p-2)w+2.

In the case of the partition into triangles, p = 3, and we have the
before mentioncd value

[2w]"! + [w]*!, w=7r-2.
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Thursday, April 9th, 1891,

Major P. A. MACMAHON, R.A., F.R.S., Vice-President,.
in the Chair.

Mr. J. Rose-Innes, B.Sc. London, B.A. Camb., was elected a
member.

The following commaunication was made :—

The Analytical Forms called Trees, with Applications to the

Combinations of certain Electrical Quantities, and to the"

Compositions of Multipartite Numbers: Major Macmahon.
(Mr. Walker in the Chair.)
A discussion followed, in which Messrs. Kempe, Hammond, and
S. Roberts took part. ' '
Mr. Kempe spoke on the flaw in his proof *“ On the Map-colour
Theorem,” which had recently been detected by Mr. P. J. Heawood,
and showed that a statement by the latter at the close of his paper
failed* He further stated that the subject had long engaged his
attention, and that he was still unable to solve the question to his
satisfaction.
Mr. Tucker communicated a paper by Mr. Culverwell, “Com-
pounded Solutions in the Calculus of Variations.”

The following presents were received :—

¢¢ Educational Times,” for April. ‘

¢ Transactions of tho Cambridge Philosophical Society,’” Vol. xv., Part 1.

¢¢ Proceedings of the Cambridge Philosophical Society,”” Vol. vir., Part 1.

¢¢ (Buvres Complites de Christiaan Huygens,” Vol. 111, 4to; La Haye, 1890.

¢ Bulletin dos Sciences Mathématiques,” Tome xv., Feb., 1891.

¢ Bulletin de la Société Mathématique de France,”’ Tome x1x., Nos. 1 and 2.

‘¢ Atti della Reale Accademia dei Lincei—Rendiconti,’’ Vol. vi1., Fasc. 5 and 6,
Roma, 1891.:

“ Beiblitter zu den Annalen der Physik und Chemie,’”’ Band xv., Stiick 3;
Leipzig, 1891. .

‘“‘ Rendiconti del Circolo Matematico di Palermo,’’ Tomo v., Fasc. 1. e 11.

‘¢ Bollettino delle Pubblicazioni Italiane, ricevute per Diritto di Stampa,’’ Nos.
125 and 126, and two parts of Index.

% Cf. I'roc. Loid, Math. Svc., Appendix to Vol. xx1.
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¢ Berichte iiber dic Verhandlungen der Kéniglich-Siichsischen Gesellschaft der
‘Wissenschaften zu Leipzig,” 1890, 1t and 1v. ; Leipzig, 1891.

¢¢ Jornal de Scioncias Mathomaticas e Astronomicas,” Vol. x., No. 1.

¢ Jahrbuch iiber dic Fortschritte der Mathematik,”” Band xx., Heft 2;
Jahrgang 1888, Heft 2.

A number of pamphlets by Dr. L. Kronecker, viz.—

Offprints from the ¢Sitzungsberichte der Koniglich-Preussischon
Akademie der Wissenschafton zu Berlin,’’ 1888, Art. xvi., xviii.; 1889,
Art. vi., x., xiv., xviii., xix., xxx., xxxi., xlii.; 1890, Art. vi., vii,, xiv.,
xvi., xxvi., xxviii., xxx., xxxvi., xl., xlviii., liii. ; 1891, Art. ii., iii, From
“Crelle’s Journal,” Band ¢., Ioft 4; ci., 4; cii., 3; civ., 4; ¢v., 2. And
¢« Festschrift . . . . Mathematischen Gescllachaft in Hamburg 1890 " (Uber
dio Dirichlotsche Mecthode der ‘Werthestimmung der Gaussschen Reihen);
Lotpzig, 1890.

Also a number by M. A. Mannheim, viz.—

Offprints from ¢ Rendiconti del Circolo Matematico,”” Tomo 111, (1889,
10 Marzo). '

¢ Comptes Rendus,’” 10 Fév., 24 Fév., 3 Nov., 1 Dee., 1890; 2 Fév.,
2 Mars, 1891.

“ Journal de I'Ecolo Polytechnique,’ rx¢ cahier, 1890.

Stability of Orbits. By Mr. A. G. GREENHILL.

[Read May 10¢h, 1888.]

1. The discussion of the stability of a circular orbit described
under a central force is given in Section 1x., Book 1., of Newton's
DPrincipia ; and it is there shown that if the force is proportional to &
single power of the distance, represented by pr"~’, the apsidal angle
in tho circular orbit, when slightly disturbed, is m/n}; so that # must
be positive for the apsidal angle to be real, and for the orbit to be
stable.

Representing as usual the reciprocal of r by %, and the central
force P by pu™, then for the circular orbit to be stable, m must not
be greater than 8.
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