HOME ASSIGNMENT 6 (18.05, SPRING 2007)

Read: Dekking et al. Chapter 19, 20, and 21.

Solve: Problems 19.5, 19.7, 20.4, 20.5, 20.6, 20.7, 20.9 **a** and **b**, 21.2, 21.6, 21.9, 21.14. Also, solve these (10 points each).

A. Let X_1, \ldots, X_n be random sample from U(0, b). Prove or disprove: for all $n \ge 2$

i) $Med(X_1, \ldots, X_n)$ is an unbiased estimator for b/2;

ii) $IQR(X_1, \ldots, X_n)$ is an unbiased estimator for b/2.

B. Let X_1, \ldots, X_n be random sample from U(0, b). Find an unbiased estimator for $(b+1)^2$.

C. Let X_1, \ldots, X_n be random sample from $Exp(\lambda)$. Find an unbiased estimator for λ . Same for λ^2 . (Hint: use the same idea as for unbiased estimator for p in Geo(p).)

D. Let X_1, \ldots, X_n be random sample from U(-a, a). Clearly, the mean $\mu = 0$. The unbiased estimator \overline{X}_n for μ is almost surely $\neq 0$. Can you explain that? What is the most efficient estimator for μ in this case?

E. Let T_1 and T_2 two unbiased estimators for parameter θ . Prove that $T = \max(T_1, T_2)/2 + \min(T_1, T_2)/2$ is also unbiased. Is it possible that T is less efficient than at least one of the T_1, T_2 ? Is it possible that T is less efficient than both T_1 and T_2 ?

Please also do 20.8 and 21.8 for yourself (these will not be graded).

This Homework is due Wednesday April 11 at 2 pm. in 2-108 (UMO)

Typeset by $\mathcal{A}_{\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$