HOME ASSIGNMENT 4 (18.05, SPRING 2007)

Read: Dekking et al. Chapters 13, 14. See the table on p. 432.
Solve: Problems 13.6, 13.11, 13.12, 14.1, 14.2, 14.6, 14.10 (10 points each) and the following problems (each is worth 15 points).

Problem I. In condition of 14.1, let $Y=X_{1}+\ldots+X_{144}$.
a. Use the C.L.T. to approximate $P(Y \leq 240), P(Y \geq 312), P(Y \geq 348)$.
b. Use Chebyshev inequality to bound the same probabilities. Compare the results.

Problem II. In condition of 14.8 , let $Y=Y_{100}$.
a. Use the C.L.T. to approximate $P(100 \leq Y \leq 110), P(Y \geq 115), P(80 \leq$ $Y \leq 120$).
b. Use the C.L.T. to approximate $P(75 \leq Y \leq 125), P(Y \leq 130)$, and $P(86 \leq$ $Y \leq 118$).

Problem III. Let $X_{i}, 1 \leq i \leq 600$ be independent c.r.v. with $U(0,1)$ distribution. Let $Y_{i}=X_{i}\left(1-X_{i}\right), 1 \leq i \leq 600$, and let $Z=Y_{1}+\ldots+Y_{600}$.
a. Compute $\mu=E\left[Y_{i}\right], \sigma^{2}=\operatorname{Var}\left(Y_{i}\right), E[Z]$ and $\operatorname{Var}(Z)$.
b. Use Chebyshev inequality to bound $P(Z \geq 103)$ and $P(Z \leq 98)$.
c. Use the C.L.T. to approximate $P(100 \leq Z \leq 102.3), P(Z \geq 103), P(Z \leq 98)$, $P(92 \leq Z \leq 101.5)$.

Problem IV. Roll a fair die 200 times. Let X be the sum of the first 100 outcomes, and let Y be the sum of the second 100 outcomes.
a. Use the C.L.T. to approximate $P(X \leq 300), P(X \leq 370), P(320 \leq Y \leq 425)$, $P(285 \leq Y \leq 325)$.
b. Use the C.L.T. to approximate $P(X+Y \leq 620), P(X+Y \leq 750), P(660 \leq$ $X+Y \leq 800), P(X+Y \geq 900)$
c. Use the C.L.T. to approximate $P(X-Y \leq 50), P(X-Y \leq 100), P(|X-Y| \leq$ 25), $P(|X-Y| \leq 10), P(|X-Y| \leq 3)$.

This Homework is due Wednesday March 21 at 4 pm . in 2-108 (UMO)

