HOMEWORK 4 (18.319, FALL 2006)

1) Let $Q \subset \mathbb{R}^{2}$ be any self-intersecting polygon. By a reflection move we mean choosing a portion of the polygon between points $x, y \in Q$ (not necessarily vertices) and reflecting it along the (x, y) line as in the Figure. Prove or disprove that every polygon can be made non-self-intersecting by a finite sequence of reflection moves.

Figure 1. A sequence reflection of moves of a polygon.
2) Denote by $\alpha(\Gamma)$ the length of the longest cycle in graph Γ (cycles do not have repeated vertices). Construct a sequence of convex polytopes $\left\{P_{n}\right\}$ with graphs $\Gamma_{n}=\Gamma\left(P_{n}\right)$ on n vertices, such that $\alpha\left(\Gamma_{n}\right)=O\left(n^{1-\varepsilon}\right)$ for some $\varepsilon>0$ and $n \rightarrow \infty$.
3) Recall the mean curvature of a polyhedron $P \subset \mathbb{R}^{3}$:

$$
M(P)=\sum_{e \in E(P)} \ell_{e} \theta_{e}
$$

where ℓ_{e} is the length of edge $e \in E$ and θ_{e} is the dihedral angle.
a) Prove the Schläfli formula for every deformation $\left\{T_{t}, t \in[0,1]\right\}$ of a tetrahedron $T=T_{0}$:

$$
\sum_{e \in E} \ell_{e}(t) \cdot \theta_{e}^{\prime}(t)=0, \quad \text { for all } t \in[0,1]
$$

b) Deduce from here the Schläfli formula for deformations of all (not necessarily convex) polyhedra.
4) Let $P \subset \mathbb{R}^{3}$ be a convex polyhedron and let $Q \subset S$ be a polygon on the surface $S=\partial P$. We say that the surface $A=S-Q$ is convexly rigid if for every convex polyhedron $P^{\prime} \subset \mathbb{R}^{3}$ with surface S^{\prime}, if A is isometric to a region $A^{\prime}=S^{\prime}-Q^{\prime}$ for some $Q^{\prime} \subset S$, then A^{\prime} is obtained from A by a rigid motion.
a) Prove that if Q is strictly inside a face of P, then every such $S-Q$ is convexly rigid.
b) Show that if Q lies in ε-neighborhood of a vertex of P, then $S-Q$ can be not convexly rigid, no matter how small is ε.
c) Prove or disprove part a) for all Q with no vertices of P inside.
5) Let $G=(V, E)$ be any connected graph, $V=\left\{v_{1}, \ldots, v_{n}\right\}$. Fix an integer $k \geq 3$. A drawing of G is defined to be a maps $\varphi: V \rightarrow \mathbb{R}^{2}$ such that φ maps v_{1}, \ldots, v_{k} into vertices of a fixed convex k-gon. We say that a drawing of G is barycentric if every vertex $v_{i}, i \geq k+1$, is in the barycenter of its neighbors. Prove that such barycentric drawing is uniquely determined by G and the k-gon.

Figure 2. Barycentric drawing of the Petersen graph, $k=5$.
6) (Generalized Cauchy Theorem) Consider an unbounded convex polyhedron P defined an intersection of a finitely many halfspaces. Suppose the origin $O \in P$. Denote by $C(P)$ the cone of all directions from O which do not intersect the boundary $S=\partial P$. Suppose two such polyhedra P, P^{\prime} are combinatorially equivalent, have isometric corresponding faces and equal cones $C(P)=C\left(P^{\prime}\right)$. Prove that P can be obtained from P^{\prime} by a rigid motion.
7) (Mean curvature again) Define

$$
\mathrm{M}_{d}(P)=\int_{S^{d-1}} H(u) d \sigma(u)
$$

where $P \subset \mathbb{R}^{d}$ is a convex polytope containing the origin $O, d \sigma$ is the invariant measure on S^{d-1}, and $H(u)$ is the support function defined by

$$
H(u)=\max \{(x, u) \mid x \in P\} .
$$

a) Prove that $\mathrm{M}_{2}(P)=\operatorname{perimeter}(P)$.
b) Rewrite $\mathrm{M}_{3}(P)$ is a sum over vertices: we have:

$$
\mathrm{M}_{3}(P)=-\sum_{v \in V}\left(\int_{R_{v}} u d \sigma(u), \boldsymbol{r}_{v}\right),
$$

where $R_{v}=C_{v}^{*} \cap S^{2}$ and $\boldsymbol{r}_{v}=(v, O)$ as in the lectures.
c) For a simple cone $C \subset \mathbb{R}^{3}$ calculate the integrals in the summations on the right.
d) Use additivity to compute the integral above for general cones. Write the answer for each vertex:

$$
\int_{R_{v}} u d \sigma(u)=-\sum_{e=(v, w) \in E} \theta_{e} \boldsymbol{u}_{v, e} .
$$

e) Finally, relate $M_{3}(P)$ to the mean curvature.
8) Let $S=\partial P$ be the surface of a convex polytope $P \subset \mathbb{R}^{3}$. Prove that it is possible to subdivide S into triangles τ_{i} and then place these triangles on a plane in such a way that triangles that were adjacent by an edge are still adjacent by the same edge.

Figure 3. The surface of cube can be folded onto a plane.

This is the last homework. It is due Wednesday December 6 at 11:05 am.
P.S. Do not forget: some of these problems are quite difficult. By no means you are expected to solve all or even most of them.

