HOMEWORK 5 (18.314, FALL 2006)

- **1.** Problem 4.4.6 (p. 160) from the book (MN).
- **2.** Problem 4.4.8 (p. 160)
- **3.** Problem 4.4.9 (p. 161)
- **4.** a) Problem 7.1.4 (p. 224).
- 5. Problem 7.2.1 (p. 226)

6. We say that K_n decomposes into graphs H if the edges in K_n are a disjoint union of isomorphic copies of H. For example, K_3 is a disjoint union of three K_2 's.

a) Check that K_5 decomposes into 3-paths (= $K_{1,2}$ in this case). Check that K_7 decomposes into 4-paths.

- b) Check that K_7 decomposes into $K_{1,3}$'s. Check that K_7 decomposes into K_3 's.
- c) Prove that K_{2n+1} decomposes into (n+1)-paths for all n > 1.
- d) Prove that K_{2n+1} decomposes into $K_{1,n}$'s for all n > 1.
- e) Prove or disprove: K_{6n+1} decomposes into K_3 's for all n > 1.

This Homework is due Wednesday October 25 at 14:05 am.